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Abstract: Apples are a rich source of polyphenols and fiber. A major proportion of apple polyphenols
escape absorption in the small intestine and together with non-digestible polysaccharides reach
the colon, where they can serve as substrates for bacterial fermentation. Animal studies suggest
a synergistic interaction between apple polyphenols and the soluble fiber pectin; however, the effects
of whole apples on human gut microbiota are less extensively studied. Three commercial apple
varieties—Renetta Canada, Golden Delicious and Pink Lady—were digested and fermented
in vitro using a batch culture colonic model (pH 5.5–6.0, 37 ◦C) inoculated with feces from three
healthy donors. Inulin and cellulose were used as a readily and a poorly fermentable plant fiber,
respectively. Fecal microbiota composition was measured by 16S rRNA gene Illumina MiSeq
sequencing (V3-V4 region) and Fluorescence in Situ Hybridization. Short chain fatty acids (SCFAs) and
polyphenol microbial metabolites were determined. The three apple varieties significantly changed
bacterial diversity, increased Actinobacteria relative abundance, acetate, propionate and total SCFAs
(p < 0.05). Renetta Canada and Golden Delicious significantly decreased Bacteroidetes abundance and
increased Proteobacteria proportion and bifidobacteria population (p < 0.05). Renetta Canada also
increased Faecalibacterium prausnitzii, butyrate levels and polyphenol microbial metabolites (p < 0.05).
Together, these data suggest that apples, particularly Renetta Canada, can induce substantial changes
in microbiota composition and metabolic activity in vitro, which could be associated with potential
benefits to human health. Human intervention studies are necessary to confirm these data and
potential beneficial effects.

Keywords: apples; polyphenols; proanthocyanidins; fiber; pectin; gut microbiota; in vitro batch
culture fermentation; microbial metabolites; Illumina 16S rRNA gene sequencing; Fluorescence in
situ hybridization (FISH)

1. Introduction

Evidence suggests that plant-derived dietary polyphenols and fiber possess health-promoting
properties [1]. Apples are among the most popular and frequently consumed fruits in the world and
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a rich source of both polyphenols and fiber [2]. Epidemiological and dietary intervention studies
suggest that frequent apple consumption is associated with a reduced risk of chronic pathologies such
as cardiovascular disease, obesity and cancer [2,3]. However, up to 90–95% of dietary polyphenols are
not absorbed in the small intestine [4] and together with non-digestible polysaccharides from apples
reach the colon almost intact, where they can interact with the gut microbiota [2]. This interaction is
reciprocal. Firstly, polyphenols and fiber undergo an extensive microbial bioconversion producing
phenolic acids and short chain fatty acids (SCFAs), respectively, well-known to have positive health
effects [5]. Secondly, polyphenols, fiber and/or their metabolic products modulate the gut microbiota
composition by inhibiting pathogenic bacteria and stimulating beneficial bacteria, therefore acting as
potential prebiotics [5].

Dietary fiber constituents in apples include insoluble fiber, mainly cellulose and hemicellulose
and soluble fiber, mainly pectin. In vitro studies, using human fecal inoculum, have shown that
pectin is fermented to SCFAs (acetate, propionate and butyrate) by several intestinal bacteria genera
including Bacteroides, eubacteria, clostridia and bifidobacteria [6,7]. However, a recent study suggested
a high selectivity at the species level [8]. Apples also contain a variety of polyphenols including
dihydrochalcones, flavonols, hydroxycinnamates and flavanols (catechin and proanthocyanidins
(PAs)) [9]. PAs, the major polyphenolic class in apples, also known as condensed tannins, are oligomers
and polymers of flavanols and the most likely to reach the colon [2]. In an in vitro study, apple PAs
have been shown to be converted to polyphenol microbial metabolites, mainly phenylpropionic,
phenylacetic and benzoic acid derivatives. [10]. The study also reported reduced saccharolytic
fermentation, suggesting potential antimicrobial properties of PAs. However, the specific bacteria
composition was not explored [10].

In vivo, extraction juices from apple pomace, rich in polyphenols and fiber, have been shown to
increase Lactobacillus, Bifidobacterium, Bacteroidaceae species, Eubacterium rectale cluster as well as SCFAs
in rats [11,12]. Licht et al. (2010) [13] considered pectin, among apple components, responsible for
a decrease in Bacteroides spp. and an increase in Clostridium coccoides and butyrate in rats [13]. Likewise,
apple pectin restored the Firmicutes/Bacteroidetes ratio to normal in obesity-induced rats [14].
Decreased Firmicutes/Bacteroidetes ratio was similarly seen in mice with the administration of
apple PAs, which also increased the proportion of Akkermansia [15]. However, a rat cecum fermentation
showed that apple polyphenols and pectin are more effective in combination implying a synergistic
effect [16]. Data available from human studies are still limited [2]. In a small scale trial of eight
people, two apples per day for two weeks significantly increased bifidobacteria while reducing
Enterobacteriaceae and lecithinace-positive clostridia, including C. perfringens [17]. In a more recent
four-week study of 23 healthy subjects, whole apple and pomace intake lowered fecal pH but there
were no changes in gut microbiota composition [18].

Thus, to date, the effects of apple components on gut microbiota have been explored mainly
in animals and using extracted juices [11,12], PAs [15] or pectin [14] alone. There are no in vitro
studies investigating the effects of whole apples using human fecal inoculum and only recently studies
with apple components have focused on the entire gut community instead of targeted taxa [13,15].
The aim of the current work was to assess the effect of three commercial apple varieties—Renetta
Canada, Golden Delicious and Pink Lady—on human gut microbiota composition and metabolic
activity in vitro, compared to inulin (a prebiotic) and cellulose (poorly fermented). Illumina 16S rRNA
sequencing was used to provide a broad picture of the microbial community architecture. Bacteria
of specific interest (i.e., bifidobacteria and Faecalibacterium prausnitzii) were enumerated using the
quantitative 16S rRNA probe based method, FISH. The production of SCFAs (acetate, propionate
and butyrate) was also measured. Finally, disappearance of apple polyphenols and formation of
microbial-derived metabolites were monitored throughout the fermentation using a targeted LC-MS
based metabolomics approach.
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2. Materials and Methods

2.1. Fecal Donors

Fecal donors, two males and one female, were in good health and aged between 30 and 50.
They had not received antibiotic treatment for at least 3 months prior to stool collection, had not
knowingly consumed pre- or probiotic supplements prior to experiment, and had no history of bowel
disorders. The three healthy donors were informed of the study aims and procedures and provided
their verbal consent for their fecal matter to be used for the experiments, in compliance with the ethics
procedures required at the University of Reading and Fondazione Edmund Mach.

2.2. Materials

Enzymes for the apples digestion and chemicals for the batch culture basal nutrient medium
were purchased from Sigma-Aldrich (St. Louis, MO, USA) and Applichem (Darmstadt, Germany),
unless otherwise stated. For the chemical standards of polyphenols and microbial metabolites as
well as the LC-MS reagents more information can be found in Vrhovsek et al. (2012) [19] and
Gasperotti et al. (2014) [20].

2.3. Apples and Controls

The three commercial apple varieties, Renetta Canada, Golden Delicious and Pink Lady were
purchased from a local shop in the Trentino region in north Italy. The apples’ macronutrient composition
was analyzed by Campden BRI laboratories, UK, whereas the detailed polyphenol content was
measured in our laboratory in Fondazione Edmund Mach based on Vrhovsek et al. (2012) [19].
Inulin (from dahlia tubers) and cellulose were used as a readily and a poorly fermentable plant
fiber, respectively.

2.4. Preparation of Phospholipid Vesicles

A protocol was followed according to Mandalari et al. (2008) [21], with some modifications,
for the preparation of the phospholipid vesicles and the simulation of the in vitro gastric and
duodenal digestion as described below. Egg L-α-phosphatidylcholine (PC, lecithin grade 1, 99% purity,
Lipid Products, Surrey, UK), 6.5 mL of a stock solution (127 mmol/L in chloroform/methanol),
was placed into a round-bottom flask, and dried under rotary evaporation to make a thin
phospholipid film. The lipid film was further dried overnight under vacuum to remove any remaining
solvent. Then, it was hydrated with the addition of 170 mL of warm saline (150 mmol/L NaCl, pH 2.5,
at 37 ◦C). The flask was flushed with argon to prevent oxidation and was placed in an orbital shaker
(170 rpm, 37 ◦C) for 30 min together with five 2 mm diameter glass beads. A PC nanoemulsion was
then produced using a Branson Ultrasonics sonifier S-450 (Branson Ultrasonics, Danbury, CT, USA)
equipped with a 13 mm titanium horn (30% of amplitude). The temperature of the liquid kept below
60 ◦C with ice.

2.5. In Vitro Gastric and Duodenal Digestion

A ratio of 4 g of apples for 12.4 mL gastric phase volume (acidic saline) considered appropriate
after preliminary experiments and according to Mandalari et al. (2008) [21]. Initially, 96 g of each
apple variety were grated with their skin and added to 146 mL of the sonicated and filtrated PC vesicle
suspension. The pH was adjusted to 2.5 using HCl and acidic saline (150 mmol/L NaCl, pH 2.5) was
added to a total volume of 298 mL. Then, the PC vesicle suspension together with gastric pepsin and
lipase were added so that the final concentrations were 2.4 mmol/L, 146 units/mL and 60 units/mL,
respectively. The digestion was performed in an orbital shaker (170 rpm, 37 ◦C) for 2 h. The in vitro
gastric digestion was followed by duodenal digestion. The pH was raised to 6.5 using NaOH and
the following were added: 4 mmol/L sodium taurocholate, 4 mmol/L sodium glycodeoxycholate,
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11.7 mmol/L CaCl2, 0.73 mmol/L Bis-Tris buffer (pH 6.5), 5.9 units/mL α-chymotrypsin, 104 units/mL
trypsin, 3.2 µg/mL colipase, 54 units/mL pancreatic lipase and 25 units/mL alpha-amylase. The total
volume of 340 mL was reached by the addition of saline (150 mmol/L NaCl, pH 6.5) and the final
PC concentration was 2.1 mmol/L. The duodenal digestion was performed for 1 h in the shaking
incubator (170 rpm, 37 ◦C). Then, samples were transferred to 1 kDa MWCO (molecular weight cut
off) cellulose dialysis tubing (Spectra/Por® 6, Spectrum Europe, Breda, Netherlands) and dialyzed
overnight against NaCl (10 mmol/L) at 4 ◦C to remove low molecular mass digestion products.
The dialysis fluid was changed and dialysis continued for an additional 2 h. Finally, apples were frozen
at −20 ◦C and then freeze-dried until use. Inulin and cellulose (19.2 g each, equivalent with the dry
content of 96 g of apples) were also digested and dialyzed using the same protocol.

2.6. Fecal Batch-Culture Fermentation and Samples Collection

The fermentation profile of the three commercial apples, the prebiotic inulin and the poorly
fermented cellulose was determined using anaerobic, stirred, pH and temperature controlled fecal
batch cultures. Glass water-jacketed vessels (300 mL) were sterilized and filled aseptically with 180 mL
of pre-sterilized basal nutrient medium according to Sanchez-Patan et al. 2012 [22]. The pH was
adjusted to 5.5–6.0 and kept between this range throughout the experiment with the automatic
addition of NaOH or HCI (0.5 M), to mimic the conditions located in the proximal region of the
human large intestine. The medium was then gassed overnight with oxygen free nitrogen to maintain
anaerobic conditions. The following day and before the inoculation, each of the 5 vessels was dosed
with 2 g of the appropriate substrate/treatment (inulin, cellulose, Renetta Canada, Golden Delicious
or Pink Lady) for a final concentration of 1% (w/v). Fresh human fecal samples were collected in an
anaerobic jar and were processed within 1 h. Fecal slurry was prepared by homogenizing the feces in
pre-reduced phosphate buffered saline (PBS). The temperature was set to 37 ◦C using a circulating
water-bath and the vessels were inoculated with 20 mL fecal slurry (10% w/v of fresh human feces)
to a final concentration of 1% (w/v). Batch cultures were run under these controlled conditions for
a period of 24 h, during which samples were collected at 4 time points (0, 5, 10 and 24 h) for FISH,
SCFA, precursors polyphenols and polyphenol microbial metabolites. Pellets were stored at −80 ◦C
for DNA extraction. Fermentations were conducted in triplicate using three healthy fecal donors.

2.7. DNA Extraction, Amplification and Sequencing

DNA was extracted from each sample (available for 0, 10 and 24 h time points) using
the FastDNA Spin Kit for Feces (MP Biomedicals, UK). Nucleic acid purity was tested on
NanoDropTM 8000 Spectrophotometer (Thermo Fisher Scientific). Total genomic DNA was then
subjected to PCR amplification by targeting a ~460-bp fragment of the 16S rRNA variable region
V3-V4 using the specific bacterial primer set 341F (5′ CCTACGGGNGGCWGCAG 3′) and 806R
(5′ GACTACNVGGGTWTCTAATCC 3′) with overhang Illumina adapters. PCR amplification of each
sample was carried out using 25 µL reactions with 1 µM of each primer, following the Illumina
Metagenomic Sequencing Library Preparation Protocol for 16S Ribosomal RNA Gene Amplicons.
The PCR products were checked on 1.5% agarose gel and cleaned from free primers and primer
dimer using the Agencourt AMPure XP system (Beckman Coulter, Brea, CA, USA) following the
manufacturer’s instructions. Subsequently dual indices and Illumina sequencing adapters Nextera
XT Index Primer (Illumina) were attached by 7 cycles PCR (16S Metagenomic Sequencing Library
Preparation, Illumina). The final libraries, after purification by the Agencourt AMPure XP system
(Beckman), were analyzed on a Typestation 2200 platform (Agilent Technologies, Santa Clara, CA, USA)
and quantified using the Quant-IT PicoGreen dsDNA assay kit (Thermo Fisher Scientific) by the
Synergy2 microplate reader (Biotek). Finally, all the libraries were pooled in an equimolar way
in a final amplicon library and analyzed on a Typestation 2200 platform (Agilent Technologies,
Santa Clara, CA, USA). Barcoded library was sequenced on an Illumina® MiSeq (PE300) platform
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(MiSeq Control Software 2.0.5 (Illumina, San Diego, CA, USA) and Real-Time Analysis software 1.16.18
(Illumina, San Diego, CA, USA)).

2.8. Sequence Data Analysis

Demultiplexed sequences were further processed using the Quantitative Insight Into Microbial
Ecology (QIIME) open-source software package [23] using the following workflow: Forward and
reverse Illumina reads (300 bp each) were joined using the fastq-join method [24], quality filtering was
performed using 19 as the minimum Phred quality score and chimeric sequences were identified and
removed using usearch 6.1. Then, sequences were assigned to operational taxonomic units (OTUs)
using the QIIME implementation of UCLUST algorithm at 97% similarity threshold [25]. Representative
sequences for each OTU were assigned to different bacterial taxonomic levels -phylum (p.), class (c.),
order (o.), family (f.) and genus (g.)—by using Greengenes database release (May 2013).

The number of sequences collected that fulfilled quality control requirements (Phred quality
score ≥20) yielded 1,647,935 (Sequence length mean ± SD, 450 ± 12). After removing chimeric
sequences, a total of 1,621,799 reads remained, meaning that the used usearch61 algorithm reduced
the dataset by approximately 1.6%. Using 97% as a homology cutoff value 4530 species-level OTUs
were identified. For alpha and beta diversity tests all samples were subsampled to an equal number of
reads (11,708 reads per sample which constitutes to 90% of the most indigent sample in the dataset).
For further downstream analysis, the dataset was filtered to consider only those OTUs that were
present in all samples at a relative abundance >0.005% (486 OTUs).

2.9. Enumeration of Bacterial Groups with Fluorescence In Situ Hybridization (FISH)

Changes in bacterial populations were determined using genus- and group-specific 16S rRNA
gene-targeted oligonucleotide probes, labeled with Cy3 fluorescent dye, applying the FISH method [22].
The used oligonucleotide probes were: Bif164 specific for the Bifidobacterium spp. [26] and Fpra655
specific for the Faecalibacterium prausnitzii genus [27]. For total bacterial cell stain, the fixing of the
samples onto the Teflon slides was performed as normal and the slides were incubated for 10 minutes
in 50 mL of PBS with the addition of 50 µL of SYBR Green to a final concentration of 1:1000 [28].

2.10. Analysis of Short Chain Fatty Acids (SCFAs)

Analysis of SCFAs was performed using the method by Zhao et al. (2006) [29] with slight
modifications. Briefly, 1 mL aliquots of 10% (w/v) fecal suspension in sterile 1 M PBS (pH 7.2)
were dispensed into 1.5 mL tubes and centrifuged at 13,000× g for 5 min to pellet bacteria and
other solids. Supernatants were then transferred into clean 1.5 mL tubes and frozen at 20 ◦C until
required. On the day of the analysis samples were defrosted on ice and acidified to pH 2–3 by the
addition of one volume of 6 M HCl to three volumes of sample. After 10 min incubation at room
temperature, samples were centrifuged at 13,000× g for 5 min and filtered using a 0.2 µm polycarbonate
syringe. One volume of 10 mM 2-ethylbutyirc acid was added to four volumes of sample as the internal
standard. Calibration was done using standard solutions of acetic acid, propionic acid, i-butyric acid
and n-butyric acid (Sigma-Aldrich, Schnelldorf, Germany) in acidified water (pH 2). SCFAs were
determined by gas-liquid chromatography coupled with mass spectrometry on a Thermo Trace GC
Ultra (Thermo Fisher Scientific, Austin, TX, USA) fitted with a FFAP column (Restek Stabilwax-DA;
30 m × 0.25 mm; 0.25 µm fth) and a flame-ionization detector. Peaks were integrated using Thermo
Scientific Xcalibur data system (Thermo Fisher Scientific, Austin, TX, USA). All SCFAs showed a linear
range between at least 0.5–20 mM with a coefficient of linearity R2 > 0.999. LOD and LOQ were
below 0.5 mM.

2.11. Analysis of Precursor Polyphenols and Polyphenol Microbial Metabolites

The determination of precursor polyphenols was performed according to Vrhovsek et al. (2012) [19]
whereas the polyphenol microbial metabolites according to Gasperotti et al. (2014) [20]. Briefly,
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a previously developed targeted metabolomic method was performed with an ultra-performance liquid
chromatographic system coupled to tandem mass spectrometry system with electrospray ionization
(UHPLC-ESI-MS/MS). Before injection, batch culture supernatants were defrosted, centrifuged
(13,000 rpm, 5 min), filtered (0.22 µm) and trans-cinnamic acid-d5 (5 µg/mL) was added as the
first internal standard. Then, samples were dried under nitrogen and reconstituted in methanol:water
(1:1, v/v) containing rosmarinic acid (1 µg/mL) as the second internal standard. Samples were finally
shaken for 10 min in an orbital shaker, centrifuged for 5 min at 16,000 rpm and injected (2 µL) into the
UHPLC–MS/MS system. Data processing was performed using Waters MassLynx 4.1 (Waters, Milford,
CT, USA) and TargetLynx software (Waters, Milford, CT, USA). Details of the liquid chromatography
and mass spectrometry are described in Vrhovsek et al. (2012) [19] and Gasperotti et al. (2014) [20].

2.12. Statistical Analysis

For the sequencing data analysis, the QIIME pipeline version 1.9.1 [23] was used. Within community
diversity (alpha diversity) was calculated using observed OTUs, Chao1 and Shannon indexes with
10 sampling repetitions at each sampling depth. Analysis of similarity (ANOSIM) and the ADONIS test
were used to determine statistical differences between samples (beta diversity) following the QIIME
compare_categories.py script and using weighted and unweighted phylogenetic UniFrac distance
matrices. Principal Coordinate Analysis (PCoA) plots were generated using the QIIME beta diversity
plots workflow. The biplot function was used to visualize samples and taxa in the PCoA space. For the
rest of the data analysis the SPSS IBM version 21 (SPSS Inc., Chicago, IL, USA) was used. One-way
ANOVA was used to determine differences between fermentation treatments (inulin, cellulose, Renetta
Canada, Golden Delicious and Pink Lady) at the same time point (0, 5, 10 or 24 h), followed by the
least significant difference (LSD) post hoc test. A repeated measures ANOVA was used to explore the
differences within the same treatment/vessel (inulin, cellulose, Renetta Canada, Golden Delicious
or Pink Lady) with all the time points (0, 5, 10 and 24 h) as within factor and with LSD as the
post hoc test. In addition to these analyses, the p values were corrected using false discovery rate
(FDR) to account for multiple testing at the lower bacterial taxonomical level (67 taxa). p ≤ 0.05 was
considered statistically significant.

3. Results

3.1. Composition of Apples

The fiber and polyphenol content of the three fresh apples is shown in Table 1 (detailed nutrient
composition analysis is presented in the Supplementary File, Table S1). Renetta Canada had the highest
total polyphenol content (276 mg/100 g) followed by Golden Delicious (132 mg/100 g) and Pink Lady
(94 mg/100 g). The total fiber content was similar among the apple varieties (Table 1).

Table 1. Composition analysis of Renetta Canada, Golden Delicious and Pink Lady *.

Components Renetta Canada Golden Delicious Pink Lady

Total dietary fiber (AOAC) (g/100 g) 2.6 2.4 2.4
Soluble fiber (AOAC) (g/100 g) 1.6 1.3 0.9

Insoluble fiber (AOAC) (g/100 g) 1.0 1.1 1.5
Polyphenols (mg/100 g)

Flavanols
(+)—Catechin 1.07 0.16 0.17

(−)—Epicatechin 10.9 2.8 2.8
Procyanidin B1 6.6 0.95 0.78

Procyanidin B2 + B4 (as B2) 18.3 6.1 4.8
Proanthocyanidin (as cyanidin) 169.2 91.5 62.1
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Table 1. Cont.

Components Renetta Canada Golden Delicious Pink Lady

Hydroxycinnamates
Chlorogenic acid 61 18.7 17.5

Neochlorogenic acid 0.04 0.04 0.01
Cryptochlorogenic acid 0.98 0.67 0.15

Flavonols
Quercetin-3-glucoside 0.99 6.9 3.1

Quercetin-3-rhamnoside 0.65 2.7 1.7
Rutin 0.09 0.44 0.19

Kaempferol-3-rutinoside 0.002 0.011 0.002
Isorhamnetin-3-glucoside 0.001 0.002 0.001

Dihydrochalcones
Phlorizin 5.9 1.5 0.8

Anthocyanins
Cyanidin 3-galactoside 0.006 0.017 0.027
Benzoic Acid Derivatives

Vanillin 0.008 0.006 0.003
Vanillic acid 0.001 0.003 0.002

* For each apple variety a mixture of three fresh whole apples was analyzed.

3.2. Changes in Fecal Bacterial Alpha and Beta Diversity

The diversity of gut microbiota within a community was measured with alpha diversity indices
(within-sample richness), in particular the number of observed OTUs, the Chao1 estimator of species
richness and the Shannon entropy and these are shown in Figure 1. At 0 h there were no differences
between the treatments. At 10 h the observed OTUs, species richness (Chao1) as well as Shannon
entropy were significantly lower with all the apple treatments compared to inulin or cellulose. At 24 h
the same statistical differences as the 10 h time point were shown for the observed OTUs and species
richness, with the exception of Shannon entropy, where Renetta Canada and inulin had lower values
compared to the other apples or cellulose (p < 0.05). All alpha diversity indices decreased over time
within every treatment throughout the fermentation (p < 0.05).

When the bacterial diversity between samples (for all the data set) was examined (beta diversity)
a clustering was shown according to fecal donor (ANOSIM and ADONIS test, p = 0.01 and p = 0.001
(R2 = 34%), respectively) (Figure 2) and time point (ANOSIM and ADONIS test, p = 0.01 and p = 0.001
(R2 = 11%), respectively) (Figure S1), as demonstrated with principal coordinate analysis (PCoA)
based on an unweighted (qualitative) phylogenetic UniFrac distance matrix. The clustering was less
distinct but still significant according to donor (ANOSIM and ADONIS test, p = 0.01 and p = 0.001
(R2 = 29%), respectively) and time (ANOSIM and ADONIS test, p = 0.01 and p = 0.001 (R2 = 30%),
respectively) when based on a weighted (quantitative) phylogenetic UniFrac distance matrix (Figure 2
and Figure S1, respectively). There was no significant effect of treatment on beta diversity for all
the data set together (all time points and donors), ANOSIM test, p = 0.81 and p = 0.59 and ADONIS
test, p = 0.95, R2 = 7% and p = 0.55, R2 = 8.5%, according to an unweighted and a weighted UniFrac
distance matrix, respectively (Figure S2). The 6 core genera which influenced overall variance the
most in the samples were Bacteroides, Bifidobacterium, Megamonas, Ruminococcaceae unassigned genus,
Lachnospiraceae unassigned genus and Faecalibacterium (Figure 2, Figures S1 and S2).
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Treatment Chao1 (0 h) Shannon (0 h) Chao1 (10 h) Shannon (10 h) Chao1 (24 h) Shannon (24 h) 
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Golden Delicious 1064 ± 46 6.35 ± 0.41  724 ± 125 a* 4.57 ± 0.64 a*  737 ± 31 a* 5.20 ± 0.07 b* 
Pink Lady 1115 ± 67 6.47 ± 0.27  748 ± 69 a* 4.63 ± 0.66 a*  769 ± 48 a* 5.14 ± 0.47 b* 

Figure 1. Alpha diversity (within-sample richness) rarefaction curves based on the observed number of Operational Taxonomic Units, OTUs (image), average 
Chao1 and Shannon indexes (±SEM) in 24-h in vitro batch culture fermentations inoculated with human feces (n = 3 healthy donors) and administrated with inulin, 
cellulose, Renetta Canada, Golden Delicious and Pink Lady as the substrates (treatments). Samples were analyzed at 0, 10 and 24 h. Ten sampling repetitions were 
calculated at an even sampling depth of 11708 sequences. Significant differences (p < 0.05) between treatments at the same time point are indicated with different 
letters. * Significant differences (p < 0.05) from the 0 h time point within the same treatment.  
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Renetta Canada 1124 ± 84 6.49 ± 0.28 673 ± 113 a,* 4.28 ± 0.71 a,* 774 ± 135 a,* 4.78 ± 0.63 a,*
Golden Delicious 1064 ± 46 6.35 ± 0.41 724 ± 125 a,* 4.57 ± 0.64 a,* 737 ± 31 a,* 5.20 ± 0.07 b,*
Pink Lady 1115 ± 67 6.47 ± 0.27 748 ± 69 a,* 4.63 ± 0.66 a,* 769 ± 48 a,* 5.14 ± 0.47 b,*

Figure 1. Alpha diversity (within-sample richness) rarefaction curves based on the observed number of Operational Taxonomic Units, OTUs (image), average Chao1
and Shannon indexes (±SEM) in 24-h in vitro batch culture fermentations inoculated with human feces (n = 3 healthy donors) and administrated with inulin, cellulose,
Renetta Canada, Golden Delicious and Pink Lady as the substrates (treatments). Samples were analyzed at 0, 10 and 24 h. Ten sampling repetitions were calculated
at an even sampling depth of 11708 sequences. Significant differences (p < 0.05) between treatments at the same time point are indicated with different letters.
* Significant differences (p < 0.05) from the 0 h time point within the same treatment.



Nutrients 2017, 9, 533 9 of 23
Nutrients 2017, 9, 533 9 of 23 

 
(A)

 
(B)

Figure 2. Principal coordinate analysis (PCoA) plots of 16S rRNA gene profiles based on (A) 
unweighted (qualitative) and (B) weighted (quantitative) phylogenetic UniFrac distance matrices 
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(ANOSIM and ADONIS test, p = 0.01 and p = 0.001, respectively) for the whole data set (24-h in vitro 
batch culture fermentations inoculated with human feces (n = 3 healthy donors) and administrated 
with inulin, cellulose, Renetta Canada, Golden Delicious and Pink Lady as the 
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3.3. Fecal Bacterial Relative Abundance at the Phylum Level 

The total sequence reads used in this study were classified into 7 phyla and one phylum was 
noted as unassigned. In particular, the bacterial communities, at time 0 h in all cultures, were 
dominated by bacteria belonging to Firmicutes (58–64%), Bacteroidetes (27–34%), Actinobacteria (5–

Figure 2. Principal coordinate analysis (PCoA) plots of 16S rRNA gene profiles based on (A) unweighted
(qualitative) and (B) weighted (quantitative) phylogenetic UniFrac distance matrices calculated from
a rarefied OTU table (11708 reads per sample) showing a clustering between donors (ANOSIM and
ADONIS test, p = 0.01 and p = 0.001, respectively) for the whole data set (24-h in vitro batch culture
fermentations inoculated with human feces (n = 3 healthy donors) and administrated with inulin,
cellulose, Renetta Canada, Golden Delicious and Pink Lady as the substrates/treatments). Samples
were analyzed at 0, 10 and 24 h. Each color represents a different donor. The gray spherical coordinates
indicate taxonomic vectors of the 6 most prevalent taxa at the genus level. The size of each sphere is
proportional to the mean relative abundance and approximates the causing variance throughout the
plotted samples.

3.3. Fecal Bacterial Relative Abundance at the Phylum Level

The total sequence reads used in this study were classified into 7 phyla and one phylum was
noted as unassigned. In particular, the bacterial communities, at time 0 h in all cultures, were dominated
by bacteria belonging to Firmicutes (58–64%), Bacteroidetes (27–34%), Actinobacteria (5–7%) and
Proteobacteria (1.5–2.0%) phylum, whereas a small percentage (0.1–0.3%) belonged to Cyanobacteria,
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Lentisphaerae, Tenericutes and an unassigned phylum (Figure 3). Treatment did not have any
significant effect on the relative abundance of phylum level at time 0 h and 10 h. However, at time
24 h Actinobacteria relative abundance differed significantly among all five treatments (p = 0.017),
where supplementation with all the apple varieties led to a higher abundance compared to cellulose
(p < 0.05). Focusing on changes over time for each treatment separately (Figure 3), Firmicutes
abundance remained unaffected, whereas Bacteroidetes significantly decreased over time with inulin
(p = 0.012), Renetta Canada (p = 0.002) and Golden Delicious (p = 0.019). Actinobacteria proportion was
significantly increased over time with all the apple varieties (Renetta Canada, p = 0.05, Golden Delicious,
p = 0.011 and Pink Lady, p = 0.018). Finally, Proteobacteria abundance was also significantly increased
with cellulose (p = 0.021), Renetta Canada (p = 0.012) and Golden Delicious (p = 0.02) (Figure 3).
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Figure 3. Changes in bacterial phyla (relative abundances (%)) throughout 24-h in vitro batch culture
fermentations inoculated with human feces (n = 3 healthy donors) and administrated with inulin,
cellulose, Renetta Canada, Golden Delicious and Pink Lady as the substrates (treatments). Samples were
analyzed at 0, 10 and 24 h. Values are mean (%) with SEM (the negative error value is shown).
Other bacteria represent Cyanobacteria, Lentisphaerae, Tenericutes and an unassigned phylum.
* Significant differences from the 0 h time point within the same treatment (p < 0.05, FDR corrected).

3.4. Fecal Bacterial Relative Abundance at the Genus Level

At the lowest taxonomic level, 67 distinct bacterial taxa were detected. Of these, 46 were identified
at the genus level, 15 at the family level, 5 at the order level and one was unassigned. At 0 h there were
no differences between the treatments in bacterial taxa relative abundance. At 10 h, treatment had
an effect on the abundance of g. Oscillospira, g. Ruminococcus, g. Parabacteroides, g. Bilophila, unassigned
f. Lachnospiraceae, unassigned f. Mogibacteriaceae and unassigned and unclassified o. Clostridiales, which
remained significant after the FDR correction for multiple testing for o. unassigned Clostridiales and
f. Mogibacteriaceae, with cellulose administration showing higher proportions of these taxa compared to
the other treatments (Table 2). Notably, Bifidobacterium g. abundance differed among all treatments at
10 h, with the highest proportion after Renetta Canada and Golden Delicious administration, however,
this lost significance with FDR correction (Table 2). Significant differences, before correction, between
treatments were also observed at 24 h on the relative abundance of g. Faecalibacterium, g. Butyricimonas,
g. Bifidobacterium and unassigned o. Clostridiales. Additional details on the relative abundance of
bacterial taxa at 10 and 24 h for the different treatments are shown in Table 2. Focusing on changes over
time for each treatment separately, there were significant changes in the relative abundance of specific
taxa however, these were not always significant after correction and presented as supplementary
information (Table S2).
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Table 2. Changes in bacterial taxa relative abundance (%) at 10 h and 24 h of in vitro batch culture fermentations inoculated with human feces (n = 3 healthy donors)
and administrated with inulin, cellulose, Renetta Canada, Golden Delicious and Pink Lady as the substrates (treatments).

Phylum Class Order Family Genus Time
Point Inulin (%) Cellulose (%) Renetta

Canada (%)
Golden

Delicious (%) Pink Lady (%) p * p #

(FDR-Corrected)

Firmicutes Clostridia Clostridiales Lachnospiraceae unassigned 10 h 4.3 ± 1.3 a 9 ± 0.9 b 2.6 ± 0.7 a 5 ± 2 a,b 2.9 ± 1.2 a 0.040 0.336
Firmicutes Clostridia Clostridiales [Mogibacteriaceae] unassigned 10 h 0.15 ± 0.01 b 0.14 ± 0.01 b 0.08 ± 0.02 a 0.05 ± 0.01 a 0.06 ± 0.01 a 0.001 0.040
Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira 10 h 0.66 ± 0.1 b 1 ± 0.1 c 0.32 ± 0.03 a 0.3 ± 0.1 a 0.23 ± 0.07 a 0.001 0.052
Firmicutes Clostridia Clostridiales Ruminococcaceae Ruminococcus 10 h 1.4 ± 0.3 a,b 1.8 ± 0.5 b 0.63 ± 0.43 a 0.41 ± 0.18 a 0.45 ± 0.17 a 0.050 0.369
Firmicutes Clostridia Clostridiales unassigned unassigned 10 h 1.8 ± 0.1 b 2.8 ± 0.3 c 0.82 ± 0.24 a 0.76 ± 0.16 a 0.81 ± 0.12 a 0.000 0.009
Firmicutes Clostridia Clostridiales unclassified unclassified 10 h 0.68 ± 0.12 b 1.4 ± 0.23 c 0.47 ± 0.1 a,b 0.33 ± 0.03 a,b 0.59 ± 0.27 a,b 0.013 0.215

Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae Parabacteroides 10 h 0.72 ± 0.2 b 1.9 ± 0.6 c 0.4 ± 0.1 a,b 0.37 ± 0.04 a,b 0.56 ± 0.1 a,b 0.022 0.264
Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 10 h 4.7 ± 2.4 a 2.8 ± 0.2 a 24.3 ± 8.7 b 19.4 ± 4.2 b 16.2 ± 2.1 a,b 0.028 0.273
Proteobacteria Deltaproteobacteria Desulfovibrionales Desulfovibrionaceae Bilophila 10 h 0.33 ± 0.03 a 1.7 ± 0.6 b 0.17 ± 0.01 a 0.24 ± 0.08 a 0.26 ± 0.05 a 0.024 0.264

Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium 24 h 17 ± 3.7 c 4.6 ± 2.2 a 16 ± 5.5 b,c 5.9 ± 1.9 a,b 5.4 ± 1.4 a 0.049 0.950
Firmicutes Clostridia Clostridiales unassigned unassigned 24 h 1.2 ± 0.3 a 2.5 ± 0.6 b 0.36 ± 0.05 a 0.75 ± 0.19 a 0.86 ± 0.19 a 0.007 0.482

Bacteroidetes Bacteroidia Bacteroidales [Odoribacteraceae] Butyricimonas 24 h 0.04 ± 0.01 a,b 0.09 ± 0.03 b 0.03 ± 0.01 a 0.02 ± 0.01 a 0.02 ± 0.01 a 0.044 0.950
Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae Bifidobacterium 24 h 6.3 ± 4.6 a,b 2.6 ± 0.2 a 14.9 ± 2.5 b 15.2 ± 2.6 b 10.4 ± 3 a,b 0.050 0.950

* ANOVA analysis to verify whether the relative abundance of a given taxa is different between the treatments within the same time point. # The p value after correction for multiple tests
(67 taxa) with the false discovery rate (FDR) method. Different letters (a, b, c) indicate significant differences (p < 0.05) between treatments at the same time point. Brackets indicate
suggested but not verified names. Values are mean ± SEM.
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3.5. Changes in Selected Fecal Bacterial Populations Measured with FISH

Changes in Bifidobacterium spp., Faecalibacterium prausnitzii and total bacteria were also assessed by
FISH (Figure 4). At 0 h there were no significant changes between the treatments. At 5 h bifidobacteria
numbers increased significantly with Renetta Canada compared to cellulose (p = 0.004) and inulin
(p = 0.047); bifidobacteria also increased with Golden Delicious as the treatment compared to cellulose
(p = 0.007). At 10 h bifidobacteria and total bacteria increased significantly with all the apple varieties
compared to cellulose (p < 0.05); with total bacteria also increasing with inulin compared to cellulose
(p = 0.009). Bifidobacteria also increased at 10 h with Renetta Canada compared to inulin (p = 0.036).
At 24 h Faecalibacterium prausnitzii increased significantly with Renetta Canada compared to the other
apples (p < 0.05). All apple varieties and inulin increased Faecalibacterium prausnitziii compared to
cellulose (p < 0.05). Inulin and Golden Delicious also had higher Faecalibacterium prausnitziii numbers
at 24 h compared to Pink Lady (p = 0.004 and p = 0.032 respectively) (Figure 4). Finally, at 24 h total
bacteria increased significantly with all the apple varieties and inulin compared to cellulose (p < 0.05).

Following changes over time for the same treatment, a significant increase in bifidobacteria
population, from 0 h, was observed for Renetta Canada (compared to 5, 10 and 24 h (p < 0.05))
and Golden Delicious (compared to 10 and 24 h (p < 0.05)). Furthermore, inulin also increased
Bifidobacterium spp. at 5 h (p = 0.044) compared to the 0 h value, but to a lesser extent compared to
Renetta Canada and Golden Delicious. Faecalibacterium prausnitzii population was significantly higher
after 24 h only for Renetta Canada compared to 0 h (p = 0.049), while it decreased significantly after
the administration of cellulose (at 24 h compared to 0 h, p = 0.02). Apart from the cellulose treatment
(significant decrease at 10 h, p = 0.028) there were no significant changes over time in total bacteria
population with any of the other treatments (Figure 4).
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Figure 4. Changes in bacterial populations ((A) Bifidobacterium spp.; (B) Faecalibacterium prausnitzii
and (C) Total Bacteria) throughout 24-h in vitro batch culture fermentations inoculated with human
feces (n = 3 healthy donors) and administrated with inulin, cellulose, Renetta Canada, Golden
Delicious and Pink Lady as the substrates (treatments). Samples were collected at 0, 5, 10 and 24 h.
Results are expressed as log10 cells/mL of batch culture medium and values are mean ± SEM of the
three fermentations. Significant differences (p < 0.05) between treatments at the same time point are
indicated with different letters. * Significant differences (p < 0.05) from the 0 h time point within the
same treatment.

3.6. SCFAs Production

Changes in SCFAs concentrations over time with the different treatments are shown in Table 3.
All apples varieties significantly increased the concentration of acetic, propionic and total SCFAs (p < 0.05),
but only Renetta Canada increased butyric acid among the apples (p < 0.05). Inulin significantly increased
the concentrations of acetic, butyric and total SCFAs (p < 0.05) but these remained lower compared
to the apple varieties. Cellulose increased butyric acid and total SCFAs but to a much lesser extent
compared to inulin and the apple varieties (p < 0.05). There were no significant changes between the
treatments at the same time point (0, 5, 10 or 24 h).

3.7. Changes in Precursor Polyphenols

A list of the precursor polyphenols and polyphenol microbial metabolites together with their
multiple reaction monitoring (MRM) conditions are presented in Table S3. Changes in the concentration
of precursor polyphenols, during the fecal fermentation, are shown in Table S4. Proanthocyanidin,
kaempferol-3-rutinoside, rutin, isorhamentin-3-glucoside and cyanidin 3-galactoside were measured
only in fresh apples whereas procyanidin A2, quercetin, kaempferol, isorhamnetin, laricitrin, phloretin,
luteolin and ellagic acid were measured only in batch cultures.

Changes between the three apple varieties were observed at 0 h. In particular, Renetta Canada
treatment resulted in significant higher concentrations of (+)-catechin, (−)-epicatechin, procyanidin
A2, procyanidin B1, phloretin, phlorizin and vanillin compared to Golden Delicious and Pink Lady
(Table S4). On the other hand, treatment with Golden Delicious resulted in higher (p < 0.05) levels of
quercetin-3-glc compared to Pink Lady and Renetta Canada and higher quercetin-3-rha compared
to Renetta Canada (Table S4). There were no significant changes in the concentration of precursor
polyphenols at 5, 10 or 24 h.

Changes in the concentration of precursor polyphenols were observed over time throughout the
fecal fermentation of the three apple varieties. In particular, significant reductions throughout the
fermentation were detected for (+)-catechin (Renetta Canada), (−)-epicatechin (Renetta Canada and
Golden Delicious), procyanidin A2 (Renetta Canada, Golden Delicious and Pink Lady), neochlorogenic
acid (Golden Delicious), cryptochlorogenic acid (Golden Delicious), quercetin-3-glc (Renetta Canada,
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Golden Delicious and Pink Lady), quercetin-3-rha (Renetta Canada, Golden Delicious and Pink Lady),
kaempferol (Renetta Canada), isorhamnetin (Renetta Canada), phlorizin (Renetta Canada and Golden
Delicious) and vanillin (Renetta Canada and Golden Delicious) (Table S4).

Table 3. SCFA concentrations (mmol/L) throughout 24-h in vitro batch culture fermentations
inoculated with human feces (n = 3 healthy donors) and administrated with inulin, cellulose, Renetta
Canada, Golden Delicious and Pink Lady as the substrates (treatments).

Substrate Time
(h)

Acetic Acid
(mmol/L) p a Propionic

Acid (mmol/L) p a Butyric Acid
(mmol/L) p a Total SCFAs

(mmol/L) p a

Inulin

0 2.2 ± 0.1

0.050

0.8 ± 0.1

0.185

1 ± 0.3

0.013

4.1 ± 0.6

0.049
5 9.5 ± 5.4 2.8 ± 1.4 4.4 ± 2.8 16.8 ± 9.6

10 11 ± 2.1 2.9 ± 0.8 5.5 ± 1 * 19.3 ± 3.3 *
24 17.3 ± 2.1 * 6.9 ± 2.6 11 ± 0.5 * 35.4 ± 4.6 *

Cellulose

0 4.8 ± 2.9

0.062

1.4 ± 0.8

0.062

1.2 ± 0.6

0.041

7.5 ± 4.2

0.022
5 5 ± 1.3 1.9 ± 0.5 2.3 ± 0.2 * 9.2 ± 2.3

10 13.5 ± 5.2 3.3 ± 1 2.8 ± 0.6 19.5 ± 5.6 *
24 13.1 ± 1.1 3.4 ± 0.1 3.5 ± 1 20 ± 1.5

Renetta
Canada

0 1 ± 0.1

0.034

0.5 ± 0.1

0.020

0.5 ± 0.1

0.025

3 ± 0.3

0.044
5 11.5 ± 2.7 4.6 ± 2.6 2 ± 0.5 18.1 ± 3.9

10 19 ± 2.2 * 5.6 ± 2.1 3.7 ± 0.6 *,# 28.4 ± 1.8 *
24 28.1 ± 6 *,# 8.8 ± 2.6 #,ˆ 16.9 ± 6.1 53.7 ± 11.4 *

Golden
Delicious

0 2 ± 0.4

0.034

0.6 ± 0.1

0.016

0.5 ± 0.2

0.057

3.1 ± 0.7

0.008
5 13.9 ± 5.8 4.2 ± 1.6 1.9 ± 0.7 20 ± 6.7

10 15.3 ± 3 * 4.7 ± 1.9 4.9 ± 1.6 25 ± 3.1 *
24 23.7 ± 2.8 * 7.8 ± 1.9 #,ˆ 13.3 ± 5.1 44.8 ± 7.2 *,#

Pink Lady

0 1.8 ± 0.3

0.049

0.5 ± 0.1

0.020

0.4 ± 0.1

0.044

2.7 ± 0.5

0.040
5 8.3 ± 2.3 3.2 ± 1.5 1.1 ± 0.2 12.6 ± 2.9

10 22.8 ± 8 6 ± 2.2 4 ± 1.2 32.8 ± 9.7
24 26.2 ± 3.8 *,# 8.8 ± 2 #,ˆ 13 ± 2.8 48 ± 7.9 *,#,ˆ

Results are expressed as mmol/L of batch culture medium and values are mean ± SEM of the three fermentations.
a Difference over time within the same treatment (ANOVA). * Significant different from 0 h time point p < 0.05,
# Significant different from 5 h time point, p < 0.05, ˆ Significant different from 10 h time point, p < 0.05.

3.8. Formation of Polyphenol Microbial Metabolites

The formation of polyphenol microbial metabolites throughout the fecal fermentation of the
three apple varieties is shown in Figures 5 and 6. Significant increases were observed over time for
3-hydroxyphenylacetic acid (Renetta Canada and Pink Lady, p = 0.034 and p = 0.043, respectively),
3,4-dihydroxyphenylacetic acid (Renetta Canada, p = 0.05), 3-(4-hydroxyphenyl)propionic acid
(Pink Lady, p = 0.009), hydroferulic acid (Renetta Canada, p = 0.046), 4-hydroxybenzoic acid (Pink Lady,
p = 0.017) and pyrocatechol (Pink Lady, p = 0.049). In contrast, significant decreases throughout
the fermentation were shown for caffeic acid (Renetta Canada and Golden Delicious, p = 0.000 and
p = 0.001, respectively), p-coumaric acid (Renetta Canada and Golden Delicious, p = 0.001 and p = 0.001,
respectively), trans-ferulic (Renetta Canada and Golden Delicious, p = 0.002 and p = 0.003, respectively)
and trans-isoferulic (Renetta Canada, p = 0.001), as these metabolites can also appear as precursor
polyphenols in apples (Figure S3). There were no significant changes in the concentration of the
polyphenol microbial metabolites between the three apple varieties when each time point (0, 5, 10 or
24 h) was explored separately, with the exception of caffeic acid and p-coumaric acid (significantly
higher concentration with Renetta Canada fermentation compared to Golden Delicious and Pink Lady
at 0 h) and t-ferulic acid (significantly higher concentration with Renetta Canada compared to Pink
Lady at 0 h).
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Figure 5. Changes in phenylacetic ((A) 3-Hydroxyphenylacetic acid; (B) 3,4-Dihydroxyphenylacetic
acid and (C) Homovanillic acid) and phenylpropionic acid ((D) 3-(3-Hydroxyphenyl)propionic acid;
(E) 3-(4-Hydroxyphenyl)propionic acid and (F) Hydroferulic acid) derivatives throughout 24-h in vitro
batch culture fermentations inoculated with human feces (n = 3 healthy donors) and administrated
with Renetta Canada, Golden Delicious and Pink Lady as the substrates (treatments). Samples were
collected at 0, 5, 10 and 24 h. Results are expressed as ng/mL of batch culture medium and values are
mean ± SEM of the three fermentations. * Significant differences (p < 0.05) from the 0 h time point
within the same treatment.
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Figure 6. Changes in benzoic acid derivatives ((A) Gallic acid; (B) 4-Hydroxybenzoic acid;
(C) Protocatechuic acid and (D) Pyrocatechol) throughout 24-h in vitro batch culture fermentations
inoculated with human feces (n = 3 healthy donors) and administrated with Renetta Canada, Golden
Delicious and Pink Lady as the substrates (treatments). Samples were collected at 0, 5, 10 and 24 h.
Results are expressed as ng/mL of batch culture medium and values are mean ± SEM of the three
fermentations. * Significant differences (p < 0.05) from the 0 h time point within the same treatment.

4. Discussion

The present in vitro study showed that whole apples can effectively modify both the human fecal
microbiota composition and metabolic output. Effects on the bacterial community were observed at
phylum and genus/species level. Actinobacteria relative abundance increased with all the tested apple
varieties (Renetta Canada, Golden Delicious and Pink Lady). Increases in Actinobacteria have been
observed in humans after intake of pectin [30], resistant starch [31] and pomegranate extract [32] and
in rats fed with wild blueberries [33]. This increase can be explained by Bifidobacterium spp. growth,
an important member of the Actinobacteria phylum. Although this did not remain significant with
Illumina sequencing after multiple testing correction in the current study, the FISH results showed
that Bifidobacterium spp. population increased significantly after the administration with Renetta
Canada and Golden Delicious varieties. Notably, Bifidobacterium is considered a beneficial member of
the gut microbiota by inhibiting the growth of pathogens, synthesizing certain vitamins (e.g., folate)
and reducing serum cholesterol [2]. This observation is consistent with previous studies showing
a bifidogenic effect with extraction juices from apple pomace in rats [12] and with the administration of
two apples daily for two weeks in eight human subjects [17]. In contrast, Masumoto et al. (2016) [15],
using a high throughput metagenomics technique, have reported decreased relative abundance of
Bifidobacterium in diet-induced obese mice after the administration of apple PAs [15]. In our study,
inulin, a known prebiotic, increased bifidobacteria to a lesser extent than apples. Inulin structure can
affect its utilization by gut bacteria and many isolated bifidobacteria cannot utilize long-chain inulin [8]
but they can grow on short-chain length structures (i.e., fructo-oligosaccharides) [34]. The inulin
in the current study was a commercial isolate from dahlia tubers and details of its structure were
not available.
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Within the Firmicutes phylum, Faecalibacterium prausnitzii population (measured with the quantitative
FISH) increased with Renetta Canada administration. F. prausnitzii is a key butyrate-producer, with
anti-inflammatory properties, that may offer potential health benefits, especially in patients with
inflammatory bowel disease (IBD) [35,36]. Renetta Canada increased butyrate, a major energy source
for the colonocytes, which is particularly beneficial to the gut mucosa [37]. In support of our results
F. prausnitzii strains have been shown to utilize apple pectin for growth [8,38] and increase butyrate
concentration [13,39]. F. prausnitzii levels were unaffected by Golden Delicious and Pink Lady,
and although the concentration of pectin was not determined, Renetta Canada had 19% and 44%
higher soluble fiber content compared with Golden Delicious and Pink Lady, respectively. These data
suggest that at least for F. prausnitzii, pectin may have played a major role.

Bacteroidetes relative abundance decreased with inulin, Renetta Canada and Golden Delicious.
Bacteroides is considered a dominant bacterial group in the large intestine and the main Bacteroidetes
member, along with the Prevotella. Licht et al. (2010) reported that both whole apples and isolated
pectin decreased Bacteroides spp. in rats compared to a control diet [13]. Moreover, Bacteroides has been
shown to decrease after the administration of other polyphenol sources, such as red wine [40] and
cocoa [41] in rats, as well as with grape [42] and date extracts [43] in in vitro gut models inoculated
with human feces. By contrast, Bacteroides species have been shown to increase with apple pomace
juice extracts [11] and PAs from Acacia angustissima [44] in rats, as well as with red wine in humans [45].

The proportion of Proteobacteria increased after the administration of Renetta Canada and Golden
Delicious but to a lesser extent compared to cellulose. However, an increase in Enterobacteriaceae family,
a major member of Proteobacteria, was not observed. Enterobacteriaceae, includes numerous pathogenic
bacteria genera, such as Escherichia, Salmonella and Yersinia and has been shown to increase in IBD
patients. Increased Proteobacteria with inulin [8], resistant starch [46] and de-alcoholized wine [45]
has also been reported elsewhere.

Interestingly, the alpha diversity of gut microbiota, at the OTU level, was lower with the apple
treatments compared to inulin or cellulose. This may indicate the selective nature of the apple
fermentations towards particular species. The beta diversify analysis showed a partitioning by donor
and time, but not with treatment, which indicates that each individual possesses a specific starting
population of gut bacteria, a finding consistent with the previously described inter-individual variation
in the intestinal microbiota [47,48]. However, despite the variability between donors, there were still
treatment-associated changes in gut microbiota composition at phylum and at genus/species level.

In the present study, the conditions of the proximal colon were simulated by creating
an environment moderately acidic (pH 5.5–6.0) compared to a more neutral pH in the transverse and
distal colon. The majority of the unabsorbed dietary carbohydrates are fermented in the proximal
section producing SCFAs, leading to this reduced colonic pH, whereas in the distal section carbohydrate
fermentation is generally assumed to be low. The pH affects bacterial growth and SCFA production,
especially among bacteria that utilize the same polysaccharides [8,49]. For example, suppression in
Bacteroides spp. growth was observed at pH values below six [8]. On the other hand, F. prausnitzii is
more low-pH tolerant [8]. Moreover, a lower pH tends to favor butyrate production [49]. However, in
our study, a significant increase in butyrate levels and F. prausnitzii population was only shown by
Renetta Canada, indicating a treatment effect rather than a pH effect.

Pectin, the main soluble fiber found in apples, is extensively fermented by the gut microbiota
to SCFAs, which are an important energy source for colonic health as well as for other tissues and
organs [2]. Apart from the aforementioned butyrate increase by Renetta Canada, all apples significantly
increased propionate and mainly acetate. Increased SCFAs have been shown with apple pomace
juices [11,12]. Acetate serves as an energy source for the liver and peripheral tissues, but is also
involved in the metabolic pathways of lipogenesis [50]. Pectin is known to produce relatively large
amounts of acetate [51], which can also be utilized by butyrate producers such as F. prausnitzii as
part of the cross feeding between bacteria [52]. A cross-feeding between Bifidobacterium strains and
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F. prausnitzii has been suggested, enhancing butyrate production [53]. Propionate on the other hand,
may help to reduce hepatic cholesterol synthesis [54].

The effects of polyphenols on health depend on their bioavailability. Flavanol monomers
(i.e., catechin and epicatechin) are readily absorbed in the small intestine, while high molecular
weight polyphenols, such as the polymeric PAs, reach the colon almost intact, where they are
transformed by the gut bacteria into a complex mixture of simple phenolic acids [55]. In the present
study, the degradation of precursor apple polyphenols started as early as 5 h of fermentation and was
complete throughout the 24 h for most of the polyphenolic compounds. Renetta Canada fermentation
resulted in higher degradation of precursor polyphenols due to their initial high concentration.

The formation of polyphenol microbial products represent potential beneficial bioactive
metabolites, not only locally in the gut but also systematically after their absorption in the colon
and their appearance in the blood circulation. Renetta Canada was associated with the production
of 3,4-dihydroxyphenylacetic acid and hydroferulic acid, which both have shown to possess
anti-inflammatory properties [56]. It has been proposed that 3,4-dihydroxyphenylacetic acid can
arise from the microbial catabolism of dimeric PAs [57]. Moreover, microbial metabolites of chlorogenic
acids such as dihydroferulic acid showed a high antioxidant activity in vitro [58]. These results are in
line with the higher concentration of PAs and chlorogenic acid in Renetta Canada apples. Pink Lady
was associated with the formation of 3-(4-hydroxyphenyl)propionic acid and benzoic acid derivatives,
in particular 4-hydroxybenzoic acid and pyrocatechol. Benzoic acids such as 4-hydroxybenzoic acid
are considered to arise from beta oxidation of phenylpropionic acid derivatives and higher levels
have been found after the in vitro fermentation of grape seed flavanols [59]. Pyrocatechol may arise
from the dehydroxylation of gallic acid [60], which has been identified as a microbial metabolite and
a native compound [61]. In our study, gallic acid concentration remained unaffected throughout the
fermentation. Finally, both Renetta Canada and Pink Lady apples increased 3-hydroxyphenylacetic acid
concentration. In vitro studies with human fecal inoculum are in line with the identified phenolic acids.
In particular, PA catabolism has been associated with the production of 3-hydroxyphenylpropionic
acid, 3-phenylpropionic acid, 4-hydroxyphenylpropionic acid and 4-hydroxyphenylacetic acid [62]
as the main metabolites, whereas apples and apple components including isolated PAs formed
3-(3,4-dihydroxyphenyl)propionic acid, 3-(3-hydroxyphenyl)propionic acid, 3-phenylpropionic acid,
benzoic acid, 2-(3,4-dihydroxyphenyl)acetic acid and 2-(3-hydroxyphenyl)acetic acid [10]. Furthermore,
in human subjects, chocolate intake, a rich source of flavanols increased the urinary excretion of
3-hydroxyphenylpropionic acid, ferulic acid, 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic
acid, vanillic acid and 3-hydroxybenzoic acid [63].

In this study, we demonstrated that whole apples could modify the gut microbiota composition
and affect the extent of degradation of soluble fiber and polyphenols through the production of
SCFAs and phenolic acids, with Renetta Canada variety showing the most beneficial effects. In vitro
batch culture models are a quick, simple and cost effective method of mimicking changes in gut
microbiota numbers and metabolism [64], although they lack key metabolic functions, such as host
immunological interactions, intestinal absorption and physiological components, such as epithelial
mucosa, that exist in the human colon. The sample size (n = 3) is consistent with similar studies
investigating polyphenols extracts [22,59], prebiotics [65,66] and fruits [43,67], with observed changes
consistent with outcomes of human intervention studies [68]. Batch culture vessels contain a basal
medium with limited carbohydrate and protein sources, therefore changes in microbiota composition
and fermentation metabolites is known to be due to the added substrate, the apple varieties added
to the vessels, even with different starting bacterial populations. Finally, although, donors were of
similar age, with no gastrointestinal disorders, other characteristics that may affect gut microbiota
composition such as diet, exercise and stress levels were not recorded and may have influenced the
observed results, and it is recommended that these are provided in future studies.
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5. Conclusions

In conclusion, whole apples beneficially modulate the gut microbiota composition and metabolic
output in vitro. Renetta Canada variety in particular may have positive consequences for human
health by increasing bifidobacteria, Faecalibacterium prausnitzii population and producing SCFAs and
polyphenol microbial metabolites. It is recommended that the findings of this in vitro study should be
confirmed in human intervention trials.
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(qualitative) and (B) weighted (quantitative) phylogenetic UniFrac distance matrices, colored by time, Figure S2:
Principal coordinate analysis (PCoA) plots of 16SrRNA gene profiles based on (A) unweighted (qualitative) and
(B) weighted (quantitative) phylogenetic UniFrac distance matrices, colored by treatment, Figure S3: Changes in
cinnamic acid derivatives, Table S1: Composition analysis of Renetta Canada, Golden Delicious and Pink Lady,
Table S2: Changes in bacterial taxa throughout 24-h in vitro batch culture fermentations inoculated with human
feces (n = 3 healthy donors) and administrated with inulin, cellulose, Renetta Canada, Golden Delicious and Pink
Lady as the substrates, Table S3: Multiple Reaction Monitoring (MRM) conditions of precursor polyphenols and
polyphenol microbial metabolites, Table S4: Changes in precursor polyphenols throughout 24-h in vitro batch
culture fermentations inoculated with human feces (n = 3 healthy donors) and administrated with inulin, cellulose,
Renetta Canada, Golden Delicious and Pink Lady as the substrates.
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