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Key Points:
e We developed a new parsimonious dynamic catchment phosphorus model, SimplyP

e SimplyP performed as well in calibration, validation and scenarios as a well-established,
substantially more complex model

e Results support the hypothesis that water quality models are too complex and suggest wider
simplification exercises may be warranted
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Abstract

Catchment-scale water quality models are increasingly popular tools for exploring the potential
effects of land management, land use change and climate change on water quality. However, the
dynamic, catchment-scale nutrient models in common usage are complex, with many uncertain
parameters requiring calibration, limiting their usability and robustness. A key question is
whether this complexity is justified. To explore this, we developed a parsimonious phosphorus
model, SimplyP, incorporating a rainfall-runoff model and a biogeochemical model able to
simulate daily streamflow, suspended sediment, and particulate and dissolved phosphorus
dynamics. The model’s complexity was compared to one popular nutrient model, INCA-P, and
the performance of the two models was compared in a small rural catchment in northeast
Scotland. For three land use classes, less than six SimplyP parameters must be determined
through calibration, the rest may be based on measurements, whilst INCA-P has around 40
unmeasurable parameters. Despite substantially simpler process-representation, SimplyP
performed comparably to INCA-P in both calibration and validation and produced similar long-
term projections in response to changes in land management. Results support the hypothesis that
INCA-P is overly complex for the study catchment. We hope our findings will help prompt
wider model comparison exercises, as well as debate amongst the water quality modelling
community as to whether today’s models are fit for purpose. Simpler models such as SimplyP
have the potential to be useful management and research tools, building blocks for future model
development (prototype code is freely available), or benchmarks against which more complex
models could be evaluated.

1. Introduction

Dynamic, process-based integrated catchment models are designed to represent the
processes governing catchment hydrology and water quality, and may therefore be useful tools
for catchment management. Models can be used, for example, to interpolate sparse monitoring
data, to highlight knowledge and data gaps and help design monitoring strategies, as well as to
provide evidence to support decision making. Integrated catchment models are increasingly
called upon, for example, to explore potential future water quality under scenarios of changing
management, land use and climate, often as part of wider integrated modelling frameworks
(Jakeman & Letcher, 2003, Martin-Ortega et al., 2015). As a result, many catchment-scale
nutrient and sediment models have been developed during the last few decades.

In a recent review, Wellen et al (2015) found that the majority of recent nutrient
modelling studies used just five models: SWAT (Arnold & Fohrer, 2005, Arnold et al., 1998),
INCA (Wade et al., 1999, Wade et al., 2002, Whitehead et al., 1998), AnnAGNPS (Binger &
Theurer, 2005, Young et al., 1989), HSPF (Bicknell et al., 2001, Donigian Jr et al., 1995) and
HBYV, now superseded by HYPE (Lindstrom et al., 2010). These models are semi-distributed,
mass balance models, which simulate the daily dynamics of nutrient transport in catchments.
Although the models differ in their structures, each requires on the order of >50 to 100s of user-
supplied parameters for hydrology, sediment and phosphorus (P) simulations to be performed.
Many of these cannot be measured directly and are highly uncertain, and their values must
therefore be determined by calibrating the model to observations. In most catchments, calibration
is carried out using end-of-pipe measurements of discharge and water chemistry, the latter often
only sampled infrequently. Previous analyses have suggested that there is only enough
information in discharge data to constrain a small number (<6) of hydrology model parameters
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during calibration (Jakeman & Hornberger, 1993), and it seems unlikely that in-stream
concentration data will provide enough additional information for tens or even hundreds of
additional parameters to be constrained (Kirchner, 2006). Overall, there is a growing awareness
that, given data and process knowledge limitations, current catchment water quality models are
overly-complex and there is a need for more parsimonious models that capture the dominant
modes of behavior at the scale of interest (Jackson-Blake & Starrfelt, 2015, Jakeman et al.,
2006, Kirchner, 2006, Krueger et al., 2007, Radcliffe et al., 2009). Examples of some of the new
simpler dynamic nutrient models being developed include the Rainfall-Runoff Phosphorus model
(Hahn et al., 2013, Van Meter & Basu, 2015), which focuses on identifying critical source areas
and simulating discharge and soluble reactive phosphorus (SRP) concentration in grassland
catchments, and an analytical model for quantifying time lags between implementing measures
and seeing reductions in surface water nitrate concentrations (Van Meter & Basu, 2015). These
models are relatively limited in their aims and scope, and there is a need to assess to what extent
the aims of more complex models like INCA and SWAT, which attempt to simulate a wider
range of nutrient species and processes, could be achieved using simpler modelling approaches.

There are sound theoretical reasons for why simpler models should be chosen over more
complex ones (see e.g. MacKay, 2003, Chapter 28). With over-parameterized models, different
parameter sets will give almost identical fits to the calibration data (e.g. Beven & Binley, 1992),
and yet may yield very different predictions of how the system will behave as conditions change,
and can therefore perform poorly in validation (Seibert, 2003). Model complexity often therefore
turns out to be unjustified in practice (e.g. Perrin et al., 2001). There are related practical reasons
for choosing simpler models. Firstly, over-complexity leads to difficulties in using the model to
test hypotheses about the dominant processes operating within a catchment, as the real processes
may be masked by too much flexibility introduced by unnecessary parameters (Jakeman et al.,
2006, Kirchner, 2006). Secondly, large parameter spaces lead to difficulties in model calibration
because of parameter non-identifiability, whether due to structural or practical non-identifiability
(as defined in Raue ef al., 2009). There are then related problems with auto-calibration,
sensitivity and uncertainty analyses, as the parameter space increases exponentially with the
number of parameters, eventually becoming too large to be searched within realistic time frames.
Uncertainty analyses are becoming a pre-requisite for model applications, yet as only subsets of
the parameter space of more complex models can be searched, these analyses become somewhat
subjective and incomplete (Jackson-Blake & Starrfelt, 2015, Pappenberger et al., 2007), and the
meaningfulness of estimated uncertainty intervals is often questionable. Finally, as models
become more complex they become more time-consuming to set up and require larger
calibration and evaluation datasets, increasing the financial burden associated with model
applications and limiting the size of the user group. Ultimately, over-complexity therefore
reduces a model’s usefulness for supporting research and real world decision-making.

Simplicity should not be a goal in itself — the ultimate test of a model is how well it can
simulate the system of interest, usually assessed through validation. The relative performance of
different model structures in validation depends to some extent on data availability — more
detailed data permit more rigorous testing, potentially allowing identification of more complex
model structures. However, in applications where the data available for calibration and validation
are “sparse” (usually the case for catchment simulations, even in well-studied catchments),
simpler models may be expected to perform just as well as complex ones.
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The hypothesis driving this study is therefore that the most popular catchment-scale
dynamic water quality models are unnecessarily complex. Testing this hypothesis will require a
concerted effort from many modelling groups, with comparative studies of a range of different
model structures in a wide variety of catchments. In this study, we begin this model evaluation
process with the comparison of one popular and representative water quality model, INCA-P,
and a newly-developed parsimonious catchment phosphorus model, SimplyP. The comparison is
carried out in a rural Scottish catchment which contains the majority of land uses and P-related
processes found in temperate rural regions, so results are likely to be applicable more widely.
Our hypothesis is that INCA-P is overly-complex for the catchment, in which case we would
expect similar model performance skill metrics from INCA-P and SimplyP.

2. Study area

Model applications were carried out in the Tarland Burn catchment, upstream of the
James Hutton Institute monitoring point at Coull (51 km?). The Tarland is a rural sub-catchment
of the River Dee in northeast Scotland. Land use is a mixture of agriculture (primarily spring
barley, improved grassland and rough grazing), upland heath and forestry. Humus iron podzols
and brown forest soils tend to be associated with agricultural land, with peaty podzols under
semi-natural land on the hills fringing the catchment. The main settlement is the village of
Tarland, which has a small wastewater treatment works (around 600 people); septic tanks serve
the remainder of the catchment (several hundred people). Water quality is of concern, primarily
due to inputs of nutrients and sediments from agriculture. The Tarland Burn is the most upstream
tributary of the ecologically-sensitive River Dee to have impaired water quality, and works have
therefore been underway during the last decade to reduce sediment and nutrient inputs to the
water course (Bergfur et al., 2012). During the 2000-2010 period, the catchment had a mean
annual rainfall of 966 mm, a mean annual runoff of 451 mm yr'l, and median total dissolved P
(TDP) and total P (TP) concentrations of 25 and 40 pgl™, respectively.

3. Modelling approach

3.1 INCA-P

INCA-P is a process-based, semi-distributed catchment model for simulating the daily
transport of sediment, dissolved and particulate P from catchments to streams, as well as
subsequent in-stream transport and processing. It is similar to other popular water quality models
in terms of its structure and the number of processes and parameters it includes, and is therefore
representative of the current dynamic phosphorus models in popular usage. During the last
decade, INCA-P has been applied to a variety of catchments throughout Europe (e.g. Couture et
al., 2014, Martin-Ortega et al., 2015, Wade et al., 2007, Whitehead et al., 2013), Canada (e.g.
Crossman ef al., 2013) and India (Jin ef al., 2015), to explore how P dynamics may respond to
changes in land management and climate. The model was originally developed in the early 2000s
(Wade et al., 2002) and has since undergone several phases of re-development. The most recent
model description is given in Jackson-Blake et al. (2016), and only a brief description is given
here. In this study, we used INCA-P versionl.4.4.

INCA-P requires input time series of air temperature, precipitation, hydrologically
effective rainfall (HER; the water from precipitation and snowmelt which contributes to runoff),
and soil moisture deficit (SMD, the difference between the soil moisture content and field
capacity). HER and SMD are derived from an external hydrology model.
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Within INCA-P, water is delivered to the water course via three flow paths: quick flow,
which accounts for overland flow and other rapid flow pathways, soil water flow and
groundwater flow. Quick flow is generated through infiltration and saturation excess overland
flow, soil water flow is generated by HER, and groundwater flow is derived from soil water flow
via percolation. All flows transport dissolved P (as TDP), whilst sediment and particulate P (PP)
are only transported via quick flow. Within the terrestrial compartment, P is present in the soil as
solid labile or inactive soil P, or as dissolved P in soil water. Within the soil water and
groundwater, TDP concentrations are controlled by sorption equilibria. Terrestrial P inputs
include solid and liquid fertilizer, manure and atmospheric deposition; the major terrestrial sinks
are plant uptake and adsorption. The rates of plant uptake, weathering and immobilization are
dependent on temperature, whilst plant uptake is also dependent on soil moisture and season.
Sediment delivery to the stream uses equations from INCA-sed (Jarritt & Lawrence, 2007, Lazar
et al., 2010), including process representations for splash detachment, flow erosion and the
transport capacity of quick flow. PP is associated with sediment, and therefore affected by the
same processes. Instream, the model includes effluent inputs, water abstractions, sediment
settling and resuspension, bank erosion, P sorption reactions in the water column and in the
stream bed and biological uptake of P from the water column and the stream bed. To simulate
biological uptake, the model also simulates the dynamics of epiphyte and macrophyte biomass
within stream reaches.

The rate of change in volume or mass of model state variables with respect to time is
described by a series of ordinary differential equations (ODEs), solved within each time step
using an adaptive 4™ order Runge-Kutte-Merson method.

3.2 SimplyP

A new simple hydrology, sediment and phosphorus model, SimplyP, was developed for
comparison to INCA-P. A full description of SimplyP model structure, equations, numerical
methods and priorities for future model development is given in the supplementary information
(SI, Text 1), and only a brief description is provided below.

A full description of model aims and scope is given in SI Section 3.1. Briefly, the
development of SimplyP was motivated by results of several studies evaluating INCA-P
(Jackson-Blake et al., 2015, Jackson-Blake & Starrfelt, 2015, Jackson-Blake et al., 2016). These
provided recommendations for model improvements, some of which were incorporated into
INCA-P (version 1.4 onwards). However, one of the main recommendations was for model
simplification. Whilst a certain amount of simplification can be achieved through
parameterization, this requires a high level of familiarity with the model, is time-consuming and
prone to errors, and there are limits to the amount of simplification that can be achieved. The aim
here was therefore to carry out a more substantial process of simplification, whilst maintaining
sufficient complexity for the model to be useful in hypothesis and scenario testing. SimplyP
retains a number of similarities with INCA-P (Section 4.1). Other areas of the model were
inspired by experiences in applying INCA-P, by assumptions used in other water quality models,
or by well-established process understanding. A particular design aim was for the process
representation to be simple enough to allow parameter values to be constrained using available
data, by both keeping the number of parameters requiring calibration to a minimum, and aiming
for as many parameters as possible to be in principle measurable.
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Like INCA-P and other popular mechanistic water quality models, SimplyP is dynamic
with a daily time step and is spatially semi-distributed, so the catchment may be split into sub-
catchments and associated reaches. The model is run for each sub-catchment in turn, and outputs
from each reach are fed into the main stem sequentially down-stream. Land may be further sub-
divided based on simple ‘land classes’: for dissolved P processes, two classes are considered, a
‘high P’ and a ‘low P’ class. Land within a given class should have a similar gross annual P
balance, soil P content and hydrological characteristics; in a typical rural catchment the high P
class could include fertilized grassland and arable land, with everything else assigned to the low
P class. For sediment and particulate P processes, the high P class may be sub-divided to account
for differences in erodibility (e.g. improved grassland versus arable land). Finally, if arable land
is present, the proportion of spring versus autumn-sown crops may be taken into account, along
with the variation in soil erodibility through time. For convenience, there is also the possibility of
a ‘newly-converted’ land class, to take into account legacy soil P when agricultural land becomes
disused, or the lack of legacy soil P in new agricultural land (see SI Section 3.2).

A full description of SimplyP model processes is given in SI Section 4. In brief, the
following sets of processes are included: snow accumulation and melt (SI Section 4.1.1);
rainfall-runoff (SI Section 4.1.2); in-stream hydrology (SI Section 4.1.3); sediment delivery to
the watercourse and in-stream transport (SI Section 4.2); and terrestrial and in-stream P
processes (SI Section 4.3). A summary of the main stores and fluxes of water, sediment and P is
provided in Figure 1. Three terrestrial flow paths are taken into account: (1) Quick flow, to
simulate inputs to the watercourse during larger rainfall events and when soils are dry and little
soil water flow occurs. This was simply calculated by assuming quick flow is proportional to
incoming precipitation and is routed instantaneously to the stream; (2) Soil water flow,
responsible for TDP leaching from soils and groundwater recharge. Inputs to the soil water are
from rainfall and snowmelt; outputs are through evapotranspiration and soil water flow, and soil
water flow is assumed to only occur once the soil water content is above field capacity; (3)
Groundwater flow, important for controlling baseflow TDP concentrations. Groundwater
recharge occurs through percolation from the soil water. In-stream reach volume and discharge
are then estimated.

Sediment processes are represented in a highly simplified manner (see SI Section 4.2 for
details). Briefly, in-stream suspended sediment (SS) concentration has long been known to be
well-explained by a simple power law with in-stream discharge (Bagnold, 1966), as:

SS = Eqs Q. [1]

where O, is in-stream discharge and Ej,; and k are constants (Colby, 1956). This simple
power law is taken as the basis for predicting the combined sediment inputs to the stream reach
from both the land phase and in-stream entrainment. The E,, parameter is divided into a
calibrated scaling factor and a number of factors which are known to affect terrestrial sediment
delivery and in-stream entrainment rates, such as sub-catchment and channel slope and land
cover. The land cover factor may be varied throughout the year to take into account periods of
higher soil erodibility (Watson & Evans, 2007).

P is represented in the soil in three forms: TDP in the soil water, labile soil P and inactive
soil P. The masses of dissolved and labile soil P change through time, whilst the mass of inactive
soil P is constant. Labile soil P and TDP are assumed to be in equilibrium, related via a linear
relationship (McCray et al., 2005). A number of assumptions are made to help parameterize this
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relationship, e.g. it is assumed that the inactive soil P content is the same in the high and low P
classes, and that the low P class does not contain labile soil P and has soil water TDP
concentrations around zero. The difference in total soil P content between the two classes is
therefore all potentially labile P in the high P class, built up during fertilizer and manure
additions (for a discussion of the issues relating to incorporating agronomic soil test P
measurements into the model, see SI Section 4.3.1e). Initial soil water TDP concentration is
calibrated within plausible ranges, and used to calculate a gradient for the labile P versus TDP
relationship, which can then be used to relate soil labile P and TDP concentration outside the
calibration period (see SI Section 4.3.1). Fertilizer, manure and plant uptake fluxes are grouped
together into a single gross annual P balance parameter, which is then evenly applied or
subtracted over the course of the year. This representation of soil P processes is highly
simplified. In reality, soil P is present in a continuum of interlinked states of varying
extractability, and hysteresis effects are common in P transfers between states. However, the
understanding of how detailed soil chemical processes upscale to the catchment-scale is arguably
not yet advanced enough to be usefully incorporated into a catchment-scale model.

Quick flow TDP concentration is assumed to be the same as soil water TDP
concentration. Groundwater TDP concentration is set as a constant, given generally high P
sorption capacities in and below mineral soil horizons. TDP is then transported to the reach via
all three terrestrial flow pathways, whilst PP dynamics are linked to SS dynamics, taking into
account enrichment of PP relative to parent material due to the selective transport of finer-
grained, more P-rich material (Sharpley, 1980). Incidental P losses, potentially large P fluxes
washed into watercourses when rainfall events coincide with fresh fertilizer and manure
applications, are not yet included, due to difficulties in capturing the high spatial and temporal
variability of these events and the relatively detailed management knowledge required.

In-stream, the model only includes the dilution of diffuse and point source P inputs and
down-stream transport. This simple formulation assumes that in-stream processing is in a state of
dynamic equilibrium, i.e. in-stream sinks and sources are balanced. Whilst there is insufficient
data to suggest otherwise in the study catchment, it would be straightforward to add a simple
retention or loss factor to the model for catchments where in-stream retention is thought to be
important, informed, for example, by results of large-scale empirical studies (e.g. Alexander et
al.,2004).

The rate of change in volume or mass of model state variables with respect to time is
described by a series of ODEs. To reduce errors introduced by numerical approximations, model
ODEs were formulated as continuous functions, avoiding thresholds, and were solved within
each time step using the LSODA solver (Hindmarsh, 1983) (see SI Section 4.5).

SimplyP requires input time series of daily precipitation, air temperature and potential
evapotranspiration (PET). Model outputs include time series of daily fluxes and flow-weighted
daily mean concentrations of TDP, PP and SS and daily mean flow. The state of the internal
stores may also be output (e.g. snow depth, volumes and flows from the two water stores, and P
masses in the different stores).

SimplyP v1.0 model code is open source and freely-available for download
(https://github.com/LeahJB/SimplyP). See SI Section 2 for details and instructions.
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33 Data for model calibration and testing

Data from the catchment outflow from 2000 to 2010 were used for model calibration and
testing. Weekly chemistry sampling took place between 2000 and the end of 2003, with some
daily sampling during rainfall events. Daily samples were collected between February 2004 and
June 2005, providing 15 months of daily data. After June 2005, infrequent irregular sampling
continued for the rest of the period. Measured parameters included SS, TDP and soluble reactive
P (SRP) concentrations; daily 2004-2005 samples were also analyzed for total P (TP), allowing
PP to be calculated (as TP — TDP). Daily discharge data is also available (daily means calculated
from 15-minute data). For further details of monitoring and analytical methods, see Stutter et al.
(2008).

A comprehensive set of additional data were compiled to help parameterize both models,
including land use data, estimates of sewage effluent inputs from septic tanks and the sewage
treatment works, soil solution and groundwater TDP concentrations, and soils data, including
soil total P content and bulk density. See Jackson-Blake et al. (2015) for a full description of
these data.

3.4  Model setups in the study catchment

The INCA-P application used in this study is described in Jackson-Blake et al. (2016).
Briefly, the catchment was split into four reaches and associated sub-catchments (Figure 2). Four
parameters were varied by reach: reach width and slope, initial bed sediment silt mass and
effluent inputs. Three land classes were considered: arable, improved grassland and semi-natural,
although when calculating fertilizer and manure inputs to agricultural land, area-weighted inputs
from a finer-representation of the land use were used. Semi-natural land incorporated rough
grazing, heather moorland, deciduous and coniferous woodland. For more details, including
percent land use per sub-catchment, see Jackson-Blake et al. (2016).

For SimplyP, the catchment was considered as a single unit, rather than being separated
into sub-catchments and reaches. Only one partially unconstrained SimplyP parameter may vary
by reach, the effluent input, and for this first test of the model sewage effluent inputs from the
sewage treatment works and septic tanks were summed and added at the top of the single
simulated reach. The catchment area was then grouped similarly to the INCA-P setup: the high P
class (50% of the catchment area) included arable land (20%) and improved grassland (30%).
Upland heath, forestry and rough grazing were grouped into the low P class as semi-natural land
(50%).

Input data to drive both models included air temperature and precipitation, derived from
the UK Met Office 5 km gridded dataset, and PET, estimated using the FAO56 Penman
Monteith method (Allen et al., 1998). HER and SMD time series for INCA-P were calculated
using a water balance model (described in Jackson-Blake et al., 2015), which in turn required
inputs of daily precipitation and PET. This water balance model has 8 parameters, the majority
based on soil properties.

3.5  Model calibration, validation and scenario analysis

Ideally, a single auto-calibration procedure would be used to calibrate both INCA-P and
SimplyP, rather than relying on manual calibration which could introduce modeler bias.
However, the complexity of INCA-P means that full auto-calibration of all uncertain parameters
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is not possible — the parameter space is too large to be explored within reasonable time scales
(e.g. Jackson-Blake & Starrfelt, 2015), and the choice of which subset of parameters to include
in the analysis is subjective. Auto-calibration often does not lead to improved model
performance compared to manual calibration (Boyle et al., 2000), particularly for dynamic
variables such as phosphorus — previous auto-calibration of INCA-P in the study catchment
resulted in less realistic simulated TDP dynamics than manual calibration (Jackson-Blake &
Starrfelt, 2015). For this study, both models were therefore calibrated manually. The INCA-P
calibration does however represent what we feel is the best possible setup for the Tarland
catchment: much time has been spent calibrating INCA-P in the study catchment, initially
through manual calibration and an investigation of different model structures (Jackson-Blake et
al., 2015), then through auto-calibration using a sophisticated MCMC algorithm (Jackson-Blake
& Starrfelt, 2015), and finally through manual calibration informed by the results of previous
calibrations (Jackson-Blake ef al., 2016). By contrast, the SimplyP calibration was done within a
few hours, and therefore represents a first test of the model’s potential.

The calibration period was 2004-2005, encompassing the 15 months when daily
discharge and surface water chemistry data are available. Daily discharge and sparser water
chemistry data for the period 2000-2010 (excluding 2004-2005) were then used for model
validation.

Manual calibration was done in a step-wise manner: hydrology-related parameters were
adjusted until an acceptable discharge calibration was obtained, then sediment-related parameters
and finally P-related parameters, with several iterations. Additional data taken into account in
calibration included one-off measurements of soil solution TDP concentrations from agricultural
soils in the catchment. Model performance was evaluated using the procedure recommended in
Jackson-Blake et al. (2015), using a combination of: (1) visual assessment of time series, (2)
comparison of distributions of observed and simulated data using quantile-quantile (QQ) plots,
and (3) model performance statistics, including Spearman’s Rank correlation coefficient and
model bias. Nash Sutcliffe efficiency (NS) and NS on logged data were used to assess the
discharge simulation. NS was not used for water chemistry parameters as previous work has
shown it to be poor at discriminating between realistic and unrealistic P simulations (Jackson-
Blake et al., 2015). In addition, the INCA-P calibration included checking for plausible changes
in masses of soil P and stream bed sediment and PP during the model run.

For both models, the calibration procedure also involved adjusting the initial soil P store
so that simulated agricultural soil water TDP concentration changed at an appropriate rate over
longer model runs: long-term monitoring experiments suggest that, in the absence of fertilizer
inputs, soil P in agricultural land should drop to near semi-natural values with a half-life of 7 to 9
years (McCollum, 1991, Syers et al., 2008), i.e. within around 35 years in the study catchment.
In INCA-P, this involved adjusting the soil depth parameter. In SimplyP, the soil areal mass
parameter was adjusted (combining soil depth and bulk density; SI Table 7). Soil depths in the
range 7 to 10 cm were obtained, 14 to 20 cm taking soil porosity into account. This is plausible,
given that soil P decreases with depth and is highest in the top 20 cm in agricultural soils (Syers
et al., 2008). Calibrated parameter values for SimplyP are given in Table 1.

Several sensitivity tests were then carried out with SimplyP to test the model’s ability to
explore future scenarios of change. The model was run for a 30-year period with a number of
reductions in net P inputs relative to the 2000 — 2010 baseline, corresponding to reductions in
fertilizer and manure applications of 25%, 50% and 100%. Agricultural land in the catchment
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has an estimated P balance (inputs from fertilizer and manure minus outputs via harvesting) of
around 10 kg ha™ yr' (Messiga et al., 2010) and fertilizer and manure inputs are estimated at
around 24 kg ha” yr'. The 25% and 50% reduction scenarios are therefore economically-
feasible, corresponding to annual P balances of around 4 and -2 kg ha™' yr', which should have
little impact on crop yields for a number of years. The 100% reduction scenario is included as a
sensitivity test. Results were compared to previous results for the same set of scenarios derived
using INCA-P (Jackson-Blake et al., 2016).

4. Results

4.1 Comparison of model process-representation and complexity

SimplyP has a number of features in common with INCA-P, such as three terrestrial flow
paths, a simple split of P into TDP and PP, and a split of soil P into labile and inactive stores.
Many processes included in INCA-P have however been omitted from SimplyP, the most
important P-related ones being: (1) the removal of seasonal variability in soil water TDP
concentrations; (2) simplification of quick flow generation, by removing the process-
representation of infiltration excess and saturation excess; (3) extensive simplification of the
sediment-related equations, including removing the process-representation of splash detachment,
flow erosion, the transport capacity of quick flow and in-stream entrainment and deposition; (4)
controls on groundwater TDP concentration, which in SimplyP is considered to be constant; (5)
simplification of the in-stream P processes, including removal of the macrophyte and epiphyte
biomass equations and of the simulation of separate P processes in the water column and the
stream bed.

Another difference is the incorporation of a hydrology model into SimplyP. We see this
as a great improvement, removing the need for an external hydrology model and simplifying the
calibration procedure, as water quality simulations are extremely dependent on the hydrology
simulation, so time-consuming iterative calibration of separate hydrology and water quality
models is often required for good model performance.

Model complexity is in part reflected by the number of state variables included in the
model. For each sub-catchment/reach, SimplyP has 13 ODEs (Table SI-9), plus four for
calculating daily in-stream fluxes from instantaneous fluxes (not present in INCA-P to our
knowledge, but required to calculate volume-weighted daily mean concentrations). This is
substantially fewer than INCA-P, despite the fact that SimplyP includes a hydrology model:
INCA-P has 28 ODEs before land use variability is taken into account and 52 in an equivalent
setup to SimplyP with 3 land use classes.

Model complexity is also in part reflected by the number of model parameters. SimplyP
parameters are described in Table 1 and INCA-P parameters in Jackson-Blake et al. (2016). Both
models require a number of well-constrained parameters which are generally not included in the
calibration procedure (e.g. catchment area, areas of land classes, slopes and reach lengths;
described in Table SI-10 for SimplyP). Excluding these, the total number of parameters in both
models, split by process or type, is summarized in Table 2. SimplyP has 23 parameters that are to
some extent unconstrained, 24 — 27 when spatial variability between land classes is taken into
account. At least 8 of these are optional (before taking spatial variability into account),
depending on the level of process-representation desired. By comparison, INCA-P has 146
parameters (assuming one reach and sub-catchment, varying three parameters by two land
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classes for dissolved P processes and by three classes for soil erodibility for comparability with
SimplyP). The version of INCA-P described in the tests performed here (4 reaches with 3 land
classes) involves around 48 calibrating parameters, which we believe is simple compared to
previous applications (e.g. Crossman et al., 2013, Jin et al., 2015). A further ~45 parameters
were carefully assigned values to help simplify the model structure and turn certain processes
off, leaving around 53 unused parameters.

Only one SimplyP parameter varies by sub-catchment or reach, the effluent TDP input,
so model complexity will not increase substantially in larger systems. For INCA-P, 64
parameters may be varied by sub-catchment or reach, resulting in the potential for highly
parameterized model setups.

Another important issue is the extent to which model parameters may be informed by
data (Table 2). Around 43 INCA-P parameters are not measurable and must be determined
purely through calibration, and 14 are not measurable and yet are thought to exert a key
influence on model output (Jackson-Blake et al., 2016). This can be problematic for model
calibration. Meanwhile, the majority of SimplyP parameters may be based on measured data or
data derived from literature reviews, and only 4 or 5 must be determined purely through
calibration (Table 1). One of these relates to the sediment simulation, the rest are hydrology
parameters. This is promising, as water quality models are particularly sensitive to hydrology
parameters (Dean ef al., 2009, Jackson-Blake & Starrfelt, 2015, van Griensven et al., 2006), so
there is a good chance of these parameters being identifiable. Even in the most complex setup in
which all 27 SimplyP parameters are used, it should therefore be feasible to search the entire
parameter space as part of an auto-calibration or uncertainty analysis, provided the user has data
to inform the parameter values (Table 1) and sufficient discharge and water quality observations
(including SS, TDP and PP concentrations under the full range of flow conditions).

4.2 Model performance in the Tarland Burn

4.2.1 Model calibration and validation results

During the calibration period, discharge performance statistics were slightly better for
SimplyP than for INCA-P (Table 3). This is in part because a snow accumulation and melt
routine was included in SimplyP and not in the simple model used to generate HER input for
INCA-P, although this only affects a few winter flow peaks (Figure 4). Small discharge peaks
were also often slightly better simulated by SimplyP, particularly during baseflow, which may
not have been the case had a more complex hydrology model been used to generate input for
INCA-P. The models performed similarly for SS, which is noteworthy given the dramatically
simpler process-representation in SimplyP. Slightly improved SS performance statistics for
SimplyP are likely to be due to the slightly better discharge simulation. The TP and PP
simulations are also similar: output from SimplyP is less biased than output from INCA-P and
the distribution of the simulated PP data in particular is closer to that of the observations (Figure
3). Both variables however have a lower correlation coefficient than INCA-P output. The story is
clearer for the TDP simulation, with SimplyP scoring higher in all model performance statistics
during the calibration period (Table 3), and also producing distributions of simulated data that
were more comparable to the observations (Figure 3). The slightly improved TDP dynamics may
be related to the better discharge simulation. However, an improvement in simulated TDP is
apparent even during flow events when SimplyP and INCA-P produced comparable discharge
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simulations (Figure 4): SimplyP TDP peaks tend to be less broad and more responsive to
hydrological inputs, something which could not be achieved with INCA-P even when the soil
water time constants were reduced to below the values used in SimplyP. The reasons for this are
not clear, but could relate to the formulation or solving of the ODEs in INCA-P (although this
could not be checked as the code is closed source).

The story is similar during the validation period, when model performance statistics for
SimplyP were slightly better than those for INCA-P for discharge and TDP (aside from a slightly
larger bias in TDP), whilst SS had lower bias but a smaller correlation coefficient (Table 3).
There has been a shift in baseflow discharge over time during the validation period (Figure 5),
likely due to a change in channel cross section. Both models therefore over-estimate summer
discharge during the first half of the period and under-estimate it later on. Although TDP
performance statistics are slightly better for SimplyP, TDP is somewhat under-estimated during
baseflow, something which is less of an issue in INCA-P during the validation period (Figure 5),
and which leads to the slightly larger difference in distributions of observed and simulated data
for SimplyP (Figure 3). This is likely due to differences in the discharge simulation, as SimplyP
tends to simulate slightly higher discharge during baseflow, and even small differences in
simulated baseflow discharge lead to large differences in simulated concentration.

Note that NS coefficients are only reported for water quality variables in Table 3 for
comparability with other studies, and were not used when assessing model performance.
Although NS coefficients might suggest simulations from both models are inadequate, various
authors have pointed out problems with using NS as a measure of model performance (e.g. Jain
& Sudheer, 2008, Schaefli & Gupta, 2007) and we have argued elsewhere that NS is
particularly poor for measuring the performance of P models in agricultural catchments, where
NS values above 0.2 are rare unless point sources dominate (Jackson-Blake et al., 2015).

The results presented here constitute a small fraction of the behavior that could be
compared between the two models. However, the indications are that, at least during calibration
and testing within similar conditions to the calibration period, SimplyP appears to perform
comparably for PP, SS and TP, and perhaps slightly outperform INCA-P in terms of discharge
and TDP. The two models therefore appear to be as capable, at least in this catchment, of
simulating daily concentrations and discharge. The broader question of whether either model
performs well enough for model output to be useful is a valid one, the answer depending largely
on what the output will be used for and how it is presented. This is discussed further in Jackson-
Blake et al. (2015).

4.2.2 Scenario analysis

Results from the fertilizer and manure reduction scenarios are shown in Figure 6 in terms
of the change in agricultural soil water EPCy (the equilibrium TDP concentration of zero
sorption) and in-stream mean annual TDP concentration over the 30-year period. Results from
the two models tell the same story: under the baseline and 25% reduction scenario P is still being
added surplus to crop requirements, and so EPCy continues to rise, resulting in an increase over
time in in-stream TDP concentration during rainfall events and a higher annual mean.
Meanwhile, the 50% and 100% reduction scenarios result in net plant uptake of P from the soil,
gradually depleting the labile P store and causing reductions in simulated EPC), soil water TDP
inputs to the stream and therefore lower mean annual in-stream TDP concentration. However,

12
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there is an important lag in the time for improvements to be seen, with only small decreases in
in-stream TDP concentrations during the first 5 years of the simulation (less than a 15%
reduction compared to the baseline even for the 100% reduction scenario; data not shown). The
full benefits of the measures are only realized by the end of the 30-year period, the time taken for
near full depletion of the labile soil P store.

Whilst terrestrial compartment results were similar for the two models, in-stream TDP
results differed slightly, with a larger effect simulated by INCA-P. This may be because the in-
stream TDP peaks simulated by INCA-P are slightly too broad (Section 4.2.1), resulting in over-
estimation of the influence of agricultural inputs on mean in-stream TDP concentrations.

The similarity in results does not mean either model is right, but it does show that
SimplyP is as capable of predicting the dynamics of legacy soil P as INCA-P. For both models to
produce more robust output, more long term soil P data is needed to help constrain the
parameterization as well as improved understanding of how soil P extractability changes at the
catchment scale as soil P stores become depleted. Furthermore, a potentially important process
currently missing from both models is the link between soil P content and crop uptake of P, as it
is probably unrealistic to expect uptake to be unchanged as soil P stocks become depleted.

SimplyP has been run with just one kind of future scenario here — the effect of changing
terrestrial P balances. However, like INCA, the model can be used to simulate a number of other
broad-scale measures. Being a catchment-scale model, it is particularly suited to looking at the
potential impacts of changes in land use, climate and effluent inputs. The effectiveness of
measures aimed at reducing sediment inputs to the stream may also be simulated through
changing the terrestrial erodibility parameters (informed for example by literature on the
Universal Soil Loss Equation (Kinnell, 2010)) or through the use of a delivery reduction factor.

5. Discussion and conclusions

We set out to test the hypothesis that INCA-P is overly-complex when applied in a
Scottish agricultural catchment. To do this, a new simple catchment phosphorus model was
developed, SimplyP, and model structure and performance were compared to INCA-P. SimplyP
is substantially more streamlined than INCA-P, with up to 28 parameters, whilst INCA-P has
around 148. Only 4 or 5 SimplyP parameters are ‘free’, i.e. cannot be informed by observations,
compared to around 45 for INCA-P. This reduction in complexity is despite the fact that SimplyP
includes a rainfall-runoff module, whilst INCA-P relies on output from an external hydrology
model (not included in this comparison of complexity). In the study catchment, both models
performed similarly during calibration and validation. Both models also produced similar results
in a scenario assessment, with identical implications for diffuse pollution mitigation and decision
support. Results therefore support the hypothesis that INCA-P is overly-complex in the study
catchment.

Although limited to just one study site, P dynamics in the study catchment are controlled
by similar processes to those operating in the majority of temperate regions, with a mixture of
land uses, hydrological flow paths and P inputs from both agriculture and sewage. This result is
therefore likely to be transferable to other study areas. In addition, INCA-P is similar in
complexity and structure to other popular catchment water quality models, so this conclusion is
likely to apply to other models and water quality variables. Results are consistent with long-
established theory and recent thinking in catchment science (e.g. Kirchner, 2006, Sivapalan,
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2006), and provide further support for the idea that a more parsimonious approach to simulating
catchment water quality is warranted.

Overall, there are strong arguments, backed up by the findings presented here, that the
current generation of catchment-scale, dynamic water quality models are too complex. This
complexity has likely been driven by two factors. Firstly, there has been a desire to include
process-understanding and data derived from plot-scale studies. However, non-linearities
between small-scale and catchment-scale processes mean up-scaling is often inappropriate (e.g.
Kirchner, 2006, Oreskes & Belitz, 2001); catchment-scale responses are often simpler than
might be anticipated from detailed process knowledge (Sivapalan, 2005). We therefore need a
better understanding of catchment-scale behavior, requiring more comprehensive spatially-
distributed data collection across catchments as well as high frequency monitoring of
watercourses. Technological improvements in remote sensing and in-stream sensors are
beginning to yield exciting new data, but more effort is needed to constrain soil water,
groundwater and effluent chemistry, and to determine longer-term trends in soil and groundwater
chemistry, especially in response to changes in e.g. land management and climate. Secondly,
there has been a desire to make models versatile and widely applicable, i.e. to produce ‘one-size-
fits-all” models. This has helped us think about the variety of processes that could operate in
different areas, but for any given study area is likely to result in overly complex models.
Balancing the demands of model realism and parsimony remains a significant challenge, and
resolving the tension between the two can only be achieved by assessing the performance of
models with different structures (e.g. Fenicia et al., 2006), preferably within statistical model
comparison frameworks (e.g. Spiegelhalter et al., 2002). For this, community-based modular
model frameworks offer perhaps the best hope for the future (e.g. Mooij et al., 2010, Robson,
2014).

The initial aim in developing SimplyP was a proof-of-concept that simple can be as good
as complex. However, we believe that SimplyP also has the potential to fill an important gap,
attempting to be both process-based and dynamic, maintaining a spatially semi-distributed setup,
differentiating between soluble and particulate P phases, incorporating hydrology and a variety
of flow paths, and yet having far fewer parameters than other popular water quality models.
SimplyP also retains sufficient complexity to be used to investigate scenarios relevant for
research, policy and land management. It was markedly quicker (and therefore cheaper) to set up
and calibrate than INCA-P, and it should be feasible to include all parameters in an auto-
calibration/uncertainty analysis procedure, and therefore in a formal model comparison
framework. The fact that most parameters are physically-meaningful is also likely to help with
generalization and transferability to other (perhaps more data-poor) areas (Sivapalan, 2005). At a
more fundamental level, the reduction in the number of parameters should make validation
exercises more effective for diagnosing structural problems with the model, as model behavior
becomes less dependent on parameter tuning and more on model structure. This in turn means
that the simpler model should be more useful for testing hypotheses about system behavior
(Kirchner, 2006). The hope is therefore that SimplyP could provide a benchmark when choosing
between different models, a building block for future model development, or, given its
advantages over more complex models, be a useful tool in its own right (prototype code is freely
available, see Section 3.2).

For SimplyP to become a robust tool in its own right, a number of further developments
are recommended. The first priority is for more testing in a range of contrasting study sites, to

14



578
579
580
581

582
583
584
585

586

587
588
589
590
591
592
593
594
595
596
597
598

599

600
601
602
603
604
605
606
607
608
609

610

611
612
613
614
615
616
617

Confidential manuscript submitted to Water Resources Research

establish whether any of the extra processes available in more complex models are required in
certain areas. Additional potential model improvements are summarized in SI Section 5 and
Table SI 12. Many of these suggestions involve an increase in complexity, and would need to be
justified by demonstrating improved model performance in validation.

Overall, we hope that the model development and simple comparison exercise presented
here will help prompt wider model comparison and simplification, and more generally
encourage debate amongst the water quality modelling community as to whether today’s models
are appropriate and fit for purpose.

Supplementary references

The description of SimplyP in the supplementary information cites many additional
studies, reproduced here in the main text to ensure they are indexed, included in citation records
and given appropriate credit (Bowes et al., 2005, Chapra, 2008, Clark & Kavetski, 2010, Croke
et al., 2006, Dari et al., 2015, Domagalski & Johnson, 2011, Fenicia et al., 2011, Gan & Luo,
2013, Hindmarsh, 1983, Holman et al., 2008, House, 2003, Jarvie et al., 2013a, Jarvie et al.,
2013b, Jordan-Meille et al., 2012, Kavetski & Clark, 2011, Kavetski et al., 2006a, Kavetski et
al., 2006b, Kleinman et al., 2011, Lefrangois et al., 2007, Leopold & Maddock Jr, 1953, Luo et
al., 2012, Menzel, 1980, Merritt et al., 2003, Neal & Jarvie, 2005, Oeurng et al., 2010, Radcliffe
& Cabrera, 2006, Ratliff ef al., 1983, Renard ef al., 1991, Sample, 2015, Sharpley et al., 2013,
Stollenwerk, 1996, Stutter et al., 2010, Stutter et al., 2009, Trimble, 2010, Twarakavi et al.,
2009, Wischmeier & Smith, 1965, Wischmeier & Smith, 1978, Wittenberg, 1999, Wolman et
al., 1964).

Acknowledgements and Data

Many thanks to Dmitri Kavetski for advice on formulating ODEs and to Marc Stutter and
Andy Vinten for useful discussions which contributed to the design of SimplyP. This work was
funded by the Rural and Environment Science and Analytical Services (RESAS) division of the
Scottish Government and by the Nordic Research Council-Nordforsk project #74306, e-
Infrastructure for river-basin modelling. Data to reproduce the conclusions reported here are
available for download, including parameter values, input data and observed data
(https://github.com/LeahJB/SimplyP/tree/Hydrology Model/Tarland_Data_ WRR2016).
SimplyP parameter values for scenario analysis are described in Section 3.5. SimplyP model
code may be downloaded from https://github.com/LeahJB/SimplyP, see SI Section 2 for more
details. To obtain an INCA-P executable, email rmc@niva.no.

References

Alexander R, Smith R, Schwarz G (2004) Estimates of diffuse phosphorus sources in surface
waters of the United States using a spatially referenced watershed model. Water Science
and Technology, 49, 1-10.

Allen R, Pereira L, Raes D, Smith M (1998) Crop evapotranspiration — guidelines for computing
crop water requirements. FAQ irrigation and drainage paper 56.

Arnold JG, Fohrer N (2005) SWAT2000: current capabilities and research opportunities in
applied watershed modelling. Hydrological Processes, 19, 563-572.

15



618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661

Confidential manuscript submitted to Water Resources Research

Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and
assessment part I: Model developmentl. JAWRA Journal of the American Water
Resources Association, 34, 73-89.

Asselman NEM (2000) Fitting and interpretation of sediment rating curves. Journal of
Hydrology, 234, 228-248.

Bagnold R (1966) An approach to the sediment transport problem. General Physics Geological
Survey, Prof. paper.

Beck HE, Dijk Al, Miralles DG, Jeu RA, Mcvicar TR, Schellekens J (2013) Global patterns in
base flow index and recession based on streamflow observations from 3394 catchments.
Water Resources Research, 49, 7843-7863.

Bergfur J, Demars BOL, Stutter MI, Langan SJ, Friberg N (2012) The Tarland Catchment
Initiative and Its Effect on Stream Water Quality and Macroinvertebrate Indices. J.
Environ. Qual., 41, 314-321.

Beven K, Binley A (1992) The future of distributed models: Model calibration and uncertainty
prediction. Hydrological Processes, 6, 279-298.

Bicknell BR, Imhoff JC, Kittle Jr JL, Jobes T, Donigian Jr A, Johanson R (2001) Hydrological
simulation program-Fortran: HSPF version 12 wuser’s manual. AQUA TERRA
Consultants, Mountain View, California.

Binger R, Theurer F (2005) AnnAGNPS Technical Processes documentation, version 3.2. In:
USDA-ARS, National Sedimentation Laboratory. pp Page.

Bowes MJ, House WA, Hodgkinson RA, Leach DV (2005) Phosphorus—discharge hysteresis
during storm events along a river catchment: the River Swale, UK. Water Research, 39,
751-762.

Boyle DP, Gupta HV, Sorooshian S (2000) Toward improved calibration of hydrologic models:
Combining the strengths of manual and automatic methods. Water Resources Research,
36, 3663-3674.

Chapra SC (2008) Surface water-quality modeling, Waveland press.

Clark MP, Kavetski D (2010) Ancient numerical daemons of conceptual hydrological modeling:
1. Fidelity and efficiency of time stepping schemes. Water Resources Research, 46,
W10510.

Colby B (1956) Relationship of sediment discharge to streamflow. pp Page, US Dept. of the
Interior, Geological Survey, Water Resources Division.

Couture R-M, Tominaga K, Starrfelt J, Moe SJ, Kaste @, Wright RF (2014) Modelling
phosphorus loading and algal blooms in a Nordic agricultural catchment-lake system
under changing land-use and climate. Environmental Science: Processes & Impacts, 16,
1588-1599.

Croke BF, Andrews F, Jakeman AJ, Cuddy SM, Luddy A (2006) IHACRES Classic Plus: a
redesign of the IHACRES rainfall-runoff model. Environmental Modelling & Software,
21, 426-427.

Crossman J, Futter MN, Oni SK et al. (2013) Impacts of climate change on hydrology and water
quality: Future proofing management strategies in the Lake Simcoe watershed, Canada.
Journal of Great Lakes Research, 39, 19-32.

Dari B, Nair V, Colee J, Harris W, Mylavarapu R (2015) Estimation of Isotherm Parameters: A
Simple and Cost-effective Procedure. Frontiers in Environmental Science, 3.

16



662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707

Confidential manuscript submitted to Water Resources Research

Dean S, Freer J, Beven K, Wade AJ, Butterfield D (2009) Uncertainty assessment of a process-
based integrated catchment model of phosphorus. Stochastic environmental research and
risk assessment, 23, 991-1010.

Domagalski JL, Johnson HM (2011) Subsurface transport of orthophosphate in five agricultural
watersheds, USA. Journal of Hydrology, 409, 157-171.

Donigian Jr A, Bicknell B, Imhoff J, Singh V (1995) Hydrological Simulation Program-Fortran
(HSPF). Computer models of watershed hydrology., 395-442.

Eurostat (2013) Agri-environmental indicator fact sheet - risk of pollution by phosphorus. In:
European Union (EU) agri-environmental indicator fact sheets. pp Page.

Fenicia F, Kavetski D, Savenije HHG (2011) Elements of a flexible approach for conceptual
hydrological modeling: 1. Motivation and theoretical development. Water Resources
Research, 47, n/a-n/a.

Fenicia F, Savenije HHG, Matgen P, Pfister L (2006) Is the groundwater reservoir linear?
Learning from data in hydrological modelling. Hydrol. Earth Syst. Sci., 10, 139-150.

Gan R, Luo Y (2013) Using the nonlinear aquifer storage—discharge relationship to simulate the
base flow of glacier- and snowmelt-dominated basins in northwest China. Hydrol. Earth
Syst. Sci., 17, 3577-3586.

Hahn C, Prasuhn V, Stamm C, Lazzarotto P, Evangelou M, Schulin R (2013) Prediction of
dissolved reactive phosphorus losses from small agricultural catchments: calibration and
validation of a parsimonious model. Hydrology and Earth System Sciences, 17, 3679.

Hindmarsh AC (1983) ODEPACK, A Systematized Collection of ODE Solvers, RS Stepleman et
al.(eds.), North-Holland, Amsterdam,(vol. 1 of), pp. 55-64. IMACS transactions on
scientific computation, 1, 55-64.

Holman IP, Whelan MJ, Howden NJK, Bellamy PH, Willby NJ, Rivas-Casado M, Mcconvey P
(2008) Phosphorus in groundwater—an overlooked contributor to eutrophication?
Hydrological Processes, 22, 5121-5127.

House WA (2003) Geochemical cycling of phosphorus in rivers. Applied Geochemistry, 18, 739-
748.

Jackson-Blake LA, Dunn SM, Helliwell RC, Skeffington RA, Stutter MI, Wade AJ (2015) How
well can we model stream phosphorus concentrations in agricultural catchments?
Environmental Modelling & Sofiware, 64, 31-46.

Jackson-Blake LA, Starrfelt J (2015) Do higher data frequency and Bayesian auto-calibration
lead to better model calibration? Insights from an application of INCA-P, a process-based
river phosphorus model. Journal of Hydrology, 527, 641-655.

Jackson-Blake LA, Wade AJ, Futter MN et al. (2016) The INtegrated CAtchment model of
Phosphorus dynamics (INCA-P): description and demonstration of new model structure
and equations. Environmental Modelling & Software, 83, 356-386.

Jain SK, Sudheer K (2008) Fitting of hydrologic models: a close look at the Nash—Sutcliffe
index. Journal of hydrologic engineering, 13, 981-986.

Jakeman AJ, Hornberger GM (1993) How much complexity is warranted in a rainfall-runoff
model? Water Resources Research, 29, 2637-2649.

Jakeman AJ, Letcher RA (2003) Integrated assessment and modelling: features, principles and
examples for catchment management. Environmental Modelling & Sofiware, 18, 491-
501.

Jakeman AJ, Letcher RA, Norton JP (2006) Ten iterative steps in development and evaluation of
environmental models. Environmental Modelling & Software, 21, 602-614.

17



708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753

Confidential manuscript submitted to Water Resources Research

Jarritt NP, Lawrence DSL (2007) Fine sediment delivery and transfer in lowland catchments:
modelling suspended sediment concentrations in response to hydrological forcing.
Hydrological Processes, 21, 2729-2744.

Jarvie HP, Sharpley AN, Spears B, Buda AR, May L, Kleinman PJA (2013a) Water Quality
Remediation Faces Unprecedented Challenges from “Legacy Phosphorus”.
Environmental Science & Technology, 47, 8997-8998.

Jarvie HP, Sharpley AN, Withers PJA, Scott JT, Haggard BE, Neal C (2013b) Phosphorus
Mitigation to Control River Eutrophication: Murky Waters, Inconvenient Truths, and
“Postnormal” Science. J. Environ. Qual., 42, 295-304.

Jin L, Whitehead PG, Sarkar S et al. (2015) Assessing the impacts of climate change and socio-
economic changes on flow and phosphorus flux in the Ganga river system.
Environmental Science: Processes & Impacts, 17, 1098-1110.

Jordan-Meille L, Rubak GH, Ehlert Pal et al. (2012) An overview of fertilizer-P
recommendations in Europe: soil testing, calibration and fertilizer recommendations. Soi/
Use and Management, 28, 419-435.

Kavetski D, Clark MP (2011) Numerical troubles in conceptual hydrology: Approximations,
absurdities and impact on hypothesis testing. Hydrological Processes, 25, 661-670.
Kavetski D, Kuczera G, Franks SW (2006a) Calibration of conceptual hydrological models
revisited: 1. Overcoming numerical artefacts. Journal of Hydrology, 320, 173-186.
Kavetski D, Kuczera G, Franks SW (2006b) Calibration of conceptual hydrological models

revisited: 2. Improving optimisation and analysis. Journal of Hydrology, 320, 187-201.

Kinnell PTA (2010) Event soil loss, runoff and the Universal Soil Loss Equation family of
models: A review. Journal of Hydrology, 385, 384-397.

Kirchner JW (2006) Getting the right answers for the right reasons: Linking measurements,
analyses, and models to advance the science of hydrology. Water Resources Research,
42, W03S04.

Kleinman P, Sharpley A, Buda A, Mcdowell R, Allen A (2011) Soil controls of phosphorus in
runoff: Management barriers and opportunities. Canadian Journal of Soil Science, 91,
329-338.

Krueger T, Freer J, Quinton JN, Macleod CJA (2007) Processes affecting transfer of sediment
and colloids, with associated phosphorus, from intensively farmed grasslands: a critical
note on modelling of phosphorus transfers. Hydrological Processes, 21, 557-562.

Lazar AN, Butterfield D, Futter MN ef al. (2010) An assessment of the fine sediment dynamics
in an upland river system: INCA-Sed modifications and implications for fisheries.
Science of the Total Environment, 408, 2555-2566.

Lefrancois J, Grimaldi C, Gascuel-Odoux C, Gilliet N (2007) Suspended sediment and discharge
relationships to identify bank degradation as a main sediment source on small agricultural
catchments. Hydrological Processes, 21, 2923-2933.

Leopold LB, Maddock Jr T (1953) The hydraulic geometry of stream channels and some
physiographic implications. pp Page.

Lindstrom G, Pers C, Rosberg J, Stromqvist J, Arheimer B (2010) Development and testing of
the HYPE (Hydrological Predictions for the Environment) water quality model for
different spatial scales. Hydrology research, 41, 295-319.

Luo Y, Arnold J, Allen P, Chen X (2012) Baseflow simulation using SWAT model in an inland
river basin in Tianshan Mountains, Northwest China. Hydrol. Earth Syst. Sci., 16, 1259-
1267.

18



754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799

Confidential manuscript submitted to Water Resources Research

Mackay DJ (2003) Information theory, inference and learning algorithms, Cambridge university
press.

Martin-Ortega J, Perni A, Jackson-Blake L ef al. (2015) A transdisciplinary approach to the
economic analysis of the European Water Framework Directive. Ecological Economics,
116, 34-45.

Mccollum RE (1991) Buildup and Decline in Soil Phosphorus: 30-Year Trends on a Typic
Umprabuult. Agronomy Journal, 83, 77-85.

Mccray JE, Kirkland SL, Siegrist RL, Thyne GD (2005) Model Parameters for Simulating Fate
and Transport of On-Site Wastewater Nutrients. Ground Water, 43, 628-639.

Menzel R (1980) Enrichment ratios for water quality modeling. CREAMS: A Field-Scale Model
for Chemicals, Runoff, and Erosion from Agricultural Management Systems
Conservation Research Report Number 26, May, 1980. p 486-492, 1 Fig, 2 Tab, 11 Ref.

Merritt WS, Letcher RA, Jakeman AJ (2003) A review of erosion and sediment transport
models. Environmental Modelling & Software, 18, 761-799.

Messiga AJ, Ziadi N, Plénet D, Parent LE, Morel C (2010) Long-term changes in soil
phosphorus status related to P budgets under maize monoculture and mineral P
fertilization. Soil Use and Management, 26, 354-364.

Mooij WM, Trolle D, Jeppesen E et al. (2010) Challenges and opportunities for integrating lake
ecosystem modelling approaches. Aquatic Ecology, 44, 633-667.

Neal C, Jarvie HP (2005) Agriculture, community, river eutrophication and the Water
Framework Directive. Hydrological Processes, 19, 1895-1901.

Oeurng C, Sauvage S, Sanchez-Pérez J-M (2010) Dynamics of suspended sediment transport and
yield in a large agricultural catchment, southwest France. Earth Surface Processes and
Landforms, 35, 1289-1301.

Oreskes N, Belitz K (2001) Philosophical issues in model assessment. Model validation:
Perspectives in hydrological science, 23.

Panagos P, Borrelli P, Meusburger K, Alewell C, Lugato E, Montanarella L (2015) Estimating
the soil erosion cover-management factor at the European scale. Land Use Policy, 48, 38-
50.

Pappenberger F, Beven K, Frodsham K, Romanowicz R, Matgen P (2007) Grasping the
unavoidable subjectivity in calibration of flood inundation models: A vulnerability
weighted approach. Journal of Hydrology, 333, 275-287.

Perrin C, Michel C, Andréassian V (2001) Does a large number of parameters enhance model
performance? Comparative assessment of common catchment model structures on 429
catchments. Journal of Hydrology, 242, 275-301.

Radcliffe DE, Cabrera ML (2006) Modeling phosphorus in the environment, CRC Press.
Radcliffe DE, Freer J, Schoumans O (2009) Diffuse Phosphorus Models in the United States and
Europe: Their Usages, Scales, and Uncertainties. J. Environ. Qual., 38, 1956-1967.
Ratliff LF, Ritchie JT, Cassel DK (1983) Field-Measured Limits of Soil Water Availability as
Related to Laboratory-Measured Propertiesl. Soil Science Society of America Journal,

47.

Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmiiller U, Timmer J (2009)
Structural and practical identifiability analysis of partially observed dynamical models by
exploiting the profile likelihood. Bioinformatics, 25, 1923-1929.

Renard KG, Foster GR, Weesies GA, Porter JP (1991) RUSLE: Revised universal soil loss
equation. Journal of soil and Water Conservation, 46, 30-33.

19



800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845

Confidential manuscript submitted to Water Resources Research

Robson BJ (2014) When do aquatic systems models provide useful predictions, what is
changing, and what is next? Environmental Modelling & Software, 61, 287-296.

Sample J (2015) Statistics notes for environmental modelling. pp Page, GitHub.

Schaefli B, Gupta HV (2007) Do Nash values have value? Hydrological Processes, 21, 2075-
2080.

Seibert J (2003) Reliability of Model Predictions Outside Calibration Conditions. Paper
presented at the Nordic Hydrological Conference (Roros, Norway 4-7 August 2002), 34,
477-492.

Sharpley A, Jarvie HP, Buda A, May L, Spears B, Kleinman P (2013) Phosphorus Legacy:
Overcoming the Effects of Past Management Practices to Mitigate Future Water Quality
Impairment. J. Environ. Qual., 42, 1308-1326.

Sharpley AN (1980) The Enrichment of Soil Phosphorus in Runoff Sedimentsl. J. Environ.
Qual., 9, 521-526.

Sivapalan M (2005) Pattern, process and function: elements of a unified theory of hydrology at
the catchment scale. Encyclopedia of hydrological sciences.

Sivapalan M (2006) Predictions in ungauged basins: promise and progress, International Assn
of Hydrological Sciences.

Spiegelhalter DJ, Best NG, Carlin BP, Van Der Linde A (2002) Bayesian measures of model
complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 64, 583-639.

Stollenwerk KG (1996) Simulation of phosphate transport in sewage-contaminated groundwater,
Cape Cod, Massachusetts. Applied Geochemistry, 11, 317-324.

Stutter MI, Demars BOL, Langan SJ (2010) River phosphorus cycling: Separating biotic and
abiotic uptake during short-term changes in sewage effluent loading. Water Research, 44,
4425-4436.

Stutter MI, Langan SJ, Cooper RJ (2008) Spatial contributions of diffuse inputs and within-
channel processes to the form of stream water phosphorus over storm events. Journal of
Hydrology, 350, 203-214.

Stutter MI, Langan SJ, Lumsdon DG, Clark LM (2009) Multi-element signatures of stream
sediments and sources under moderate to low flow conditions. Applied Geochemistry, 24,
800-809.

Syers JK, Johnston AE, Curtin D (2008) Efficiency of soil and fertilizer phosphorus use.
Reconciling changing concepts of soil phosphorus behaviour with agronomic
information. In: Fertilizer and plant nutrition bulletins. pp Page, Rome, Food and
Agriculture Organisation of the United Nations (FAO).

Trimble SW (2010) Streams, valleys and floodplains in the sediment cascade. Sediment
Cascades: An Integrated Approach, 307-343.

Twarakavi NKC, Sakai M, Simtinek J (2009) An objective analysis of the dynamic nature of
field capacity. Water Resources Research, 45, n/a-n/a.

Usda (2004) National Enginnering Handbook, Part 630 - Hydrology, Chapter 11 (Snowmelt). pp
Page, United States Department of Agriculture, Natural Resources Conservation Service.

Van Dijk A (2010) Climate and terrain factors explaining streamflow response and recession in
Australian catchments. Hydrology and Earth System Sciences, 14, 159-169.

Van Griensven A, Meixner T, Grunwald S, Bishop T, Diluzio M, Srinivasan R (2006) A global
sensitivity analysis tool for the parameters of multi-variable catchment models. Journal
of Hydrology, 324, 10-23.

20



846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877

878
879

Confidential manuscript submitted to Water Resources Research

Van Meter KJ, Basu NB (2015) Catchment legacies and time lags: a parsimonious watershed
model to predict the effects of legacy storage on nitrogen export. PloS one, 10, €0125971.

Wade AlJ, Butterfield D, Griffiths T, Whitehead PG (2007) Eutrophication control in river-
systems: an application of INCA-P to the River Lugg. Hydrol. Earth Syst. Sci., 11, 584-
600.

Wade AJ, Durand P, Beaujouan V et al. (1999) A nitrogen model for European catchments:
INCA, new model structure and equations. Hydrol. Earth Syst. Sci., 6, 559-582.

Wade AJ, Whitehead PG, Butterfield D (2002) The Integrated Catchments model of Phosphorus
dynamics (INCA-P), a new approach for multiple source assessment in heterogeneous
river systems: model structure and equations. Hydrol. Earth Syst. Sci., 6, 583-606.

Watson A, Evans R (2007) Water erosion of arable fields in North-East Scotland, 1985 —2007.
Scottish Geographical Journal, 123, 107-121.

Wellen C, Kamran-Disfani A-R, Arhonditsis GB (2015) Evaluation of the Current State of
Distributed Watershed Nutrient Water Quality Modeling. Environmental Science &
Technology, 49, 3278-3290.

Whitehead PG, Crossman J, Balana BB ef al. (2013) A cost-effectiveness analysis of water
security and water quality: impacts of climate and land-use change on the River Thames
system. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, 371.

Whitehead PG, Wilson EJ, Butterfield D (1998) A semi-distributed Integrated Nitrogen model
for multiple source assessment in Catchments (INCA): Part I — model structure and
process equations. Science of the Total Environment, 210-211, 547-558.

Wischmeier WC, Smith DD (1965) Predicting rainfall-erosion losses from cropland east of the
Rocky Mountains., Washington DC, US Department of Agriculture (USDA).

Wischmeier WC, Smith DD (1978) Predicting rainfall erosion losses - a guide to conservation
planning, Washington DC, US Department of Agriculture (USDA).

Wittenberg H (1999) Baseflow recession and recharge as nonlinear storage processes.
Hydrological Processes, 13, 715-726.

Wolman M, Miller J, Leopold L (1964) Fluvial processes in geomorphology. San Francisco.

Young RA, Onstad C, Bosch D, Anderson W (1989) AGNPS: A nonpoint-source pollution
model for evaluating agricultural watersheds. Journal of soil and water conservation, 44,
168-173.

21



880
881
882
883
884

Confidential manuscript submitted to Water Resources Research

Table 1: SimplyP model parameters, including default values, recommended ranges and possible
data sources. ‘Spatial’ column describes whether the parameter varies spatially by land use (LU),
in which case by which LU type (A: agricultural, S: semi-natural, Ar: arable, IG: improved
grassland), or sub-catchment/reach (SC/R). Parameters likely to be key in most settings are
marked with an asterisk. Many of those without an asterisk are optional. Q is discharge.

Type Param Units  Description Spatial  Tarlan  Default Min Max Data sources
d
Dinow,0 mm Initial snow depth - 0 0 0 1000  Meteorological records
0
Snow fopsm mm Degree-day factor for snow - 2.74 2.74 1.6 6 Literature, e.g. USDA (2004)
dd°C’  melt
*Ts days Soil water time constant LU (A, A:2 Al >0 30 Calibration
S) S: 10 S: 10

fquick none Proportion of precipitation - 0.02 0.02 0 0.2 Calibration

routed to quick flow

alpha none PET reduction factor — 1 1 0.4 1.2 Literature, e.g. Allen et al.
(1998)

*FC mm Soil field capacity - 290 300 100 400 Soils database, or from soil
texture using conversion
charts (e.g. Appendix, Figure

& Al

—g *beta none Baseflow index - 0.70 0.60 0 1 Local or global databases

i (e.g. Beck et al., 2013)

an *T, days Baseflow recession constant - 65 65 >0 100 May be estimated from Q data
using methods of Van Dijk
(2010); see Beck et al. (2013)
for a global analysis

Qg,min mmd' Minimum groundwater flow - 0.4 0.0 0 2 Calibration

a m?> Gradient of stream velocity-Q — — 0.5 0.5 0.1 0.8 Empirically-derived from

relationship paired velocity and Q
measurements (e.g. from flow
gauging)

Q10 init m’s! Initial in-stream Q - 1.0 1.0 >0 N/A Q observations

Ceover None Vegetation cover factor (ratio LU (Ar, A: 0.2 A: 0.2 0 1 (R)USLE literature, e.g.

of erosion rates under the 1G, S) S:0.021  S:0.021 Panagos et al. (2015)

land class vs bare soil) 1G: 0.09  1G:0.09

*Em kg 1 Sediment input scaling factor ~ — 1500 1500 0 5000  Calibration
mm

s *Knm none Sediment input non-linear - 2.0 2.0 1.2 3 Empirical relationship
g coefficient between Q and SS
= observations or literature (e.g.
2 Asselman, 2000)

AmaxE,spr none Julian day with max - 60 60 1 365 Local agronomic practices

erodibility; spring-sown crops

dimaxE,aut none Julian day with max - 304 304 1 365 Local agronomic practices

erodibility, autumn-sown
crops
*Psoilcone Mg kg Initial total soil P content LU (A, A: 1458 A: 1458 0- >300 Soils database. Estimate from
! S) S: 873 S: 873 400 0 soil test P data using an
empirical relationship
*Pretinput kg ha!  Net annual P input to the soil LU (A) 10 10 -30 30 Fertilizer and manure
yr! (negative if uptake > input); S application surveys, literature

~ fixed at 0 for P uptake, national P
3 balance inventories (e.g.
% eurostat, 2013, for EU
% countries)
A *EPCo,ini Mg I Initial soil water TDP LU (A) 0.1 0.1 0 2 Direct measurements,

¢ concentration on agricultural literature

land
*Mioil.m2 kg m> Soil mass per m2, important - 95 100 >0 800 Soils data (bulk density and

in determining the initial soil
labile P mass

depth)
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Type Param Units  Description Spatial  Tarlan  Default Min Max Data sources
d
*TDPesr kg Reach effluent TDP inputs SC/R 0.1 0 0 N/A  Water company/environment
day™ protection agency data
*TDP, mg I Groundwater TDP — 0.02 0 0 2 Direct measurements or
concentration literature

*Epp none PP enrichment factor - 1.6 1 1 6 Direct measurements or

PP literature (e.g. Sharpley,

1980)

885  Table 2: Comparison of numbers of model parameters required for SimplyP and INCA-P.

Category INCA-P (excluding hydrology model SimplyP
parameters)
Total, no spatial variability 138 23
Total, with spatial variability (land class) 146 24 -27
Parameters that vary by sub-catchment and/or reach 64 1
Not measurable (purely calibrated) 43 4or5
Additional parameters held constant over land 12 4
use/reach/sub-catchment
Parameters used in the study catchment 48 (additional 45 to simplify the setup 22
by removing processes)
886
887  Table 3: Model performance statistics in the calibration and validation period.
Variable Model Caallbra.tlon ) . ) \Lalldatm‘n ) ) )
n Bias (%) SR’ NS NS (logs)" n Bias (%) SR’ NS" NS (logs)
SimplyP 0 092 0.80 0.81 12 087 0.73 0.72
Q INCA-P 716 0 091 0.73 0.79 3213 12 087 0.55 0.72
SimplyP -6 0.54 0.13 0.10 -27 023 0.13 -0.10
58 INCA-P 448 -16 0.46 0.02 0.34 189 -43 031 0.05 0.33
SimplyP 0 025 0.16 -0.01
T INCA-P 428 -14 0.37 0.07 0.13 0
SimplyP -3 0.19 0.10 -0.27
PP INCA-P 428 -43 0.28 0.01  -0.06 0
SimplyP 0 041 0.12 0.05 -1 0.54 0.15 0.22
TP INCA-P 449 9 034 -024 -0.14 105 7 044 0.10 0.17

888 “Number of observations, "Spearman’s Rank correlation coefficient, “Nash Sutcliffe efficiency of
889  untransformed or logged data. NS are only provided for water quality parameters for
890  comparability with other studies.

891
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Figure 1: Schematic of the main stores, processes and pathways included in the model. White
boxes show the state variables whose volume (water) or mass (sediment, P species) is tracked.
Variables within small grey boxes are implicitly included in the model, but are not tracked.
Arrows show fluxes within and between compartments. P: phosphorus, SS: suspended sediment,
TDP: total dissolved P, PP: particulate P, ET: evapotranspiration.

Figure 2: The Tarland catchment, with simplified land use, the location of effluent inputs and
monitoring points, and the sub-catchments used in the INCA-P application. Eastings and
northings (km) are relative to the British National Grid.

Figure 3: Q-Q plots for the calibration and validation periods. Quantiles of the simulated data are
plotted against corresponding quantiles of the observed data; if observed and simulated data are
from similar distributions, points will lie close to the 1:1 line. Median and interquartile ranges
(IQR) are shown. Units are mg I"' for suspended sediment (SS) and pg 1" for all P species. Note
log scales.

Figure 4: Time series of observed and simulated discharge (Q) and water quality during the
calibration period. Note the log scales for SS, PP and TP.

Figure 5: Time series of observed and simulated discharge (Q) and water quality during the
validation period. Note the log scales for SS, PP and TP.

Figure 6: Simulated changes over a 30-year period in (a) agricultural soil water EPCy (the
equilibrium phosphorus concentration, closely linked to soil water TDP concentration), and (b)
in-stream mean TDP concentration, comparing the first and last 5 years of the study period.
Results are shown for baseline ‘business as usual’ inputs and for three fertilizer and manure
reduction scenarios (reductions of 25%, 50% and 100%).
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Introduction

This supplementary information contains a full description of the SimplyP model, a newly-developed
parsimonious catchment-scale dynamic water quality model for simulating hydrology, phosphorus and
sediment dynamics in catchments. The model was originally developed in 2015 at the James Hutton
Institute (Scotland), as part of L. Jackson-Blake’s PhD. In the following document, a full description is
provided of model aims, scope and scale, the processes and equations included in SimplyP v1.0 and the
underlying scientific rationale, a description of numerical methods used to solve the equations, and a
suggestion of model development priorities.
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1. Introduction

SimplyP is a parsimonious catchment-scale dynamic water quality model, which simulates hydrology,
phosphorus (P) and sediment dynamics in catchments. The model was originally developed in 2015 at the
James Hutton Institute (Scotland), as part of L. Jackson-Blake’s PhD. The model is under development, lead
by NIVA (Norway), with input from the James Hutton Institute. Here, we present model aims, scope and
scale (Section 3) and give a detailed overview of the processes and equations included in SimplyP v1.0, as
well as the underlying scientific rationale. A suggestion of model development priorities is provided in
Section 5.

2. Model availability

SimplyP v1.0 model code is open source (https://github.com/LeahJB/SimplyP). Running the model requires
a Python installation able to run iPython notebooks (e.g. WinPython; http://winpython.sourceforge.net/);
instructions for installing WinPython and running the model using an example dataset are provided in the
GitHub repository. Model parameters are input to the model via a simple Excel interface; recommendations
for default, minimum and maximum values and potential data sources are provided in Table 11.

3. Model aims, scope and scale

3.1 Model aims

SimplyP aims to be process-based, i.e. model equations reflect hypotheses about the processes governing
system behaviour. The aim in developing SimplyP was to minimize the process representation to only those
processes that appear to control the catchment response, whilst maintaining the flexibility and functionality
required for the model to be useful in hypothesis and scenario testing. The process representation aims to be
simple enough to allow parameter values to be constrained using available observational data. What is
presented here is a first prototype, the aim being to attempt a proof-of-concept that simple can be as good as
complex. The hope is that this simple model could provide a useful benchmark when choosing between
different models, or, after further testing, be a useful modelling tool in its own right.

SimplyP was developed with a number of potential uses in mind, including: (1) interpolation of sparse
monitoring data, to provide more ecologically-relevant in-stream phosphorus concentrations or more
accurate estimates of loads delivered downstream to lakes or estuaries; (2) hypothesis testing and
highlighting knowledge and data gaps. This in turn could be used to help design monitoring programmes,
highlight experimental needs, and prioritise areas for future model development; (3) exploring the potential
response of the system to future change, especially in terms of anticipated storm and low-flow dynamics; and
(4) providing evidence to support decision-making, for example to help set water quality and load reduction
goals and to advise on the best means of achieving those goals.

A particular requirement at present is for models which can predict time lags in the system due to stores of
‘legacy’ P, P which has accumulated in the catchment along transport pathways in the land-freshwater
continuum. These legacy P stores may become net sources of P if inputs to the store are reduced, potentially
confounding management efforts aimed at reducing in-stream P concentrations (Sharpley et al., 2013). Stores
of legacy P include: (1) soil P, from historic applications of fertilizer and manure in excess of crop
requirements; (2) terrestrial sediment-bound P, stored in areas where local topography promotes sediment
deposition; (3) groundwater P, due to percolation of P-rich water from agriculture or sewage; (4) P in up-
stream impoundments (e.g. lakes, reservoirs and canals); and (5) P in in-stream bed sediments. The latter
may be sourced from the deposition of particulate P in areas of slower flow (e.g. pools, floodplains), or from
the adsorption of dissolved P from the water column, particularly downstream of sewage treatment works.
The aim here is for the model to reproduce the first of these stores, soil P, as this is often the largest and the
most pervasive legacy source of P to the environment (Jarvie et al., 2013a; Kleinman et al., 2011; Sharpley et
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al., 2013). The remaining legacy P stores are beyond the scope of this initial version of the model, though
recommendations are provided for how more legacy P sources could be incorporated.

In the future, it is likely that well-devised auto-calibration and uncertainty analysis routines will become pre-
requisites for model applications. To date, attempts to bring about a shift in modeller behaviour have focused
on improving algorithms and making them more available, but have largely over-looked other important
barriers such as the subjectivity of the analyses (Jackson-Blake and Starrfelt, 2015) and the often
prohibitively large amounts of time required to set up and conduct such analyses. We believe that the use of
auto-calibration and uncertainty analysis tools would increase substantially if more attention were paid to:
(1) developing models with fewer parameters, so all uncertain parameters can be included in an analysis; (2)
reducing the number of interacting parameters, to reduce non-identifiability issues and the need for time-
consuming ad hoc code to be written; and (3) maximising the number of parameters which can in principle
be measured, and therefore given informative priors. SimplyP was developed with these three aims in mind.
In practice, the number of parameters that can be calibrated in a given study area depends on data available
for model calibration and for constraining model parameters to plausible ranges. However, studies have
rarely successfully explored more than 40-dimensional parameter spaces (e.g. Dean et al., 2009; Jackson-
Blake and Starrfelt, 2015; Starrfelt and Kaste, 2014), so an upper limit of 40 parameters was decided on.

3.2 Model temporal and spatial scale

The model is dynamic and currently runs at a daily time step, short enough to capture much of the variability
in catchment hydrology and the associated delivery of dissolved and particulate matter to the water course,
yet not so short that computing run times become prohibitively long when the model is run to explore longer
term trends. A daily time step is also compatible with the majority of widely-available meteorological data
sets used to drive the model.

The model is spatially semi-distributed, as a compromise between the complexity of fully-distributed
methodologies and the lack of spatial process representation in fully lumped models. The catchment is
broken down into perceived biophysical regions, thereby allowing a certain amount of the spatial variability
in processes and outputs to be simulated, whilst reducing input data requirements and computing run times.
The main disadvantage compared to fully-distributed models is that the interconnectedness of different parts
of the landscape is not included, but in most areas this is justified by the lack of input data for a finer-scale
division of the landscape and the reduced computing run times. The catchment area may be split into:

1. Sub-catchments and associated reaches, which should be defined based on the presence of
monitoring stations, sewage treatment work inputs, or major changes in terrestrial conditions such as
geology, topography or soil type. The model is run for each sub-catchment in turn, and reach outputs
are fed sequentially down-stream.

2. Grouped soil properties and broad land management, termed the land class. A summary of the land
class sub-divisions is given in Table 1. For dissolved P processes, two land classes are considered, a
‘high P’ class and a ‘low P’ class. Land within a class should have a similar annual P budget, soil P
content and hydrological characteristics, or area-weighted properties should be used. A third optional
‘newly-converted’ class may also be included, to take into account legacy soil P when land use
conversion occurs, or the lack of legacy soil P in new agricultural land. For sediment and particulate
P processes, the high P class may be further sub-divided in two to account for differences in
erodibility (e.g. agricultural land could be split into improved grassland and arable land). Finally, the
proportion of spring versus autumn-sown crops that make up any arable land may be taken into
account when calculating the variation in soil erodibility due to plant cover through time.

In highly agricultural areas where there is no ‘low P’ land, if the model is to be used to explore
impacts of changing fertilizer or manure inputs or land use, the expected inactive P content for semi-



natural land in the area must still be provided, to provide a reference point for the P enrichment of
agricultural soils, but the ‘low P’ class coverage of the catchment would be set to zero.

Processes Landscape division
Dissolved P High P Low P
e.g. arable land, improved grassland e.g. unfertilized forest,
moorland, rough grassland
Sediment & High P Low P
particulate P High erodibility* Low erodibility*
e.g. arable e.g. improved
Spring-sown* | Winter-sown* grassland

Table 1: Land class sub-divisions available for use in SimplyP. These differ according to the process being simulated
(dissolved or particulate phosphorus processes). *Optional

4. SimplyP model structure and equations

A summary of the main stores and fluxes of water, sediment and P is provided in Figure 1. The model
includes the following components:

e A snow accumulation and melt model (Section 4.1.1)

o Rainfall-runoff (Section 4.1.2) and in-stream hydrology (Section 4.1.3)

e Sediment delivery to the watercourse and in-stream transport (Section 4.2)
e Terrestrial and in-stream P processes (Section 0)

Dissolved and particulate P are simulated separately as total dissolved P (TDP) and particulate P (PP). PP is
assumed to be sediment-bound and no distinction is made between organic and mineral P.

|
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Figure 1: Schematic of the main stores, processes and pathways included in the model. White boxes show the
state variables whose volume (water) or mass (sediment, P species) is tracked. Arrows show fluxes within
and between compartments. P: phosphorus, SS: suspended sediment, TDP: total dissolved P, PP: particulate
P, ET: evapotranspiration.

4.1 Hydrology

4.1.1  Hydrological inputs

Input time series of precipitation and potential evapotranspiration (PET) are required. If the snow module is
not used, then these are used to drive hydrological processes in the model. If the snow accumulation and melt



module is used, then air temperature must also be supplied, and a time series of rain plus snowmelt is
calculated and used to drive hydrological processes in the model. Parameters and variables used in the
hydrological input equations are defined in Table 2.

Variable Description Units Source

Dsnow Snowpack depth mm Equation 3
Dsnow,o Initial snowpack depth mm Input parameter
fopsm Degree-day factor for snowmelt mm/degree-day °C  Input parameter
P Hydrological input to the model mm day? Equation 4

Pmelt max Potential maximum snowmelt mm day? Equation 2

Prain Precipitation as rain mm day? Equation 1

Psnow Precipitation as snow mm day? Equation 1

Protal Total precipitation mm day? Input time series
Tair Mean daily air temperature °C Input time series

Table 2: Parameters and variables used in calculating hydrological inputs to the model

Within the snow model, precipitation falls as snow when the mean daily air temperature is below 0°C
(Equation 1). Potential daily snow melt is calculated using a simple degree-day factor method (USDA,
2004), assuming that melting begins once the air temperature rises above 0°C (Equation 2). Both temperature
thresholds are hard-coded into the model at present, but could be readily converted to user-supplied
parameters. The degree-day approach to simulating snow melt is one of the simplest formulations. Key
limitations are discussed in USDA (2004), in particular: (1) the degree-day factor is assumed to be constant,
whilst in reality it varies seasonally and by location; (2) snow melt is only controlled by temperature, and
therefore ignores important factors such as snow density; and (3) it is not valid for rain-on-snow events.

Equation 1: Partitioning of total precipitation into rain, Prain, and snow, Psnow (mm day™?)

When Tair > 0: Prain = Ltotab Psnow =0
Otherwise: P,,;; = 0, P00 = Prota

Equation 2: Potential daily snowmelt, Pmeitmax (MM day™?)

When Tair > 0: Pmelt, max — fDDSM (Tair - 0)

Snow pack depth is then calculated as initial depth plus the change due to snowfall and snowmelt, with the
latter limited by the snow pack depth (Equation 3). As snowfall and melt are constant over a day, there is no
need for Equation 3 to be formulated as a differential equation. Finally, the sum of rain and snowmelt is used
as input to the hydrology model (Equation 4).

Equation 3: Snow pack depth, Dswow (MmM), where superscript t denotes the current time step, and t-1 the
previous time step. This calculation requires a user-supplied initial snowpack depth, Dsnow,o
D.St‘H_OlW

t — t-1 t CI t
Dsnow - Dsnow + Psnow - mlnlmum(Pmelt,maX'

Equation 4: Hydrological inputs to the model, P (mm day™)

P = Prain + Pme/t

An example of output from the snow module for the Tarland Burn catchment for the period 2004-2005 is
shown in Figure 2.

The snow model uses mean daily air temperature as input, which could lead to under- or over-estimation of
snowfall and snowmelt. In areas where there is significant winter accumulation of snow, a possible future
modification to the model would be to use a more sophisticated representation of temperature variation
throughout a day, for example using a triangular or a sinusoidal shape.
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Figure 2: Inputs to and outputs from the snow accumulation and melt module, using input data for the
Tarland Burn catchment. ‘Pptn’ is precipitation. Snow depths are given as mm of water equivalent.

4.1.2  Terrestrial hydrology

A hydrology model provides the foundation for any water quality model, as the flow of water transports
matter from the land to the stream. To simulate hydrology alone, simple models may be appropriate, with
just a couple of calibration parameters (e.g. IHACRES, Croke et al., 2006). However, to be able to simulate
the transport of both dissolved and particulate P under varying flow conditions, a slightly more complex
representation of terrestrial hydrology is needed. Here, three terrestrial flow paths are taken into account: (1)
quick flow, to simulate water, sediment and P inputs to the watercourse during larger rainfall events and
when soils are dry (and therefore little soil water flow occurs); (2) soil water flow, responsible for TDP
leaching from soils and groundwater recharge, and (3) groundwater flow, which is important for baseflow P
concentrations.

The soil water and groundwater equations used were based on those described by Sample (2015), who
provides a full description of their derivation (last accessed March 2016). For convenience, volumes and
fluxes are expressed as water depths per unit area in units of mm or mm day. Associated real volumes can
be derived by multiplying by the catchment area, Asc (km?), with unit conversions: 1 m® = 10° Asc mm.
Parameters and variables used in the terrestrial hydrology equations are defined in Table 3.



Variable Description Units Source

o Potential evapotranspiration correction factor none Input parameter

B Base flow index none Input parameter

dQy/dt Change in groundwater flow with time mm day* day? Equation 13

dQy/dt Change in soil water flow with time mm day* day* Equation 10

dQs/dVs Change in soil water flow with soil water volume mm day! mm* Equation 9

dVg/dt Change in groundwater volume with time mm day! Equation 11

dvs/dt Change in soil water volume with time mm day! Equation 6

Ea Actual evapotranspiration mm day* Equation 7

Ep Potential evapotranspiration mm day? Input time series

fe(Vs) Function to limit evapotranspiration when soil water level ~ none Equation 7
drops below field capacity

fquick Proportion of hydrological inputs to the soil that contribute  none Input parameter
to quick flow

fow(Vs) Function to limit soil water flow once soil water level none Equation 8
reaches field capacity

P Hydrological inputs to the soil (rain plus snowmelt) mm day? Equation 4

Qq Groundwater flow mm day* Equation 13

Qg,min Minimum groundwater flow mm day? Input parameter

Qq Quick flow mm day* Equation 5

Qs Soil water flow mm day? Equation 10

Ty Baseflow recession constant days Input parameter

Ts Soil water time constant days Input parameter

Vg Groundwater volume mm Equation 11

Vec Field capacity mm m*! Input parameter

Vs Soil water volume mm Equation 6

Table 3: Parameters and variables used in the terrestrial hydrology equations

a) Quick flow

Quick flow is conceptualised to include a host of rapid flow pathways, including infiltration and saturation
excess overland flow, tile drainage, runoff from impervious surfaces and macropore or preferential flow
through soils. In practice, it is difficult to differentiate between these various rapid flow paths when
calibrating using in-stream discharge data. Therefore as a starting point all were lumped into a single input to
the stream, calculated as a function of incoming precipitation. A number of options for characterising quick

flow were considered (in order of increasing complexity):

1. Assume quick flow is directly proportional to incoming precipitation and is routed instantaneously to

the stream. This involves just one calibration parameter, fyick, the proportion of precipitation that
contributes to quick flow:

Qq = f quickP

Assume quick flow only occurs above some precipitation threshold, Imax, with all precipitation routed
instantaneously to the stream above this threshold. As with option (1), this involves just one
calibration parameter:

Qq = max{(P - Imax): 0}

A third option builds on option 2, including a factor to describe the proportion of the precipitation
that contributes to quick flow once the threshold has been exceeded. It therefore has two parameters,
fquick and Imax:

Qq = fquick max{(P - Imax)!o}

Adopt one of the above approaches to describe the hydrological inputs to a quick store of water, and
track the change in volume and flow of water in the store. This involves an additional user-input
parameter, the time constant of the store, and therefore involves two or three user-supplied
parameters. This approach is used by many process-based catchment water quality models, e.g.
INCA.



Option 4 was discounted as being unnecessarily complex: the time constant is likely to be set to a small value
in most catchments, and so the assumption in options 1 to 3 of quick flow directly entering the stream
without a time lag is usually justifiable. As a starting point option 1 was chosen, being the simplest (Equation
5), but future work comparing options within a formal statistical framework would be useful.

Equation 5: Quick flow inputs to the stream, Qq (mm day™)
Qq = fquickp

Despite being simple, this approach allows summer flow events to be simulated, as a proportion of all
precipitation enters the stream even when soil water level is below field capacity (often the case during the
summer in temperate regions), when no soil water flow is simulated. It is important to be able to simulate
these summer flow events, as they are often associated with nutrient peaks. Several models address the
problem by adding in an additional quick flow path when soil water drops below field capacity (e.g.
PERSIST, Futter et al., 2014). However, it is conceptually more consistent for this process to occur whatever
the soil water level, as in Equation 5.

An important limitation of the adopted approach is a lack of seasonality in the generation of quick flow; in
reality, quick flow is likely to be higher when soils are saturated, which is often the case during winter in
temperate regions. A potential future extension to the model would be to include this saturation excess flow,
which would require a re-formulation of the soil water equations.

b) Soil water

The soil water ordinary differential equations (ODEs) are solved separately for semi-natural and agricultural
land, so the equations described in this section are present in the model for both land use classes. The change
in soil water volume with time is given by Equation 6. Inputs to the soil water are from rainfall and snowmelt
(Section 4.1.1), taking into account the proportion that is routed to quick flow; outputs are through
evapotranspiration (Es) and soil water flow.

Equation 6: Rate of change in soil water volume, Vs, with respect to time (mm day™)

dav,
d_; = (1 - fquick)P —E, — Qs

Ea is calculated from a user-supplied time series of potential evapotranspiration (Ep), taking into account: (1)
differences between land cover and topography in the study catchment compared to reference values used to
compute Ep, through the optional use of a correction factor, and (2) moisture limitation once soil water drops
below field capacity (Equation 7). To achieve the link between evapotranspiration and soil water content, an
additional variable is needed in Equation 7 which tends to 1 as Vs approaches field capacity and to 0 as Vs
tends to 0. A convenient function which displays this behaviour is fe(Vs) = 1-e"Vs, where | is a tuning
parameter that determines the shape of the curve (Fenicia et al., 2011). The value of p is determined within
the model as a function of field capacity: for the desired behaviour, Ea should be close to Er when the soil
water is at field capacity, i.e:

Ep =k Ea When Vs = V¢, where k is near 1

Substituting this into Equation 7 and re-arranging gives i = -In(1-k)/Vec. The fe(Vs) function is plotted in
Figure 3 for a variety of values of k and for the minimum and maximum likely field capacity values (100 to
450 mm/m; Ratliff et al., 1983). Based on this plot, k was fixed at 0.99 so that fe(Vs) is close to 1 at field
capacity and drops away relatively quickly below field capacity.



Equation 7: Actual evapotranspiration, E. (mm day™). The function fg(Vs) limits evapotranspiration when
soil water content drops below field capacity

~In(0.01)

E, = aE, fz(V;) = aE, (1 — e™*"s), where u = v
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Figure 3: Relationship between fe(Vs) and soil water volume (Vs/mm) for a variety of k factors, where fg(Vs)
= 1-e"* and p =-In(k)/Vec. The vertical lines mark the minimum and maximum likely values for field
capacity (FC). Solid lines: FC=100; dashed lines: FC=450 mm m™.

It is assumed that soil water flow only takes place when the soil water level is above field capacity and that
flow is proportional to the volume of water above field capacity (Equation 8). The constant of proportionality
is 1/Ts, where Ts is the soil water time constant. The additional function in Equation 8, f.(Vs), prevents soil
water flow from occurring when soil water content drops below field capacity. One option is for this function
to involve a set of logical conditions (e.g. fs(Vs) = 0 when Vs > Vec; otherwise fa(Vs) = 1). However, this
kind of logic introduces non-differentiable discontinuities into the ODE. Instead, a continuous sigmoid
function was used (Fenicia et al., 2011), which yields a curve which switches rapidly from zero to one
around field capacity (Figure 4).

Equation 8: Discharge from the soil water store, Qs (mm day™?)

1 1 !
Qs =7 (% = Vre) fon () = 7 (% = Vi) (W)

1

fow (V)

0
Ve v

s

Figure 4: Schematic demonstrating the form fsw(Vs) takes when a sigmoid curve is used

To derive an equation for the rate of change in soil water flow with time, dQs/dt, Equation 8 must be
differentiated with respect to time. To do this, dQs/dV; is first defined by differentiating Equation 8 with
respect to soil water volume (Equation 9), which is then used to derive dQs/dt (Equation 10).

Equation 9: Rate of change in soil water flow, Qs, with respect to soil water volume (day™)

dQs _ (Vs = Vec)e're™™ 1

= +
dVS TS(eVFC_Vs + 1)2 TS(eVpc—Vs + 1)




Equation 10: Rate of change in soil water flow, Qs, with respect to time (mm day?)

dQ, _ dv; dg,
dt  dt av,

Finally, a proportion () of the discharge from the soil box is assumed to percolate to groundwater, whilst the
remainder of the soil water flow (1 — £Qs) is assumed to travel to the stream along shallow flow pathways.

¢) Groundwater

The rate of change of groundwater volume with time is controlled by the balance of inputs from the soil
water and outputs via groundwater flow (Equation 11). Percolation from the soil water is calculated as a
fraction (5) of the soil water outflow (where f is the baseflow index). Groundwater flow is assumed to be
directly proportional to groundwater volume (Equation 12), and can be differentiated with respect to Vq to
give 1/Ty, where Tgq is the baseflow recession constant. As with the soil water flow, the rate of change in
groundwater flow with time is then calculated as the product of dVy/dt and dQg/dVy (Equation 13). The
baseflow recession constant is determined through model calibration or from discharge observations using
hydrograph separation techniques (e.g. Van Dijk, 2010). Beck et al. (2013) have produced a global dataset of
baseflow index and recession constants which could provide useful starting points for model calibration.

Equation 11: Rate of change of groundwater volume, Vg, with time (mm day™)

v,

EZﬁQs_Qg

Equation 12: Relationship between groundwater flow and volume

Q ! V,; theref 49
= —V,; therefore — = —
¥ Tg ¢ dV:q g

Equation 13: Rate of change of groundwater flow, Qq, with time (mm day™ day™)

ng qu ng ﬁQs - Qg .
- EE = T—g, where @, = maximum(Qg min, Qg)

The minimum groundwater flow parameter in Equation 13, Qg min, prevents groundwater flow from dropping
below a user-specified threshold. Without this, sustained periods when soil water is below field capacity may
result in little groundwater recharge and under-simulation of low flows (red line in Figure 5 for the Tarland
catchment). This threshold is implemented by testing whether the groundwater flow at the end of the day is
below the user-specified threshold. If it is, the initial conditions at the start of the next time step are set to the
threshold. It is therefore possible for groundwater flow within a day to drop below the threshold, but
generally not by much.
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Figure 5: Comparison of simulated runoff with and without inclusion of a minimum groundwater flow in the
Tarland catchment. Note log scale.
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Figure 6: Comparison of simulated runoff generated using a linear and a non-linear groundwater reservoir
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Poor representation of low flows is a common weakness in hydrological simulations (Fenicia et al., 2006),
leading to potentially large errors in simulated solute concentrations during the ecologically-sensitive
summer period. Whilst preventing groundwater flow from dropping below a certain threshold improves the
simulation, it is not an ideal solution: (1) it circumvents the fact that something is wrong with the model
conceptualisation if sustained summer baseflows cannot be simulated, and (2) it does not satisfy the internal
catchment water balance, as the excess water required to sustain groundwater at the user-specified threshold
is not sourced from within the catchment. This approach therefore works for the purposes of developing a
prototype model, and indeed is that adopted by e.g. INCA. However, alternative options were also
considered, and should be a priority for future development of the model. These include:

1) Replacing the linear relationship between groundwater volume and flow with a non-linear relationship,
so that Vq = T4Q¥, as described by Wittenberg (1999), where k, the non-linear coefficient, reflects the
influence of aquifer properties on Qg. Equations for the rates of change in groundwater volume and flow

therefore become:

ik
Qg V' o]
— = whicn simplifies to — when K =
y - (which simplifies t henk = 1)
Vo gk Ty
’ 1
dv, vy \
9 9
oo ()
dt AT,
4Q, _ 40, Y,
dt — dV, dt

A comparison of simulations using a linear and a non-linear groundwater store in the Tarland are shown
in Figure 6. In this case the non-linear model produces a flatter recession, but simulated low flows are
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too high. Discussions as to whether the groundwater storage-discharge relationship should be considered
linear or non-linear have been on-going in the literature for some time, and certainly in some cases a
non-linear reservoir appears to perform better (e.g. Gan and Luo, 2013). Other researchers have added in
additional storage boxes to help improve model performance (e.g. Luo et al., 2012). In cases this may be
justified, but Fenicia et al. (2006) make a strong argument for non-linear reservoirs often appearing to
perform better only when important fluxes into or out of the groundwater storage zone have been
neglected.

2) The second option considered was therefore that the model is missing an additional flux into the
groundwater, e.g. slow recharge from the unsaturated zone. Possible alternative formulations of the soil
water store, which would allow for some groundwater recharge to occur when the soil water level drops
below field capacity, include:

a. Adding in a small, constant flux from the soil water box to the groundwater, which is
independent of soil water content. This would require a user-calibrated parameter to set the flux,
and a function as used in Equation 7 to prevent negative soil water volumes.

b. Changing the shape of the sigmoid function used to limit soil water drainage below field
capacity, so that it behaves less like a step function and allows some continued percolation to
groundwater below field capacity. This is a mechanistically justifiable option, as soils continue
to produce water when water contents drop below field capacity, although the fluxes involved
vary with soil type and texture (Twarakavi et al., 2009). Some practicalities of this option would
need careful consideration, e.g. choosing an appropriate shape parameter for all possible values
of field capacity, to ensure zero flow when water level drops to zero.

The model only considers average conditions over the catchment, whilst in reality, although
catchment-average soil water content may be at or below field capacity, soils in parts of the
catchment (e.g. at the foot of slopes or in hollows) are likely to remain above field capacity, and
therefore able to feed water into groundwater and surface watercourses. This is a limitation of
using a semi-distributed approach, and provides further justification for using a less steep
sigmoid function.

In summary, the simple linear store with a user-supplied minimum groundwater flow provides a working
solution to the problem of simulating summer low flows, and is suitable for the purposes of the prototype
model being developed here. However, improved realism should be achievable without much increase in
model complexity, and exploring options to achieve this should be a high priority for any future development
efforts.

d) Example model output

An example of terrestrial hydrology output for the Tarland Burn catchment for the period 2004-2005 is
shown in Figure 7, using time constants of 1 day for agricultural land and 10 days for semi-natural land. For
both land use classes, soil water volume is at or above field capacity for most of the winter and then drops
below field capacity during the summer, when quick flow provides the only soil input to the stream. The
larger soil water time constant in semi-natural land means that it responds more slowly to changing inputs
than agricultural soil water, with lower, broader peaks in flow and volume after rainfall. The groundwater
time constant is much longer than the soil water time constants (65 days), so changes in groundwater flow
and volume are a highly damped version of the changes in the soil water stores.
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Figure 7: Terrestrial compartment hydrology results in the Tarland catchment. Q: discharge, Vol: volume,
SW: soil water, GW: groundwater, Agri: agricultural land, SN: semi-natural land. Grey lines on the soil
water volume plots mark the field capacity. N.B. volumes and fluxes are per unit area.

4.1.3 In-stream hydrology

Observed discharge can often be simulated without accounting for within-reach water travel times. However,
the water quality model requires estimates of reach volume and discharge, to allow concentrations and fluxes
from the reach to be calculated. Parameters and variables used in the instream hydrological equations are
defined in Table 4. Note that, as in the terrestrial compartment, all volumes and fluxes are calculated using
units of depth per unit area. The simulated daily mean flow is then converted to cumecs for comparison with
observations (1 m®s™® = 10% 86400 Asc mm day*, where Asc is sub-catchment area in km?).
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Variable Description Units Source

a Gradient of in-stream velocity-discharge relationship m- Input parameter

b Exponent of in-stream velocity-discharge relationship None Constant (0.42)

B Base flow index None Input parameter

dQ./dt Rate of change in reach discharge with time mm day* day* Equation 17

dQra/dt Rate of change in daily mean flow with time mm day! day? Equation 18

dv,/dt Rate of change in reach water volume with time mm day* day? Equation 14

fa Proportion of agricultural land in the sub-catchment None Input parameters
(far + fic)

fs Proportion of semi-natural in the sub-catchment None Input parameter

Lreach Reach length M Input parameter

Qq Groundwater flow mm day* Equation 13

Qq Quick flow mm day? Equation 5

QH Soil water inputs from agricultural land mm day? Equation 10

Qs Soil water inputs from semi-natural land mm day? Equation 10

Qr Outflow from the reach mm day* Equation 17

Qrav Daily mean flow from the reach mm day* Equation 18

Qr.us Inputs to the reach from upstream reaches mm day* Model calculates

T, Reach time constant Days Equation 16

Vy Reach water volume Mm Equation 14

Table 4: Parameters and variables used in the instream hydrology equations

The instream hydrology equations used are similar to those used in other water quality models. The change
in water volume in each reach is assumed to be proportional to the difference between input and output
fluxes (Equation 14). Input fluxes are from quick flow, soil water flow, groundwater flow and inflow from
upstream reaches, and water leaves via the reach outflow. The soil water input to the reach is calculated as
the sum of inputs from semi-natural and agricultural land in the catchment.

Equation 14: Rate of change in reach volume, V, with time (mm day)

av,
5V = Qq + (- ,B)OCAQé4 +fSQ§9) + Qg + Qr,US - Qr

dt

Flow downstream, Qy, is assumed to be proportional to the reach volume (Equation 15), with a constant of
proportionality 1/T, (where T, is the reach time constant in days). T, is not however constant as it is in the
terrestrial stores, but is inversely proportional to water velocity to account for the shorter residence time of
faster flowing water (Equation 16). Water velocity is estimated using an empirical relationship with
discharge (Equation 16) (Chapter 14, Chapra, 2008; Leopold and Maddock Jr, 1953), where a is a user-
supplied parameter, derived where possible from velocity profiling carried out as part of flow gauging, and b
is a non-linear coefficient. The a parameter is the most site-specific, whilst b is usually between 0.3 and 0.5.
To reduce model complexity and interactions between these two parameters, the value of b was therefore set
as a constant with a value of 0.42, corresponding to the average from over 200 river cross sections in the US
and Europe (Wolman et al., 1964). The units of a (m?) assume that observed velocity and discharge have
units of m s and m3 s, respectively.

Equation 15: Relationship between reach discharge, Qr (mm day*) and volume, V. (mm)

— Lreach (1-b)
86400 a "

V, =T.Qr

Equation 16: Reach time constant, T, (days), where U is the water velocity (m s?)

Lreach L
JIT — b _ reach
T,U = aQr,soTr

= ~ 86400 aQb

The rate of change in discharge with time is given by Equation 17. The time-varying nature of T, gives rise
to the (1-b) factor in the denominator. To get a time series of daily mean flow, the rate of change in discharge
with time is integrated with initial conditions set to zero at the start of each day (Equation 18), to provide the
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total flux of water leaving the reach over a day. The units of this daily mean flow time series are then
converted to cumecs for comparison with observations.

Equation 17: The rate of change in reach discharge, Qr, with time (mm day? day?)

dQ, 1
th = m(Qq + (1 - ﬁ)(fAQg4 +fSQsS) + Qg + Qr,US - QT)

Equation 18: Change in daily mean flow, Q.. (mm day?), with time

er,av
dt =0Qr
The daily mean flow is used to determine the flux from the up-stream reach, Qrus. For the top reach, this is
set to zero. For all other reaches, it is set equal to the daily mean flow from the upstream reach for the same
time step. In this sense, the reaches are not fully coupled, as simulated within-day changes in flow are not
cascaded from reach to reach. However, this assumption simplifies the coding considerably and should be
appropriate in all but large, highly flashy systems.

4.2 Sediment processes

4.2.1  In-stream suspended sediment

In-stream SS concentrations are highly variable spatially and temporally, changing in response to terrestrial
delivery, stream bank erosion, entrainment of bed sediment material and sediment deposition on floodplains
and the stream bed. Terrestrial delivery is in turn controlled by the detachment of soil particles by raindrop
impact, flow erosion and transport through the catchment, with deposition in areas of lower water velocity.
Important factors affecting in-stream processes include stream power, particle size and type, stream bed
morphology, macrophyte cover and antecedent conditions (Merritt et al., 2003). Incorporating these
processes into a model would require many parameters to be calibrated, even with a simple formulation. In
intensively-studied catchments some terrestrial data may be available to help constrain parameter values, but
in most areas calibration is done using only in-stream SS concentration time series, and it is doubtful that
these time series contain enough information for such a level of process representation.

Despite the varied and complex processes which represent sediment fluxes to and within streams, in-stream
SS concentration has long been known to be well-explained by a simple power law with in-stream discharge:
SS = aQ?, where SS is suspended sediment concentration, Q; is in-stream discharge, and a and b are
parameters determined by regression (Colby, 1956). There are therefore strong indications that, at the
catchment scale, this complexity may be simplified to a remarkably straightforward relationship. Here, this
simple power law is therefore taken as the basis for simulating the change in SS mass with time in each
stream reach. Parameters and variables used in the sediment equations are defined in Table 5.
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Variable Description Units Source

Asc Sub-catchment area km? Input parameter
Ceover Erosion soil cover factor none Equation 26
Creasures Erosion management factor none Input parameter
dMsys/dt Rate of change in reach suspended sediment mass with time kg day? Equation 19
dMaus tor/dt Change in total daily flux of sediment from the stream reach kg day? Equation 23

Em Sediment input scaling factor kg mm? Input parameter
Esus Sediment-discharge rating coefficient kg mm? Equation 21

far Fraction of arable land in the sub-catchment none Input parameter
fic Fraction of improved grassland in the sub-catchment none Input parameter
fs Fraction of semi-natural land in the sub-catchment none Input parameter
Km Instream erosion and entrainment non-linear coefficient none Input parameter
Minput Flux of sediment to the reach from terrestrial and instream kg day* Equation 20

sources

Msus Reach suspended sediment mass kg Equation 19
Msus,ps Flux of sediment downstream out of the reach kg day? Equation 22
Msus,us Flux of sediment from upstream reaches kg day* Model calculates
Mius tot Total daily flux of sediment from the stream reach kg day* Equation 23

Qr Reach discharge mm day? Equation 17
Orav Daily mean discharge mm day? Equation 18
Ssc Sub-catchment slope ° Input parameter
Sreach Reach slope ° Input parameter
SSr Mean daily concentration of suspended sediment in the reach mg I Equation 24

Vy Volume of water in the reach mm Equation 14

Table 5: Parameters and variables used in the in-stream sediment equations

The rate of change in SS mass with time is controlled by the difference between sediment input and output
fluxes (Equation 19). Inputs from the terrestrial compartment, in-stream channel erosion and entrainment are
grouped into a single input term, Minpu, assumed to be related to in-stream flow using a power law (Equation
20). It was originally envisaged that Equation 19 would include separate terms for sediment delivery from
the land (proportional to quick flow) and instream entrainment and erosion (proportional to instream
discharge). However, adding a quick flow-dependent term to Equation 20 made little difference to model
output and was therefore discarded, and the entrainment term was re-formulated to represent both terrestrial
and instream inputs.

Equation 19: Rate of change in suspended sediment mass in the stream reach, My, with time (kg day™),
where superscript i denotes the land use class. ' is one of far, fi or fs.

dMsus ingi
T f Minpue | + Msusus — Msus ps
L

Equation 20: Flux of sediment to the stream from terrestrial and in-stream sources, Minput (Kg day™?)

— fem
Minput - Esus r

This simple treatment of the sediment inputs to the reach assumes that the majority of in-stream SS is
generated from within- or near-channel sources, as is often observed (Bowes et al., 2005). A further
assumption is made that these near-channel sediment sources are directly controlled by catchment erodibility
and delivery to the watercourse, so that a change in terrestrial erodibility causes an instant reduction in in-
stream SS concentration. This assumption is based on the observation that the coefficient in Equation 20,
Esus, relates to the erodibility of soils in the catchment (reviewed in Asselman, 2000). To build in a link
between terrestrial processes and in-stream SS, the value of Es.s therefore incorporates data on the relative
differences in expected erosion fluxes from different land units used in the Universal Soil Loss Equation
(USLE; Kinnell, 2010; Renard et al., 1991; Wischmeier and Smith, 1965, 1978). Ess is therefore calculated
per land class (e.g. arable, improved grassland and semi-natural) and sub-catchment by multiplying a user-
calibrated scaling factor with factors representing erodibility and sediment delivery to the stream (Equation
21). These factors include average slope (Ssc, which affects the transport capacity of quick flow), a
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vegetation cover factor (Ccover) and a management factor (Creasures), all of which may vary with land use, and
the cover factor may vary through the year if desired (Section 4.2.2).

Equation 21: Sediment-discharge rating coefficient, Ess, (kg mm™), where superscript i indicates that the
variable or parameter varies by land use, and superscript j by sub-catchment.

Lj _ j Lj i i
Esus - EM S reacllSSC CmverCmeasures

The cover factor, Ceover, describes the ratio between the erodibility of a bare soil plot and the land use class;
its value therefore ranges from 1 (maximum erodibility) to 0 (no erosion). Cover factors can be sourced from
USLE-related literature reviews, selecting an appropriate geo-climatic region and range of vegetation and
crop types. For example, Panagos et al. (2015) have collated crop type factors for typical European crops
(Appendix, Table Al) and other European land cover (Appendix, Table A2). The user can also incorporate
relative differences in inherent soil erodibility of different land classes into the relative differences in Ceover,
i.e. differences due to soil properties such as texture and organic matter content (generally termed the K
factor in USLE-related literature). A potential future extension to the model for areas which are dominated
by semi-natural land could be to build in a link between the cover factor on semi-natural land and pressures
which are known to increase soil erodibility such as grazing, burning and tree felling.

The management factor, Creasures, allows the user to explore the effects of sediment reduction measures and
should be in the range 0 to 1, where 0 implies 100% reduction in sediment yield. Measures that could be
taken into account could, for example, relate to the effects of tillage, cover crops or measures to reduce
sediment connectivity to the stream (e.g. buffers or fences). The model requires the user to know the
effectiveness of the chosen measure for a given land class. Values for effectiveness can be obtained for
example from the USLE literature (e.g. Panagos et al., 2015) or from experimental work within the study
catchment.

Sediment input to the watercourse should not only vary with terrestrial erodibility and transport capacity, but
also with changes in in-stream inputs. A large body of empirical and theoretical work has shown that in-
stream sediment transport is controlled by stream power, i.e. the rate of energy expenditure on the stream bed
and banks (Bagnold, 1966). In-stream sediment inputs to the watercourse were therefore assumed to be
proportional to stream power per unit length, w=pgSreach Qr. This equation includes terms for the density of
water (p) and gravitational acceleration (g), both of which are constant and therefore grouped into the user-
supplied scaling factor (Ewm) in Equation 21. The remaining term, the reach slope (Sreach) is then an additional
factor in Equation 21.

Additional sediment inputs to the stream reach are via flow from any upstream reaches and sediment is lost
via flow from the reach (Equation 22). The integral of the flux out of the reach over each day, starting with
an initial condition of 0, then provides a time series of the total sediment flux from the reach per day
(Equation 23), which is used to calculate daily mean SS concentration (Equation 24). The latter is output by
the model for comparison with observations.

Equation 22: Reach suspended sediment outflow from the reach bottom, Msysps (kg day™)

M
Msus,DS = ;US Qr
r

Equation 23: Rate of change in the flux of sediment from the reach, Msus ot (kg day™?)

aM sus,tot _
dt — "sus,DS
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Equation 24: Mean daily concentration of SS in the stream reach, SS; (mg 1)

M sus,tot 1

SS, =
" Qr,av ASC

Connectivity between sediment source areas and the water course is an important factor in determining
sediment yield to a water course. This is not explicitly accounted for at present, although it is indirectly
included in the value assigned to the scaling factor, Ew, in a given area. A potential improvement would be to
explicitly include a connectivity factor in Equation 20, for example by: (1) using drainage density as a proxy
for connectivity, (2) only considering the characteristics of land within a certain distance of a drainage
ditch/watercourse, as land most likely to be a potential sediment source area; (3) factoring in field size and
the presence of barriers to flow such as walls and hedges; (4) calibrating the sediment yield scaling factor by
sub-catchment, rather than keeping it constant over the whole catchment. In addition, the sub-catchment
slope factor could be altered to be more representative of potential sediment source areas, for example it
could be the average slope of land within a certain distance of a watercourse.

Assuming that the amount of sediment in near-channel sources is directly proportional to terrestrial
erodibility is a big simplification. An implication of this assumption is that a reduction in terrestrial
erodibility causes an instant reduction in in-stream SS concentration. In reality, hysteresis is often seen in the
sediment-discharge relationship, reflecting the change in sediment source distance or supply during a rainfall
event (e.g. Oeurng et al., 2010). As the store of sediment in near-channel sources is not tracked, there is no
ability to simulate source-exhaustion over successive storm events (Bowes et al., 2005). Test applications are
required to determine whether this is an issue in a given study catchment. Over the longer term, we might
expect a time lag between changes in erodibility and in-stream effects as in-stream sources become
exhausted. For example, typical lag times of decades or more have been reported for the retention of bulk
sediment in river channels (Trimble, 2010). However, here we are primarily concerned with the fine
sediment fraction (silt and clay), as the fraction that is of greatest significance for P transport due to its
relatively high P content. This finer sediment fraction is substantially more mobile, with residence times of
less than a year reported for many rivers, excluding storage on floodplains (Sharpley et al., 2013, and
references therein).

Other issues with this simple formulation are that sediment deposition is not explicitly accounted for, and so
the model cannot simulate a net flux of sediment from the water column to the stream bed. This could be a
problem in some areas, for example in catchments with a big difference in slope and sediment supply
between reaches. Future work is needed to determine under which circumstances deposition needs taking
into account, and how it should best be done in the simplest way possible. Another potential future
improvement could be to split bank erosion and entrainment from terrestrial delivery. Bank erosion and
entrainment may be a key sediment input (Lefrancois et al., 2007), and assuming terrestrial sediment
reduction measures cause a proportional reduction in in-stream sediment load ignores the fact that bank
erosion will be unaffected by these measures. Finally, the instream sediment equations only consider
allochthonous particles sourced from the catchment. However, autochthonous particles, generated in-stream
by biological processes, may make up an important part of suspended matter (Stutter et al., 2009), and in
some areas it may be appropriate to consider both.

4.2.2  Dynamic cover factor

On arable land, the key risk period for soil erosion is between preparation of the seed bed and establishment
of the crop, when fine ploughing results in bare soils with low cohesion. To take this temporal change in
erodibility into account in the model, there is the option to replace the user-supplied constant cover factor on
arable land (hereafter termed Ccovav) With a dynamic factor, which changes during the course of the year
(hereafter termed Ccower). This dynamic cover factor is calculated so that its annual average is the user-
specified cover factor, to preserve the user’s knowledge of the ratio in long-term erodibility between land use
classes. In most temperate areas, high-risk seed beds will be present during both spring and autumn, as many
farmers cultivate a mixture of spring- and autumn-sown crops. Arable land may therefore be further sub-
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divided into spring-sown (e.g. spring cereals) and autumn sown (e.g. winter cereals) if the user wishes to take
dynamic erodibility into account.

Two options were explored for calculating the dynamic cover factor (associated parameters and variables are
defined in Table 6). The first approach uses a cosine wave (Equation 25). This is appealing in that it is
smooth and only requires one user-supplied parameter, the date of maximum erodibility. In much of northern
Europe, for example, this could be around the end of February (day 60) for spring-sown crops and the end of
October (day 300) for autumn-sown crops. The amplitude of the curve can be fixed to ensure that the annual
mean is equal to Ccovav (Equation 25). The downside of this formulation is that it assumes that points of
maximum and minimum erodibility are half a year apart. For autumn-sown cereals in particular this is
unlikely.

Variable Description Units Source

Ceover Erosion soil cover factor None Equation 26 (if dynamic) or Ccover,av

Ceover,av Average soil cover factor for erodibility None Input parameter

Chrneasures Erosion management factor None Input parameter

dE max Date of maximum soil erodibility None Input parameter (for spring- and autumn-
sown)

destart Start of the high erodibility period None Model calculates (Dg max-30)

de.end End of the high erodibility period None Model calculates (Dgmax+30)

dyear Julian day of the year None Model calculates

fspr Fraction of arable land that is spring sown None Input parameter

Table 6: Parameters and variables used in the erodibility equations

Equation 25: Dynamic crop cover factor for arable land calculated using a cosine wave, where superscript i
indicates the crop type (spring-sown or winter-sown)

Clover = Coonav (cos (2—nd +d¢, ) + 1)
cover 2 365 “ear max

The alternative approach adopted instead was to assume a constant cover factor throughout the year, apart
from during a high risk period defined by a user-specified maximum erodibility date. Within this high risk
period, the factor follows a triangular shape (Figure 8), which smooths the transition from lower to higher
erodibility risk, to take into account differences in ploughing dates across the catchment. The difference
between Ccovav and the dynamic cover factor outside the high risk period is calculated so that the annual
average of the dynamic cover factor equals Ccovav (Figure 8 and Equation 26). To provide comparable
simplicity to the sine curve option, the length of the high erodibility period is fixed. This period should
encompass the likely variability in seed bed presence in both space and time in the catchment, whilst not
being so wide as to reduce the cover factor during the remainder of the year to below the average values on
improved grassland and semi-natural land — we would generally expect arable land, with its higher
proportion of bare soil, compaction and tramlines, to have higher erosion risk than the other two land classes.
A period of two months (60 days) provided a good compromise, although the sensitivity of the model to this
factor could be assessed in the future. Within the high risk period, the value of the dynamic cover factor is
then calculated by linear interpolation (Equation 26), and the results for spring- and autumn-sown crops are
averaged to give the overall factor to be used in Equation 21.

Equation 26: Dynamic cover factor for arable land, Ccover, calculated using a triangular wave during the high
risk period, where superscript i indicates the crop type (spring-sown or winter-sown)

If the day of the year, dyear, is Within the period de max' + 30 days:
+ (1 - Cém/,av)(dyear - dé‘,start)

i _ i
dE,max dE,start

el — i
If dyear < dE,maX' CmVer - Ccov,aV

1+ (Cgov,an_i 1)((_1y;air - dé-?,max)

E,end E,max

If dyear > dE,maX: CcLaVer =
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Otherwise:
i A 60(1 - CéaV,aV)
CcaVer - CcaV,aV - m

Averaging over arable land classes:
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Figure 8: Schematic illustrating the shape of the dynamic crop cover factor (Ccower) Over a year. The period
of high erodibility starts on dgstart, IS at its maximum at de max @and finishes at de eng.

Model testing, preferably in a formal statistical framework, is required to determine whether the additional
complexity of the dynamic cover factor is warranted. A good place to test this would be in an area where
sediment fluxes are believed to change throughout the year in response to changing arable crop cover. It
would also be worth exploring how suitable the dynamic cover factor formulation is for autumn-sown crops,
which are likely to have relatively bare soils throughout the winter.

4.3 Phosphorus processes

4.3.1  Soil processes

a) Overview

Soil P processes are calculated separately for two land use classes — a ‘high P’ class and a ‘low P’ class.
Below, the high P class is referred to as agricultural land, and the low P class as semi-natural, but other land
uses could be assigned to these classes. For particulate P fluxes, a further distinction may be made between
high and low erodibility land uses in the high P class, e.g. between arable and improved grassland, to take the
different erodibility (and therefore sediment and PP transport) into account (Section 4.2.1). The model also
includes the ability to simulate semi-natural land newly-converted from agricultural land and vice versa
(discussed further in Section 4.3.1 c).

In the model, P is present in the soil in three forms: (1) dissolved P (TDP) in the soil water, (2) labile soil P,
which can take part in sorption reactions with soil water TDP, and (3) inactive soil P. The masses of
dissolved and labile soil P change through time, whilst the mass of inactive soil P is constant. Parameters and
variables used in the soil P equations are defined in Table 7.
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Variable Description Units Source
Asc Sub-catchment area km? Input parameter
B Baseflow index None Input parameter
dP1apile/dt Rate of change of labile soil P mass with time kg day! Equation 33
dTDP/dt Rate of change of soil water TDP mass with time kg day? Equation 34
EPCo Agricultural soil equilibrium P concentration of zero sorption kg mm'? Equation 29 or
EPCO,user

EPCouser User-supplied initial EPCy for agricultural soil mg I Input parameter
fi Fraction of land use in each of the possible land use classes, i,  None Input parameters

including agricultural (A; far+ fig), arable (Ar), improved

grassland (I1G), semi-natural (SN), and newly-converted

versions of all 3 (NC_i)
Kt Soil P adsorption coefficient mm kg soil*? Equation 28
Mol Soil mass kg Equation 32
Msoit,m2 Soil mass per m? (soil depth x bulk density) kg m Input parameter
Pinactive Soil inactive P mass kg Equation 30
Plabile Soil labile P mass kg Equation 33
Plabile,0 Initial soil labile P content kg Equation 31
Pretinput Net annual input (or uptake) of P to the land class kg hat yr? Input parameter
Psoilconc,A Total soil P content in agricultural land as a mass ratio mg P (kg soil)*  Input parameter
Psoilconc,s Total soil P content in semi-natural land as a mass ratio mg P (kg soil)*  Input parameter
Qq Quick flow mm day* Equation 5
Qs Soil water flow mm day* Equation 10
TDPy,conc Groundwater TDP concentration mg It Input parameter
TDPg,jand Groundwater TDP input to the reach kg day* Equation 37
TDPg,land Quick flow TDP input to the reach kg day* Equation 36
TDP; TDP mass in the soil water kg Equation 34
TDPs jand Soil water TDP input to the reach kg day Equation 35
Vs Soil water volume mm Equation 6

Table 7: Parameters and variables used in the soil and groundwater P equations

b) Interactions between soil P and dissolved soil water P

The labile soil P store and dissolved P in the soil water are assumed to be in equilibrium, and a simple linear
relationship is used to relate soil total P concentration and EPC,, the equilibrium TDP concentration at which
there is no net sorption or desorption of P (Equation 27; Figure 9). This relationship can be conceptualised as
accounting for sorption and mineralization/immobilization reactions. This linear relation cannot simulate P
saturation, but because of its simplicity it is recommended for use in catchment models, as long as soil water
TDP concentration is below 1 to 10 mg I'* (McCray et al., 2005).

Equation 27: Relationship between soil P content (Psoiiconc; Kg P kg soil) and soil water TDP concentration
(expressed as the equilibrium P concentration, EPCo; kg mm™)

Psoi/,canc = KfEPCO + IO_GPSUiICanc,S

Soil water in semi-natural areas tends to have low TDP concentrations (Q7s<5 ug I''; unpublished James
Hutton Institute data), implying tight retention of any P released from the soil matrix. It is therefore assumed
that semi-natural land does not contain labile soil P, that semi-natural soil water TDP concentration is zero,
and that all soil P in semi-natural land is in the inactive soil P store (Equation 30). The soil P content of semi-
natural land is therefore used as the y-axis intercept in Equation 27, and the inactive soil P store on
agricultural land is assumed to be the same as in semi-natural land (Figure 9).
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Figure 9: Illustration of the conceptual model used to link soil P content and soil water TDP concentration,
expressed as EPCy, the equilibrium TDP concentration of zero sorption.
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Having defined the y-intercept, there are then two unknowns in Equation 27 for a given soil total P content:
the adsorption coefficient (Kr) and EPCo. It is very important for simulated soil water TDP concentrations to
be in the right range, as in diffuse pollution-dominated systems near-surface soil water flow often controls
in-stream TDP peaks. Initial agricultural soil water TDP concentration, assumed to be equivalent to soil
water EPCo, was therefore chosen to be the calibrated parameter, and K is calculated internally by the model
using Equation 28. Once agricultural EPC, has been determined through calibration, K output by the model
from the calibration period is then supplied as an input parameter for model runs in simulation mode and
EPC, is calculated instead within the model (Equation 29). Initial EPCy is still an input parameter in any
validation and scenario runs, but merely to provide the initial conditions for the soil water P content. This
formulation removes much of the need for careful thinking and parameterisation from the modeller, thereby
reducing the risk of highly inappropriate sorption equations, and therefore unrealistic simulations of the
impacts of changes in fertilizer or manure inputs or land use change.

Equation 28: The adsorption coefficient, K¢ (mm kg soil?), calculated during the calibration period

_ 10_6 (PSOiICOIIL)A - 501‘16'0115,5)
! EPC,

Equation 29: EPC,, the equilibrium TDP concentration of zero sorption (kg mm™ in the equation below;
supplied by the user in mg I1). N.B. the user may also opt for EPCy to be constant

Ppabite
Kf M soil

EPC, =

Having assumed that the inactive soil P store on agricultural land is equivalent to the total soil P content on
semi-natural land, initial labile P content in agricultural land is then calculated as the difference between
cultivated and semi-natural total P content (Equation 31). This assumption is only appropriate if soils under
the two land classes have similar P sorption capacity (controlled primarily by iron oxide and clay content).

Equation 30: Inactive soil P content in agricultural and semi-natural land, Pinactive (Kg)
Pinactive = 107 Psgiiconcs Moir
Equation 31: Initial labile soil P content in agricultural land, Piapite,0 (KQ)
Praviteo = 107°(Pssitconca = Psoitcones )Msoi

Converting from soil P concentration to mass of P in the labile and inactive stores requires an estimate of the
sub-catchment soil mass (Equation 32). The user-specified areal soil mass parameter (Msoim2) can be
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calculated by multiplying soil bulk density with an estimate of soil depth; topsoil depth is recommended,
being the depth of soil which contains highest soil P concentrations. These two parameters are lumped
together as one user input parameter to reduce parameter non-identifiability issues during auto-calibration.

Equation 32: Sub-catchment topsoil mass, Msoir (kg)

MSO[ = Msoi/,m2 106A5C

The change in mass of P in the labile P store due to a change in TDP concentration in the soil water can then
be calculated and is assumed to control the rate of change in soil labile P in agricultural land with time
(Equation 33). Inputs from fertilizer and manure are all assumed to occur in liquid form and to bring about
an increase in labile P mass through adsorption. Conversely, a change in labile P content may cause a change
in soil water TDP concentration due to a shift in EPC, (Equation 29). The model also includes the option for
EPCy to be constant over time, to simplify the model for short model runs where no shift in soil water TDP
concentration is expected.

Equation 33: Rate of change in soil labile P mass, Piaiie, With time (kg day™)

AP TDP,
d"’t‘e = KfM”"’(TSS - EPC0>

The rate of change of soil water TDP mass with time in agricultural land is controlled by the balance of input
and output fluxes (Equation 34). Potential inputs are from the application of fertilizer and manure and net
release of soil P. Outputs are via plant uptake, sequestration into soil P, soil water flow and quick flow. The
latter is included as it is assumed that quick flow also inherits soil water TDP concentration. Fertilizer,
manure and plant uptake fluxes are grouped together into a single annual P budget parameter (Pnetinput; kg ha
yr1), which is then evenly applied (or subtracted, if there is net output) over the course of the year. This
grouping greatly reduces the number of parameters required, and the Preunput parameter may be readily
informed by budgeting studies or published national P surplus values (e.g. eurostat, 2013). This simplified
treatment of terrestrial P inputs and outputs assumes a relatively constant TDP concentration in soil water
throughout the year. Whilst this is clearly a simplification, previous modelling work has suggested the
additional complexity involved in attempting to simulate the daily changes in soil water TDP concentration
in response to variations in fertilizer, manure and plant uptake fluxes is not justified (Jackson-Blake et al.,
2015). At present the model takes as input a single constant value. An easy future extension to the model
would be to provide the option for this to be replaced by an annual time series of values.

Equation 34: Rate of change of soil water TDP mass, TDPs, with time (kg day?)

d TDP; 100 Ay APy TDP, TDP,

s
dt 365 netinput dt s Vs Qq Vs

This representation of soil P processes greatly simplifies the actual processes involved. In reality soil P is
present in a continuum of interlinked states of varying extractability, and hysteresis effects are common in P
transfers between the states. However, the understanding of how detailed soil chemical processes upscale to
the catchment-scale is arguably not yet advanced enough for fine-scaled geochemical principles to be
usefully incorporated into a catchment-scale model, and there is certainly a lack of data to constrain such
processes at a catchment scale. A potential future change to the model would however be to use more
detailed geochemical models or lab experiments to derive isotherm parameters for a suite of soil types, using
soil properties such as Fe and Al oxide content (Dari et al., 2015).

Example soil P results for agricultural soils in the Tarland catchment are shown in Figure 10, assuming an
initial labile soil P content of 585 mg kg2, an initial EPC, of 0.1 mg I, soil depth of 9.5 cm and annual net P
inputs of 10 kg ha yr. Soil water TDP concentrations are slightly higher than the EPC, because of P inputs
to the soil water, resulting in net adsorption and a gradual increase in labile P and EPC, over time.
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Figure 10: Simulated change in agricultural soil labile P content, soil water (SW) EPC, and soil water TDP
concentration over a two year period, assuming a soil depth of 9.5 cm and net P inputs of 10 kg ha™ year™.

c) Newly-converted land

A potential use of the model is to explore the impact of land use change on surface water P concentrations
and loads. This land use change could be the conversion of agricultural land to semi-natural land, or vice
versa. Land that has recently changed use will retain many of its previous characteristics, and cannot
therefore be grouped with long-established land of the same use. Of particular importance for P and water
quality is legacy soil P, the store of P that builds up in agricultural soil over years of high P application rates.
Such legacy P may result in sustained high leaching and PP losses from old agricultural land potentially for
several decades after reductions in fertilization (Jarvie et al., 2013b). Likewise the lack of legacy soil P in
new agricultural land, recently converted from semi-natural land, may result in low P losses compared to
well-established agricultural land.

To allow such effects to be simulated, a third ‘newly-converted’ land class was introduced into the model.
Within each sub-catchment, this newly-converted land can be either semi-natural (initial labile soil P is
equivalent to that on agricultural land) or agricultural (no labile soil P at the start of the model run). Two
additional ODEs are then introduced: the change in labile soil P on newly-converted land with time and the
change in soil water TDP with time. These take the same form as Equation 33 and Equation 34, respectively.
EPC, is also calculated for the newly-converted class, and there is one additional user-input parameter,
Pretnput. On new semi-natural land this is likely to be a negative, with net uptake of P from the soil.
Otherwise, newly converted semi-natural land is grouped with existing semi-natural land, and likewise for
agricultural, for other parameterisations and processes.

d) TDP flux to the stream from soil water and quick flow

The TDP input to the stream transported by soil water flow is calculated by summing the inputs from
agricultural land and any newly-converted semi-natural or agricultural land (Equation 35).

Equation 35: TDP input to the reach from soil water flow, TDPsana (kg day™), where i denotes the land use
class (A: agricultural, NC: newly-converted semi-natural or agricultural)

TDP!
TRana = ). fil=F [
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The flux of TDP to the water course from the reach via quick flow is given by Equation 36. The majority of
the flow pathways that make up quick flow inputs to the stream interact with the soil surface (e.g. infiltration
and saturation excess flow) or are sourced from soil water (e.g. tile drainage). It was therefore assumed that
quick flow inherits soil water TDP concentration. This may be conservative in areas where there is
substantial runoff from farmyards, which may have TDP (and PP) concentrations which are well above those
found in soil water, or if quick flow events occur directly after fertilizer or manure are applied.

Equation 36: Quick flow TDP input to the reach from the land, TDPg,and (kg day™), where i denotes the land
use class (A: agricultural, NC: newly-converted semi-natural or agricultural)

TDP!
TDPq,/;md = Z fl Qq Vv
i=ANC s

e) Incorporating soil test P data

Soil P content is usually measured for agronomic purposes, where the aim is to measure plant-available P to
help choose appropriate fertilizer application rates. Many procedures exist which aim to determine plant-
available soil P; indeed, there are more than ten official methods used in Europe alone (Jordan-Meille et al.,
2012). This soil test P data is much more common than total soil P data, so it would be useful for the model
to be able to incorporate soil test P data, rather than relying on total soil P data alone. In principle soil test P
could replace labile soil P in Equation 27, as long as two additional relationships can be defined:

(1) A relationship between soil test P and total soil P, as total soil P content is still required for the PP
simulation. There is always likely to be considerable scatter in this relationship due to varying soil
chemistry, composition and texture. An analysis of Scottish soils data, for example, revealed a weak
but significant relationship between total soil P and Modified Morgan’s P: P;ytqr = 61.1 Pgpirrest +
529 (n=77, R?=0.62, p<0.001), although as is clear in Figure 11, the uncertainty in total P
predictions based on this equation would be substantial.
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Figure 11: Relationship between soil test P (Modified Morgan’s P) and total soil P from a range of
Scottish soils (M. Stutter, pers. comm.)

(2) A relationship describing the proportion of net total P inputs (e.g. from fertilizer and manure minus
uptake) that enters the labile, soil test P store. Model testing showed that this ratio cannot be the
same as that derived from the relationship between soil test P and total soil P. If this ratio were the
same, a total P to soil test P ratio of around 60 (from the Scottish soils dataset above) would imply
that 1/60™ of net total P inputs enter the available P store. However, with a net P input of 10 kg ha™
yr (typical for Scottish catchments), model testing showed that a ratio of <25 is required to maintain
plant-available P stores at their present-day value, and that the model is extremely sensitive to the
value chosen.
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The fact that these two additional relationships must be independently specified causes an increase in model
complexity that was not felt to be justified by an increase in model realism. In particular, if linear
relationships are used to relate total soil P and soil test P, and to relate soil test P and soil water EPCy, then
by definition there will also be a linear relationship between total soil P and soil water EPCo, meaning the
increase in complexity is not justified. It was therefore decided to maintain the model structure described in
Section 4.3.1 (b). However, if soil test P data are available instead of total soil P data for a given area, the
user could use a linear regression between soil test P and total soil P to derive the latter (e.g. using the
regression derived above for Scottish soils data). A potential future extension to the model is for this
calculation to be performed internally, using user-specified regression coefficients.

4.3.2  Groundwater phosphorus

The concentration of TDP in groundwater, as in soils, depends on historic P inputs and the P sorption
capacity of the aquifer matrix. The latter is often largely controlled by the iron oxide content of the aquifer,
with groundwater pH and dissolved oxygen content also playing an important role (Domagalski and Johnson,
2011), whilst co-precipitation with calcium carbonate is important in calcareous aquifers. These processes
substantially reduce P mobility within the sub-surface, and traditionally groundwater has therefore only been
considered to have negligible TDP concentrations and to dilute surface water P concentrations. However, it
is now being increasingly recognised that groundwater TDP concentrations can become elevated by
anthropogenic activities (e.g. Holman et al., 2008). Some areas in which groundwater has become enriched
in P, for example due to elevated agricultural P inputs or prolonged disposal of sewage effluent, may
potentially become net sources of P for decades after the original source of P has been removed
(Stollenwerk, 1996).

Ideally, the model would therefore include a link between soil water and groundwater TDP concentrations,
taking into account aquifer and groundwater geochemistry. However, the process-understanding needed to
formalise this link is arguably not yet developed enough, and certainly the data on groundwater and aquifer
geochemistry is hard to come by in many areas. There are therefore good practical reasons for adopting a
simpler approach which does not take this process understanding into account. In addition, changes in
groundwater TDP concentration over time are likely to be slow, being buffered by potentially large
groundwater residence times and sorption reactions, and smaller than associated changes in soil water and
effluent fluxes which will drive any changes in groundwater state. For these reasons, a very simplistic
approach is taken in the model: dissolved P transport to the stream occurs via groundwater flow, but
groundwater TDP concentration is assumed to be constant through time, maintained at a user-specified value
(TDPyg.conc; Equation 37. Variables are defined in Table 7).

Equation 37: Groundwater TDP input to the reach, TDPg,ang (kg day™?)

TDPg,/and = ASC Qg TDPg,amc

This simplistic approach is a good starting point, but is only valid where the groundwater TDP concentration
is indeed unlikely to change over the course of the model run. This is likely to be the case over sub-decadal
time periods, in areas with large aquifers, where the groundwater matrix is rich in Fe oxides and/or where the
groundwater is oxic. Caution should otherwise be employed. This is a potential area for future model
development, the ultimate aim being to derive a simple relationship between soil water and groundwater
TDP concentration using readily-measurable groundwater properties. A linear relationship could be a
suitable starting point. The gradient of the line could be derived by making some assumptions to help
estimate the location of two points on the line: point 1 could be current measured groundwater TDP
concentration, corresponding with sub-catchment averaged soil water TDP concentration. The second point
would require an estimate of the ‘pristine’, non-anthropogenic groundwater TDP concentration (e.g. based
on space-for-time substitution of measured data), associated with soil water TDP concentrations in semi-
natural land, plus knowledge or assumptions of the time taken for semi-natural groundwater to reach its
current state.
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4.3.3  In-stream phosphorus

The in-stream P process model simulates in-stream dilution of diffuse and point source P inputs and down-
stream transport. Parameters and variables used in the in-stream P equations are defined in Table 8.

Variable Description Units Source
Asc Sub-catchment area km? Input parameter
dPP,/dt Change of PP mass in the reach with time kg day! Equation 40
dPP; g/dt Daily flux of PP from the stream reach kg day! Equation 41
dTDP,/dt Rate of change of TDP mass in the reach with time kg day? Equation 38
dTDP; g/dt Daily flux of TDP from the stream reach kg day! Equation 41
Epp Particulate P enrichment factor None Input parameter
fi Fraction of land use in each of the possible land use classes, i, None Input parameters
including agricultural (A; far + fic), arable (Ar), improved
grassland (IG), semi-natural (SN), and newly-converted
versions of all 3 (NC_i)
Minput Sediment mass input to the reach from the land and in-stream kg day* Equation 20
entrainment
Msoil Soil mass kg Equation 32
Pinactive Soil inactive P mass kg Equation 30
Plabile Soil labile P mass kg Equation 33
PPinput PP input to the reach from the land and in-stream entrainment kg day™ Equation 39
PP, Mass of PP in the reach kg Equation 40
PP conc Daily mean concentration of PP in the reach mg I Equation 42
PPy gt Mean daily flux of PP from the reach kg day* Equation 41
PPr.us PP input to the reach from upstream reaches kg day* Model calculates
Qq Quick flow mm day Equation 5
Qr Instantaneous reach discharge mm day Equation 17
Qrav Daily mean reach flow mm day Equation 18
TDPest Effluent TDP input to the reach kg day* Input parameter
TDPg,land Groundwater TDP input to the reach kg day* Equation 37
TDPg,land Quick flow TDP input to the reach kg day* Equation 36
TDP; Mass of TDP in the reach kg Equation 38
TDPr conc Daily mean concentration of TDP in the reach mg I Equation 42
TDP; gt Mean daily flux of TDP from the reach kg day* Equation 41
TDPrus TDP input to the reach from upstream reaches kg day* Model calculates
TDPs land Soil water TDP input to the reach kg day* Equation 35
Vr Reach volume mm Equation 14

Table 8: Parameters and variables used in the in-stream P equations.

a) TDP

The rate of change in instream TDP mass with time depends on the difference between input and output
fluxes. A simplistic representation is used, where inputs are from the land phase (quick, soil water and
groundwater flow), sewage and upstream reaches, and the only output is reach outflow (Equation 38).

Equation 38: Rate of change in reach TDP mass, TDP;, with time (kg day™)

d TDP, TDP,
dt = TDPq,land + TDPS,Iand + TDPg,/and + TDPeff+ TDPr,US - Qr T
-

This simple formulation assumes that instream TDP is in a state of dynamic equilibrium, i.e. instream sinks
of TDP (e.g. adsorption and biological uptake) are balanced by instream sources (e.g. desorption and
mineralisation). Studies have indicated that this balance between sources and sinks may in fact change
through the year in response to changing concentrations (e.g. Stutter and Lumsdon, 2008). Retention is
thought to be particularly important during low flows, due to biological uptake and sorption (House, 2003).
Omitting TDP sinks from the model could therefore result in other P sources being over-estimated,
particularly groundwater and effluent inputs. To determine whether an in-stream TDP sink is significant in a
particular study catchment, data are needed to quantify the sink directly or to provide good constraints on
groundwater and effluent inputs. In-stream processes may also become net sources or sinks of TDP if
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equilibrium has not yet been reached or is disturbed, e.g. by a change in external loading. For example,
reducing effluent P inputs may cause a reduction in water column TDP concentration, which may cause P-
enriched bed sediments to release TDP until a new equilibrium state is reached (Stutter et al., 2010). By not
incorporating this potential interaction between bed sediments and the water column, the model is not able to
represent legacy sewage effluent P. However, as explained in Section 3.1, this legacy store is thought to be
much smaller than other potential legacy P stores in the catchment, and to have a more rapid turnover time.

In many countries, soluble reactive P (SRP) is used by regulators to assess compliance with water quality
standards, rather than TP or TDP. It is therefore desirable to be able to convert TDP to SRP. Models such as
INCA-P do this using a simple linear regression with regression parameters supplied by the user. This
approach works well in the majority or rivers, and as a starting point is recommended here. It has not been
coded into the model, but the user can easily transform model output using their own regression equation.
Different TDP sources may have very different SRP:TDP ratios, and a potential future extension could be to
factor in different SRP:TDP ratios of different P sources.

b) PP

All PP is assumed to be sediment-bound, and so PP inputs to the water column are assumed to be
proportional to sediment inputs (Equation 39). The mass of PP input to the stream is therefore simply the
mass of sediment transported to the stream from each land use class, Minput, multiplied by the P content of the
soil in that class and assuming unlimited soil P. This approach has the same limitations and caveats as the
sediment equations (Section 4.2.1). It also assumes that changes in the P content of soils are instantly
reflected in the composition of in-stream sediments, discounting time lags or potential in-stream PP stores.
In-stream stores of P are relatively small and short-lived compared to terrestrial stores (Jarvie et al., 2013a),
so it was felt that the additional complexity needed to account for these in-stream processes was not justified.

Equation 39: PP input to the reach, PPinut (kg day™?), where superscript i denotes the land use class

i
(P labile +P inactive)
M soil

ppinput = EPP M}nputz . fi
i

An enrichment factor, Epp, represents the selective delivery to the stream of finer particles enriched in P
compared to source soils (Sharpley, 1980). The use of a constant enrichment factor is a simplification; in
reality there is a well-documented decrease in PP loss with increasing erosion (Radcliffe and Cabrera, 2006).
This is because as runoff and erosion increase there is less particle size sorting, so P-enriched finer sediment
makes up a smaller proportion of the total sediment mobilised. When assembling enrichment ratio
information for the CREAMS model, Menzel (1980) concluded that a log-relationship between enrichment
ratio and sediment yield appears to hold in a variety of conditions: In(Epp) = 2.00 — 0.16 In(Y,.4), Where
Ysed is the sediment yield (kg ha*). A potential future extension to the model would be to investigate whether
this additional complexity is warranted in some areas.

In Equation 39, PP inputs to the stream are summed over up to six land use classes: arable, improved
grassland, semi-natural, and newly-converted versions of each (Section c). The sediment flux for newly-
converted land corresponds to the same flux for established land. The rate of change in the mass of PP in the
water column with time is then given by Equation 40. As with TDP, a simplistic representation of the
associated fluxes is adopted: inputs are from the land phase and entrainment (grouped as one flux) and
upstream reaches; the only output is via outflow from the reach. Sewage PP inputs are not included, as the
majority of effluent P tends to be in dissolved form (Neal et al., 2005; Withers and Jarvie, 2008). As a
starting point, in-stream desorption of TDP from PP is not accounted for. This is likely to be justified in
rivers with relatively short residence times, but potentially less so in larger, slower-flowing rivers.
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Equation 40: Rate of change in reach PP mass, PPy, with time (kg day?)

d PP, PP,
dt = Ppinput+ PPr,US_ Qr 71"

c) Daily fluxes and mean daily concentrations of TDP and PP

Time series of total daily fluxes of TDP and PP leaving the reach are obtained by integrating the
instantaneous fluxes with respect to time, starting each day with initial conditions of zero (Equation 41).
These total daily fluxes are then used in the calculation of daily mean TDP and PP concentrations (Equation
42), converted from units of kg mm™ to mg I for comparison with observations.

Equation 41: Rate of change of daily flux of dissolved and particulate P from the stream reach (kg day™)

dTDP, 4 _ TDP. dPP.4 PP,
a9 v. ' dt TV

Equation 42: Daily mean concentrations of TDP and PP in the stream reach, TDP; conc and PPrconc (Mg 1)

TDP,. 4 1 PP 1
TDP, cone = E » FX,conc = ndr
Qr,av ASC Qr,av ASC

4.4 Summary of equations, initial conditions and input parameters

Table 9 summarises the 19 ODEs which are solved simultaneously for each reach in the catchment. For the
first time step initial conditions must be supplied for each ODE. To define these, three parameters are
specified by the user: in-stream flow in the top reach, total soil P content and soil water TDP concentration in
the ‘high P’ class. If the snow module is run, initial snow depth is also required. All other initial conditions
are derived from these parameters or using simple assumptions — details are provided in Table 9. Initial
instream masses of SS, PP and TDP are set to 0, so a burn-in period is required (the length of burn-in
depends on the residence time in the reach, but should be of the order of days — weeks).

ODE Equation Initial conditions (first time step)

dv/dt Equation 6 Vs0= Vec

For agricultural & semi-natural

dQs/dt Equation 10 i Vi-vec . o

For agricultural & semi-natural Qso = m where superscript i denotes the land class

dV¢/dt Equation 11 Vg0 = Qgo Tg

dQy/dt Equation 13 Qg0 = B Qs

dVi/dt Equation 14| V5 = Qro Tro; where T, = —ed o0

dQ./dt Equation 17 Reach 1: Input parameter Qyo,init (Units converted to mm day* in
model)
Downstream reaches: Qro = Qr.av from the upstream reach for day 1

dQr a/dt Equation 18 0.0

dMs,s/dt Equation 19 0.0

dMsys our/dt Equation 23 0.0

dPapite/dt Equation 33 Equation 31

For arable & newly-converted

dTDPs/dt Equation 34 TDPs0 = Asc EPCouser Vs

For agricultural & new semi-

natural

dTDP//dt Equation 38 0.0

dTDP; ou/dt Equation 41 0.0

dPP,/dt Equation 40 0.0

dPP; ou/dt Equation 41 0.0

Table 9: Ordinary differential equations (ODESs) solved within the model and information on how the initial
conditions are defined for the first time step.
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The model requires a number of parameters which should be calculated for example using a GIS (Table 10).
These parameter values are likely to be well-constrained, and therefore generally will not form part of any
calibration procedure (although if they are uncertain they could be included in an uncertainty analysis).

Param  Units Description

Asc km? Sub-catchment area

far none Proportion of arable or other high soil P, high erodibility land (excluding newly-converted
from SN)

fic none Proportion of improved grassland or other high soil P, moderate erodibility land
(excluding newly-converted from SN)

fs none Proportion of semi-natural and other low soil P land (excluding newly-converted from
agricultural)

fnc_Ar none Proportion of newly-converted arable land (from SN)

fnc ie none Proportion of newly-converted improved grassland (from SN)

fnc s none Proportion of newly-converted semi-natural land (from agricultural)

Tspr none Proportion spring-sown crops make to total arable land area (assume rest is autumn-sown)

Sar degrees Mean slope of arable land in the sub-catchment

Sic degrees Mean slope of improved grassland in the sub-catchment

Ssn degrees Mean slope of semi-natural land in the sub-catchment

Lreach m Reach length

Sreach degrees Reach slope (ideally length-weighted)

Table 10: General model parameters derived using a GIS, whose values will usually be kept constant during
model calibration.

The remaining model parameters are likely to be less well constrained, and are summarised in Table 11,
together with suggested default values, recommended ranges, and potential data sources that could be used to
inform the parameter values. An additional model parameter, Creasures, IS NOt @ calibration parameter and is
only given a value when the user wishes to investigate the impact of sediment reduction measures on in-
stream SS and PP concentrations or loads. There are 23 parameters in Table 11, 24-27 when spatial
variability between land use classes is taken into account. Only one of these varies by sub-catchment or
reach (effluent inputs), and so model complexity will not increase substantially in larger systems compared
to smaller ones. At least 8 of these model parameters are optional (before taking spatial variability into
account; Table 11), so in a given setup the actual number of parameters requiring calibration may be much
less than 27. Even in the most complex setup in which all 27 parameters are required, an algorithm could
potentially search the entire parameter space so that all could be auto-calibrated, provided the user has a full
suite of water quality observations for calibration and testing (i.e. observed discharge, suspended sediment,
dissolved and particulate P concentrations under the full range of flow conditions). In addition, plausible
ranges for the majority of parameters may be based on measured data or data derived from literature reviews.
Only four or five parameters must be determined purely through calibration (Table 11). One of these
unmeasurable parameters relates to the suspended sediment simulation (Ew); the rest are hydrology
parameters.
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Table 11: SimplyP model parameters, including default values, recommended ranges and possible data
sources. ‘Spatial’ column describes whether the parameter varies spatially by land use (LU), in which case
by which LU type (A: agricultural, S: seminatural, Ar: arable, IG: improved grassland), or sub-
catchment/reach (SC/R). Parameters likely to be key in most settings are marked with an asterisk. Many of

those without an asterisk are optional. Q is discharge

Type | Param Units Description Spatial Tarland Default Min Max Data sources
Dsnow,0 mm Initial snow depth - 0 0 0 1000  Meteorological records
0
Snow foosm mm Degree-day factor for — 2.74 2.74 1.6 6 Literature, e.g. USDA (2004)
dd°C? snow melt
*Ts days Soil water time LU(A,S) A2 Al >0 30 Calibration
constant S:10 S: 10
fauick none Proportion of - 0.02 0.02 0 0.2 Calibration
precipitation routed
to quick flow
alpha none PET reduction factor — 1 1 0.4 1.2 Literature, e.g. Allen et al.
(1998)
*FC mm Soil field capacity - 290 300 100 400 Soils database, or from soil
texture using conversion charts
- (e.g. Appendix, Figure A1)
8 | *beta none Baseflow index - 0.70 0.60 0 1 Local or global databases (e.g.
_g Beck et al., 2013)
2 *Ty days Baseflow recession - 65 65 >0 100 May be estimated from Q data
constant using methods of Van Dijk
(2010); see Beck et al. (2013)
for a global analysis
Qg.min mm d? Minimum - 0.4 0.0 0 2 Calibration
groundwater flow
a m2 Gradient of stream - 0.5 0.5 0.1 0.8 Empirically-derived from
velocity-Q paired velocity and Q
relationship measurements (e.g. from flow
gauging)
Qro_init mést Initial in-stream Q - 1.0 1.0 >0 N/A  Q observations
Ceover None Vegetation cover LU (Ar, A: 0.2 A:0.2 0 1 (R)USLE literature, e.g.
factor (ratio of IG, S) S:0.021 S:0.021 Panagos et al. (2015)
erosion rates under 1G: 0.09 1G: 0.09
the land class vs bare
soil)
*Em kgmm?®  Sediment input - 1500 1500 0 5000 ~Calibration
= scaling factor
g *Km none Sediment input non- - 2.0 2.0 12 3 Empirical relationship between
3 linear coefficient Q and SS observations or
n literature (e.g. Asselman, 2000)
Amaxe spr none Julian day with max - 60 60 1 365 Local agronomic practices
erodibility; spring-
SowWn Crops
OmaxE aut none Julian day with max - 304 304 1 365 Local agronomic practices
erodibility, autumn-
sown crops
*Psoiiconc Mg kgt Initial total soil P LU(A,S) A:1458 A:1458  0- >300 Soils database. Estimate from
content S: 873 S: 873 400 O soil test P data using an
empirical relationship
*Pretinput kg ha? Net annual P inputto LU (A) 10 10 -30 30 Fertilizer and manure
yrt the soil (negative if application surveys, literature
uptake > input); S for P uptake, national P balance
fixed at 0 inventories (e.g. eurostat, 2013,
for EU countries)
% *EPCo,int Mg I Initial soil water TDP LU (A) 0.1 0.1 0 2 Direct measurements, literature
2 concentration on
3 agricultural land
a8 | *Msim2  kgm? Soil mass per m?, - 95 100 >0 800  Soils data (bulk density and
important in depth)
determining the
initial soil labile P
mass
*TDPest kg day* Reach effluent TDP SC/R 0.1 0 0 N/A  Water company/environment
inputs protection agency data
*TDPyg mg I Groundwater TDP - 0.02 0 0 2 Direct measurements or
concentration literature
pp *Epp none PP enrichment factor  — 1.6 1 1 6 Direct measurements or

literature (e.g. Sharpley, 1980)




4.5 Numerical methods

The model equations summarised in Section 4.4 must be solved numerically. Simply put, this involves
providing initial conditions describing the state of the system, and then using the model equations to project
forward in time to predict the new state of the system at the end of the time step. This then becomes the
initial condition for the next time step, and the process is repeated. This process of numerical approximation
introduces errors, and minimizing these errors by formulating and solving the governing model equations in
a robust way is an important part of the model development process. Indeed, Clark and Kavetski (2010)
suggest that in some cases numerical errors may be larger than model structural errors. Additional benefits of
a robust numerical model include a smoother objective function relating model input parameters and model
output (Kavetski et al., 2006a), which may reduce model calibration difficulties by allowing powerful
classical parameter analysis techniques for optimisation and uncertainty analysis to be used. Kavetski et al.
(2006b) argue that many of the difficulties in hydrological modelling over the last two decades, which have
prompted the development of complex parameter estimation tools, are in fact due to (1) discontinuous model
structures, where sharp internal thresholds introduce non-smoothness into the objective function, and to (2)
poor choice of ODE solver. An attempt was made to avoid the first of these issues by avoiding thresholds in
the model equations (e.g. using continuous functions rather than logic checks in equations in Section 4.1.2b).
The final part of the model-building process was then to choose an appropriate ODE solver. Three factors
were taken into account: (1) whether the solver is appropriate for stiff or non-stiff equations, related to the
time-stepping scheme used (see below); (2) popularity, and (3) availability.

Differential equations may be categorised as stiff or non-stiff. Generally speaking, stiff equations include
some terms which can lead to rapid variation in the solution, which means that certain numerical methods for
solving them are unstable unless the step size taken is excessively small in relation to the smoothness of the
exact solution. Time-stepping in this context relates to the sub-steps the model time step is broken down into
by the solver. Most of the classical numerical methods for solving ODEs are only suitable for non-stiff ODEs
(e.g. the simple Euler method, the 4™ order and various adaptive Runge-Kutta methods and the multi-step
Adams’ method). If applied to stiff systems, these methods are likely to be inaccurate or prohibitively slow.
Many ODE systems are stiff in practice, and a wide range of off-the-shelf ODE solvers are available which
are able to adapt their time-stepping routine and fluctuate between using stiff or non-stiff solvers. It is
therefore surprising that many catchment models continue to use simple, often unsuitable solvers (Kavetski
and Clark, 2011). Here, the LSODA solver was chosen, taken from the FORTRAN ODPEPACK library
(Hindmarsh, 1983). LSODA starts using a non-stiff method (an Adams predictor-corrector method) and
dynamically monitors the data, if necessary switching to a stiff method (the multi-step Backward
Differentiation Formula method). LSODA is both widely-used and easy to implement using the
SciPy.integrate module’s odeint function.

The solver’s error tolerance parameters affect the precision of the result, with a smaller error tolerance
resulting in more time steps and greater precision but longer run times. Testing showed an approximate log
relationship between run times and the relative error tolerance parameter (rtol), with a decrease in run times
of around 70% for an increase in rtol from the default of 1x10® to 0.05. rtol was set to 0.01, to optimise the
trade-off between decrease in run time and loss in accuracy. The maximum number of within-timestep
function evaluations was set to 5000, to prevent the solver reaching the maximum threshold before finding a
solution within the required error tolerance, which could introduce errors.

5. Future model development priorities

A number of potential areas for model improvement are highlighted throughout Section 4 and are
summarised in Table 12. Most of these suggestions involve an increase in model complexity, and before
being adopted any increase in complexity needs to be justified by demonstrating a substantial increase in
model performance, preferably within a statistical model comparison framework. To help prioritise areas for
model improvement from within this list (or indeed to highlight other areas), the model needs to be tested in
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a range of contrasting catchments, including catchments where internal processes and fluxes have been
measured.

Additional general recommendations for model improvement include:

On a practical level, the model is currently slow to run compared to professionally-coded models
such as INCA-P. This may be because of the choice of ODE solver, which is sophisticated compared
to the solvers employed by most water quality models, or because the model is coded in Python
rather than a faster, lower-level language such as C**. Other solvers should be investigated for speed.

At present, there is no flexibility in the model in terms of the number of land use classes, which are
fixed at two (for dissolved P processes) or three (for sediment and PP). This reduces the versatility of
the model, and future development to increase flexibility in this regard could widen the appeal of the
model. However, it would also require a re-conceptualisation of the soil P equations.

As pointed out by Adams et al. (2016), new monitoring techniques mean that high frequency P
concentration measurements are now available, e.g. at 30 minute resolution, and yet many popular
water quality models are only able to simulate at a daily resolution. A simple change to the model
described here would be to allow the user to specify the time step required.

Improved representation of critical source areas, by taking spatial variability in hydrology, sediment
and phosphorus sources, mobilisation processes and transport/delivery pathways into account in a
fuller way.
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Hydrology and snow:

Add in a PET calculation, so that the model can be run using just precipitation and temperature as inputs.

o Refinements needed to the simple degree-day approach to simulating snow melt in areas with higher snowfall?

¢ Include a more detailed representation of temperature variation throughout a day in the snow melt calculation.

e Is model performance improved by adding a parameter to define a lower threshold for precipitation inputs, below
which quick flow is zero?

e Should quick flow be varied by land class? If so, is there still a need for different soil water time constants in the
land classes?

e Add an upper limit to the soil water volume (at the saturation capacity); water above this is routed to quick flow.

e Replace the minimum groundwater flow threshold parameter with a more process-based representation. E.g. factor
in percolation from the soil when soil water level drops below field capacity, but at a reduced rate.

Sediment:

¢ Should the sediment equations be amended to attempt to track the store of sediment in the near-channel sources, to
be able to simulate source-exhaustion?

o  Soil erodibility may also be affected by soil wetness, which could be factored in to Equation 21.

e The slope factor in Equation 21 could be altered to be more representative of potential sediment source areas. E.qg.
the average slope of land within a certain distance of the watercourse.

e Anadditional factor could be introduced to Equation 21 to represent connectivity between sediment source areas
and the watercourse.

e The Ceover factor for semi-natural land could be extended to incorporate knowledge on the factors which affect
erodibility, such as grazing, burning and felling.

e More testing is required to determine whether the additional complexity of a dynamic Ccover factor is warranted, and
if so whether the adopted approach is suitable.

e Under what circumstances should sediment deposition to the stream bed be taken into account, and how could this
relatively complex process be represented in a simple way?

e Canreach sediment (and PP) inputs be split into inputs from the land versus bank erosion in a simple way? Work
on sediment fingerprinting may help.

e Should a distinction be made between allochthonous & autochthonous in-stream sediment and PP?

Phosphorus:

e Add in an option for the net P input parameter to be dynamic, for example as a user-input time series. In addition, a
link between soil P content and net P uptake would improve simulations of the longer term soil P dynamics (though
is likely to require soil test P to be simulated).

e  Geochemical models or lab experiments could inform the adsorption coefficient in Equation 27, e.g. by providing a
range of parameters for a suite of soil types with a range of P sorption capacities.

e  Add the ability to input soil P as soil test P rather than total soil P. This could be a user-specified linear relationship,
but a more advanced geochemical representation may be required for meaningful results to be obtained.

e Adynamic PP enrichment factor could replace the constant, for example linked to discharge.

e Tosimulate legacy groundwater TDP, a simple link is needed between soil water and groundwater TDP
concentration, predictable using readily-measurable groundwater properties.

e Add in an option for effluent inputs to be read in from a time series, rather than being constant.

o When/where is it necessary to explicitly account for in-stream TDP sinks (e.g. adsorption or biological uptake of
sewage effluent P)? A simple decay factor may be sufficient.

e When/where should P desorption from the stream bed be simulated? How should this be done?

e For reaches with longer residence times, a link may be needed between in-stream PP and TDP.

e  Sewage PP inputs could be added.

e More process-based representation of septic tank inputs.

e Ability to predict SRP concentrations, either using a simple linear regression between TDP and SRP, or by taking

into account the TDP:SRP ratio of agricultural versus sewage effluent P inputs.

Table 12: Examples of areas for future model development.
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Appendix A: Data to help with model parameterisation

50% Soil Moisture Range Chart
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Figure Al: Chart for estimating field capacity based on soil texture, if only the latter is known.
Source: ftp://ftp.dynamax.com/turf_irrigation/Soil%20Moisture%20Range%20Chart.pdf

Crop type C-factor
Common wheat and spelt 0.2
Durum wheat 0.2
Rye 0.2
Barley 0.21
Grain maize — corn 0.38
Rice 0.15
Dried pulses (legumes) and protein crop  0.32
Potatoes 0.34
Sugar beet 0.34
Oilseeds 0.28
Rape and turnip rape 0.3
Sunflower seed 0.32
Linseed 0.25
Soya 0.28
Cotton seed 0.5
Tobacco 0.49
Fallow land 0.5

Table Al: USLE cover factors for typical European crops (Panagos et al., 2015)
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Group Detailed class Description C-factor UK
mean
Permanent Vineyards Vineyards 0.15-0.45
crops Fruit trees & berry Fruit trees or shrubs: single/mixed fruit 0.1-0.3
plantations species, fruit trees with permanently grassed
surfaces
Olive groves Olive trees 0.1-0.3
Pastures Pastures Dense graminoid grass cover of floral 0.05-0.15 | 0.0867
composition, not under a rotation system.
Mainly used for grazing.
Heterogeneou | Annual crops Non-permanent crops (arable land or 0.07-0.35
s agricultural | associated with pasture) associated with permanent crops
areas permanent crops (<25% non-associated crops)
Complex cultivation | Small parcels of annual crops, pasture and/or | 0.07-0.2 0.1201
patterns permanent crops (each occupy less than 75%
of the total area)
Principally Principally agricultural, with natural areas 0.05-0.2 0.1068
agriculture, (agricultural land occupies 25 to 75% of the
significant areas of area)
natural vegetation
Agro-forestry Annual crops or grazing land under forested | 0.03-0.13
cover
Forests Broad-leaved, Principally trees including shrub and bush 0.0001- 0.0011
coniferous and mixed | understories 0.003
forest
Scrub and/or Natural grasslands Low productivity grassland, often on rough 0.01-0.08 | 0.0319
herbaceous and uneven ground
vegetation Moors and heathland | Low and closed cover dominated by bushes, | 0.01-0.1
shrubs and herbaceous plants
Sclerophyllous Bushy sclerophyllous vegetation, including 0.01-0.1
vegetation maquis (dense, shrubby) and garrige
Transitional Bushy or herbaceous vegetation with 0.003-0.05 | 0.0183
woodland-shrub scattered trees
Open spaces Beaches, dune, sands | Beaches, dunes and expanses of 0
with little or sand/pebbles. Coastal or continental
no vegetation | Bare rocks Scree, cliffs, rocks and outcrops 0
Sparsely vegetated Includes steppes, tundra, badlands. Scattered | 0.1-0.45 0.1825
areas high-altitude vegetation
Burnt areas Areas affected by recent fires, still mainly 0.1-0.55
black
Glaciers and Land covered by glaciers or permanent 0

perpetual snow

snowfields

Table A2: USLE cover factors collated for European land cover classes (Panagos et al., 2015)
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