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A B S T R A C T

Climate-sensitive urban design is an increasingly important consideration for city planners and policy makers.
This study demonstrates the use of a biophysical model to assess the response of urban climate to various
changes, including population growth, reduced energy use, urban development and urban greening initiatives.
Model inputs are intentionally derived using only publicly available information and assumptions involved in
collating the data are discussed. Results are summarised in terms of the energy partitioning which captures
changes in meteorology, surface characteristics and human behaviour. The model has been recently evaluated
for the region, and those findings are drawn upon here to discuss the model’s capabilities and limitations. Model
simulations demonstrate how both intentional and inadvertent changes to the urban landscape can alter the
urban climate. For example, the impact of population growth depends on where, and how, people are housed,
and recent changes in garden composition have reduced evaporation. This study has been designed so that model
output could be combined with socio-economic data in future, enabling both risk and vulnerability to be
considered together.

1. Introduction

Growth in urban populations puts increasing pressure on city
planners, policy makers and society to develop in a sustainable and
resilient manner. Cities must have the capacity to mitigate the impacts
of extreme weather in order to minimise damage to human health, the
environment and the economy. Urban climate-related risks include, but
are not limited to, thermal stress, flooding, air quality events and
extreme wind (e.g. Bell et al., 2007; Chen, Hill, & Urbano, 2009; Dessai,
2002; Hsieh &Wu, 2012). In many cases the urban environment
enhances these risks. For example, urban areas are known to exacerbate
heat stress for the following reasons:

• The relatively limited amount of vegetation reduces the opportunity
for evaporation and its associated cooling effects, contributing to
city temperatures that are typically a few degrees higher than in the
surrounding countryside (Howard, 1833; Oke, 1982).

• Paved and built surfaces (e.g. roads, carparks, roofs) are fairly
impermeable to water so rainfall is quickly routed into drainage
systems and directed away from the surface, thus removing the
source of moisture for evaporation (Grimmond &Oke, 1986;
Grimmond, Oke, & Steyn, 1986; Oke, 1982; Xiao, McPherson,
Simpson, & Ustin, 2007).

• Buildings and roads absorb and store a large proportion of heat
during the day and the release of this heat after sunset means
temperatures may remain high throughout the night (e.g.
Grimmond &Oke, 1999b; Kotthaus & Grimmond, 2014a; Offerle,
Grimmond, & Fortuniak, 2005; Roberts, Oke, Grimmond, & Voogt,
2006).

• Dark surfaces (such as asphalt) absorb solar radiation well, and the
arrangement of buildings and roads can trap energy, further
increasing the heat available (Sailor, 1995; Taha, 1997).

• Human activities provide additional energy: directly through heat-
ing buildings and as waste heat from air-conditioning units,
electrical appliances, cooking, transportation and human metabo-
lism (e.g. Bergeron & Strachan, 2010; Hamilton et al., 2009; Sailor,
2011). In densely populated areas, this anthropogenic energy supply
can be substantial (Ichinose, Shimodozono, & Hanaki, 1999; Klysik,
1996).

Urban design options to moderate heat stress include increasing
vegetation cover (e.g. parks, street trees, green roofs), incorporating
water bodies or using high albedo building materials (e.g. Lee,
Mayer, & Chen, 2016; Nakayama & Fujita, 2010; Ng, Chen,
Wang, & Yuan, 2012; Sailor, 1995). Decisions may sometimes have
unforeseen and/or detrimental effects. For example, increased use of
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air-conditioning in warm conditions releases additional waste heat into
the environment, further augmenting temperatures and exacerbating
heat stress, and putting pressure on power supplies (de Munck et al.,
2013; Ohashi et al., 2007; Ramamurthy, Li, & Bou-Zeid, 2015). To
lower carbon emissions, one way to encourage use of public transport
over private cars is to increase the cost of residents’ parking permits. In
London, this has led to more people paving over their front gardens so
they can park off-road (GLA, 2005b). Vegetation and pervious gravel/
soil surfaces have been replaced by impervious concrete or asphalt,
enhancing runoff and reducing infiltration of rain water, with the result
that evaporation is restricted.

Biophysical models use information about the urban surface (e.g.
land cover, building height, radiative properties such as albedo or
reflectivity) and inhabitants (population density, energy use), along
with past, present or predicted meteorological data to simulate
components of the energy balance and/or water balance and thus
inform about the environmental conditions. In addition to identifying
regions with the greatest risk of exposure, models can also indicate how
the risk may change over time. The physical processes represented in
models enable us to understand why the risk may be greater under
certain conditions and, conversely, to identify measures that may be
used to reduce exposure. Models permit the advantages and disadvan-
tages to be explored to better inform planning decisions before
investments are made. For example, the impact of several urban cooling
measures (including water, vegetation, high albedo surfaces and
building dimensions) on pedestrian thermal comfort was assessed for
a district in Toulouse that will soon undergo redevelopment (Martins
et al., 2016). Potential feedbacks resulting from decisions (made by
citizens or government) can be assessed. In the Toulouse study, the high
albedo scenario was found to negatively impact pedestrian comfort as
more radiation was reflected from walls towards pedestrians.

Understanding and managing climate-related risks in cities is of
prime importance, particularly as more variable and more extreme
weather is expected in future (IPCC, 2012). The focus of this study is
Greater London, home to more than 8 million people (ONS, 2011) and
with a daytime population (including workers and tourists) in excess of
10 million (GLA, 2013). The Greater London region is divided into 33
districts: 32 boroughs plus the City of London. For brevity, we refer to
all 33 subdivisions as boroughs. There are 12 inner boroughs (plus City
of London) and 20 outer boroughs (Fig. 1). Each borough is governed
by a borough council (the City of London is governed by the City of
London Corporation), responsible for education, provision of services
and urban planning. Some planning decisions are also made by the
Greater London Authority, responsible for London as a whole. The
boroughs represent useful units in terms of governance and the
availability of socio-economic data (such as poverty, health status
and access to services) which can be used to gauge vulnerability (e.g.
Wolf &McGregor, 2013). In future, borough-level risk estimates could
be combined with socio-economic data in a move towards interdisci-
plinary modelling of cities that involves social, economic and biophy-
sical aspects of the city system (Masson et al., 2014). This would enable
adaptive or coping strategies to be targeted towards exposed areas that
are most vulnerable.

Numerous indicators exist to describe thermal (dis)comfort (de
Freitas & Grigorieva, 2015), usually based on temperature and often
modified according to some combination of humidity, wind speed,
radiation receipt or other variables in an attempt to account for the
physiological and psychological effects that translate the physical air
temperature to thermal comfort experienced by humans (Johansson,
Thorsson, Emmanuel, & Krüger, 2014). Well-known examples include
the physiological equivalent temperature (Höppe, 1999), mean radiant
temperature (Thorsson et al., 2014) and universal thermal climate
index (Jendritzky, de Dear, & Havenith, 2012). Mesoscale modelling
studies often rely on 2 m air temperature output, sometimes combined
with humidity, to represent human comfort (e.g. Theeuwes,
Solcerová, & Steeneveld, 2013). Remotely sensed land surface tempera-

ture (Wolf &McGregor, 2013) or urban heat island intensity
(Tomlinson, Chapman, Thornes, & Baker, 2011) products are also used.
Alexander, Fealy, &Mills (2016) considers the impact of urban devel-
opment in terms of the surface energy balance. Certain indicators may
be more or less suited to particular applications, depending on spatial
scale, period of interest and data available. Microscale studies may
consider differences between sunlit and shaded areas around individual
buildings (e.g. Lindberg, Holmer, & Thorsson, 2008; Middel, Häb,
Brazel, Martin, & Guhathakurta, 2014), whereas the computational
demands of mesoscale simulations usually restrict the study period to
a few days for typical grid-box sizes. A more user-friendly approach is
adopted in this study to examine how London’s climate responds at the
local-scale to changes in meteorology, urban design and policy.

The objectives of this paper are: (i) to assess the response of the
urban environment across Greater London to changes in surface
characteristics, population and energy use; (ii) to explain the routes
by which these changes affect the urban climate; (iii) to demonstrate a
methodology which could subsequently be applied to other cities.

2. The biophysical model

2.1. Model description

This study uses the Surface Urban Energy and Water balance
Scheme (SUEWS), which has already been evaluated against observa-
tional datasets at two urban sites in this region (Ward, Kotthaus,
Järvi, & Grimmond, 2016). SUEWS considers the urban surface com-
prised of seven surface types (paved surfaces, buildings, evergreen trees
and shrubs, deciduous trees and shrubs, grass, bare soil and open water)
with a single-layer soil store beneath each surface (except water). The
exchange of energy at the surface is written (Oke, 1987):

Q * + QF = QH + QE + ΔQS. (1)

Q* is net all-wave radiation; QF is anthropogenic heat flux, i.e. the
additional energy supplied through human activities. These inputs heat
the air (QH, turbulent sensible heat flux), evaporate water (QE,
turbulent latent heat flux) or are stored in (and later released from)
the urban volume (ΔQS, net storage heat flux). The storage heat flux is
calculated using the Objective Hysteresis Model (OHM, Grimmond,
Cleugh, & Oke (1991)). Evaporation is calculated using an adapted
Penman-Monteith equation (Grimmond &Oke, 1991) with surface
conductance formulated after Jarvis (1976), Ward et al. (2016a). A
running water balance is calculated at each time-step, providing soil
moisture, runoff and surface wetness. Further details can be found in
Järvi, Grimmond, and Christen (2011), Järvi et al. (2014) and Ward
et al. (2016a).

One of the advantages of SUEWS is its simplicity. High-performance
computing is unnecessary, even when running the model for multiple
years or multiple areas. Required inputs include information about the
surface characteristics (e.g. land cover, building height, albedo, emis-
sivity) and human behaviour (energy use, water use, population
density), along with basic meteorological data: incoming shortwave
or solar radiation (K↓), air temperature (Tair), relative humidity (RH),
barometric pressure (p), wind speed (U) and precipitation (P). The
versatility of the model allows additional input information to be
accepted if available (Lindberg, Grimmond, Onomura, & Järvi, 2015),
otherwise recommended values should provide a reasonable approx-
imation in many cases (Ward, Järvi, Onomura, & Lindberg, & Grim-
mond, 2016). Key site-specific information may need to be derived
from other sources (Section 3.1).

The model runs in this study were performed using SUEWS v2016a
(Ward et al., 2016b). Here, we focus on the modelled energy fluxes (Eq.
(1)). Results are presented in terms of the energy partitioning using the
median midday (1100–1400) Bowen ratio (QH/QE), βMM. Several
studies have concluded that the balance between evaporation and
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sensible heat flux is a key factor influencing elevated urban tempera-
tures and contributing to the urban heat island (Fischer, Seneviratne,
Lüthi, & Schär, 2007; Li and Bou-Zeid, 2013; Li et al., 2015). The less
energy used for evaporation, the more energy is available for heating
the atmosphere and augmenting air temperatures, i.e. greater risk of
thermal stress. Since βMM includes QH and QE, it will respond to changes
in the surface energy partitioning which result from meteorological
conditions (including temperature and humidity), surface water avail-
ability, additional energy supplied by anthropogenic activities, land
cover characteristics, properties of surface materials and state of
vegetation. This approach can therefore be used to summarise the
impact of a range of urban development or climate mitigation strategies
on urban climate.

2.2. Model evaluation

Model output should always be interpreted with care, especially
when applied to a region or conditions that differ from those for which
the model has been tested. The year-round performance of SUEWS was
recently evaluated using observational datasets collected in central
London, UK, and suburban Swindon (a large town located about
120 km to the west of London) during the period 2011–2013. We are
therefore able to present this application of the model across Greater
London with a thorough understanding of its performance. To set the
model results in context, values from the observed datasets are
provided where available. These are denoted ‘OBS URB’ for the dense
urban central London site and ‘OBS SUB’ for the suburban residential
Swindon site. The UK evaluation demonstrated good performance in
summer, particularly for the suburban site, but highlighted two issues.
Firstly, there is insufficient information to enable the OHM coefficients
used to calculate the storage heat flux to account for building volume or
density of building materials, with the result that ΔQS is underestimated
and QH overestimated at URB. Secondly, evaporation from open water
is likely overestimated, contributing to a modelled QE that is too high.
The reader is referred to the full evaluation paper for detailed
discussion (Ward et al., 2016a).

In addition to the UK evaluation, SUEWS has also been evaluated

against observations at suburban sites in Los Angeles and Vancouver,
North America (Järvi et al., 2011); for residential areas of cold-climate
cities in Helsinki and Montreal (Järvi et al., 2014); also at a city-centre
site in Helsinki (Karsisto et al., 2015); and at an urban and suburban
site in Dublin (Alexander, Mills, & Fealy, 2015). These studies demon-
strate that SUEWS generally reproduces reasonable results, particularly
for suburban areas during summer months. In dense urban areas the
large magnitude and considerable spatial variability of QF presents a
challenge to both modelling and measurement, so uncertainties are
largest in these areas. In general, as for the UK sites, ΔQS appears to be
underestimated for dense urban areas (Järvi et al., 2014). As QE is often
small in city centres it can be difficult to measure and model accurately
(Karsisto et al., 2015; Kotthaus & Grimmond, 2014a). These are fairly
typical issues encountered by modellers and urban climatologists, as
opposed to particular limitations of SUEWS.

3. Methodology

An objective here is to demonstrate a methodology for locations
lacking detailed information. Thus, the model runs have been carried
out using readily available information. One advantage of SUEWS is its
relatively undemanding input requirements, but appropriate meteor-
ological forcing data, representative surface cover and reasonable
estimates of energy use are important.

The flexibility of SUEWS allows the user to define model grids (e.g.
to reflect data availability and areas of interest). The focus of this work
is at borough-level, but different areas can be specified depending on
the application. Each borough is treated as a separate model grid and, at
this coarse scale, there is no interaction between grids. The approxima-
tion has been made that all boroughs experience the same meteorolo-
gical forcing, but surface characteristics must be specified individually
for each borough.

To give an idea of the summertime behaviour under different
conditions, data for the month of July in two consecutive years (2011,
2012) with very different rainfall patterns are analysed. 2011 was a dry
year (602 mm rainfall, 76% of the 1981–2010 Normal for southern
England), whereas 2012 was very wet (1047 mm rainfall, 132% of the

Fig. 1. Greater London boroughs, location of the central London measurement site (cross) and location of Greater London within the British Isles (inset). Asterisks denote inner boroughs.
Contains National Statistics and Ordnance Survey data © Crown copyright and database right 2012.
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Normal) (Met Office, 2016). SUEWS is run from 1 January for the two
years of interest, allowing several months’ spin-up prior to the July study
periods. The model setup and parameters are essentially the same as for
the evaluation in central London (Ward et al., 2016a), except for the
meteorological forcing data and site-specific input.

3.1. Preparation of input information

3.1.1. Meteorological forcing data
The required meteorological forcing is provided by the WFDEI

global data product (Weedon et al., 2014), available at 0.5° × 0.5°
resolution at 3-h intervals for 1979–2012, downscaled to the model
time-step (5-min). Differences in incoming shortwave radiation, rainfall
and relative humidity result in small differences when using WFDEI
instead of observed data: Q* is overestimated but the impact on the heat
fluxes is reduced by compensating effects (see Appendix A).

3.1.2. Surface cover fractions
Neighbourhood Statistics (NeSS, 2014) provides land cover data for

each borough based on the Generalised Land Use Database (GLUD). The
most recent 2005 dataset is used here. The following additional
information is used to convert the GLUD classes (domestic buildings,
non-domestic buildings, road, path, rail, domestic gardens, greenspace,
water, other land uses, unclassified land) to the SUEWS land cover
classes (Section 2.1):

(i) A breakdown of land cover types within gardens for 2006–8 (Smith
et al., 2011)

(ii) Total tree cover in London is 20% (GLA, 2005a)
(iii) It is assumed 20% (80%) of trees are evergreen (deciduous).

Thus, domestic gardens are split up into land cover types using (i);
the total proportion of trees (ii) in greenspace plus gardens is used to
deduce the proportion of greenspace that is grass; road, path and rail
are counted as paved surfaces; other land uses and unclassified land are
counted as bare soil surfaces.

Surface cover varies widely across London (Table 1, Fig. 2). City of
London has the highest proportion (70%) of impervious surfaces (45%
buidings, 25% paved surfaces), followed by Kensington and Chelsea,
Islington, and Westminster (60%). These are also the least vegetated
boroughs (City of London has only 5% vegetation), along with Tower
Hamlets which has the highest proportion of water (22%). The outer
boroughs are much more vegetated, with agricultural land towards the
edge of the city, open greenspace (parks and commons) and large
gardens. Bromley and Havering comprise over 70% vegetation. The
spatial variability within boroughs tends to be most pronounced in
central London, for example Westminster contains two large parks
(Hyde Park and Regent’s Park) but is very densely built-up outside these
areas. The outer boroughs are predominantly suburban. Substantial
water bodies include the River Thames which runs through the centre
of London, as well as other open water (lakes, reservoirs, docks) in
Tower Hamlets, Waltham Forest and Enfield, for example. The bor-
oughs range in size from 150 km2 (Bromley) to 12 km2 (Kensington and
Chelsea) (City of London is 3.3 km2).

The observation site URB is located in a very densely built up area of
Westminster borough, close to the boundary with City of London
(Fig. 1). The proportion of paved and building surfaces at the URB site
(81%) is greater than the borough averages. The proportion of
vegetation (5%) is similar to City of London and the proximity to the
river means 14% of the source area is made up of open water. The URB
site thus represents amongst the most densely built up, least vegetated,
and highly populated areas of London. The observation site SUB is more
similar to the average values, with 45% vegetation and 49% impervious
surfaces. For more details about the observation sites see the original
references for these datasets (Kotthaus & Grimmond, 2014a, 2014b;
Ward, Evans, & Grimmond, 2013).

3.1.3. Surface characteristics
Characteristics for each surface type are, in this application,

assumed to be the same for all boroughs (Table 2). In reality, the
variety of building materials will lead to differences in surface proper-
ties at the neighbourhood scale or below. The values selected are
representative of the surfaces in general (e.g. buildings in European
cities) and are the same as those used for the model evaluation.

Building height is estimated at 6.5 m for outer boroughs, 10.0 m for
inner boroughs, 20.0 m for Westminster and 25.0 m for City of London
(based on Lindberg & Grimmond (2011)). Tree heights are estimated as
function of building height (Lindberg & Grimmond, 2011). Roughness
length and displacement height are calculated within SUEWS using the
rule-of-thumb (Grimmond &Oke, 1999a). Other required characteris-
tics are assumed to be the same across London as public quantitative
data are unavailable. Ward et al. (2016a) shows that surface cover and
energy use play important roles in surface energy partitioning, whereas
building height and small differences in meteorology generally have
little impact on model output.

3.1.4. Anthropogenic energy use
The anthropogenic heat flux QF can either be provided as input

time-series data or calculated within SUEWS. Here, QF is calculated
within SUEWS to enable values to respond to changes in temperature,
population or energy-use characteristics for different scenarios.

SUEWS calculates QF based on heating degree days (HDD), cooling
degree days (CDD) and population density, ρpop, (Järvi et al., 2011;
Sailor & Vasireddy, 2006):

Q ρ a a CDD a HDD= [ + + ],F pop F F F0 1 2 (2)

where aF0,1,2 are coefficients related to non-temperature dependent
energy use, building cooling and building heating, respectively. These
coefficients can be specified individually for weekdays and weekends
and for each model grid. Alternatively generic coefficients could be
used for particular land use types (e.g. residential, commerical).

Population data from the 2011 census (ONS, 2011) are used here.
The average of the workday and resident (night-time) population is
used as some boroughs have a low resident population but very large
workday population, particularly in central London (Table 1, Fig. 3a).
The same aF0,1,2 coefficients are used for all boroughs with separate
values for weekdays and weekends. The coefficients were informed by
the GreaterQF model (Iamarino, Beevers, & Grimmond, 2012)
(Appendix B). Compared to GreaterQF, this approach underestimates
QF by about 30 W m−2 (≈20%) for City of London and by about
10 W m−2 for Kensington and Chelsea and Westminster, and is within
about 3 W m−2 for most other boroughs. Modelled QF varies consider-
ably between boroughs (Fig. 3b), with mean annual values for 2012
between 3.9 W m−2 (Bromley) and 111.7 W m−2 (City of London).

In reality, population varies through the day and workers and
residents have different energy-use profiles (e.g. Hamilton et al., 2009;
Ichinose et al., 1999). SUEWS’ simple approach provides an estimate of
QF from readily available information, but output from more complex
models could be included if appropriate. Accurate estimates of QF are
more important for densely populated areas (where QF is large relative
to other terms in the energy balance (Eq. (1))) than suburban areas
where a rough estimate of 5–10 W m−2 may be sufficient.

External water use is assumed negligible as residents in the UK tend
to irrigate far less extensively than in climates with hotter drier
summers (Alexander et al., 2015; Ward et al., 2016a).

3.2. Model scenarios

Fig. 4 summarises the mechanisms by which model inputs used to
describe the urban surface influence the energy fluxes. For example, a
change in albedo of building surfaces would directly impact net
radiation, which would indirectly impact the storage heat flux and
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Table 1
Characteristics of London boroughs and observation sites. *Inner boroughs. See Section 3.1 for data sources.

ρpop [ha−1]

No. Borough Day Night Mean Vegetation/inc. water [%] Impervious [%]

1 Barking and Dagenham 45.51 50.03 47.77 46.52/49.19 39.06
2 Barnet 36.30 41.13 38.72 57.30/57.74 36.67
3 Bexley 27.62 32.60 30.11 45.99/61.50 31.65
4 Brent 64.38 71.85 68.12 39.19/40.47 50.27
5 Bromley 17.93 20.60 19.27 71.06/71.36 24.99
6 Camden* 175.92 100.92 138.42 35.64/36.49 54.82
7 City of London* 1076.29 22.04 549.17 4.90/18.23 69.59
8 Croydon 35.97 42.08 39.03 55.76/55.87 38.71
9 Ealing 55.19 61.04 58.12 45.43/46.17 44.69
10 Enfield 34.18 38.11 36.14 57.97/62.95 30.97
11 Greenwich* 46.57 53.18 49.87 47.58/49.25 39.59
12 Hackney* 121.35 129.22 125.29 33.76/35.94 52.30
13 Hammersmith and Fulham* 118.00 103.80 110.90 28.80/35.54 52.86
14 Haringey 71.59 86.25 78.92 40.64/41.39 51.14
15 Harrow 39.41 47.40 43.41 54.32/54.69 39.94
16 Havering 18.61 21.14 19.87 70.39/71.81 23.68
17 Hillingdon 26.71 23.70 25.20 59.80/62.81 26.25
18 Hounslow 45.11 44.78 44.95 51.86/55.10 35.48
19 Islington* 179.79 138.91 159.35 23.59/23.86 62.92
20 Kensington and Chelsea* 156.72 128.29 142.50 25.06/27.53 64.06
21 Kingston upon Thames 40.43 42.98 41.71 54.01/54.74 39.00
22 Lambeth* 101.61 112.33 106.97 32.02/32.94 56.58
23 Lewisham* 62.07 78.33 70.20 40.22/40.62 50.84
24 Merton 45.33 53.23 49.28 50.03/50.77 41.14
25 Newham 75.90 83.65 79.78 33.45/38.84 44.43
26 Redbridge 41.22 49.35 45.29 56.21/57.42 37.45
27 Richmond upon Thames 28.37 31.94 30.15 61.78/66.34 28.39
28 Southwark* 111.12 98.72 104.92 34.93/36.95 49.17
29 Sutton 37.42 43.20 40.31 51.65/52.16 40.23
30 Tower Hamlets* 149.21 102.97 126.09 19.38/41.61 42.32
31 Waltham Forest 55.79 66.59 61.19 45.27/51.05 41.38
32 Wandsworth* 70.64 88.09 79.36 39.16/40.91 49.42
33 Westminster* 310.40 98.76 204.58 26.00/31.17 60.05
OBS URB 310.40 98.76 204.58 5.00/19.00 81.00
OBS SUB 16.77 47.63 32.20 45.00/45.00 49.00

Fig. 2. Surface cover for each borough, in order of increasing impervious (paved + building) fraction, and for the urban (URB) and suburban (SUB) observations (OBS). Asterisks denote
inner boroughs. See Section 3.1.2 for data sources.
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alter the available energy, modifying sensible and latent heat fluxes.
Thus, changes to the urban system associated with urban development
or mitigation measures are communicated to the model by modifying
the input information. Model output from these ‘alternative scenarios’

are then compared to the ‘base run’ (input data as described in Section
3.1).

Several example scenarios based on real situations have been
developed to illustrate the versatility of this approach (Table 3)

Fig. 3. (a) Population densities by borough: resident (ONS, 2011), workday (ONS, 2011) and daytime including tourists (GLA, 2013). Points indicate values used for the base run. (b)
Anthropogenic heat flux for 2012 for each borough modelled by SUEWS and calculated for URB and SUB (see Kotthaus and Grimmond (2014b) and Ward et al. (2013) for details).

Fig. 4. Flowchart illustrating how changes to the urban landscape are communicated as input to the SUEWS model and the routes by which those changes affect the energy partitioning.
Dotted lines indicate possible linkages: an increase in population density may require additional building which changes the surface cover and/or building height; in the current setup QF

does not impact ΔQS, but Tair indirectly impacts ΔQS via selection of the summer or winter OHM coefficients a1,2,3. Surface cover fraction for each surface i is denoted fi. All other notation
is defined in the text.
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Inadvertent climate modification by residents’ decisions about their
gardens is considered in scenario 1, based on Smith et al. (2011) which
describes the actual change in garden composition that occurred
between 1998–9 and 2006–8. Scenario 2 considers the Mayor of
London's plans for increased tree cover, based on published reports
from the Greater London Authority (GLA, 2011). Scenarios 1 and 2
therefore involve changes to the surface cover fractions, fi. In scenario
3, a 50% reduction in vehicle use is simulated, mimicking similar
measures to improve air quality in other cities (e.g. Zhang, Lin
Lawell, & Umanskaya, 2017). In scenario 4, an increase in population
density is considered, first with no change to the landscape (ρpop
increases directly affecting QF, indirectly affecting the available en-
ergy), then with associated changes in building density (increased
building fraction or building height, directly affecting ΔQS and/or QE).
The required change in building density is estimated using input
information for the base run (Appendix C). Scenario 5 combines several
measures for climate-sensitive development (reducing energy consump-
tion, increasing vegetation). Finally, the impact of meteorological
conditions is explored by running the model with forcing data from
2011 and 2012.

4. Results

4.1. Variability across greater London (‘base run’)

Fig. 5 shows the modelled βMM values for July 2011/2012. In 2012
values range from 0.41 (Bexley) to 2.71 (City of London). The
distribution is positively skewed with values for most (25/33) boroughs
below 1.00 and a few higher values: City of London, Islington,
Kensington and Chelsea, Westminster. Compared to other summertime
study periods, values for July 2012 are generally low reflecting the
meteorological and surface conditions (frequent rainfall maintaining
moist soils). In July 2011 the range of βMM is greater (from 0.65
(Bexley) to 3.57 (Islington)) and the magnitude is larger for all
boroughs except Tower Hamlets (0.75 in 2011, 0.78 in 2012). In both
years, inner boroughs tend to have higher βMM than outer boroughs.

However, underestimation of QF (Section 3.1.4) is thought to result in a
slight underestimation in βMM for City of London.

Observational campaigns in urban areas have found that vegeta-
tion plays a major role in surface energy partitioning, with increasing
vegetation fraction often linked with decreasing summertime Bowen
ratio (e.g. Christen & Vogt, 2004; Grimmond & Oke, 2002; Offerle,
Grimmond, Fortuniak, & Pawlak, 2006). Primarily, this behaviour is
explained by the greater evaporation potential of vegetation and
permeable soil surfaces compared to impervious built surfaces. The
impervious surfaces tend to have very little capacity to store
moisture and thus dry quickly after wetting with most surface water
going to runoff which is rapidly removed via pipes and sewerage
systems.

SUEWS reproduces this behaviour (Fig. 5a,c): βMM is seen to
decrease as vegetation fraction increases. The rate of change is greatest
when there is only a small proportion of vegetation. Those boroughs
with little vegetation have the highest βMM: City of London, followed by
Islington, Kensington and Chelsea, and Westminster (numbers 7, 19, 20
and 33 in Fig. 5a,c). At the other end of the spectrum, Bromley (5) and
Havering (16) are ≥70% vegetation and have low βMM. The observed
values (URB and SUB in Fig. 5a,c) demonstrate that the model is
performing reasonably. Bexley (3) and Tower Hamlets (30) both have
notably low βMM given their vegetation fractions because these
boroughs contain a significant proportion of open water (Fig. 2), which,
according to the model, can evaporate freely. Note that comparison of
modelled and observed values at the URB site suggested that SUEWS
probably overestimates evaporation from open water (Ward et al.,
2016a), however this is a topic of ongoing research since is it is not
currently clear whether the depth of the River Thames constrains its
temperature and restricts evaporation, or whether considerable eva-
poration from the river is taking place but is not detected at the height
of the sensor (Kotthaus and Grimmond, 2014b). In Figs. 6 and 7 βMM is
instead plotted as a function of the proportion of vegetation plus water
area.

The robustness of these results is assessed by comparing the
monthly average βMM with daily values (Fig. 6a). Generally, the results

Table 2
Surface characteristics assigned for each surface type (same as for Ward et al., 2016a). LAI = leaf area index; gs_max = maximum surface conductance.

Surface type Albedo Emissivity Storage capacity
[mm]

Wet threshold
[mm]

LAI
[m2 m−2]

gs_max

[mm s−1]

Paved 0.10 0.95 0.48 0.60 – –
Buildings 0.12 0.91 0.25 0.60 – –
Evergreen trees 0.10 0.98 1.30 1.80 4.0–5.1 7.4
Deciduous trees 0.12–0.18 0.98 0.30–0.80 1.00 1.0–5.5 11.7
Grass 0.18–0.21 0.93 1.90 2.00 1.6–5.9 33.1
Bare soil 0.18 0.94 0.80 1.00 – –
Water 0.08 0.93 0.50 0.50 – –

Table 3
Assumptions and changes made to the model input for the various scenarios.

Scenario Changes to input

1 Garden composition Surface cover fractions adjusted to represent 1998–9 instead of 2006–8 garden composition.
2i Increasing tree cover (on paved) Tree cover increased by 25% in each borough with a corresponding reduction in paved surfaces.
2ii Increasing tree cover (on grass) Tree cover increased by 25% in each borough with a corresponding reduction in grass surfaces.
3 Reducing road traffic Coefficient aF0 re-derived having reduced the contribution of vehicle energy use by 50%.
4i Increasing population (no building) Population increased to 2020 projection but with no change in land cover (i.e. no new building occurs).
4ii Increasing population (with building) Population increased to 2020 projection and homes are built on available land (i.e. vegetation and bare soil surfaces).
4iii Increasing population (with building) Population increased to 2020 projection and homes are built on bare soil/unmanaged land only (i.e. no loss of vegetation).
4iv Increasing population (with building) Population increased to 2020 projection and homes built upwards only (i.e. building height increased but surface cover fractions

unchanged).
5 Climate-sensitive adaptation Coefficient aF0 and aF2 adjusted to reflect reduced building energy use by 20%.

Coefficient aF0 adjusted to reflect reduced vehicle energy use by 10%.
Tree cover increased by 25% with a corresponding reduction in paved surfaces for inner boroughs.
25% of bare soil surfaces changed to grass for wealthy boroughs.
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are representative of the daily values, although the range of values
increases as βMM increases (also seen in the observations). The few
points below 0 occurred on 16 July 2012 which was rainy and overcast
so heat fluxes were small. The five-day period 22–26 July 2012,
identified as a heat-wave in London (using the method in Li et al.
(2015)), had clear-skies, no rain and mean daily temperatures of
21.5 °C (cf. monthly mean daily temperature of 17.0 °C measured at
URB). βMM on these heat-wave days (crosses, Fig. 6) is generally higher
than on other days (exceptions for Bexley and Tower Hamlets are
related to evaporation from water surfaces).

To investigate the relative conditions in each borough, daily βMM

values are ranked from 1 (lowest) to 33 (highest) (Fig. 6b). City of
London always has the highest βMM, followed by Islington. Although
most boroughs change rank with neighbouring boroughs (in terms of
rank order, not geographical location) depending on meteorological,
surface and sub-surface conditions, the overall ranking remains similar
throughout the study period. Exceptions are, again, Bexley and Tower
Hamlets. Their substantial water reserves evaporate freely on sunny
days with abundant energy whereas evaporation is limited on cloudier
days with lower energy input. Therefore, for these boroughs, the
sunniest days are those with lower rank positons (e.g. during the
heat-wave). Other boroughs with lower rank positions during heat-
wave days also contain large areas of water, for example Hammersmith
and Fulham, Newham, Waltham Forest, Westminster. Although open
water evaporation in SUEWS requires more detailed evaluation, the
qualitative result that water bodies help ameliorate heat stress is in
agreement with other studies (e.g. Theeuwes et al., 2013).

Results are similar for July 2011, but with more variation in daily
values and less consistent rank positions (Fig. 7). Frequent rainfall in
2012 maintains a plentiful supply of moisture: the surface is often wet

following rainfall and soils are moist. In 2011, less frequent rainfall
allows the surfaces to dry out, reducing evaporation (except where the
moisture supply is maintained by large water bodies; those boroughs
have notably low rankings in Fig. 7b). This behaviour results in a wider
spread of βMM values. That rainfall prompts a sharp decrease in the
Bowen ratio followed by an increase as surfaces dry has been demon-
strated in observational data (Kotthaus & Grimmond, 2014a; Ward
et al., 2013). Differences in evaporation between years can also result
from differences in Q*, but summer 2011 and 2012 were both cloudier
than normal (1981–2010).

There is little spatial variation in Q* between boroughs (Fig. 8).
Incoming shortwave (K↓) and longwave (L↓) radiation are identical for
all boroughs as the same meteorological forcing has been assumed
(Section 3.1.1). Atmospheric pollution can lead to reduced shortwave
radiation receipt in city centres compared to their surroundings
(Arnfield, 2003). The size of this reduction is about 10% in London
(Ryder and Toumi, 2011) but can be larger for more polluted cities
(Jáuregui & Luyando, 1999). Conversely, an increase in L↓ is typical due
to warmer temperatures and increased pollutant concentration over
cities (Arnfield, 2003; Christen & Vogt, 2004). These effects are not
simulated here but, to a certain extent, these urban-rural differences in
K↓ and L↓ compensate for each other. The highest Q* values are thus
obtained for the least vegetated boroughs with the lowest bulk albedos
(≈0.12) and the lowest Q* values for the most vegetated boroughs with
the highest bulk albedos (≈0.17). Compared to the day-to-day varia-
tion in midday Q*, differences between boroughs are small. This is
thought to be realistic as many observational studies report little
difference in Q* between urban and rural sites or multiple sites within
a city (e.g. Christen & Vogt, 2004; Schmid, Cleugh, Grimmond, & Oke,
1991). For higher resolution studies, albedo could be adjusted to

Fig. 5. (a, c) Median midday Bowen ratio βMM as a function of vegetation fraction for the London boroughs and urban (URB) and suburban (SUB) observations. Numerical labels
correspond to boroughs (see Table 1). (b, d) Map of βMM for July (b) 2011 and (d) 2012. Boxplots show the inter-quartile range (IQR) with whiskers extending to the furthest point within
1.5× IQR from the upper or lower quartile.
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incorporate the effect of shading (Sailor & Fan, 2002) or to represent
specific materials (e.g. slate tile versus ceramic tile roofs). Modelled Q*
for all boroughs is larger than the observed values at the evaluation
sites, mainly because the WFDEI K↓ is higher than the observed values
(Appendix A).

For midday in summer, these results suggest the additional energy
supplied by anthropogenic activities is about 30% of Q* for City of
London (45% at URB). QF can be even more important in winter and at
high latitudes. For the most densely populated boroughs, QF acts to
increase QH as QE is limited by the low vegetation fraction and lack of
available moisture. Thus, boroughs with the highest QH tend to be those
with the highest QF (City of London, Islington, Kensington and Chelsea,
Westminster). The difference in energy partitioning between study
years can be seen here: QH generally exceeds QE in July 2011, whereas
QE exceeds QH for the more vegetated boroughs in July 2012 (Fig. 8).

4.2. Model scenarios

4.2.1. Scenario 1: change in garden composition
The composition of gardens in London has changed over recent

years (Smith et al., 2011). Compared to 1998-9, gardens in 2006–8
contain more buildings and paved surfaces (41% cf. 31%) and less
vegetation (58% cf. 65%). For this first scenario, we assess the impact
on local climate by considering the change in βMM if today’s (i.e.
2006–8) garden composition was returned to that of 1998-9.

Overall, domestic gardens comprise 24% of the total area of Greater
London. The decrease in vegetation fraction associated with the change
in garden composition is small for many central boroughs, but for inner

boroughs with appreciable amounts of garden (≈20%, e.g. Islington)
the small increase in vegetation fraction causes a discernible reduction
in βMM (Fig. 9a and b). For the outer boroughs, even though there is a
lot of garden space, the already higher vegetation fraction means the
change in garden composition generally has a smaller impact. However,
all boroughs show a reduction in βMM, indicating that the change in
garden composition that has occurred since 1998-9 has altered the
surface-atmosphere exchange: nowadays more energy is directed to
heating and less to evaporation. Such trends are expected to continue as
more people pave their front gardens for parking or opt for low
maintenance gardens (GLA, 2005b). Other environmental impacts
associated with replacing vegetation with paved surfaces include
reduced biodiversity and increased flood risk. SUEWS suggests an
increase in annual runoff of 5–15 mm due to this change in garden
composition (modelled annual totals for each borough range between
376 and 553 mm in 2012).

The impact of these land cover changes on the surface energy
balance can be understood using Fig. 4. Modifying the surface cover
fractions changes the bulk radiative properties of the surface. Emissivity
has little impact on the output, but vegetation generally has higher
albedo than typical materials used for paving or building in the UK
(Table 2) so the increase in bulk albedo results in lower Q*. The
anthropogenic heat flux is unchanged by this scenario, but the storage
heat flux is reduced (as grass stores less heat than paved and building
surfaces, and because Q* is lower). The increase in vegetation fraction
means more of the available energy is used in evaporation, leaving a
smaller proportion for the sensible heat flux. Hence QE increases and QH

decreases.

Fig. 6. Boxplots of (a) daily median midday Bowen ratio βMM values and (b) rank (1 = lowest, 33 = highest) during July 2012 for each borough (arranged in order of decreasing fraction
of vegetation + water). βMM values are also shown for the urban (URB) and suburban (SUB) observations (OBS). Crosses represent values on heat-wave days (22–26 July 2012).
Numerical labels along the top are as given in Table 1.
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Buildings and paved surfaces tend to store (and later release) a large
amount of heat as their constituent materials have high heat capacities.
In SUEWS, this behaviour is simulated through different OHM coeffi-
cients (a1,2,3) for each surface type. However, Ward et al. (2016a)
suggests the range of OHM coefficients in the literature may be
insufficient to account for the wide range of urban surface types, with
the result that ΔQS may be underestimated in built-up areas. Central
boroughs (City of London, Kensington and Chelsea, Islington, Westmin-
ster) have the highest ΔQS, but ΔQS OBS URB is much larger (Fig. 8). As
previous work accounting for the three-dimensional building volume
did not significantly improve the performance of OHM (and decreased

performance in some cities) (Grimmond &Oke, 1999b), in the current
configuration building height does not affect ΔQS, although it is
reasonable to expect larger ΔQS with greater built volume.

4.2.2. Scenario 2: increase in tree cover
Recognising the benefits of urban trees (e.g. Salmond et al., 2016),

the Mayor of London plans to increase London’s tree cover from 20% to
25% by 2025 (GLA, 2011). Two scenarios are considered here: (i) trees
replace paved surfaces; (ii) trees replace grass surfaces (Table 3). In
each case, the input surface cover fractions are altered so that the tree
cover increases by 25% for each borough (in line with total tree cover

Fig. 7. As for Fig. 6 but for July 2011.

Fig. 8. Energy fluxes (median midday values for July (a) 2011 and (b) 2012) as a function of vegetation fraction for the London boroughs (numbers, as Table 1) and for urban (URB) and
suburban (SUB) observations.
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across Greater London increasing from 20% to 25%).
When trees replace paved surfaces βMM decreases across all bor-

oughs (Fig. 9c–f). The largest changes in vegetation fraction occur for
boroughs with the largest proportion of trees, but the largest changes in
βMM occur where the vegetation fraction is small. The Mayor’s Street
Tree Programme aims to plant new trees in the most deprived areas,
including areas with few street trees (GLA, 2011). Although no
borough-scale plans were available, this strategy will be more effective
than suggested by scenario 2i, as the rate of change of βMM is greater

where vegetation is scarce. The impact is also greater in 2011 than
2012 (mean ΔβMM = −0.042/–0.018 in 2011/2012, which corre-
sponds to a change in QH and QE of around ± 4 W m−2 assuming a
Q* of 400 W m−2 and βMM ≈ 1).

If trees instead replace grass surfaces (scenario 2ii) there is no
change in vegetation fraction and the results are quite different
(Fig. 9g–j). The presence of more trees and less grass lowers the surface
conductance, which decreases QE and allows QH to increase (mean
ΔβMM = 0.072/0.077 in 2011/2012). In 2011 the impact on the outer

Fig. 9. (a, c, e, g, i) Median midday Bowen ratio βMM as a function of vegetation fraction for the current situation and for scenarios 1 (July 2012) and 2 (July 2011, July 2012); (b, d, f, h,
j) map of the change in βMM under each scenario (ΔβMM = βMM scenario − βMM original). Values for each borough are shown (alongside the legend) with their distribution (boxplot).
Scenario 1 assumes a change in surface cover equivalent to returning today’s (i.e. 2006–8) garden composition to that of 1998–9. Scenario 2i/2ii constitutes an increase in tree cover with
trees replacing paved/grass surfaces. See text for details.
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boroughs is less than in 2012 (Fig. 9h, j), possibly because soil moisture
(rather than vegetation fraction) plays a significant role in limiting
evaporation in dry years. These results highlight the importance of
considering both where trees will be planted and what will they
replace. Note that the types of vegetation planted/replaced are also
relevant. These can be represented in the model by specifying vegeta-
tion characteristics (particularly maximum surface conductance).

4.2.3. Scenario 3: reduction in road traffic
Scenario 3 considers a change in human behaviour, without

changing the landscape, namely a 50% reduction in vehicle usage.
This scenario is intended to represent strict traffic controls enforced to
manage air pollution. For example, during the 2008 Beijing Olympics,
vehicle use was restricted on alternate days based on odd/even licence
plates and vehicles not meeting emission standards were banned
completely, which meant only about 40% of vehicles were permitted
to use the roads each day (Song &Wang, 2012; Yu, Wang, Zong,
Li, & Lü, 2010). As well as the impact on pollutant emissions, there
will be an associated reduction in heat emissions.

According to GreaterQF, vehicle use contributes about 15% of total
QF. To model a 50% reduction in road traffic, the coefficient aF0 (see
Section 3.1.4) was reduced to 0.1457 and 0.1384 W m−2 (cap ha−1)−1

on weekdays and weekends, respectively. These values were derived
using the same method as the generic London borough coefficients
(Appendix B) but with the vehicle contribution halved. The reduction in
QF reduces the energy input to the surface and results in lower βMM (not
shown). The impact is generally very small (mean ΔβMM = −0.012 in
2012), except for very densely populated boroughs, mainly because
building energy use is so high. Policy may therefore be better directed
towards reducing building energy consumption. In warmer climates, air
conditioning can substantially increase QF during summer, maintaining
cooler indoor temperatures but exacerbating heat stress outside.
Reducing transport use is much more important in terms of air quality
(e.g. Beevers & Carslaw, 2005).

4.2.4. Scenario 4: population increase
Scenario 4 considers the impact of population increase. The resident

population of Greater London is expected to increase from 8.2 million
(ONS, 2011) to 9.1 million by 2020 (GLA, 2014). Here, the percentage
projected change in resident population for each borough is applied to
the current population densities (Table 1). First, the impact of the
additional population alone (i.e. no new building) is considered
(scenario 4i, Fig. 10a–d). There is negligible impact for boroughs where
ρpop and QF is small (Bexley, Bromley, Havering) or where the change in
population is very small (Kensington and Chelsea Δρpop = 0.2%). For
central boroughs, the increase in ρpop caused an increase in βMM,
particularly for City of London (ΔβMM = 0.155/0.253 in 2011/2012)
where considerable population growth is combined with the already
high population density to increase QF (although note that part of the
reason for this large change is due to the assumption that has been
made in scaling the mean of day- and night-time ρpop by the projected
increase in resident ρpop). The additional population has a larger impact
during dry weather as, when water is limited, the extra energy acts to
increase QH rather than QE.

A more realistic scenario also increases the proportion of buildings
in order to provide the growing population with somewhere to live and
work. The increase in buildings required to match the population
growth was calculated from the relation between building fraction and
ρpop fitted to the current values for each borough (Appendix C). In
scenario 4ii, the land cover fractions are adjusted to account for this
increase in building fraction (the proportion of vegetation and bare soil
is reduced accordingly; it is assumed existing paved, building and water
surfaces are not available to be built on). In scenario 4iii, the building
fraction is increased as for scenario 4ii, but with a corresponding
decrease in bare soil surfaces only (i.e. development of unmanaged land
rather than removing vegetation). In scenario 4iv, the land cover

fractions are unchanged but building height is increased to provide
the same new building volume as for scenario 4ii and iii.

Results for scenario 4iv (not shown) are very similar to scenario 4i
(within 0.5%) except for Tower Hamlets (Δρpop = 32%) where βMM

increases from 0.78 to 0.81 (scenario 4i) to 0.82 (scenario 4iv).
Equivalent values for 2011 are 0.75 increasing to 0.79 and 0.82.
These results suggest that building height has a much smaller impact
than building extent (assuming roughness length and displacement
height scale with mean building height). Note that the parameters
within SUEWS were not changed to account for shading or radiation
trapping within the urban canyon, both of which increase with building
height, reducing daytime Q* but increasing night-time Q* (e.g.
Mavrogianni et al., 2011).

If building occurs horizontally rather than vertically, the associated
loss of vegetation increases βMM (scenario 4ii, Fig. 10e–h), particularly
for the inner boroughs and more so for drier years than wetter years. If
vegetated areas are protected from development and new buildings are
constructed only on bare soil, the impact is generally reduced (scenario
4iii, Fig. 10i–l). This reduction is greater in 2012 than 2011, which
again, is probably related to soil moisture availability. The lack of
rainfall in 2011 means soil moisture stores are low. When rain does fall,
it can directly infiltrate the soil beneath pervious surfaces but not
beneath impervious surfaces (SUEWS assumes buildings and paved
surfaces are totally impervious). A reduction in pervious surfaces (bare
soil and vegetation) reduces infiltration and increases runoff, so the soil
receives less water. Therefore, both scenario 4ii and 4iii have a larger
impact in 2011 than 2012, as in 2012 soil moisture is higher and less of
a limiting factor. Thus, the proportion of vegetation is the important
factor in 2012, whilst the proportion of pervious surfaces is important
in 2011.

4.2.5. Scenario 5: cimate-sensitive adaptation
Scenario 5 combines several aspects from previous scenarios to

assess the potential impact of adapting London in a climate-sensitive
way (Table 3) including: reduced anthropogenic energy emissions
brought about through improved energy efficiency of buildings and
improved access to public transport (see Appendix B); and increased
vegetation cover brought about through tree planting in inner
boroughs (i.e. focusing on the least vegetated boroughs) and replacing
bare soil with grass in wealthy boroughs (assuming wealthy boroughs
have the means to develop unmanaged land into green spaces).
Wealthy boroughs were identified as those with the top 20% highest
median household income (GLA, 2012/3): Kensington and Chelsea,
City of London, Westminster, Richmond upon Thames, Camden,
Wandsworth.

Scenario 5 results in a reduction in βMM across all boroughs, but the
largest changes occur for the inner boroughs (where the proportion of
vegetation increases and the considerable anthropogenic heat flux
decreases) and wealthy boroughs (where the proportion of vegetation
increases) (Fig. 11). The impact is greater in 2011 than 2012. Boroughs
classified as both inner boroughs and wealthy boroughs experience the
largest change: for Camden, City of London, Kensington and Chelsea,
Wandsworth and Westminster ΔβMM exceeds -0.10 (Fig. 12). The de-
crease in energy use for the outer boroughs (where QF is small) has a
small impact in 2012 (ΔβMM < −0.01 for many boroughs) but has a
greater effect in 2011. There would also be a reduction in carbon
emissions associated with the decrease in fuel combustion for transport
and home heating.

All the scenarios presented here produce a change in the same
direction for all boroughs. However, alternative development pathways
can be envisaged where the situation improves in some boroughs but
worsens in others. For example, population growth accompanied by
extensive building in some areas, compared to greening initiatives in
other boroughs where there is less pressure on space. Input data can be
easily adapted to represent the relevant changes; the demonstrations
here are intended to be examples.
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Fig. 10. As for Fig. 9 but for scenario 4i–iii (Table 3). These scenarios assume an increase in population with (4i) no additional building; (4ii) an increase building fraction, with buildings
replacing bare soil and vegetation; and (4iii) an increase in building fraction, with buildings replacing bare soil only. See text for details.
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5. Summary and conclusions

Numerous policy decisions must be made without knowledge of
their outcome. Scenario modelling can help inform about likely (or
unintended) outcomes, or can be used to compare likely impacts of one
decision versus another. Since all models are approximations of reality
they must be interpreted at such, bearing in mind their imperfect
representation of physical processes and the assumptions involved in
specifying model parameters and required input information. Estimates
of these can be made from the literature, datasets or other models and
sensitivity studies can be used to assess uncertainties. The decisions
involved in implementing environmental measures are significant. For

instance, increasing the number of trees could have a different outcome
(positive or negative) depending on where and how they are planted
and on the species selected. The impact of population growth depends
on where and how people will be housed: increasing building height
was found to have a much smaller impact than increasing building
extent due to the important role of vegetated surfaces in moderating the
urban climate. Compact cities may also offer advantages in terms of
reduced transport demand (Mills, 2007). The results show that changes
in land cover can have major impacts on urban energy partitioning,
with the biggest changes tending to occur in the least vegetated areas
where heat stress is greatest. In recent years, trends in garden
composition (i.e. decisions taken by residents) have resulted in more

Fig. 11. As for Fig. 9 but for scenario 5. Scenario 5 combines aspects of the previous scenarios to assess the potential impact of adapting London in a climate-sensitive way (see text for
details).

Fig. 12. Change in median midday Bowen ratio ΔβMM for scenarios 4 (increase in population) and 5 (climate-sensitive design) for 2011 (dotted lines) and 2012 (solid lines). Asterisks
denote inner boroughs, £ denote wealthy boroughs.
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of the available energy being used to heat the atmosphere. Human
behaviour has a considerable impact on the environment, particularly
in very densely populated areas. However, it should not be overlooked
that uncertainties are also greatest for such areas, where fluxes can vary
dramatically over short temporal and spatial scales and observations
are scarce.

This paper demonstrates how the biophysical SUEWS model can be
used to assess the response of the urban climate across a city to various
urban development and climate mitigation measures. SUEWS has the
capability to use more detailed information when available, for
example through consultation with city planners. We describe the
approaches taken to convert readily available datasets to the inputs
required by the model, with the intention that analyses could be
performed at other sites using a similar methodology. In terms of urban
design, this study highlights the following:

• (Well-watered) vegetation is a key control on urban energy parti-
tioning and important for moderating elevated urban temperatures

• Consequently, building upwards has a smaller impact on the urban
energy balance than building on vegetated areas

• Adding vegetation has greatest impact in sparsely vegetated areas

• A range of meteorological conditions should be considered when
assessing the impact of scenarios.

This study overcomes two limitations often encountered when
assessing impacts of urban planning scenarios: few models respond to
the range of controls assessed here (e.g. surface cover, population
density, energy use, building properties); and many studies focus only
on a few days due to high computational demands. Furthermore,
SUEWS has also been evaluated against energy balance observations
in a range of cities. Although model results must be interpreted with
care, especially when pertaining to different conditions than those for
which the model has been evaluated, ongoing evaluation work will
extend the range of conditions and locations for which the model
behaviour can be understood. Model development currently underway
should improve the capabilities and accuracy of SUEWS, particularly in
terms of the storage and anthropogenic heat flux.

This study focuses mainly on the risk of heat stress (with some
consideration of hydrology through the water balance, although the
water balance has not yet been thoroughly evaluated in the UK). There
are also many other environmental factors to consider, such as air
quality, noise pollution and biodiversity (beyond the scope of the
current study), as well as economic and social factors. To analyse
biophysical exposure risk in conjunction with social vulnerability
(Birkmann et al., 2015; Birkmann &Welle, 2015), these results could
be combined with socio-economic data.

The SUEWS model is available to download from http://micromet.
reading.ac.uk.
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Appendix A. Meteorological forcing data from WFDEI

The WFDEI dataset (WATCH Forcing Data methodology applied to
ERA-Interim data) (Weedon et al., 2011, 2014) is used to provide the
meteorological data required for SUEWS: incoming shortwave radiation
(K↓), air temperature (Tair), relative humidity (RH), barometric pressure
(p), wind speed (U) and precipitation (P). Continuous, long-term
observational datasets of these variables at sub-daily resolution are
extremely rare due to the difficulties of siting instrumentation in urban
environments and the workload involved in maintaining high-quality
measurements over an extended period. The WFDEI dataset has global
coverage (0.5° × 0.5° resolution) and is available at 3-h intervals for
the years 1979–2012, allowing analysis of past weather events.

Although Greater London covers about 4 half-degree grid boxes,
WFDEI data extracted for the central location of the URB site (51.51° N
0.12° W) are used, i.e. each borough uses the same meteorological
forcing data. Differences between the 4 grid boxes were minor; here the
single URB grid was chosen to simplify the comparison with observed
data.

SUEWS requires input data at 60 min (which are linearly down-
scaled at the outset to the time-step of the model, here 5 min).
Therefore, all variables are first linearly interpolated from the 3-h
WDFEI data to 60 min, except 3-h rainfall which is downscaled directly
to 5 min accounting for the intermittency of wet periods and conserving
the total mass in each 3-h period (Table A1).

Using WFDEI data in place of observations (usually at 1-h resolu-
tion) can introduce errors (i) through interpolation of 3-h to 1-h data
and (ii) as a result of differences between what the WFDEI and observed
dataset represent, namely the height (see Table A1 for WFDEI; 49.6 m
for URB), elevation (78 m for WFDEI; 10.7 m for URB) and land use.

To investigate (i), observations from URB (1 h) are averaged to 3 h
to represent the resolution of the WFDEI data according to Table A1.
That is, K↓ is the average of the previous 3 h; Tair, RH, p and U are
instantaneous values (approximated here by the mean for the current
hour and for the following hour). This 3-h dataset is then downscaled to
1 h in the same way as for the WFDEI dataset and compared to the
original 1-h observations (Fig. A1). The assumption that the variables
change linearly in time results in some scatter, particularly for K↓ which
can change dramatically over hourly time scales. The diurnal cycle of K↓

is also slightly widened and flattened (not shown). The impact on the
other variables is small and generally makes no appreciable difference
to the model output.

More substantial differences are found between WFDEI and OBS
datasets (Fig. A2). K↓OBS is smaller than K↓W1h (mean values for daytime
are 195.7 W m−2 (at URB) and 220.2 W m−2 in 2012). To some extent,
this is expected due to attenuation by aerosols over central London (see
Section 4.1), but comparison between WFDEI and OBS data for the SUB
site also revealed overestimation by WFDEI. Other differences which
may be partly attributable to the urban setting of the observations
include slightly warmer observed temperatures at night and lower
observed relative humidity. The difference in elevation and measure-

Table A1
Details of WFDEI variables and conventions (Weedon et al., 2014) and the adjustments used to prepare 5-min input data for SUEWS. CRU precipitation totals were used.

Variable WFDEI time period WFDEI height Adjustment

K↓ Average for previous 3 h surface Interpolated to 60 min
Tair Instantaneous 3 h value 2 m Interpolated to 60 min; unit conversion from K to °C
q, RH Instantaneous 3 h value 2 m Interpolated to 60 min; conversion from q [kg kg−1] to RH [%]
P Instantaneous 3 h value 10 m Interpolated to 60 min
U Instantaneous 3 h value 10 m Interpolated to 60 min
P Average rate for previous 3 h surface Distributed to 5-min; unit conversion from kg m2 s−1 to mm
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Fig. A1. Observed data averaged to 3 h then interpolated to 1 h (‘O1h’) versus observed data (‘OBS’) for the URB site in 2012. Statistics given are coefficient of determination (r2), root
mean square error (RMSE), number of hourly data points (N), mean absolute error (MAE) and mean bias error (MBE).

Fig. A2. As for Figure A1 but for 3-h WFDEI data interpolated to 1 h (‘W1h’) versus observed data (‘OBS’). Nrain is the number of hourly data points with rain> 0 mm.
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ment height contribute to small differences between the datasets,
evident in the offset between pOBS and pW1h; the influence of height
differences and urban roughness on wind speed is more complicated.
However, the impact of these differences in Tair, p and U on the model
output is very small and no attempt is made to adjust the WFDEI values.
For locations in mountainous areas, it is advisable to check whether the
elevation of the grid square is comparable to that of the study site, or if
adjustments may be required Kokkonen et al., 2017).

A major difference occurs in the precipitation data, with the WFDEI
dataset considerably wetter than OBS at both URB and SUB. In 2012,
annual rainfall according to WFDEI (858 mm) is slightly larger than the
observed total (821 mm at URB). According to OBS, rainfall occurs for
11% of the hourly periods; for the interpolated WFDEI dataset the value
is 25%. The difference is also apparent in the original 3-h WFDEI
dataset (18% compared to 29% of 3-h periods have rain). This increased
frequency and volume of rainfall leads to an overestimation of modelled
evaporation.

Out of the meteorological driving variables, SUEWS is most
sensitive to P, K↓ and RH (as also found by Kokkonen et al. (2017)).
For the sites and years considered here, using WFDEI data instead of
observed forcing leads to an overestimation in Q* and hence ΔQS, but
the change in QH and QE is less significant because the effects of
overestimated P and K↓ are partly compensated for by the overestima-
tion of RH. For URB in 2012, using WFDEI data instead of observed
forcing leads to an overestimation of about 20 W m−2 in Q* compared
to observations; the effect on QH and QE is smaller (< 7 W m−2

and<5 W m−2 respectively).

Appendix B. Calculation of coefficients for anthropogenic heat
flux model

Coefficients for the simple anthropogenic heat flux model (Eq. (2))
have been derived for several locations: North American cities
(Sailor & Vasireddy, 2006), suburbs of Vancouver (Järvi et al., 2011),
cold-climate cities of Helsinki and Montreal (Järvi et al., 2014), and at
the URB and SUB sites Ward et al. (2016a). These coefficients differ, in
part due to variation in building standards (i.e. insulation), energy use
(e.g. air conditioning) and land use (residential, commercial, institu-
tional). To calculate appropriate coefficients for use across London, the
GreaterQF model (Iamarino et al., 2012) is used. As the most recent
GreaterQF data are for 2008, the WFDEI air temperature for 2008 are
used to calculate heating and cooling degree days, with a base human
comfort temperature of 18.2 °C (Sailor & Vasireddy, 2006). Mean daily
QF is compared with mean daily temperature, and the coefficients aF0,1,2
fitted for each borough (Fig. B1). As the data suggest minimal use of air
conditioning (i.e. little increase in QF at high temperatures), in
accordance with expectations for the UK, aF1 is set to zero. The
population density is taken as the mean of resident and workday
values. Using resident/workday population densities alone gave much
larger/smaller aF0 and aF2 values for inner boroughs, particularly those
with contrasting day and night populations, whereas the mean gave a
smaller range of aF0 and aF2 values and fewer extreme values.

Values of aF0 and aF2 are consistently higher for weekdays than
weekends. aF0 ranged from 0.1134/0.1073 W m−2 (cap ha−1)−1 on
weekdays/weekends to 0.2281/0.2119 W m−2 (cap ha−1)−1. aF2 ran-
ged from 0.0038/0.0034 W m−2 K−1 (cap ha−1)−1 on weekdays/
weekends to 0.0076/0.0069 W m−2 K−1 (cap ha−1)−1. In both cases,
the lowest values are for Hackney and the highest for Hillingdon. No
substantial difference is found between inner and outer boroughs, so
the mean of the individual borough values is used for all model grids
(Table B1). These values are slightly bigger than obtained for SUB and
much smaller than for URB (Ward, Kotthaus et al., 2016), which is

unsurprising given the characteristics of the observation sites relative to
the boroughs. Note, Ward et al. (2016a) used Westminster borough
population density (204.58 ha−1) for URB. As the URB site is particu-
larly densely built up, the borough average ρpop is likely an under-
estimation for this area which would explain the very large aF0 values
obtained.

Building energy use is the greatest source of QF, contributing an
average of 79% of the total, less in spring/summer more in autumn/
winter (Fig. B2). Values range between 67% (Havering) and 92% (City
of London). The vehicle contribution ranges from 6% (City of London)
to 28% (Havering) with an average contribution of 15%. Human
metabolism contributes between 2% (City of London) and 7% (Haver-
ing), with an average of 6%. Although building energy use varies
substantially with temperature, the overall composition of QF is fairly
constant throughout the year and QF is much lower in summer than
winter.

For scenario 5, a 10% reduction in vehicle use is approximated by
reducing aF0 by 0.10 × 0.15 = 1.5%. A 20% reduction in building
energy use is approximated by reducing aF0 and aF2 by
0.20 × 0.79 = 15.8%. The resultant adjusted coefficients for scenario
5 are aF0 = 0.1346/0.1260 W m−2 (cap ha−1)−1 and aF2 = 0.0045/
0.0041 W m−2 K−1 (cap ha−1)−1 for weekdays/weekends. For scenar-
io 3, aF0 was reduced to 0.1457/0.1384 W m−2 (cap ha−1)−1 for
weekdays/weekends. These values were derived by fitting to
GreaterQF data with the vehicle contribution halved. If instead, the
approximation had been to reduce aF0 by 0.5 × 15% = 7.5%, slightly
larger values of 0.1505 and 0.1409 W m−2 (cap ha−1)−1 would have
been obtained; this difference is mainly due to the variation in building
energy use with temperature.

Appendix C. Estimating change in building density with
population growth

Population growth for scenario 4 is based on GLA (2014) projec-
tions. To house this additional population, it is assumed that an increase
in building density is required. For scenarios 4ii-iii additional buildings
are constructed on available land (i.e. vegetated and bare soil surfaces).
To estimate the change in the surface cover fraction of buildings
required, data from the base run are used to derive a relation between
the fraction of buildings and population density (Fig. C1). From this
relation (fitted to the solid circles in Fig. C1), the change in modelled
building fraction between the current and projected population is
calculated and added to the current building fraction to give the new
building fraction (empty circles).

The non-linear equation accounts for the changing relation between
building fraction and population density: as population density in-
creases buildings are taller and living space decreases. However, this is
a simplistic approach. The relation should not be used for very low
population densities (below 10.5 ha−1 it returns fbuildings < 0). The fit is
based on the mean of day- and night-time populations, so includes
workers and residents, and the fraction of all buildings, so includes
residential, commercial, industrial and institutional buildings.
Therefore, the estimated change in fbuildings includes new homes, places
of work and services in an approximate sense, but these are not
explicitly accounted for (nor their varying composition between
boroughs). Furthermore, only the change in building fraction has been
estimated; no additional roads or gardens are considered.

Instead of building horizontally, scenario 4iv considers the case
where land cover fractions are unchanged but the new buildings are
constructed vertically (i.e. new floors added to existing building areas)
so mean building height increases. To estimate the new mean building
height, the current mean building height is multiplied by the ratio of
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Fig. B1. Mean daily anthropogenic heat flux (normalised by population density) for each borough versus mean daily temperature for 2008. Fitted coefficients aF0 [W m−2 (cap ha−1)−1]
and aF2 [W m−2 K−1 (cap ha−1)−1] are given separately for weekdays and weekends; aF1 was set to zero.

Table B1
Mean values of the coefficients derived for the London boroughs (LoBo). Values for URB and SUB are taken from Ward et al. (2016a) (note the night-time population of 47.63 ha−1 has
been used to calculate the SUB values).

LoBo Weekday LoBo Weekend URB Weekday URB Weekend SUB Weekday SUB Weekend

aF0 [W m−2 (cap ha−1)−1] 0.1627 0.1523 0.3743 0.3412 0.1446 0.1330
aF1 [W m−2 K−1 (cap ha−1)−1] 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
aF2 [W m−2 K−1 (cap ha−1)−1] 0.0054 0.0049 0.0073 0.0067 0.0037 0.0038
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new to current fbuildings, giving the same change in building volume as
before. In reality, of course, a mixture of horizontal and vertical
development is likely.
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