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Vandoeuvre-lès-Nancy, France, 3 Université de Lorraine, Loria, UMR nō 7503, Vandoeuvre-lès-Nancy,
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Abstract

In recent years, more and more surgeries under general anesthesia have been performed

with the assistance of electroencephalogram (EEG) monitors. An increase in anesthetic

concentration leads to characteristic changes in the power spectra of the EEG. Although

tracking the anesthetic-induced changes in EEG rhythms can be employed to estimate the

depth of anesthesia, their precise underlying mechanisms are still unknown. A prominent

feature in the EEG of some patients is the emergence of a strong power peak in the β–fre-

quency band, which moves to the α–frequency band while increasing the anesthetic con-

centration. This feature is called the beta-buzz. In the present study, we use a thalamo-

cortical neural population feedback model to reproduce observed characteristic features in

frontal EEG power obtained experimentally during propofol general anesthesia, such as this

beta-buzz. First, we find that the spectral power peak in the α– and δ–frequency ranges

depend on the decay rate constant of excitatory and inhibitory synapses, but the anesthetic

action on synapses does not explain the beta-buzz. Moreover, considering the action of pro-

pofol on the transmission delay between cortex and thalamus, the model reveals that the

beta-buzz may result from a prolongation of the transmission delay by increasing propofol

concentration. A corresponding relationship between transmission delay and anesthetic

blood concentration is derived. Finally, an analytical stability study demonstrates that

increasing propofol concentration moves the systems resting state towards its stability

threshold.

Introduction

General anesthesia is an indispensable tool in today’s medical surgery. It has been reported

that in North America around 40 million patients receive general anesthesia for surgery [1, 2]
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each year. However, despite the widespread use of general anesthesia in today’s medical prac-

tice, its precise underlying mechanism is still unknown. During anesthesia, the anesthetics

actions on the microscopic single neuron scale lead to specific changes in macroscopic-scale

observables such as electroencephalogram (EEG) signals and the behavior of patients, such as

loss of consciousness. For instance, the anesthetic propofol induces anesthesia accompanied by

the increase in EEG spectral power in the δ– (0–4 Hz) and α– (8–15 Hz) frequency bands over

the frontal head region [3, 4]. As the dose of propofol is slowly increased, high-amplitude, low-

frequency oscillations emerge in EEG patterns [5, 6] and, in the phase of sedation, some sub-

jects exhibit strong β-activity (15–30 Hz). Approaching the point of loss of consciousness

(LOC), the slow EEG rhythms are more enhanced [7] and the EEG power peak in the β–band

shifts to the α–frequency range [8–10]. This power shift from β to α–band is called beta buzz.
Further increasing the anesthetic level causes burst suppression, which is characteristic of deep

anesthesia [1, 11, 12].

In the present work, we employ a thalamo-cortical neural population feedback model to

reproduce propofol-induced changes in EEG-spectral power within δ–, α- and β–frequency

bands in the phase of sedation, i.e. before LOC occurs. To this end, to better understand the

mechanisms underlying such specific features, we investigate the role of model parameters in

the generation of spectral power peaks in these frequency bands. In this context, a previous

work has considered the role of the synaptic [13] and extra-synaptic [4] connection strengths

and addressed the question which thalamo-cortical sub-circuits contribute to the generation of

δ– and α–activity [13]. In the present study, we focus on the anesthetic effect of synaptic time

scales and the feedback delay between cortex and thalamus on spectral power modulations.

We show how propofol modulates the synaptic time scales and the cortico-thalamo-cortical

(CTC) transmission delay and how this modulation results in the induced α– and δ–peak and

beta buzz pattern in EEG power spectrum. It is important to note that the current work does

not aim to explain the underlying neurophysiological mechanism of characteristic EEG

changes by rather complex dynamical models as some previous studies [8, 14]. In contrast, we

propose a basic mechanism supported by a rather simple but neurophysiologically realistic

thalamo-cortical population model.

Several previous modeling studies suggest that the time period of EEG α–rhythm depends

on the transmission delay in the cortico-thalamic loop [15–18]. In these studies, similar to the

study presented here, the transmission delay represents an effective population model entity

that captures various delays along the pathway between thalamus and cortex. A recent study of

Saggar et al. [19] has explored the effects of intensive meditation training on the parameters of

a mean-field thalamo-cortical model. The authors report an observed reduction in the individ-

ual subject’s EEG α–frequency during meditation training. The corresponding model fit to the

EEG power spectrum shows that the cortico-thalamic model feedback delay increases with

training. This indicates an increase in transmission delay between cortical and thalamic neural

structures [20].

Moreover, various model studies [21–23] have illustrated that the axonal transmission

delays affect neural network interactions without changing the intrinsic input-output proper-

ties of individual neurons. Lumer et al. [21] concluded that the examination of the axonal

transmission delays represents a simple way to test whether the observed oscillations result

from a network property.

It is not well understood yet how anesthetic action on single neurons lead to characteristic

modulations in EEG rhythms [24]. For instance, Ching et al. [8] have developed a thalamo-

cortical model that suggests the importance of the thalamus in synchronous frontal α–activity

in the EEG oscillations. In addition, it has been proposed that anesthetics disrupt neural syn-

chrony including those which contribute to consciousness. Swindale [25] suggested that, in
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order to achieve synchronous firing in cortical neurons, the transmission time between any

two cortical regions must be independent of path length over all the connected sites. Since the

path length between different cortical regions varies between structures, the resulting delay

variations between neural structures must be compensated for. Indeed, there is an enormous

body of evidence for pathlength compensation in a variety of species and brain regions [26–

28]. Moreover there is the hypothesis that anesthetic agents may affect the signal transmissions

along the axonal fibers, in particular, the myelinated fibers [29, 30], which however is under

discussion. Assuming that the physical properties of the axons such as their length and diame-

ter remain unaffected by anesthetics, hypnotic agents must change the transmission delays

along different axons [25]. Hudetz and Alkire have proposed that a mechanism for the prefer-

ential disruption of cortical feedback observed during general anesthesia may be that anesthet-

ics impede axonal conduction along unmyelinated fibers [31].

In addition to the latter experimental and theoretical aspects, a closer look at the network

structure along the pathways between cortex and thalamus reveals more evidence for an anes-

thetic effect on the transmission delay between both areas. Several sub-cortical structures are

located along the pathways, such as the globus pallidus, the striatum and the hypothalamus

[1]. Although there is evidence that these structures do not control the loss of consciousness

directly [31], they may affect indirectly the way how sedation progresses. The neurons and syn-

apses in the different neural structures along the diverse pathways are known to be affected by

anesthetics, which may prolong the neurons and synapses time scales. Candidates for affected

synaptic receptors are GABAergic, which are widely distributed in the brain and which are

known to be sensitive to most anesthetic agents. It has been shown experimentally, that anes-

thetics prolong the response time of inhibitory GABAergic synapses by desensitisation in the

range of several tens of milliseconds [32, 33].

To take into account the large number of possible anesthetic effects in a model, we assume

that the delay between cortex and thalamus changes with anesthetic concentration and derive

the mathematical relation between feedback delay and anesthetic blood concentration on the

basis of the experimental data. We investigate how the EEG oscillatory frequency in δ– and α–

frequency ranges could be varied by anesthetic effects on the transmission delays along path-

ways between cortex and thalamus during propofol-induced anesthesia.

Materials and methods

EEG acquisition during propofol-induced anesthesia

The EEG recording example is from a previously published study [34]. In brief, after obtaining

the regional ethical committee approval, and written informed consent, ten healthy volunteers

(aged 18 to 42 years) recruited from the department of Anaesthesia, Waikato District Health

Board, Hamiton, New Zealand were studied. The EEG signal was recorded at a sampling rate

of 256 Hz with 16 bit precision from a frontal electrode channel (FP7-FP1) using an Aspect A-

1000 EEG machine (Aspect Medical Systems, Natick, MA, USA). Propofol was infused intra-

venously at 25 mg/min until the subject lost responsiveness to verbal command, which

occurred typically after about 5 min. Low and high pass zero-phase butterworth filters were

applied at 0.5 and 70 Hz respectively, as was a notch filter set at 50 Hz. Full methodological

details are available in Ref. [34].

Thalamo-cortical model

In this section, we describe the thalamo-cortical neuronal population model used in this study,

based on the work of Hutt and Longtin [35]. The anatomical structure of this model is similar

to the models of Robinson et al. [18, 36, 37], however extends them by distinguishing the
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excitatory and inhibitory synapses as proposed by Hashemi et al. [13]. The model describes a

network of four populations of neurons: cortical pyramidal neurons (E), cortical inhibitory

neurons (I), thalamo-cortical relay neurons (S) and thalamic reticular nucleus (R), as shown

schematically in Fig 1. The pyramidal neurons excite the cortical inhibitory neurons and

receive inhibitory input from them. In addition, pyramidal neurons receive excitatory input

from relay neurons and project back to the same nuclei. The connection from pyramidal neu-

rons to relay cells (cortico-thalamic connection) is associated with time delay τTC, whereas the

latency for signals in reverse direction (thalamo-cortical connection) is τCT. The reciprocal

long-range excitatory interaction between pyramidal cells and relay neurons, called CTC loop

in the following, would generates a positive feedback. However, the incessant excitation in this

loop is prevented by the interposed inhibition to relay neurons, which originates from reticular

nucleus. The reticular nucleus receives excitatory input from axon collaterals of pyramidal and

relay neurons, while the cortex-reticular connection is associated with a constant time delay

τTC [15, 38].

Fig 1. Schematic representation of a thalamo-cortical module. The model consists of four types of neural

populations, namely, cortical excitatory (E) and inhibitory neurons (I), thalamo-cortical relay (S), and thalamic

reticular neurons (R). The blue arrows show excitatory connections while the red connections with filled circle

ends indicate inhibitory connections. The connections from cortex to thalamus is associated with the time

delay τTC, whereas the latency for signals in reverse direction is τCT. The external input to the system

originating from subthalamic areas is considered as a non-specific input to relay neurons.

https://doi.org/10.1371/journal.pone.0179286.g001
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Note that several previous studies have considered a similar transmission delay in the tha-

lamo-cortical and cortico-thalamic connections, and the time delay associated with CTC loop

have been referred to as thalamo-cortical or cortico-thalamic delay. However, as presented in

Ref. [39], axonal conduction from cortex to thalamus is much slower than in the reverse direc-

tion, i.e., τTC> τCT. In this study, we distinguish the time delay in thalamo-cortical and cor-

tico-thalamic connections. The conduction delay in the signal transmission from cortex to

thalamus and back, denoted by τ, is referred to as CTC delay, i.e., τ = τTC + τCT. Moreover, we

consider an identical time delay for connections from cortex to relay and reticular cells. Thus,

the time to traverse the loop from cortex to reticular nuclei, reticular to relay cells, and relay

nuclei back to cortex (esre loop) is equivalent to CTC delay.

Consider spatially extended populations of excitatory and inhibitory neurons on the order

of a few hundred micrometers. Furthermore, assume that the neural population of type a
receives firing activity Pe(x, t) and Pi(x, t) at spatial location x and time t, which are originated

from excitatory and inhibitory cells, respectively. Then, presynaptic population firing rates

arrive at excitatory (e) or inhibitory (i) synapses and convert to the mean excitatory and inhibi-

tory postsynaptic potentials Ve
aðtÞ and Vi

aðtÞ, respectively, by the convolution [40]:

Ve;iðx; tÞ ¼
Z t

� 1

he;iðt � t
0ÞPe;iðx; t

0Þdt0; ð1Þ

where the functions he(t) and hi(t) indicate the mean synaptic response function of excitatory

and inhibitory synapses, respectively, with

heðtÞ ¼ ae
aebe

be � ae
ðe� aet � e� betÞ; hiðtÞ ¼ aifjðpÞ

aibi
bi � ai

ðe� ai t � e� bitÞ : ð2Þ

Here, 1/αe and 1/αi are the characteristic rise times of the response function for excitatory and

inhibitory synapses, respectively, and 1/βe and 1/βi are the corresponding characteristic decay

times. The parameters ae and ai stand for the average synaptic gains i.e., the level of excitation

and inhibition, respectively. Furthermore, the function fj(p) reflects the action of propofol on

inhibitory GABAergic receptors located in the cortex (j = C) and in the thalamus (j = T). The

function fj for j 2 {C, T} will be described in the following subsection.

For convenience, the integral Eq (1) can be formulated to differential equations. Applying

the second-order temporal derivative operators Le,i(@/@t) [15, 22, 37]

L̂kð@=@tÞ ¼
1

akbk

@
2

@t2
þ

1

ak
þ

1

bk

� �
@

@t
þ 1; ð3Þ

with k = e, i on Eq (1) yields

L̂kVkðx; tÞ ¼ akPkðx; tÞ: ð4Þ

In each neural population, the mean population firing rate Pe,i depend on the effective

mean potential and can be approximated by a sigmoidal function. Following our previous

works [4, 13, 41], we identify the mean population firing rates with the transfer function S(V)

derived from properties of type-I neurons [42]

SðVaÞ ¼ SigðVa; 0Þ � SigðVa; rÞ; ð5Þ

with

SigðVa; rÞ ¼
Smaxa

2
1þ erf

Va � ya � rs2
affiffiffi

2
p

sa

 ! !

e� rðVa � yaÞþr2s2
a=2; ð6Þ
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where Smaxa denotes the maximum population firing rate, θa indicates the mean firing threshold

of neurons, and σa is related to the standard deviation of firing thresholds in population of

type a. In contrast to the standard sigmoid function Sig(Va, 0) assuming McCullogh-Pitts neu-

rons [43], the model Eqs (5) and (6) assumes firing properties of type-I neuron and the transfer

function Eq (5) is not anti-symmetric to its inflection point anymore [42, 43]. Note that ρ!
1 yields the standard formulation assuming McCulloch-Pitts neurons with Sig(V, ρ!1) =

0. In the following, the mean firing rate function in the cortex SC[�] is considered to be differ-

ent to the thalamic firing rate function ST[�] while, for the sake of simplicity, it is identical in

both cortical structures and both thalamic structures.

Modeling the propofol effect on neural populations

Now, there is a general agreement that anesthetics directly bind to specific molecular targets

and there is not a single mechanism of action for all anesthetic agents [44–46]. Until today,

various molecular targets have been identified to contribute to general anesthesia [24, 47].

Among different ligand-gated ion channels, GABAA receptors are the most important molecu-

lar target for the action of many anesthetic drugs in the brain [48, 49]. According to the experi-

mental evidence, the anesthetic propofol binds to both GABAA and glutamatergic receptors.

However, it has a much larger effect on GABAA receptors as compared to its effect on AMPA

and NMDA receptors [24, 47]. In addition, the experimental observations indicate that propo-

fol increases the decay time constant of inhibitory GABAA synapses, and hence increases the

total charge transfer in these synapses [47]. Kitamura et al. [50] have shown that propofol has a

negligible effect on the amplitude of synaptic response functions in cortical neurons, whereas

experimental findings of Ying and Goldstein [51] in relay neurons in the thalamic ventrobasal

complex indicate a markedly increase in amplitude, decay time, and thus charge transfer of

GABAA receptors during propofol application. It is important to point out that GABAA recep-

tors are also found outside the synapse. Tonic inhibitory currents at these extra-synaptic

GABAA receptors are also potentiated by general anesthetics [52, 53]. Although extra-synaptic

inhibition affects the EEG during anesthesia [4], the current work neglects this effect for

simplicity.

In order to integrate the mentioned experimental observations into the neural model, the

effect of propofol on GABAergic receptors is modeled by bi ! b
0

i =p with p� 1 [54], where b
0

i

denotes the decay rate of inhibitory synapses in the absence of propofol (p = 1). Here, the fac-

tor p indicates the on-site concentration of propofol in the neural populations, and p = 1

reflects zero anesthetic concentration i.e., the baseline condition. The administration of propo-

fol (p> 1) leads to a decrease in the decay rate constant βi of inhibitory synapses and hence an

increase in the charge transfer of these synapses. Similar to our previous work [13], in order to

distinguish the propofol effect on the amplitude of inhibitory synaptic response function in

the cortex and in the thalamus, the functions fC(p), and fT(p) are defined as

fCðpÞ ¼ aiGða; b
0

i Þ=Gða; biÞ; ð7Þ

fTðpÞ ¼ aiArðpÞGða; b
0

i Þ=Gða; biÞ; ð8Þ

with

Gða; bÞ ¼
ab

a � b
ða=bÞ

� b

a � b � ða=bÞ
� a

a � b

� �

:

In accordance with the above mentioned experimental observations, fC(p) fixes the maximum

of the cortical response function, whereas the function Ar(p) allows the inhibitory response

Anesthetic action on the transmission delay between cortex and thalamus
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amplitude to change for thalamic receptors. An optimal fit to experimental data has revealed

Ar(p)�p0.42 [13].

Taken together, the propofol effects on the thalamo-cortical module shown in Fig 1 are

modeled as a decrease in decay rate of inhibitory synaptic response function by βi! βi/p, an

increase in the charge transfer in cortical inhibitory transmissions I! E and I! I by the func-

tion fC(p), and an increase in the charge transfer in thalamic inhibitory transmission R! S by

the function fT(p). Note that the propofol prolongs the decay phases only in inhibitory synap-

ses, while other synaptic rates are unaffected by propofol.

Model equations

The mean postsynaptic potentials Vc
a, evoked at excitatory (c = e) and inhibitory (c = i) synap-

ses, for a 2 {E, I, R, S} in the cortical pyramidal neurons (E), cortical inhibitory neurons (I), the

thalamo-cortical relay neurons (S) and thalamic reticular neurons (R) obey

L̂eVe
Eðx; tÞ ¼ KEEðxÞ � SC½Ve

Eðx; tÞ � V
i
Eðx; tÞ�þ

KESðxÞ � ST ½Ve
Sðx; t � tCTÞ � Vi

Sðx; t � tCTÞ�;

L̂iVi
Eðx; tÞ ¼ fCðpÞKEIðxÞ � SC½Ve

I ðx; tÞ � V
i
Iðx; tÞ�;

L̂eVe
I ðx; tÞ ¼ KIEðxÞ � SC½Ve

Eðx; tÞ � V
i
Eðx; tÞ�;

L̂iVi
Iðx; tÞ ¼ fCðpÞKIIðxÞ � SC½Ve

I ðx; tÞ � V
i
Iðx; tÞ�;

L̂eVe
Sðx; tÞ ¼ KSEðxÞ � SC½Ve

Eðx; t � tTCÞ � Vi
Eðx; t � tTCÞ� þ Iðx; tÞ;

L̂iVi
Sðx; tÞ ¼ fTðpÞKSRðxÞ � ST ½Ve

Rðx; tÞ�;

L̂eVe
Rðx; tÞ ¼ KREðxÞ � SC½Ve

Eðx; t � tTCÞ � Vi
Eðx; t � tTCÞ�þ

KRSðxÞ � ST ½Ve
Sðx; tÞ � V

i
Sðx; tÞ�;

ð9Þ

where Kab(x) � S[V(x, t)] =
R

O Kab(x − y)S[V(y, t)]dy. The spatial kernel functions Kab(x − y)
reflect the synaptic connection strengths in population a originating from population b in the

spatial domain O. According to previous studies, we assume that the EEG can be described by

a spatially constant neural population activity [15, 55] in a good approximation. In addition,

Kab(x − y) = Kabδ(x − y) with the Dirac function δ(�) and thereby Kab(x) � S[V(x, t)] =

KabS[V(x, t)]. The additional activity I(x, t) introduces an external input to the system, which

may originate from other neural populations. Here the external input is considered as a non-

specific input to relay neurons

Iðx; tÞ ¼ I0 þ xðx; tÞ; ð10Þ

where I0 = const is the input mean value, and ξ(x, t) indicates zero-mean Gaussian white noise

with

hxðx; tÞi ¼ 0; hxðx; tÞxðx0; t0Þi ¼ 2kdðt � t0Þdðx � x0Þ; ð11Þ

and κ is the intensity of the noise and hi denotes the ensemble average.

The nominal values the model parameter are displayed in Table 1 in the absence of

anesthetics.

Anesthetic action on the transmission delay between cortex and thalamus
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Theoretical power spectrum

The set of model Eq (9) can be written as

L̂ð@=@tÞXðtÞ ¼ ΦðXðtÞÞ þΨðXðt � tTCÞÞ þ ΞðXðt � tCTÞÞ þ IðtÞ; ð12Þ

where those terms that have delays are separated from those terms without delays.

Here, L̂ð@=@tÞ 2 RN�N is the diagonal matrix operator including the temporal operators

L̂e;i (c.f. Eq (3)), and XðtÞ 2 RN indicates the activity variable vector with dimension N. Con-

sidering Eq (9), XðtÞ ¼ ðVe
E;V

i
E;V

e
I ;V

i
I ;V

e
S ;V

i
S;V

e
RÞ
>
2 RN , where N = 7. In addition, the exter-

nal input is given by I(t) = I0 + ξ(t), where I0 = (0, 0, 0, 0, I0, 0, 0)> and ξ(t) = (0, 0, 0, 0, ξ(t), 0,

0)>. Here, the high index> denotes the transposed vector or matrix.

Now, the time-independent resting state X0 2 R
N with L̂ð@=@tÞ ¼ L̂ð0Þ can be obtained

from X0 = F(X0) + C(X0) + X(X0) + I0. Linearizing Eq (12) about the resting state X0 yields

L̂ð@=@tÞYðtÞ ¼ AY ðtÞ þ BYðt � tTCÞ þ CYðt � tCTÞ þ ξðtÞ; ð13Þ

where Y(t) = X(t) − X0 denotes the small deviations from the resting state of the system, and A,

B, C 2 RN�N are constant quadratic matrices such that A� JF(X0), B� JC(X0) and C�

Table 1. Model parameters, their symbols, and nominal values for two parameter sets.

Parameter Symbol Nominal value

Maximum firing-rate of cortical population SmaxC 130 Hz

Maximum firing-rate of thalamic population SmaxT 100 Hz

Mean firing threshold of cortical population VthC 25 mV

Mean firing threshold of thalamic population VthT 25 mV

Firing rate variance σ 10 mV

Type-I population effect constant ρ 0.05 mV−1

Excitatory synaptic rise rate αe 1000 s−1

Excitatory synaptic decay rate βe 100 s−1

Inhibitory synaptic rise rate αi 500 s−1

Inhibitory synaptic decay rate βi 10 s−1

Excitatory synaptic gain ae 1 mVs

Inhibitory synaptic gain ai 1 mVs

Synaptic strength from E to E neurons KEE 0.1 mVs

Synaptic strength from E to I neurons KIE 0.3 mVs

Synaptic strength from E to S neurons KSE 0.8 mVs

Synaptic strength from E to R neurons KRE 0.2 mVs

Synaptic strength from I to I neurons KII 0.2 mVs

Synaptic strength from I to E neurons KEI 0.6 mVs

Synaptic strength from S to E neurons KES 0.8 mVs

Synaptic strength from S to R neurons KRS 0.1 mVs

Synaptic strength from R to S neurons KSR 0.8 mVs

Constant external input I0 0.1 mV

Intensity of external thalamic noise κ 0.5 mV

Cortico-thalamic delay transmission τTC 60 ms

Thalamo-cortical delay transmission τCT 20 ms

Time delay transmission in CTC loop τ 80 ms

https://doi.org/10.1371/journal.pone.0179286.t001
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JX(X0), where JF(X0), JC(X0) and JX(X0) are the Jacobian matrices of functions F, C and X,

respectively, computed at the resting state X0.

By considering the specific choice of external input to the j-th element of the activity vari-

able, it can be shown that the power spectrum of i-th element just depends on one matrix com-

ponent of the matrix Green’s function (see S1 Appendix)

PiðoÞ ¼ 2k
ffiffiffiffiffiffi
2p
p
j~Gi;jðoÞj

2
; ð14Þ

where ω denotes the complex angular frequency.

In the following, to compute the EEG-spectral power, we assume that the EEG is generated

by the population activity of pyramidal cortical cells Ve
E [18, 56, 57]. Moreover, it has been

extensively demonstrated that linear approximations about a time-invariant resting state are

sufficient for the prediction of EEG variables [15, 37, 58–60]. By applying the aforementioned

approach, one can compute analytically the EEG power spectrum under the assumption of

spatial homogeneity [35] and gains [13]

PEðoÞ ¼ 2k
ffiffiffiffiffiffi
2p
p
j~G1;5ðoÞj

2
: ð15Þ

Here, the external input drives directly the excitatory postsynaptic potential Ve
S in relay neu-

rons (see S2 Appendix for definition of ~GðoÞ components). It is important to point out that,

although two time delays τTC and τCT appear in the system equations the EEG spectral power

depends on the their sum, i.e., the CTC transmission delay (cf. section Constrains on system

stability).

Stability analysis of the linear model

In the following, to investigate the stability of the system resting state, we neglect the external

noisy input ξ(t), since the asymptotic stability of linear systems does not depend on small

external perturbations. Theory of linear delayed systems states that the solution of Eq (13) is a

linear superposition of single mode solutions Y(t) = Ceλt, l 2 C and the characteristic equation

for the eigenvalue λ can be written as

PðlÞ þ e� ltQðlÞ ¼ 0 : ð16Þ

The terms P(λ) and Q(λ) are polynomial in λ. Eq (16) is transcendental and has an infinite

number of complex roots λ.

The solution of Eq (13) is asymptotically stable if and only if all the characteristic roots λ
have negative real parts, i.e., Re(λ< 0). The solution is called unstable if there exists a root with

positive real part. Although a large number of studies have been devoted to obtain exact stabil-

ity conditions for delayed differential equations such as Eq (13), this problem is still unsolved

for a wide class of model types [61–63]. To this end, typically numerical methods are employed

such as numerical integration methods [64, 65], employing the Lambert function [66, 67], the

discretization of the solution operator as implemented in the software package DDE-BIF-

TOOL [68, 69], or discretising the infinitesimal generator as implemented in the software

package TRACE-DDE [70, 71]. In order to obtain numerically the characteristic roots of a

transcendental equation, we have used the spectral discretization approach based on the dis-

cretization of the PDE-representation [65, 72]. This method turns the infinite-dimensional

problem of the numerical computation of the characteristic roots into a finite-dimensional

eigenvalue problem for a suitable matrix [70, 71], see S3 Appendix.

We also employ an analytical approach to obtain stability conditions for the thalamo-corti-

cal system, and we compare them to the numerical solutions. The method used in this study is
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analytically tractable, in particular for high-order equations. This method treats the duration

of the time delay as a bifurcation parameter to seek whether or not varying the delay can

change the stability characteristics of the resting state. Increasing the delay value, a bifurcation

occurs if the resting state becomes unstable and the characteristic roots λ traverse the imagi-

nary axis. In this approach, finding a delay value which induces instability in the system

reduces to the problem of finding positive real roots of the related polynomial equation. The

method is based on the following statement (for the details see Ref. [73]):

Consider a system of delay differential equations whose associated characteristic equation is

given by

XN

n¼0

anl
n
þ e� lt

XM

n¼0

bnl
n
¼ 0:

Assume that the resting state is stable in the absence of delay (τ = 0). Then, increasing delay

value there exists a critical delay τ� > 0 for which the resting state becomes unstable if and

only if the characteristic polynomial PðOÞ defined as

X

n

ð� 1Þ
na2nO

n

 !2

þ O
X

n

ð� 1Þ
na2nþ1O

n

 !2

¼
X

n

ð� 1Þ
nb2nO

n

 !2

þ O
X

n

ð� 1Þ
nb2nþ1O

n

 !2

;

has a positive real root O� = (ω�)2, where λ = iω, o 2 R.

Therefore, at first one has to determine the stability of the resting state in the absence of

delay (τ = 0). If the resting state is stable when τ = 0, then for τ> 0, we investigate whether

PðOÞ has any positive real root. If PðOÞ has not any positive real root, increasing τ does not

lead to any change in the stability of the resting state. Conversely, if PðOÞ has a positive real

root, there is a critical value for delay τ for which causes a bifurcation, and destabilizes the rest-

ing state of the system.

To determine whether a characteristic polynomial has any positive real root or not, it is not

necessary to compute the roots explicitly. Instead, it is merely sufficient to apply simpler

approaches such as Descartes’ Rule of Signs. This method determines the maximum number

of positive and negative real roots of a polynomial equation. If the number of sign changes is

odd, a positive real root is guaranteed. If, however, the number of sign changes is even, one has

to use a more general approach such as the so-called Sturm sequences (see Ref. [73]).

Identification of the EEG spectral peaks

To compute the peaks of EEG power spectrum, we relate the maxima of spectral power to the

roots of its characteristic equation i.e., the roots of denominator of system Green’s function.

Considering λ = γ ± 2πiν as a characteristic root, γ and ν illustrate the damping rate and the

frequency of corresponding power peak, respectively. The δ– and α–power peaks are defined

as ν 2 (0–4 Hz) and ν 2 (8–15 Hz), respectively.

Note that in the case of large damping rate in a specific frequency band, we may not observe

the related spectral power peak in the plotted power spectrum, although the imaginary parts of

characteristic roots are not necessarily equal to zero. In this case, the first derivative of the

power spectrum has no roots in that frequency range. In Results section, we determine the

spectral power peaks by computing the system characteristic roots and for the cases of large

damping rates, we also compute the roots of first derivative of power spectrum.
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Results

The effect of thalamo-cortical time-scales on EEG power peaks

At first we investigate how the spectral power peaks in δ– and α–frequency ranges depend on

the thalamo-cortical time scales, i.e. synaptic time constants and the CTC transmission delay.

Then, by taking into account the impact of time scale parameters of the system on the model

behavior, we show that the model is able to reproduce well the observed specific features in

frontal EEG power spectrum during propofol-induced anesthesia.

Fig 2 shows the impact of increasing excitatory and inhibitory synaptic rate constants on

the approximate frequency of the α–power peak. Fig 2A illustrates that the decay rate constant

of excitatory synapses βe heavily affects the location of α–power peak frequency. Note that for

small excitatory decay rates βe< 40 Hz no α–band spectral power peak is present. This result

reveals the crucial role of the excitatory synaptic decay time in the generation of α–power peak

frequency. Fig 2B–2D illustrate well that the rise rate of excitatory synapses αe, and both rise

and decay rate of inhibitory synapses, αi and βi, respectively, have an insignificant effect on the

α–power peak frequency.

Fig 2. The α–peak depend on synaptic time constants. (A) Increasing βe increases the α–power peak frequency. The red color shows the region βe < 40

Hz where no spectral power peak in the α–range can be observed. (B) The α–peak frequency remains more or less unchanged by the increase in αe. (C)

The increase in βi has an insignificant effect on α–power peak frequency, whereas (D) it remains unaffected by the increase in αi. In all panels, unchanged

parameters are taken from Table 1.

https://doi.org/10.1371/journal.pone.0179286.g002
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Fig 3 shows how the damping rate of α–activity is affected by the increase in excitatory and

inhibitory synaptic time constants. In Fig 3A, it can be seen that the damping rate of α–activity

considerably increases with increasing the excitatory decay rate constant βe. This leads to an

increase in α–power, since the system moves toward an instability point. Note that for small

values of βe, due to the high damp of α–oscillation, no spectral power peak can be observed in

the corresponding frequency band (cf. Fig 2A). Moreover, in Fig 3C, we observe that the α–

peak damping rate slightly decreases as the the inhibitory decay rate βi increases, whereas Fig

3B and 3D illustrate that the damping rate of α–activity remains unaffected by the increase in

excitatory and inhibitory rise rates αe and αi.
Briefly, these results demonstrate that the excitatory decay rate constant plays a critical role

in α–power generation, whereas the rise time constants of excitatory and inhibitory synapses

do not affect the α–power activity.

In a similar manner, Fig 4 illustrates how the peak frequency of δ–activity depends on the

excitatory and inhibitory synaptic time constants. Increasing the excitatory decay rate slightly

increases the δ–peak frequency, cf. Fig 4A. Moreover, Fig 4C shows that a small increase in the

inhibitory decay rate constant βi at small values yields a rapid decrease in δ–power peak fre-

quency. Most importantly, βi> 75 Hz makes the power peak frequency at δ–range vanish (i.e.,

Fig 3. Modulation of damping rate of α–activity subjected to excitatory and inhibitory synaptic time constants. (A) The α–peak damping rate

considerably increases by the increase in βe, whereas (C) it slightly decreases as βi increases. (B, D) Damping rate of α–activity remains unaffected by the

increase in αe and αi. In all panels, unchanged parameters are taken from Table 1.

https://doi.org/10.1371/journal.pone.0179286.g003
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δ–peak frequency is zero since the imaginary parts of characteristic roots in δ–band are zero,

as illustrated by red color). Note that for 30< βi< 75 Hz, the imaginary parts of characteristic

roots in δ–range are not equal to zero (blue line). However, due to the large values of corre-

sponding damping rates, no spectral power peak in δ–band can be observed (i.e., the the first

derivative of the power spectrum has no roots in δ–frequency range, as illustrated by green

color).

Furthermore, in Fig 4B and 4D, we observe that the frequency of spectral power peak within

the δ–band remains constant with respect to parameters αe and αi.
Fig 5 shows the effect of increase in synaptic time constants on the damping rate of δ–activ-

ity. In Fig 5A, we observe that the δ–peak damping rate slightly decreases with the increase in

excitatory decay rate βe, whereas it considerably decreases as the inhibitory decay rate βi
increases (see Fig 5C). Note that due to the high level of δ–power damp for βi> 30 Hz, no

spectral power peak is present in δ–frequency band (i.e., the derivative of power spectrum has

no roots in δ–band, as shown in Fig 4C). Furthermore, from Fig 5B and 5D, it can be seen that

Fig 4. Modulation of δ–peak frequency subjected to excitatory and inhibitory synaptic time constants. (A) The δ–peak frequency slightly

increases with the increase in βe. (B, D) Excitatory and inhibitory rise time constants do not affect the δ–peak frequency. (C) Inhibitory decay time

constant heavily affects the frequency of δ–activity. Note that for 30 < βi < 75 Hz, the imaginary parts of characteristic roots in δ–range are not equal to

zero (blue line), but the derivative of power spectrum has no roots in δ–frequency range (illustrated by green color). For βi > 75 Hz, the imaginary parts

of characteristic roots in δ–range are zero and also the spectral power derivative has no roots (illustrated by red color). In all panels, unchanged

parameters are taken from Table 1.

https://doi.org/10.1371/journal.pone.0179286.g004
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the excitatory and inhibitory rise time constants αe and αi, respectively, do not affect the damp-

ing rate of δ–power activity.

In sum, these results reveal the critical role of inhibitory decay rate constant in δ–power

generation, whereas excitatory and inhibitory rise time constants have no effect on δ–power

modulation.

Besides the synaptic time scales, the delay times of cortico-thalamic and thalamo-cortical

connections τCT and τTC, respectively, may affect the spectral power peaks. Fig 6 presents the

α–power peak frequency with respect to the thalamo-cortical (τCT) and cortico-thalamic (τTC)

transmission delays. In Fig 6A, we observe that the frequency decreases with increasing delay

times and the α–peak frequency is constant on a line τCT + τTC = const. This relation is vali-

dated in Fig 6B revealing that the α–peak frequency depends on the total CTC delay

τ = τCT + τTC only. Our simulations illustrate the similar results for δ–peak frequency (not

shown). This finding is validated in section Constrains on system stability.

To illustrate further how CTC delay times affect the power spectrum, Fig 7 shows theoreti-

cal EEG power spectra for different values of CTC delay τ. For no CTC delay, the power spec-

trum exhibits a peak in the δ–frequency range, but no prominent α–activity (Fig 7A).

Increasing the delay time generates activity at high frequencies in the α–band (at about 15 Hz

Fig 5. Modulation of damping rate of δ–activity subjected to excitatory and inhibitory synaptic time constants. (A) The δ–peak damping rate

slightly decreases by the increase in βe, whereas (C) it considerably decreases as βi increases. (B, D) Damping rate of δ–activity remains constant with

respect to parameters αe and αi. In all panels, unchanged parameters are taken from Table 1.

https://doi.org/10.1371/journal.pone.0179286.g005
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for τ = 0.02 sec in Fig 7B) whose power peak increases in magnitude and decreases in fre-

quency with even larger delay times (Fig 7C). In addition, the second harmonic of the α–peak

occur in the β–frequency range. Essentially even large values of time delay (Fig 7D) generates

multiple power peaks in all frequency bands. In contrast, the CTC delay affects much less the

power peak of δ–activity. These results show that the existence and frequencies of the spectral

power peak of α–activity critically depends on the transmission delay in the CTC circuit,

whereas the presence of δ–power peak is independent of CTC delay values.

In order to take a closer look at the relation between δ– and α–power peaks and CTC time

delay τ, the change in frequency of these peaks with respect to the CTC delay is illustrated in

Fig 8. For small CTC delays (τ< 0.022 sec) EEG power spectra do not exhibit any peaks in α–

frequency range (marked by a horizontal red line in Fig 8A). Moreover the peak frequency in

the α–band abruptly decreases from 15 Hz to 8 Hz, when the CTC delay increases from 0.022

sec to 0.053 sec. A steep line fit to the α–peak frequency modulation (purple line in Fig 8A)

illustrates the high sensitivity of the peak frequency to the CTC delay. Note that for larger

delays, the frequency decreases not that fast with increasing CTC delay. Moreover, for τ>
0.091 sec, more than one peak in the α–range occur.

Conversely, the δ–power peak is very less sensitive to the CTC delay (Fig 8B). By increasing

τ, the δ– peak frequency decreases gradually from 4 Hz to 0.5 Hz.

Fig 6. α–peak frequency depends on feedback delays in the thalamo-cortical system. (A) The frequency of α–power subjected to thalamo-cortical (τCT)

and cortico-thalamic (τTC) delays. (B) The frequency of α–power for different values of the CTC delay τ and τTC with τCT = τ − τCT. In all panels, unchanged

parameters are taken from Table 1.

https://doi.org/10.1371/journal.pone.0179286.g006
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Comparison to experimental EEG power spectrum

By virtue of the insights into the effects of synaptic and feedback time scales, now we are able

to develop a model of anesthetic action explaining the spectral power of experimental EEG

subject to the propofol concentration. Fig 9 presents experimental EEG measured at a frontal

electrode obtained during general anesthesia with propofol in a single subject. During the

experiment, the blood concentration of propofol is increased in time (Fig 9A) leading to a

gradual change of power spectrum in time (Fig 9C). Increasing propofol concentration leads

to an increase in δ– and α–power activities. Moreover, we observe that spectral power

increases at about 20 Hz after 120s whose spectral peak enhances and decreases in frequency

in time down to 12 Hz after 400s. This emergent power peak is known as beta buzz and occurs

in some patients under propofol anesthesia (see S1 Fig). It is a precursor of the patients loss of

consciousness [9].

In order to explain and reproduce both the increase in δ– and α–activity and the beta buzz

activity pattern, we re-consider the previous results on the impact of synaptic time scales and

the CTC delay on the model power spectrum. Increasing levels of the anesthetic propofol

decreases βi and hence varies slightly the frequency of the δ– and α–power peaks, cf. Fig 2 in

accordance to previous own studies [4, 13]. However, the modification of synaptic time scales

does not yield a decrease of the α–peak from large to small frequencies as observed in the

Fig 7. Theoretical EEG power spectra (Eq (15)) for different values of the CTC time delay. In all panels, unchanged parameters are taken from

Table 1.

https://doi.org/10.1371/journal.pone.0179286.g007
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experimental data shown in Fig 9C. Consequently, another anesthetic action mechanism is

necessary to explain the data.

Figs 6–8 reveal that changing the CTC delay τ with the propofol concentration may explain

the emergence and behavior of the beta-buzz activity pattern. To achieve this effect, we pre-

sume that the CTC feedback delay increases while increasing the propofol concentration (see

Fig 9B). Here, it is assumed that the CTC delay τ increases from 0.02 sec to 0.04 sec as the pro-

pofol concentration parameter p increases from p = 1 to p = 1.8 by

tðpÞ ¼ t0 þmðp � 1Þ
n
; ð17Þ

where τ0 = 0.02 sec, and n = 4. The relation between CTC delay τ and the factor p is chosen in

such a way that the value of p = 1.8 corresponds to τ = 0.04 sec leading tom = (0.04sec

− 0.02sec)/(1.8 − 1)n = 0.0488 sec. This choice leads to a gradual decrease in the spectral power

peak, from around 20 Hz to 10 Hz, as observed in experiments. Fig 9D shows the simulation

result (cf. section Theoretical power spectrum) based on the proposed model considering the

propofol effects on inhibitory synapses as well as the time delay transmission. It can be

observed that the EEG spectral power in δ– and α–frequency ranges enhances by increasing

the propofol concentrations. Furthermore, in a close agreement with experimental observa-

tions, the dominant peak frequency in the thalamo-cortical oscillations decreases gradually in

response to incremental increase in propofol concentration. As the factor p increases, the spec-

tral peak frequency approximately shifts from 20 Hz to 10 Hz.

Fig 8. Spectral power peaks in the δ– and α–frequency range depend differently on the CTC delay. (A) For τ < 0.022 sec no peak in α–range can be

observed (marked by a horizontal red line), whereas for τ� 0.022 sec the α–power frequency decreases rapidly. (B) The peak frequency in the δ–

frequency range decreases monotonically with increasing CTC delay τ. In all panels, unchanged parameters are taken from Table 1.

https://doi.org/10.1371/journal.pone.0179286.g008
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On the basis of these results, we estimate how the CTC delay τ varies with the blood plasma

concentration of propofol. Please re-call that the delay τ is assumed to increase with increasing

factor p according to Eq (17). Assuming that p increases linearly with increasing administra-

tion time, p(T) = ηT + 1 with η = (1.8 − 1)/(400sec − 0sec) = 0.002 Hz. From these equations,

the value of delay τ depends on the administration time by

tðTÞ ¼ t0 þmðZTÞ
n
; ð18Þ

Fig 9. Experimental and theoretical spectrogram during propofol-induced anesthesia. (A) Effect site

concentration of propofol (Ce) as calculated from population based pharmacokinetic modelling (see e.g. [74,

75]) with respect to administration time. (B) To reproduce the shift in the dominant spectral power frequency, it

is assumed that the CTC delay τ increases with propofol concentrations according to Eq (17). (C) The

spectrogram of frontal EEG power observed in a single subject while the propofol concentration increases. (D)

The spectrogram of simulation results based on the model.

https://doi.org/10.1371/journal.pone.0179286.g009
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see Fig 10A. Now by considering the values of Ce with respect to T and τ subjected to T, we can

estimate how the time delay τ varies with the propofol concentration (see blue line in Fig 10B).

To this end, fitting the function

tðCeÞ ¼
aCke
bþ Cke

ð19Þ

to the experimental data yields the wanted relationship between the CTC delay transmission

and the propofol concentration. In Fig 10B, the dashed red line illustrates the fitted function

Fig 10. (A) According to Eq (18), the time delay τ is plotted with the respect to administration time (T).

Note that inserting p(T) = ηT+1 into Eq (17) gives the relation Eq (18). (B) From panels A and Fig 9A, time

delay τ is plotted with the respect to propofol concentration Ce (blue line). The function Eq (19) is fitted

to the extracted curve (dashed red line).

https://doi.org/10.1371/journal.pone.0179286.g010
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with a = 0.0203, b = −0.8411, and k = −3.3492. Summarizing, a good estimate of the parameters

in Eq (17) allows to fit the relationship between the thalamo-cortical delay and the propofol

plasma concentration.

Constrains on system stability

Since the power spectrum analysis is valid only if the resting state of the system is stable, we

investigate the conditions which guarantee that the thalamo-cortical system exhibits stable

oscillations. To derive the stability conditions analytically, we need to simplify the model

under study. In the first step, we neglect the cortical inhibitory neurons (I) in the thalamo-cor-

tical system (cf. Fig 1). Several lines of evidence indicate that the thalamus is an important pro-

pofol target-site and thalamic neuronal circuits play a critical role in contributing to propofol

general anesthesia [76–78]. In our previous work [13], we have shown that by neglecting the

cortical inhibitory population, thalamic inhibition is still adequate to reproduce observed

changes in EEG rhythms within δ– and α–activity bands during propofol-induced anesthesia.

In other words, thalamic inhibition balances cortical excitation as cortical inhibition does. Sec-

ondly, as observed in Figs 2 and 4, the rise time constants of the response functions for excit-

atory and inhibitory synapses have no effect on EEG power peaks in δ– and αfrequency

ranges. It is also widely accepted that anesthetic agent propofol prolongs the temporal decay

phase of inhibitory synapses only while the inhibitory rise rate and the synaptic time constants

of excitatory synapses remain unaffected [35]. According to these findings, in a reasonable

approximation, we assume an instantaneous rise of the synaptic response function followed by

an exponential decay phase i.e., αe, αi!1. This approximation simplifies the second-order

temporal operators L̂e;i (cf. Eq (3)) to the first-order operators L̂k ¼ 1þ io=bk ; k ¼ e; i.
Applying these simplifications, the power spectrum of EEG is

PEðoÞ ¼ 2k
ffiffiffiffiffiffi
2p
p
j~G1;5ðoÞj

2
; ð20Þ

where

~G1;5ðoÞ ¼
� K1L̂ie� iotTC

L̂eðL̂eL̂i þ C2Þ þ e� ioðtCTþtTCÞðC3 � C1L̂iÞ
; ð21Þ

with C1 = K2K6, C2 = fT(p)K7K9 and C3 = fT(p)K2K7K8 (see S2 Appendix for definition of Ki).
Thus, the characteristic equation of the system under study (the denominator of ~G1;5) reduces

to a third-order equation, which is analytically more tractable. Our simulations demonstrate

that the mentioned simplifications have no significant effect on the EEG spectral power in δ–

and α–frequency ranges (not shown). It is important to note that since j e� iotTC j¼ 1, the abso-

lute value of numerator of ~G1;5 does not depend to τTC, and thus the spectral power given by

Eq (20) is just affected by the CTC delay τ = τCT + τTC only.

In the following, we employ the stability criterion from section Stability analysis of the lin-

ear model to derive analytical conditions for the stability of the system. In this method, we first

probe the conditions under which in the absence of time delay (τ = 0) the system is stable.

Then, by increasing the delay value, we investigate whether or not there exists a critical delay

for which the system becomes unstable (the introduction of delay yields a bifurcation).

In S4 Appendix), we have shown that the following conditions guarantee the stability of the

system in the absence of delay, and the introduction of a time delay can not cause a bifurcation
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and hence, for τ� 0, the reduced thalamo-cortical model exhibits stable oscillations:

biðC2 þ 2Þ þ beð1 � C1Þ > 0; ðCondition IÞ

C3 þ C2 � C1 þ 1 > 0; ðCondition IIÞ

ð2be þ biÞ
C2 þ 2

be
þ

1 � C1

bi

� �

� ðC3 þ C2 � C1 þ 1Þ > 0; ðCondition IIIÞ

ðb
2

ebiÞ
2
ððC2 þ 1Þ

2
� ðC3 � C1Þ

2
Þ > 0; ðCondition IVÞ

D < 0; or if D � 0 then x1; x2 > 0: ðCondition VÞ

For different anesthetic levels, we consider the parameter space defined by decay rates of

excitatory and inhibitory synapses (βe, βi). Fig 11 shows the parameter regime (shaded areas)

where the system exhibit stable oscillations. The stability thresholds of the parameter regime

that satisfies the stability conditions (I)-(V) are denoted by green lines, whereas those obtained

numerically are encoded in blue lines. Firstly one observes a very close accordance of the ana-

lytical and the numerical stability borders. Secondly, it can be seen that increasing anesthetic

Fig 11. The stability regions with respect to the excitatory and inhibitory synaptic decay rates of the reduced thalamo-cortical model.

The shaded (unshaded) areas represent the parameter regions, where the system exhibits stable (unstable) oscillations. The green lines show

the thresholds of parameter zones that are consistent with the multiple constraints (I)-(V), whereas the stability thresholds obtained numerically

are encoded in blue lines. The area above the red line indicates the physiologic limit defined by βe > βi. Hence, the shaded region with hatching

represents the physiological range of parameter spaces, for which the system is stable. Note that here the CTC delay has a constant value of τ
= 0.04 sec.

https://doi.org/10.1371/journal.pone.0179286.g011
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concentration (factor p) shrinks the stability regions. In other words, the increase in inhibitory

decay rate βi decreases the stability of the system.

It is important to note that the response functions for the inhibitory synapses exhibit a

larger synaptic time constants than the excitatory synapses, i.e., βe> βi. This physiological

limit is equivalent to the parameter region above the line βe = βi (red line). Thus, the hatched

shaded areas in the plot represent the physiologically possible combinations of βe and βi, where

the parameters are consistent with all the stability constraints simultaneously. It can be

observed that a high anesthetic level (e.g., p = 1.8) yields a small physiological region of the

parameter space only, where the system exhibit stable oscillations (see Fig 11E). When p = 1.9,

for the physiological parameter zone βe> βi, there is no region in which the parameters satisfy

the both physiological limit and the multiple stability constrains (see Fig 11F).

Discussion

Anesthetic action on synapses affects spectral power but does not

induce beta-buzz

The anesthetic propofol is known to affect the charge transfer and the response time scales of

synapses and tunes spectral power in the δ– and α–frequency bands. Figs 2 and 3 clearly dem-

onstrate that a decrease of βi by increasing the propofol concentration modifies the frequency

and magnitude of the δ– and α–peak in good accordance to previous work [3, 13]. In addition,

the excitatory and inhibitory rise rates αe,i poorly affect the spectral power in the δ– and α–fre-

quency range. This is in line with a previous own study [13] reproducing experimental power

spectra while neglecting the rise phase of synaptic response activities. This possible neglect of

the synaptic rise phase makes it possible to reduce the model to a well-reduced effective model

whose dynamical features retain the major dynamical mechanisms while pointing out their

importance. In spite of these anesthetic effects on synapses, the synaptic action does not allow

explain the dramatic frequency shift of the beta-buzz shown in Fig 9.

Anesthetic action on cortico-thalamo-cortical (CTC) delay affects the δ–

and α–power and may induce the beta-buzz

Fig 6 shows that the cortico-thalamic and the thalamo-cortical transmission delay plays a criti-

cal role in α–power modulation. For increases of the sum of both delays the peak frequency of

α–power decreases as seen in Figs 7 and 8A. This evolution of spectral power resembles well

the evolution observed experimentally as the beta-buzz observed in Fig 9C [8, 9]. By virtue of

this similarity, we propose the model Eq (19) introducing a relationship between the CTC

delay and the anesthetic blood concentration. The temporal evolution of the spectral power of

the resulting model activity (Fig 9C) resembles well the experimental data.

Several previous modeling studies have explained the α–rhythm by the delayed thalamo-cor-

tical feedback [15, 18, 31, 37, 79, 80]. These hypotheses point out that the α–activity results from

an interaction between two brain structures rather than being generated in single area [81, 82].

Other studies argue that α– and δ– rhythms can be explained by cortical interactions only [60,

83]. Moreover, there is experimental evidence that α–activity has a thalamic origin [84] that is

facilitated by thalamic gap-junctions [85–87] or extra-synaptic GABA-receptors [4].

Taking together the myriade of previous studies, it is important to note that there is no

‘either-or’ in models but different successful models just indicate various mechanisms that

might contribute to the experimental findings. The fact that anesthetic action induces very

similar behavior in all subjects, such as sedation and loss of consciousness, while the neural

structure of different subjects are different and, in addition, this structure changes on a time
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scale of days and weeks [88] indicates a fundamental underlying mechanism of general anes-

thesia common to all subjects. By virtue of the diversity of subjects and plastic neural struc-

tures, we argue that this mechanism is rather independent on the fine network scale of the

brain. A good candidate for such a mechanism is the interaction of excitation and inhibition

on a global network scale, which is implemented in both successful cortico-thalamic feedback

models and cortical models. In fact, a recent model study [13] has demonstrated that the level

of excitation and inhibition both in a detailed complex and in a well-reduced global network

of neural populations is sufficient to explain the generation of EEG spectral features under

anesthesia. Our model considers the effect of anesthetics on the level of excitation and inhibi-

tion as well and captures well the EEG signals (see S2 Fig).

CTC delay depends on the anesthetic concentration

The novel relationship Eq (19) results from the ability of the model to reproduce the beta-buzz

by an anesthetic-dependent delay between cortical and thalamic structures. This raises the

question which physiological elements in the corresponding neural connection are affected by

the anesthetics.

To understand this, one should recall that in the brain the direct feedback connections

sketched in Fig 1 are complemented by indirect connections by areas close to the thalamus

such as the globus pallidus and the striatum and, more distant, via e.g. the hypothalamus, the

basal forebrain and the ventral tegmental area [1]. Synaptic time scales of excitatory and inhib-

itory synapses in these neural structures are affected by anesthetics. The prolongation of the

corresponding time scales modify effectively the delay between thalamus and cortex yielding

its effective prolongation with increasing anesthetic concentration. This picture fits to the

model presented since this actually represents a simplified, rather abstract, dynamical model

capturing the major dynamical features of the underlying neural dynamical interaction on sev-

eral scales [42].

A closer look at the model proposed reveals that, in fact, the functions Eq (2) describe the

mean post-synaptic responses to incoming action potentials considering a single time scale for

the synaptic decay phase. However, it is well-known from experiments, that there exists several

decay phases in synaptic response with a prolonged total decay phase. This finding indicates a

mechanism of desensitization [32]. The question whether anesthetics enhance desensitization

is under discussion, cf. [89]. However, there is growing evidence that anesthetics prolong the

decay phase of synaptic responses for several general anesthetics [53] including propofol [33,

90]. Our proposed model considers a single decay phase only and hence does not take into

account the synaptic response delay induced by desensitization. The CTC model delay cap-

tures this additional delay. Consequently increasing the anesthetic concentration yields an

enhancement of desensitization and hence a prolonged in the synaptic response in connec-

tions between cortex and thalamus. Consequently desensitization effects may explain the sug-

gested prolongation of the CTC delay by increasing propofol concentration.

Furthermore, it is important to mention that there is large variability in the data between

patients (as can be seen in S1 Fig) and there is no single mechanism to explain it. Our work

provides one possible mechanism among many unknown underlying mechanisms that con-

tribute to the beta-buzz phenomenon.

Propofol destabilizes the resting state of wakefulness

The suggested model allows a close reproduction of spectral features of experimental EEG. It

considers dynamical interactions between cortical and thalamic neural populations evolving

about a time-independent resting state. The EEG is assumed to result from small deviations
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about this resting state. Since this assumption implies an asymptotically stable resting state for

all parameters under study, it is mandatory to ensure the stability of the resting state. Section

Constrains on system stability gives the corresponding analytical conditions. Fig 11 clearly

demonstrates that increasing the propofol concentration reduces the domain of parameters

for which the resting state is stable. Hence the general anesthetic propofol destabilizes the rest-

ing state at which the subject was un-anesthetized. This destabilization is in full line with previ-

ous models explaining the loss of consciousness by a phase transition [58, 91]. Experimental

evidence of neural inertia [92] also supports the hypothesis of phase transition-like change of

the brains state. Neural inertia involves a genetics-based switch between consciousness and

anesthetic-induced unconsciousness [93] and the transition between consciousness and unre-

sponsiveness to external commands is preceded by the systems movement towards its stability

threshold.

The present considers resting state EEG as it may occur in hospital practice, e.g. during sur-

gery. A further major interest in research of general anesthesia is the understanding how the

brain blocks external commands corresponding to a loss of consciousness, i.e. a blockage of

neural information processing and information sharing. It has been shown in several previous

studies that anesthetics may diminish [10, 94] or augment evoked neural responses [95] to

experimentally induced stimulations. Our current work does not consider such induced activ-

ity while it will be the focus of forthcoming studies taking into account the anesthetic action

on the delayed neural activity transmission between cortex and thalamus.

Supporting information

S1 Fig. Experimental EEG spectrogram during propofol-induced anesthesia. The spectro-

gram of frontal EEG power observed in eight subjects while the propofol concentration

increases. The blood plasma concentration of propofol with respect to administration time

was shown in Fig 9A.

(TIF)

S2 Fig. Comparisons between experimental and simulated EEG time-series in the baseline

and anesthesia conditions. Panels (A) and (B) illustrate the recorded EEG time-series in

awake (blue) and anesthesia (red) conditions, respectively. Panels (C) and (D) show the corre-

sponding simulations. Both real and simulated data show that increasing propofol concentra-

tion changes the EEG from high frequency-low amplitude signals (corresponds to awake

condition, with p = 1) to low frequency-high amplitude signals (corresponds to anesthesia con-

dition, with p> 1).

(TIF)

S1 Appendix. Theoretical power spectrum.

(PDF)

S2 Appendix. Theoretical EEG power spectrum.

(PDF)

S3 Appendix. Finding the system characteristic roots.

(PDF)

S4 Appendix. Constrains on system stability.

(PDF)
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