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Abstract A method is proposed for estimating the surface-layer depth (𝑧𝑠) and the 8 

friction velocity (𝑢∗) as a function of stability (here quantified by the Obukhov length, 𝐿) 9 

over the complete range of unstable flow regimes. This method extends the one 10 

developed previously by the authors for stable conditions in Argaín et al. (Boundary-11 

Layer Meteorol, 2009, Vol.130, 15-28), but uses a qualitatively different approach. The 12 

method is specifically used to calculate the fractional speed-up (𝑆) in flow over a ridge, 13 

although it is suitable for more general boundary-layer applications. The behaviour of 14 

𝑧𝑠(𝐿) and 𝑢∗(𝐿) as a function of 𝐿 is indirectly assessed via calculation of 𝑆(𝐿) using 15 

the linear model of Hunt et al. (Q J R Meteorol Soc, 1988, Vol.29, 16-26) and its 16 

comparison with the field measurements reported in Coppin et al. (Boundary-Layer 17 

Meteorol, 1994, Vol.69, 173-199) and with numerical simulations carried out using a 18 

nonlinear numerical model, FLEX. The behaviour of 𝑆 estimated from the linear model 19 

is clearly improved when 𝑢∗ is calculated using the method proposed here, confirming 20 

the importance of accounting for the dependences of 𝑧𝑠(𝐿) and 𝑢∗(𝐿) on L to better 21 

represent processes in the unstable boundary-layer. 22 
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1 Introduction 27 

Fractional speed-up (𝑆) of flow over hills or mountains is defined as the ratio of the 28 

speed perturbation at a given height to the upstream, unperturbed flow speed at the same 29 

height. This quantity is highly relevant both from meteorological and wind engineering 30 

perspectives, since it characterizes the modulation of the wind speed by orography. Hunt 31 

et al. (1988) (hereafter HLR) developed one of the first theoretical linear atmospheric 32 

boundary layer (ABL) models of flow over hills, which is one of the simplest and 33 

computationally cheapest tools available for estimating 𝑆. 34 

However, stratification affects 𝑆 and must be carefully accounted for in the evaluation 35 

of the scaling parameters that characterize the ABL. Among these, a key parameter is the 36 

friction velocity (𝑢∗), and another one is the surface-layer depth (𝑧𝑠), usually estimated as 37 

5% to 10% of the ABL depth. 38 

Weng (1997) (hereafter W97), after implementing a continuous wind profile in the HLR 39 

model, found that his predictions of 𝑆 disagreed significantly with the observations of 40 

Coppin et al. (1994) (hereafter C94). Argaín et al. (2009) (hereafter A09) showed that 41 

these discrepancies were due to the fact that the calculations in W97 were carried out 42 

assuming that 𝑢∗ is constant, regardless of the different observed stability regimes. They 43 

proposed a method for estimating 𝑢∗ in stably-stratified flows, which has led to an 44 

improved prediction of 𝑆 over 2D hills. C94 also compared their observations with 45 

predictions from the HLR model, and found considerable disagreement, both in stable 46 

and unstable conditions. Here we show that, as in stably-stratified flows, a decisive 47 

reason for such disagreements in unstable flow is the assumption of constant 𝑢∗. 48 

In the present study, a new method is developed for estimating 𝑧𝑠 and 𝑢∗ as a function of 49 

stability (here quantified by the Obukhov length, 𝐿) over the complete unstable 50 

stratification range, i.e. from the free-convection to the neutral stability limits. Procedures 51 

are developed for estimating 𝑧𝑠 in a neutral ABL, and for estimating this and several 52 

other scaling parameters, such as 𝑢∗, 𝐿 and Deardorff’s convective velocity scale, 𝑤∗, in 53 

the free-convection regime, which are preliminary steps for defining 𝑧𝑠(𝐿) and 𝑢∗(𝐿) for 54 
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all stabilities. Given that the physical processes taking place in the CBL and in an 55 

unstable surface layer are substantially different from those in a stable boundary ABL, 56 

the method used to represent them also differs substantially, requiring the use of 57 

additional theory.  58 

The main motivation for developing this new method for estimating 𝑧𝑠(𝐿) and 𝑢∗(𝐿) is 59 

the calculation of 𝑆(𝐿) for unstable flow over hills, although it must be noted that the 60 

method can also be used for more general boundary layer applications. The calculation of 61 

𝑆(𝐿) requires knowing 𝑢∗(𝐿) which, in the method proposed here, also requires 62 

estimating 𝑧𝑠(𝐿). The behaviour of 𝑧𝑠(𝐿) and 𝑢∗(𝐿) is thus indirectly assessed through 63 

the calculation of 𝑆(𝐿) using the HLR model. These predictions are compared with field 64 

measurements, reported in C94, and numerical simulations, carried out using a 2D 65 

microscale-mesoscale non-hydrostatic model, FLEX. These comparisons allow us to 66 

show how 𝑧𝑠(𝐿) and 𝑢∗(𝐿) are sometimes not estimated in a physically consistent way, a 67 

limitation that the present method aims to overcome. 68 

Section 2 presents the method that accounts for unstable stratification in the ABL and its 69 

calibration. Section 3 describes the main results, namely comparisons between theory, 70 

numerical simulations and measurements, using the new unstable ABL formulation. 71 

Finally, Sect. 4 summarizes the main conclusions of this study. 72 

 73 

2 Methodology 74 

2.1 Unstable ABL model  75 

Several studies show that the ABL, under moderately to strongly unstable stratification 76 

(usually known as CBL), can be represented by a simplified three-layer bulk model (e.g., 77 

Garratt 1992). This comprises a thin statically unstable surface layer of depth 𝑧𝑠, a well-78 

mixed layer, of height 𝑧𝑖 and depth ∆𝑧𝑖 = 𝑧𝑖  −  𝑧𝑠, and a transition layer of thickness 79 

∆𝑧𝑐𝑖, coinciding with a temperature inversion capping the mixed layer, which inhibits 80 

vertical mixing. In the mixed layer, quantities such as the mean potential temperature () 81 

and wind velocity (𝑈,𝑉) are well-mixed, and therefore constant with height, i.e. (𝑧) = 82 

𝑐𝑜𝑛𝑠𝑡., 𝑈(𝑧) = 𝑐𝑜𝑛𝑠𝑡. and 𝑉(𝑧) = 0. For our purposes, the strict fulfilment of these 83 

profile shapes in the mixed layer is not critical, since we are essentially interested in the 84 

surface layer, for which typically 𝑧𝑠  0.05𝑧𝑖 to 0.1𝑧𝑖 (Stull 1988). In the surface layer we 85 
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assume that the turbulent shear stresses have much more important effects on the mean 86 

flow than the Coriolis force. Hence, the Coriolis parameter (𝑓) is set to zero, except 87 

where otherwise explicitly stated. Since the surface layer has characteristics which make 88 

it markedly different from the mixed layer, 𝑧𝑠 can be defined as an important length scale 89 

of the ABL, essential for describing the impact of the orography on the wind profile. This 90 

follows McNaughton (2004), who established 𝑧𝑠 as a new basis parameter for similarity 91 

models of the surface layer. In the method proposed here, 𝑧𝑠 is essential for estimating 92 

the key velocity scale, 𝑢∗, and hence for calculating 𝑆(𝐿).  93 

 94 

2.2 Surface-layer model 95 

According to Monin-Obukhov similarity theory (MOST), in the surface layer the non-96 

dimensional vertical gradients of 𝑈(𝑧) and (𝑧) are universal functions of the parameter 97 

𝑧/𝐿, taking the forms  98 

  
z

U

u

z

L

z
Φm

















, (1) 99 

and 100 

  
zPr

z

L

z
Φ

t

h




















, (2) 101 

where 𝑧 is the height above the effective ground level,   is the von Kármán constant, 102 

 𝑃𝑟𝑡 is the turbulent Prandtl number and ∗ represents the surface-layer scaling 103 

temperature. 𝑢∗ and ∗, are defined using the vertical eddy kinematic fluxes of 104 

momentum and heat at the surface, i.e. 𝑢∗
2  = (𝑤′𝑢′̅̅ ̅̅ ̅̅ )

0
 and ∗ = (𝑤′′̅̅ ̅̅ ̅̅ )

0
/𝑢∗. The length 105 

𝐿 is given by  106 
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where 0 is the potential temperature at the surface and 𝑔 is the gravitational 108 

acceleration. Wilson (2001) (hereafter W01), after analyzing several forms of the 109 

functions 𝑚 and ℎ, proposed the following general form for the unstable regime (𝑧/𝐿 110 

< 0), 111 



 5 

  

2

1

1
























L

z
Φ , (4) 112 

which is valid for both 𝑚 and ℎ. He noted that in order to obtain the correct physical 113 

behaviour for the gradients 𝑈/𝑧 and /𝑧 in the free-convection limit (𝑧/𝐿   ∞), it 114 

is required that 𝛼1𝛼2 = 1/3. For this combination of values (4) behaves in this limit 115 

similarly to ‘classical’ free-convection expressions, with 𝑈/𝑧 and /𝑧 varying 116 

proportionally to 𝑧−4/3. He further noted that, for this choice of parameters, (1) - (2) may 117 

be integrated straightforwardly. Following W01 we will use   = 0.4, 𝑃𝑟𝑡 = 0.95, 
ℎ
 = 118 

7.86, 𝛼1𝑚 = 𝛼1ℎ = 2/3, 𝛼2𝑚 = 𝛼2ℎ = 1/2 and 
𝑚

 = 3.59. 119 

Subscripted indices s, n and fc hereafter denote values of flow parameters in the surface 120 

layer, in the neutral regime (|𝐿| → ∞), and in the free-convection regime (|𝐿| → 0), 121 

respectively. 122 

The method developed here requires that 𝑧𝑠𝑓𝑐, 𝑢∗𝑓𝑐, 𝐿𝑓𝑐, 𝑧𝑠𝑛, 𝑢∗𝑛 and 𝑧0, be known in 123 

order to calculate 𝑢∗(𝐿) and 𝑧𝑠(𝐿). The primary input parameters are 𝑢∗𝑛, 𝑧𝑖𝑓𝑐 and the 124 

aerodynamic roughness height, 𝑧0, which must be provided initially.  125 

 126 

2.3 Estimating parameters in the free-convection and neutral regimes 127 

MOST shows good agreement with observations in regimes with sufficiently strong 128 

winds (high values of 𝑢∗) or under relatively low surface heat flux, (𝑤′′̅̅ ̅̅ ̅̅ )
0
, where |𝐿| > 129 

102 m. This theory is based on the assumption that, in the surface layer, 𝑧 and 𝐿 are the 130 

only relevant turbulence length scales. While this assumption is valid for relatively small 131 

values of |𝑧/𝐿| (say |𝑧/𝐿| < 1), for larger values, in particular in the free-convection 132 

regime, MOST becomes incomplete. In the perfectly windless regime, purely dominated 133 

by thermal effects, both the mean wind speed and 𝑢∗ approach zero, and MOST produces 134 

singularities and underestimates the surface fluxes. However, perfectly windless 135 

conditions occur very rarely, and the theory can still be applied, if conjugated with CBL 136 

theory, for low but non-zero winds, as will be shown below. 137 

For the highly convective ABL, Deardorff (1970) suggested the following convective 138 

velocity scale 139 
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The combination of MOST and Deardorff similarity theory, adopted here, provides a 141 

model that is consistent throughout the whole CBL (Kaimal et al. 1976) (hereafter K76), 142 

and for stabilities ranging from the neutral regime to the free-convection regime. This 143 

latter regime does not strictly correspond to 𝐿 = 0, but rather to a minimum, suitably 144 

small value of 𝐿 = 𝐿𝑓𝑐, to be determined. In the free-convection regime we need to 145 

estimate 𝑧𝑠𝑓𝑐,  𝑢∗𝑓𝑐 and 𝐿𝑓𝑐. Given that   𝑢∗𝑓𝑐 is defined in relation to 𝑤∗ (as shown 146 

below), this latter quantity, defined by (5), must also be related to the known input 147 

parameters. This requires a total of four equations (see below). 148 

Many observations have confirmed that the transition from the shear-driven turbulent 149 

regime of the surface layer to the buoyancy driven regime of the mixed layer usually 150 

occurs at a height of order |𝐿|. Hence, in a highly-convective ABL (Garratt 1992),  151 

  fcfcsfc Lcz  , (6) 152 

where 𝑐𝑓𝑐 = 2. Equation 6 will be adopted hereafter in the free-convection regime. 153 

Based on observations, Schumann (1988) (hereafter S88) assumed that 𝑧𝑠/𝑧𝑖 = 0.1. As 154 

will be seen later, this assumption is too restrictive over the whole stability interval, 155 

since, 𝑧𝑖 is expected to increase and 𝑧𝑠 to decrease as the stratification becomes more 156 

unstable. A more general definition of 𝑧𝑠 is thus required. This is developed in Sect. 2.4. 157 

Businger (1973) proposed the idea that 𝑢∗ does not vanish at low wind speeds, 158 

introducing the concept of a ‘minimum friction velocity’, valid in the free-convection 159 

regime (𝑢∗𝑚𝑖𝑛 =  𝑢∗𝑓𝑐). Combining (3) and (5) in this regime, we obtain 160 
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Using (6), it can be easily shown from (7) that 𝑧𝑠𝑓𝑐/𝑧𝑖𝑓𝑐 decreases as   𝑢∗𝑓𝑐/𝑤∗ decreases, 162 

which is physically plausible. 163 

Various authors, such as S88 and Sykes et al. (1993) (hereafter S93), have advocated the 164 

view that   𝑢∗𝑓𝑐/𝑤∗ is a function of 𝑧𝑠𝑓𝑐/𝑧0 or 𝑧𝑖𝑓𝑐/𝑧0 as well. Following the less general 165 

relations derived by S88 and S93, valid only for limited intervals of 𝑧0, Zilitinkevich et 166 



 7 

al. (2006) (hereafter Z06) suggested a more complete formulation for the relationship 167 

between   𝑢∗𝑓𝑐/𝑤∗ and 𝑧𝑖𝑓𝑐/𝑧0, which takes into account the combined effects of 168 

buoyancy and shear forces, 169 
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where   = 3.45  105, 𝑢∗𝑓𝑐/𝑤∗() = 0.065, 𝑐0 = 6.00, 𝑐1 = 0.29, 𝑐2 = 2.56, 𝑐3 = 0.54 172 

and 𝑐4 = 0.3. Equations 8 and 9 agree very well with both LES and field data in the free-173 

convection regime (Z06), and incorporate the best characteristics of the S88 and S93 174 

models. 175 

The height 𝑧𝑖 characterizes the PBL in a fairly integrated manner, being closely related to 176 

fundamental quantities such as (𝑤′′̅̅ ̅̅ ̅̅ )
0
. For this reason, as a first approach, we suggest 177 

estimating the surface-layer scaling parameters in the free-convection regime based on a 178 

known value of 𝑧𝑖𝑓𝑐. This allows obtaining   𝑢∗𝑓𝑐/𝑤∗ directly from (8) - (9), since z0 is 179 

also assumed to be known. 180 

Our final constraint is based on Venkatram (1978) who, by using a simple mixed-layer 181 

model for the CBL, derived the following relationship between 𝑤∗ and 𝑧𝑖𝑓𝑐, 182 

  ifczcw 5 , (10) 183 

where 𝑐5 = 1.12  103 s-1. Equation 10 compares extremely well with observations (see 184 

Appendix 2). Using the available value of 𝑧𝑖𝑓𝑐, (10) allows us to determine 𝑤∗ directly.  185 

Equations 6 - 10 may thus be used to obtain the surface-layer parameters in the free- 186 

convection regime, as follows. Given 𝑧𝑖𝑓𝑐 and 𝑧0, (8) or (9) is used to obtain   𝑢∗𝑓𝑐/𝑤∗ 187 

and (10) is used to obtain 𝑤∗, which yields 𝑢∗𝑓𝑐. Given 𝑧𝑖𝑓𝑐, 𝑤∗ and 𝑢∗𝑓𝑐, determined in 188 

the preceding step, (7) is used to obtain 𝐿𝑓𝑐. Finally, 𝐿𝑓𝑐 is inserted into (6) to obtain 𝑧𝑠𝑓𝑐. 189 

This yields 𝑢∗𝑓𝑐, 𝐿𝑓𝑐 and 𝑧𝑠𝑓𝑐, as required. Several different procedures analogous to the 190 

one just described would be possible, depending on what input parameters are known 191 

initially. 192 
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According to MOST, in the neutral regime  193 
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Since, from (6), 𝑧𝑠 is expected to depend on 𝐿, in the neutral regime at least (where no 195 

stability effects exist), it seems reasonable to assume 𝑧𝑠 to be a fixed fraction of 𝑧𝑖 (Stull 196 

1988), 197 

  inSLsn zcz  , (12) 198 

where that fraction is conventionally defined as 5% to 10% of 𝑧𝑖 (Stull 1988). In our 199 

model, we assume 𝑐𝑆𝐿 = 0.05 (following Stull 2011). Here, and unlike what previous 200 

authors have done, (12) is adopted only for the strictly neutral regime. As will be seen 201 

later (Sect. 3.2), (12) holds approximately for a weakly unstable ABL, but not for a 202 

strongly unstable ABL. In order to obtain 𝑧𝑠𝑛 from (12), it is still necessary to estimate 203 

𝑧𝑖𝑛. This can be done using the expression of Rossby and Montgomery (1935), 204 
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where 𝑐𝑧𝑖𝑛 = 0.2 (Garratt 1992).  206 

 207 

2.4 Estimating 𝑧𝑠 and 𝑢∗ for arbitrary 𝐿 < 0 208 

The preceding section described the methodologies for estimating all the parameters 209 

required for defining 𝑢∗ and 𝑧𝑠 in the free-convection and neutral regimes. Next we 210 

explain the approach used to estimate these two parameters for arbitrary 𝐿 < 0.  211 

Since |𝐿| is the height at which the buoyant production of turbulence kinetic energy (𝐸) 212 

begins to dominate over shear production, the greater (𝑤′′̅̅ ̅̅ ̅̅ )
0
 is (i.e. the smaller |𝐿| is), 213 

the bigger ∆𝑧𝑖 and the smaller 𝑧𝑠 become, because convectively-driven turbulence 214 

increasingly dominates over shear-driven turbulence. So, there is a clear relationship 215 

between 𝑧𝑠 and |𝐿| (expressed by (6) in the strongly unstable regime). However, for 216 

intermediate unstable regimes the dependence 𝑧𝑠(𝐿) is not known. 217 

Based on the ABL model described in Sect. 2.1, we define 𝑧𝑠 as the height where the 218 

vertical derivative of (𝑧) reaches a small prescribed fraction of its surface value. Using 219 
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this property, in the present model 𝑧𝑠(𝐿) is determined by (see details in Appendix 1) 220 

evaluating the root of, 221 
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for any value of 𝐿, assuming that 𝑧0, 𝛼1, 𝛼2, 
ℎ
, 1 and 2 are provided. As (14) 223 

includes the influence on 𝑧𝑠(𝐿) of parameters in both extremes of the stability interval 224 

(see Appendix 1), it is expected to provide a good approximation over the whole stability 225 

range. As the roughness length for heat, 𝑧0, is not provided by C94, we use here 𝑧0 226 

instead. Calculations not presented here show that the 𝑧𝑠(𝐿) dependences obtained using 227 

𝑧0/𝑧𝑠 or 𝑧0/𝑧𝑠 are quite similar (the relation between 𝑧0 and 𝑧0 assumed for this 228 

comparison follows Zilitinkevich 1995). Although 𝑧0 and 𝑧0 differ, the proposed method 229 

for estimating 𝑧𝑠 is not very sensitive to the exact value of 𝑧0 as long as this is small. 230 

𝑢∗(𝐿), on the other hand, is calculated from 231 

  

sZ

s
mss

z

U

L

z
zLzu 










































2
1

1




),( , (15) 232 

where, in accordance with the slab model adopted initially (see Sect. 2.1), it is expected 233 

that 𝜕𝑈/𝜕𝑧 becomes small as 𝑧  𝑧𝑠. Here we assume that in (15) the shear (𝜕𝑈/𝜕𝑧)𝑧𝑠
 234 

is constant, and, for convenience, equal to its neutral value. For |𝐿|    and at 𝑧 = 𝑧𝑠, 235 

(1) reduces to (𝜕𝑈/𝜕𝑧)𝑧𝑠𝑛
=  𝑢∗𝑛/(𝑧𝑠𝑛), in accordance with (11), where 𝑧𝑠𝑛 may be 236 

obtained from (12). The validity of the assumption (𝜕𝑈/𝜕𝑧)𝑧𝑠
 = 𝑐𝑜𝑛𝑠𝑡. is tested in 237 

Appendix 2.  238 

All quantities on the right-hand side of (15) are now known, and hence 𝑢∗(𝑧𝑠, 𝐿) may be 239 

determined in general. Finally, the 𝑈(𝑧) profile for the general unstably stratified case, 240 

which will be used in the HLR model for calculating 𝑆(𝐿), 241 
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is obtained by integration of (1), using the velocity gradient expressed by (4) (see W01). 243 
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In the above treatment, it was assumed that the synoptic situation does not vary too 244 

rapidly compared with the time scales of flow over the ridge. Hence, according to MOST, 245 

the effect of 𝐿 in the surface layer is dominant. As this quasi-steadiness is supported by 246 

the C94 campaign, the C94 observations can safely be used for testing the method 247 

proposed here. For more unsteady flows, it is likely necessary to use a time-dependent 248 

model for the whole ABL, such as that described by Weng and Taylor (2003), for 249 

providing upstream profiles 𝑈(𝑧) and (𝑧) at different values of 𝐿. However, this 250 

approach would require more input parameters not available in the C94 observations, and 251 

their estimation would further increase the empiricism of the proposed method.  252 

Summarizing, in this section, assuming that 𝑧0, 𝑧𝑠𝑓𝑐, 𝐿𝑓𝑐, 𝑧𝑠𝑛 and 𝑢∗𝑛 are known, we 253 

propose (14) and (15) for determining 𝑧𝑠(𝐿) and 𝑢∗(𝐿), respectively. 𝑢∗(𝐿) is then used 254 

in the HLR model to calculate 𝑆(𝐿) for flow over orography. 255 

 256 

3 Results and discussion 257 

The method presented above will be assessed using the observations of C94. These 258 

measurements were conducted during the Spring of 1984 and Summer of 1985, over 259 

Cooper's Ridge, located to the north-west of Goulburn, in New South Wales, Australia. 260 

This is a somewhat isolated north-south oriented, quasi-two-dimensional ridge of uniform 261 

low 𝑧0, located along a valley that forces the air to flow over the hill predominantly from 262 

the west side. The windward slope of the ridge (west side) can be well fitted using a 263 

simple bell-shaped profile ℎ(𝑥) =  ℎ0/{1 + (𝑥/𝑎)2} (with ℎ0 = 115 m and 𝑎 = 400 m). 264 

The lee side of the ridge falls away to about 0.5ℎ0 before rising to another broader ridge. 265 

 266 

3.1 Estimation of parameter values from the data 267 

As mentioned in Sect. 2, for determining 𝑧𝑠(𝐿) and 𝑢∗(𝐿), the method developed here 268 

requires that 𝑧0, 𝑧𝑠𝑓𝑐, 𝑢∗𝑓𝑐, 𝐿𝑓𝑐, 𝑧𝑠𝑛 and 𝑢∗𝑛 be known. From the data collected by C94, 269 

we have 𝑢∗𝑛 = 0.35 m s-1, 𝑧0 = 0.05 m and 𝑓  9  105 s-1. Using (13) we thus obtain 𝑧𝑖𝑛 270 

= 778 m, and using this value in (12) yields 𝑧𝑠𝑛 = 39 m.  271 

The methodology described in Sect. 2.3 for estimating the flow parameters in the free-272 

convection regime (𝑧𝑠𝑓𝑐, 𝑢∗𝑓𝑐, 𝐿𝑓𝑐 and 𝑤∗) is now applied. As 𝑧𝑖𝑓𝑐 is not supplied by 273 

C94, we will use a typical value corresponding to the season and latitude of the region 274 
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where the observations were taken. Figures containing the necessary information from 275 

ERA-40 Reanalysis, provided by Von Engeln and Teixeira (2013), suggest 𝑧𝑖𝑓𝑐 = 1550 276 

m. Next, since 𝑧𝑖𝑓𝑐/𝑧0 = 3  104 <  = 3.45  105, we must use (9) to calculate 𝑢∗𝑓𝑐/𝑤∗ = 277 

0.098. Substituting 𝑢∗𝑓𝑐/𝑤∗ and 𝑧𝑖𝑓𝑐 into (7), we obtain 𝐿𝑓𝑐 = 3.6 m, and from (6) we 278 

obtain 𝑧𝑠𝑓𝑐 = 7.2 m. Next, substitution of 𝑧𝑖𝑓𝑐 in (10) gives 𝑤∗ = 1.74 m s-1, which in turn 279 

can be used for calculating 𝑢∗𝑓𝑐 from 𝑢∗𝑓𝑐/𝑤∗ = 0.098, yielding 𝑢∗𝑓𝑐 = 0.17 m s-1. Table 280 

1 presents known and estimated parameters of the ABL in the free-convection regime, 281 

obtained by the present method and, for comparison, observations from runs 6A1 and 282 

6A2 of the field experiment reported by K76, corresponding to a highly convective ABL. 283 

As can be seen, the method proposed here seems to predict realistic results. 284 

 285 

Source 𝑢∗𝑓𝑐 (m s-1) |𝐿𝑓𝑐 | (m) 𝑧𝑠𝑓𝑐 (m) 𝑧𝑖𝑓𝑐 (m) 𝑧𝑠𝑓𝑐/𝑧𝑖𝑓𝑐 𝑤∗ (m s-1) 𝑢∗𝑓𝑐/𝑤∗ 

Present 

method 
0.17 3.6 7.2 1550 0.005 1.70 0.098 

Run 6A1 0.24 5.7 10.4 2095 0.005 2.43 0.099 

Run 6A2 0.23 6.4 12.8 2035 0.006 2.21 0.104 
Table 1 Parameters of the ABL in the free-convection regime. Line 1: parameters used in the present 286 

method. Lines 2-3: similar parameters from runs 6A1 and 6A2 of the experiment described in Kaimal et al. 287 

(1976). The value of 𝑧𝑠𝑓𝑐 for these runs was obtained from (6). 288 

 289 

It is interesting that, contrary to what happens in the neutral regime, the ratio 𝑧𝑠𝑓𝑐/𝑧𝑖𝑓𝑐 = 290 

0.005, estimated above, is significantly lower than the value assumed in (12). This value 291 

is of the same order of magnitude as those derived from the measurements of K76, taken 292 

in strongly convective conditions (see Table 1). As pointed out before, the smaller |𝐿| is, 293 

the more intense the turbulent mixing by large convective eddies in the mixed layer 294 

becomes, thereby reducing 𝑧𝑠. This corroborates, using real data, that the neutral 295 

approximation for 𝑧𝑠𝑛/𝑧𝑖𝑛 cannot be considered realistic over the whole range of 296 

variation of 𝐿, particularly near the free-convection regime. 297 

 298 

3.2 Behaviour of 𝑧𝑠 as a function of 𝐿 299 

For a better understanding of the surface-layer structure, it is useful to define a transition 300 

height, 𝑧𝑡𝑟, at which the convective contribution to 𝑈(𝑧) is as important as that of the 301 
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neutral log law. Following Kader and Yaglom (1990), from the W01 formulation (4), we 302 

can define 303 

  
11  /

 mtr Lz . (17) 304 

It is expected that, in moderately to strongly unstable flow regimes 𝑧𝑡𝑟 < 𝑧𝑠, i.e. at the top 305 

of the surface layer 𝑈(𝑧) is no longer logarithmic. 306 

Figure 1 presents the variation of 𝑧𝑠 and 𝑧𝑡𝑟, with |𝐿|, normalized by 𝑧𝑠𝑛. The solid line 307 

represents 𝑧𝑠(𝐿), computed using (14). In (14), the coefficients 1 and 2, given by 308 

(23), take the values 0.415 and 0.018, respectively. 𝑧𝑡𝑟(𝐿) (dashed line) is computed 309 

using (17). 310 

 311 

 312 

Fig 1 Surface-layer height, 𝑧𝑠, and transition height, 𝑧𝑡𝑟, as a function of |𝐿|, normalized by the surface-313 

layer height for a neutral ABL, 𝑧𝑠𝑛. Solid line: 𝑧𝑠(𝐿) obtained from (14), dashed line: 𝑧𝑡𝑟(𝐿) obtained from 314 

(17). Vertical dotted lines: |𝐿𝑓𝑐| = 3.6 m (left), and |𝐿𝑡𝑟| = 120 m (right). 𝑧𝑠(𝐿) asymptotically approaches 315 

the constant values 𝑧𝑠𝑛 as |𝐿|   and 𝑧𝑠(𝐿) = 4.5 m as |𝐿|  0. 𝑧𝑠(𝐿𝑓𝑐) = 𝑧𝑠𝑓𝑐 = 7.2 m (see Table 1). 316 

 317 

The dotted vertical lines correspond to |𝐿𝑓𝑐| = 3.6 m (left) as determined previously (see 318 

Table 1), and the value of |𝐿𝑡𝑟|  = 120 m (right) for which 𝑧𝑠(𝐿) = 𝑧𝑡𝑟(𝐿), i.e. for which 319 

the logarithmic and convective contributions to 𝑈(𝑧) are equally important. For |𝐿| > 400 320 

m the logarithmic portion of 𝑈(𝑧) is overwhelmingly dominant compared to the 321 
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convective one, and therefore it can be considered that the ABL is in nearly neutral 322 

conditions. For 𝐿 = 𝐿𝑓𝑐 or lower, the opposite is true, as the flow is nearly in free-323 

convection conditions. 𝑧𝑠(𝐿) physically behaves as expected, tending asymptotically to 324 

constant values at each extreme of the stability interval (4.5 m as |𝐿|   0, and 𝑧𝑠𝑛 for 325 

|𝐿|   ). Figure 1 illustrates the way in which the surface layer becomes thinner with 326 

increasing unstable stratification, because of the progressively higher buoyant production 327 

of 𝐸 in the mixed layer as |𝐿| decreases. 328 

 329 

3.3 Behaviour of 𝑢∗ as a function of 𝐿 330 

Figure 2 presents 𝑢∗ as a function of |𝐿|, normalized by 𝑢∗𝑛. The solid line corresponds 331 

to 𝑢∗(𝐿) computed from (15), and the dash-dotted line extends the constant neutral value, 332 

𝑢∗𝑛 = 0.35 m s-1, over the whole stability interval, for comparison. Figure 2 shows that 333 

𝑢∗(𝐿) decreases with decreasing |𝐿| until it reaches its minimum value (𝑢∗𝑚𝑖𝑛) at 𝐿 = 334 

|𝐿𝑚𝑖𝑛|. According to (15), for |𝐿| < |𝐿𝑚𝑖𝑛|, 𝑢∗(𝐿) would increase monotonically with 335 

decreasing |𝐿|, in such a way that 𝑢∗(𝐿)   for |𝐿|  0. This behaviour occurs 336 

because, as |𝐿|  0, the term between brackets on the right-hand side of (15) tends to 337 

infinity. This is a consequence of the physically unrealistic behaviour of MOST as |𝐿|  338 

0, producing singularities. For this reason, in Fig. 2 we have assumed that 𝑢∗(𝐿) = 𝑢∗𝑚𝑖𝑛, 339 

for |𝐿|  |𝐿𝑚𝑖𝑛|. 340 

 341 
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 342 

Fig 2 Friction velocity (𝑢∗) as a function of |𝐿|, obtained from (15) (solid line) and constant 𝑢∗ independent 343 

of the stability and equal to its value in the neutral regime (𝑢∗𝑛 = 0.35 m s-1) (dash-dotted line). Both 344 

quantities are normalized by 𝑢∗𝑛. The vertical dotted line indicates the value of 𝐿 in the free-convection 345 

regime, |𝐿𝑓𝑐| = 3.6 m (see Table 1).  346 

 347 

As can be seen in Fig. 2, 𝑢∗(𝐿) shows the expected physical behaviour (cf. Fig. 3.7 of 348 

Garratt 1992), approaching asymptotically (by design) 𝑢∗𝑛 as |𝐿|  , and decreasing 349 

monotonically with decreasing |𝐿|. However, the approach to 𝑢∗𝑛 as |𝐿|   is very 350 

gradual and 𝑢∗ only takes a value mid-way between the neutral and free-convection limits 351 

for an |𝐿| of several hundred metres. Furthermore, the minimum value reached by 𝑢∗(𝐿) 352 

is 𝑢∗𝑚𝑖𝑛 = 0.17 m s-1 for 𝐿𝑚𝑖𝑛= 3.4 m. Thus, 𝑢∗𝑚𝑖𝑛 = 𝑢∗𝑓𝑐 and |𝐿𝑚𝑖𝑛| almost coincides 353 

with |𝐿𝑓𝑐|= 3.6 m, determined previously (see Table 1). This result further confirms that 354 

the assumption of constant (𝜕𝑈/𝜕𝑧)𝑧𝑠
 is realistic, and allows obtaining reliable estimates 355 

of 𝑢∗ over the whole stability interval. 356 

Although 𝑢∗𝑓𝑐, is thus a minimum value of 𝑢∗, it is generally not as low compared with 357 

𝑢∗𝑛 as might be expected. The case under consideration here, where 𝑢∗𝑓𝑐/𝑢∗𝑛  0.5, 358 

which is not particularly low (see Sect. 3.1, Table 1), is a good example. This result 359 

ultimately suggests that a purely-thermal regime is unlikely (it was not realized in the 360 

C94 measurements, in particular). For these reasons, under nearly free-convection 361 
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conditions both 𝑢∗𝑓𝑐 and 𝐿𝑓𝑐 differ substantially from zero, as is confirmed by the 362 

observations of K76 (see Table 2), and further corroborated for a very unstable surface-363 

layer case by Steeneveld et al. (2005). This is what allows MOST to be used here for 364 

describing a highly convective ABL. 365 

 366 

3.4 Flow speed-up calculation 367 

Since calculating 𝑆(𝐿) using the HLR model requires knowing 𝑢∗(𝐿), the main purpose 368 

of this section is to use the behaviour of 𝑆(𝐿) predicted by that model to indirectly 369 

assess the dependence on stability of 𝑢∗(𝐿) (and also of 𝑧𝑠(𝐿)) established in the method 370 

proposed here, by comparison with values of 𝑆 measured over a wide range of 𝐿 by 371 

C94, and simulated numerically using the FLEX model.  372 

Suppose that at a hilly location 𝑆(𝐿) needs to be estimated, assuming that the only 373 

available parameters are 𝑧0 and the mean wind speed, 𝑈(𝑧), measured at a suitably low 374 

height such that, according to MOST, (11) is approximately valid for any 𝐿. Equation 11 375 

can then be used for estimating 𝑢∗𝑛. Once 𝑧0 and 𝑢∗𝑛 are known, the present method 376 

allows systematically obtaining 𝑧𝑠(𝐿), then 𝑢∗(𝐿) and finally 𝑆(𝐿), for the whole 377 

unstable stratification parameter range. 378 

In the specific case under consideration here, first using as input parameters 𝑢∗𝑛 = 0.35 m 379 

s-1 and 𝑧0 = 0.05 m (from C94), 𝑢∗(𝐿) is calculated using the proposed method. Next, this 380 

𝑢∗(𝐿) is used in the HLR model applied to flow over Cooper’s ridge to calculate 𝑆(𝐿). 381 

𝑆(𝐿) is also calculated assuming that 𝑢∗ = 𝑐𝑜𝑛𝑠𝑡. = 𝑢∗𝑛, regardless of the observed 𝐿. 382 

This simpler choice, often used for estimating 𝑆(𝐿) in flow over orography (e.g. W97), 383 

is what the present approach aims to improve. Finally, the 𝑆 values are compared, for a 384 

range of 𝐿, between the HLR model, the C94 measurements, and the FLEX model. 385 

For the sake of simplicity the HLR and FLEX models are not described in detail here. A 386 

brief description of the HLR model can be found in W97 or A09. FLEX is a microscale-387 

mesoscale, nonlinear and non-hydrostatic model, which was developed and validated 388 

against experimental and field data by Argaín (2003) and A09. This model has been 389 

tested and used extensively, namely by Teixeira et al. (2012, 2013a, 2013b) for assessing 390 

analytical mountain wave drag predictions in 2D flows by comparison with numerical 391 

simulations. 392 
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All the numerical simulations presented here used a main grid of (160  364) points for a 393 

domain of (8000  2000) m size. The horizontal domain extent is 20𝑎 (7𝑎 upstream of 394 

the ridge maximum and 13𝑎 downstream). From 𝑧 = 40 m downward the level of grid 395 

refinement is gradually increased, and the lowest level is at a similar distance to the 396 

surface as the observations (  0.15 m). At the surface a no-slip condition is used, and 397 

(𝑤′′̅̅ ̅̅ ̅̅ )
0
 and other turbulent quantities (turbulent kinetic energy, 𝐸, and dissipation  of 398 

𝐸), are specified, for each 𝐿, by assuming that viscous dissipation balances shear and 399 

buoyancy production. At the upper boundary, constant 𝑈 and  are prescribed, and 𝐿 and 400 

the derivatives of 𝐸 and  are set to zero.  401 

Observations, and both theoretical and numerical predictions of 𝑆 as a function of |𝐿| 402 

are shown in Fig. 3, at 𝑧 = 8 m and 𝑧 = 16 m. The HLR model is applied in two cases: a) 403 

𝑢∗ = 𝑢∗𝑛, regardless of |𝐿| (dashed line), and b) the friction velocity is calculated for each 404 

|𝐿|, using the method proposed here (15) (solid line). 405 

 406 

 407 

Fig 3 Variation of the fractional speed-up (𝑆) as a function of stability, above the hill crest, at the heights 408 

𝑧= 8 m (top) and 𝑧 = 16 m (bottom). Solid line: 𝑢∗ computed using (15); dotted line: 𝑢∗ kept constant, 409 

regardless of the stability, and equal to the neutral ABL value (𝑢∗𝑛 = 0.35 m s-1); dash-dotted line: FLEX 410 

model; symbols: observations from C94. 411 

 412 
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The significant differences between the 𝑆 curves, obtained using the two different 413 

definitions of 𝑢∗, reveals that 𝑆 is very sensitive to the dependence of 𝑢∗ on |𝐿|, as 414 

shown by A09 for the stable case. The results assuming 𝑢∗ = 𝑢∗𝑛 (dashed lines) 415 

overestimate the observations considerably. In both panels of Fig. 3, the improvement in 416 

the performance of the theoretical model, owing to the new method of calculating 𝑢∗ 417 

(solid lines), is significant over the whole stability interval. In general, this new method 418 

produces results much closer to both the field measurements (despite the considerable 419 

scatter in the data) and the numerical simulation results. 𝑆 calculated from the 420 

theoretical model with 𝑢∗ depending on L has a rather flat variation with |𝐿|, especially at 421 

𝑧 = 16 m, and although decreasing more substantially with |𝐿| at 𝑧 = 8 m, slightly 422 

overestimates both the measurements and the numerical simulations for the lowest values 423 

of |𝐿|.  424 

 425 

 426 

Fig 4 Profiles of the fractional speed-up ratio (𝑆) above the hill crest, for |𝐿| = 33 m (left) and |𝐿|= 222 m 427 

(right). Solid line: 𝑢∗ computed using (15); dashed line: 𝑢∗ kept constant at 𝑢∗𝑛 = 0.35 m s-1; dash-dotted 428 

line: FLEX model; symbols: observations from C94. 429 

 430 

Profiles of observations (C94), and both theoretical and numerical predictions of 𝑆 431 

directly above the hill crest, for |𝐿| = 33 m (left panel) and |𝐿| = 222 m (right panel) are 432 

shown in Fig. 4. |𝐿| = 33 m and |𝐿| = 222 m correspond to strong and moderately weak 433 
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unstable stratification, respectively. In both cases, the proposed method compares better 434 

both with the numerical model and with the field data, although it slightly overestimates 435 

the observations in the more unstable case. Nevertheless, a general decrease of 𝑆 as one 436 

shifts from the higher to the lower |𝐿| value is qualitatively reproduced. Given the 437 

precision of the measurements and flow assumptions, not too much importance should be 438 

attached to this overestimate, which also occurs in the numerical simulations 439 

(consistently, a similar discrepancy can be detected for the theoretical model on the far 440 

left of Fig. 3 at 𝑧 = 8 m).  441 

𝑆 is much more severely overestimated, in both cases, by the profiles with a prescribed 442 

constant 𝑢∗ = 𝑢∗𝑛, due essentially to the significant fractional deviation between 𝑢∗𝑛 and 443 

the more accurate value of 𝑢∗ determined from (15). This fractional deviation amounts to 444 

~45% for |𝐿| = 33 m and to ~ 35% for |𝐿| = 222 m (see Fig. 2), but this does not translate 445 

into proportional deviations for 𝑆, as the value of 𝑆, where 𝑢∗ is calculated from (15), 446 

actually becomes closer to that where 𝑢∗ = 𝑢∗𝑛 as |𝐿| decreases (see Fig. 3). The fact that 447 

there is such a large difference in the results using 𝑢∗(𝐿) and 𝑢∗ = 𝑢∗𝑛 for the weakly 448 

unstable case might seem suspect, but Fig. 2 explains it, since for |𝐿| = 222 m, 𝑢∗(𝐿) still 449 

differs very substantially from 𝑢∗𝑛. 450 

It should be pointed out that at the lowest measurement level, 𝑆 should depend very 451 

weakly on 𝐿, because near enough to the ground the flow is always approximately 452 

neutral. The overestimate of the measured 𝑆 at that level by the theoretical model for |𝐿| 453 

= 222 m can probably be attributed to an inherent bias of the HLR solution, noted by 454 

W97 and A09. 455 

 456 

4 Summary and conclusions 457 

In this paper, we propose a new method for estimating two scaling parameters of the 458 

ABL: the surface-layer height 𝑧𝑠 and the friction velocity 𝑢∗, as a function of stability 459 

(quantified by the Obukhov length scale 𝐿), for an unstable ABL. These two parameters 460 

are important for characterizing the unstable ABL, in particular its coupling with the 461 

overlying convective mixed layer. Moreover, a correct estimation of 𝑢∗, whose 462 

dependence on 𝐿 is often not accounted for in a physically consistent way, is crucial for 463 
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producing accurate predictions of the speed-up (𝑆) in flow over hills, which is relevant 464 

for a number of engineering applications. 465 

Using a physical approach that is developed specifically for unstable conditions, via a 466 

combination of MOST and convective mixed-layer scaling, our model takes into account 467 

the fact that 𝑧𝑠 decreases as the unstable stratification becomes stronger, due to erosion of 468 

the surface-layer eddies by more energetic buoyancy-dominated eddies from the 469 

convective mixed layer. The model also takes into account the fact that 𝑢∗ decreases as 470 

the ABL becomes more unstable, attaining a minimum value, but does not, in general, 471 

approach zero in the free-convection limit, unless the wind vanishes completely (in which 472 

case the concept of 𝑆 loses its meaning). The variation of 𝑢∗ affects the turbulent fluxes 473 

of various properties, and consequently the mean profiles of those properties, including 474 

the wind speed 𝑈(𝑧), which determines the behaviour of 𝑆. 475 

Procedures to obtain boundary-layer parameters in the neutral and free-convection 476 

regimes, and for bridging across these regimes, to cover the complete unstable ABL 477 

parameter range, were developed and tested using available field data. The performance 478 

of the model was then evaluated more comprehensively, by comparing predictions of 𝑆 479 

in unstable conditions, using the linear model of HLR incorporating the new friction 480 

velocity formulation, against measurements from C94, and numerical simulations of the 481 

FLEX mesoscale-microscale model. Agreement was found to be substantially improved 482 

relative to results where 𝑢∗ is held constant. This emphasizes the importance of 483 

accounting for the full dynamics of the unstable ABL, including the variation of 𝑢∗ and 𝑧𝑠 484 

with stability, for correctly estimating 𝑆. The proposed method, whose possible 485 

applications are not limited to improving the calculation of 𝑆, should be seen as a 486 

preliminary step in the development of better tools for the parametrization of unstable 487 

ABLs. Further validation of this method by comparison with observations remains 488 

necessary.  489 
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 496 

Appendix 1. Accuracy of the (𝝏/𝝏𝒛)𝒛𝒔
 = 𝒄𝒐𝒏𝒔𝒕. approximation 497 

In the present model, the form of 𝑧𝑠(𝐿) is established using the temperature gradient 498 

𝜕/𝜕𝑧, which can be obtained from (2) and (4), yielding 499 

  1

2

1

1 



































z

L

z

z
h






 '

* , (18) 500 

where ∗′  = 𝑃𝑟𝑡∗/ . According to (18), 𝜕/𝜕𝑧  0 as 𝑧  . This is consistent with 501 

the assumption that  = 𝑐𝑜𝑛𝑠𝑡. in the mixed layer, so, at 𝑧 = 𝑧𝑠 the derivative (𝜕/𝜕𝑧)𝑧𝑠
 502 

should be suitably small, and this smallness is exploited to obtain 𝑧𝑠. Note that a similar 503 

condition could be based on the mean velocity gradient (1), but we think that   = 𝑐𝑜𝑛𝑠𝑡. 504 

is more reliable in the mixed layer, since 𝑈(𝑧) profiles may exhibit non-negligible shear 505 

above the surface layer, due to variation of the pressure perturbation induced by the 506 

orography with height or the Coriolis force. Taking this into account, the ratio  507 
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implicitly determines 𝑧𝑠(𝐿), if the form of the function (𝑧𝑠, 𝐿) is known. In (19) 509 

(𝜕/𝜕𝑧)𝑧𝑠
 and (𝜕/𝜕𝑧)𝑧0

 are obtained by evaluating (18) at 𝑧𝑠 and the temperature 510 

roughness height, 𝑧0, respectively. As defined by (19), (𝑧𝑠, 𝐿) varies monotonically 511 

from 1 to zero as 𝑧0/𝑧𝑠 decreases. Moreover, (𝑧𝑠, 𝐿) depends only weakly on 𝐿: by 512 

substituting 𝐿𝑓𝑐, 𝑧𝑠𝑓𝑐, 𝑧𝑠𝑛 and 𝐿𝑛 =  (see Sect. 3.1, Table 1) into (19) we may calculate 513 

the ratio   = (𝑧𝑠𝑛, 𝐿 − )/(𝑧𝑠𝑓𝑐 , 𝐿𝑓𝑐)  0.6, which is of order 1. 514 

The limits of (𝑧𝑠, 𝐿) at the theoretical extremes of the stability interval are, respectively,  515 
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For both strongly and weakly unstable flows, (20) - (21) suggest that (𝑧𝑠, 𝐿)   (𝑧0/518 

𝑧𝑠), where  is a dimensionless constant. Taking this result into account, we 519 
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hypothesize that this form holds for the whole stability interval, yielding the following 520 

approximate definition for (𝑧𝑠, 𝐿), 521 
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where 1 and 2 are dimensionless constants. These two constants can be determined 523 

by taking the limits of (22) in the free-convection and neutral regimes, and comparing the 524 

corresponding expressions with (20) and (21), respectively. This produces a set of two 525 

equations, which may be solved for 1 and 2, yielding 526 
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By combining (19) and (22), (14) is obtained.  528 

 529 

Appendix 2. Accuracy of the (𝝏𝑼/𝝏𝒛)𝒛𝒔
 = 𝒄𝒐𝒏𝒔𝒕. approximation 530 

Here we show that the approximation (𝜕𝑈/𝜕𝑧)𝑧𝑠
 = 𝑐𝑜𝑛𝑠𝑡., used in Sect. 2.4 for 531 

evaluating 𝑢∗, is supported by measurements. Let us consider the following ratio, by 532 

using MOST, 533 
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where 
1

=  (1 + 
𝑚

𝑐𝑓𝑐
1)

2
. Equation 24 is obtained by combining (1), (4), (6), (12) and 535 

(13). Using parameters from C94 (see Sect. 3.1) we obtain 𝛼5 = 0.0466 s-1. For the values 536 

of 𝐿𝑓𝑐 and 𝑢∗𝑓𝑐 shown in Table 1, this yields 
𝑀𝑂𝑆𝑇

 = 0.99. The remarkable closeness of 537 

this value to 1 is fortuitous, although it obviously depends on the values adopted for 𝑐𝑧𝑖𝑛, 538 

𝑐𝑓𝑐 and 𝑐𝑆𝐿. For checking further the approximation 
𝑀𝑂𝑆𝑇

  1 we use the K76 539 

observations (keeping the same 𝛼5), which were carried out in a daytime well-mixed 540 

CBL, with evidence of significant heat and momentum entrainment through the capping 541 

inversion. 542 

 543 

Run 𝑢∗𝑓𝑐 (m s-1) |𝐿𝑓𝑐| (m) 𝑧𝑖𝑓𝑐 (m) 𝑤∗ (m s-1) 𝑤∗/𝑧𝑖𝑓𝑐 (s-1) 
𝑀𝑂𝑆𝑇

  

6A1 0.24 5.7 2095 2.43 1.16  10-3 1.1 
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6A2 0.23 6.4 2035 2.21 1.09  10-3 1.3 
Table 2 CBL parameters measured by Kaimal et al. (1976). Columns 6 and 7 show, respectively, 𝑤∗/𝑧𝑖𝑓𝑐, 544 

and 
𝑀𝑂𝑆𝑇

, calculated from the data (the second quantity by using (24)). 545 

 546 

Table 2 shows CBL parameters obtained by K76, corresponding to the runs with the 547 

smallest values of |𝐿|, typical of nearly free-convection regimes. As can be seen, the 548 

values of 
𝑀𝑂𝑆𝑇

 are close to 1, corroborating the hypothesis 
𝑀𝑂𝑆𝑇

  1. Moreover, 549 

column 6 supports (10), proposed by Venkatram (1978), since 𝑐5 = 𝑤∗/𝑧𝑖𝑓𝑐 varies within 550 

a narrow range. Venkatram (1978) estimated 𝑐5 = 1.12  10-3 s-1, which is quite close to 551 

both values shown in Table 2. Therefore, the assumption that 𝑐5 is a constant is plausible. 552 

If the assumption 
𝑀𝑂𝑆𝑇

 = 1 is accepted, (24) defines a relationship between 𝛼5, |𝐿𝑓𝑐| and 553 

𝑢∗𝑓𝑐. If parameters 𝑐𝑓𝑐 and 𝑐𝑧𝑖𝑛 are assumed to be non-adjustable, this is equivalent to a 554 

relation between |𝐿𝑓𝑐|, 𝑢∗𝑓𝑐 and 𝑐𝑆𝐿. Equation 13 is only applicable if |𝐿|   (a rarely 555 

observed situation), so the parameter 𝑐𝑧𝑖𝑛 may have a considerable uncertainty. 556 

Zilitinkevich et al. (2012) and Garratt (1992) discuss this topic at length. It would be 557 

interesting to explore the constraint defined by (24) further to develop relations other than 558 

(13) for estimating 𝑧𝑖𝑛, but that is beyond the scope of the present paper.  559 

We also carried out a similar analysis using the classical free-convection formulation of 560 

Prandtl (1932) for the mean velocity gradient, 561 
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where 𝑐𝑢 = 1.7. In this case we would obtain a ratio (𝜕𝑈/𝜕𝑧)𝑧𝑠𝑓𝑐
/(𝜕𝑈/𝜕𝑧)𝑧𝑠𝑛

 with a 563 

similar parameter dependence as (24) and 𝛼5 = 0.0453 s-1. The proximity between the 564 

values of 𝛼5 obtained using both formulations for (𝜕𝑈/𝜕𝑧)𝑧𝑠𝑓𝑐
 confirms that the MOST 565 

formulation adopted here is physically consistent, hence it may be used to describe the 566 

free-convection regime. 567 
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