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a b s t r a c t 

Mining data streams is a core element of Big Data Analytics. It represents the velocity of large datasets, 

which is one of the four aspects of Big Data, the other three being volume, variety and veracity . As data 

streams in, models are constructed using data mining techniques tailored towards continuous and fast 

model update. The Hoeffding Inequality has been among the most successful approaches in learning the- 

ory for data streams. In this context, it is typically used to provide a statistical bound for the number of 

examples needed in each step of an incremental learning process. It has been applied to both classifica- 

tion and clustering problems. Despite the success of the Hoeffding Tree classifier and other data stream 

mining methods, such models fall short of explaining how their results (i.e., classifications) are reached 

( black boxing ). The expressiveness of decision models in data streams is an area of research that has at- 

tracted less attention, despite its paramount of practical importance. In this paper, we address this issue, 

adopting Hoeffding Inequality as an upper bound to build decision rules which can help decision makers 

with informed predictions ( white boxing ). We termed our novel method Hoeffding Rules with respect to 

the use of the Hoeffding Inequality in the method, for estimating whether an induced rule from a smaller 

sample would be of the same quality as a rule induced from a larger sample. The new method brings 

in a number of novel contributions including handling uncertainty through abstaining, dealing with con- 

tinuous data through Gaussian statistical modelling, and an experimentally proven fast algorithm. We 

conducted a thorough experimental study using benchmark datasets, showing the efficiency and expres- 

siveness of the proposed technique when compared with the state-of-the-art. 

© 2017 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

One problem the research area of ‘Big Data Analytics’ is con-

erned with is the analysis of high velocity data, also known as

treaming data [1,2] , that challenge our computational resources.

he analysis of these fast streaming data in real-time is also known

s the emerging area of Data Stream Mining (DSM) [2,3] . One

mportant data mining technique, and in turn DSM category of

echniques is classification. Traditional data mining builds its clas-

ification models on static batch training sets allowing several iter-

tions over the data. This is different in DSM as the classification

odel needs to be induced in a linear or sublinear time complex-
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925-2312/© 2017 The Authors. Published by Elsevier B.V. This is an open access article u
ty [4] . Furthermore, DSM classification techniques need to allow

ynamic adaptation to concept drifts as the data streams in [4] .

pplications of DSM classification techniques are manifold and

omprise for example monitoring the stock market from handheld

evices [5] , real-time monitoring of a fleet of vehicles [6] , real-time

ensing of data in the chemical process industry using soft-sensors

7] , sentiment analysis using real-time micro-bogging data such as

witter data [8] , to mention a few. 

The challenge of data stream classification lies in the need of

he classifier to adapt in real-time to concept drifts, which is sig-

ificantly more challenging if the data stream is of high velocity.

any data stream classification techniques are based on the ‘Top

own Induction of Decision Trees’, also known as the ‘divide-and-

onquer’ approach [9] , such as [10,11] . However, the decision tree

ormat is also a major weakness and often requires irrelevant infor-

ation to be available to perform a classification task [12] . More-

ver, adaptation of the trees is harder compared with rules when
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Fig. 1. Hierarchy of output expressiveness. 
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a change occurs, this could be a disadvantage for real-time appli-

cations. 

The here presented work proposes the Hoeffding Rules data

stream classifier that is based on modular classification rules in-

stead of trees. Hoeffding Rules can easily be assimilated by hu-

mans, and at the same time does not require unnecessary infor-

mation to be available for the classification tasks. Rule induction

from data streams can be traced back to the Very Fast Decision

Rules (VFDR) [13] and eRules data stream classifiers [9] for nu-

merical data. eRules induces modular classification rules from data

streams, but requires extensive parameter tuning by the user in

order to achieve adequate classification accuracy including the set-

ting of the window size. Noting this drawback that affects the ac-

curacy, if the parameters are not set correctly, a statistical measure

that automatically tunes the parameters is desirable. Addressing

this issue, Hoeffding Rules adjusts these parameters dynamically

with very little input required by the user. The here presented Ho-

effding Rules algorithm is based on the Prism [12] rule induction

approach using a sliding window [14,15] . However, this window for

buffering training data is adjusted dynamically by making use of

the Hoeffding Inequality [16] . One important property of Hoeffding

Rules compared with the popular Hoeffding Tree data stream clas-

sification approach [10] is, that Hoeffding Rules can be configured

to abstain from classifying an unseen data instance when it is un-

certain about its class label. In addition, our approach is computa-

tionally efficient and hence is suitable for real-time requirements.

An important strength of the proposed technique is the high ex-

pressiveness of the rules. Thus, having the rules as the representa-

tion of the output can help users in making timely and informed

decisions. Output expressiveness increases trust in data stream an-

alytics which is one of the challenges facing adaptive learning sys-

tems [17] . To address the expressiveness issue for offline black box

machine learning models, the new algorithm Local Interpretable

Model-Agnostic Explanations (LIME) has been proposed in [18] . The

method generates a short explanation for each new classified or

regressed instance out of a predictive model, in a form that is in-

terpretable by humans (can be expressed as rules, in a way). The

work has attracted a great deal of media attention, and has empha-

sised the need for expressive models. Model trust has been further

emphasised. This work and many other follow-up research papers

have been the result of experimental work that showed some se-

rious flaws in deep learning models (a highly accurate black box

approach) [19] . The work showed that miss-classification by deep

learning models of some images – due to added noise to these im-

ages – can occur to surprisingly very obvious examples to humans.

Again, model interpretability and trust have been emphasised as

an important area of research. 

The utility of expressiveness is introduced in this paper to refer

to the cost of expressiveness when comparing the accuracy of two

methods. As accuracy has been the dominating measure of interest

in comparing classifiers in both static and streaming environments,

it is evident that real-time decision making based on streaming

models still suffers from the issue of trust [17] . To address this is-

sue, the user is able to determine an accuracy loss band ( ζ ), such

that the model can be expressive enough to grant trust, and at the

same time the accuracy can be tolerated at ( −ζ% ) of any other best

performing classifier which is less expressive (can be a total black

box). We argue that such a new measure will open the door for

more trustful white box models. In many applications (e.g., surveil-

lance, medical diagnosis, terrorism detection), decisions need to be

based on clear arguments. In such applications, having a trustful

model with a competent accuracy can be much more appreciated

than having a highly accurate model that does not convey any rea-

soning about its decision. Other examples of applications that re-

quire convincing arguments can be found in [18] . 
c  
This paper is organised as follows: Section 2 highlights works

elated to the Hoeffding Rules approach. Section 3 highlights

ur dynamic rule induction and adaptation approach for data

treams. An experimental evaluation and discussion is presented

n Section 4 . Concluding remarks are provided in Section 5 . 

. Related work 

The velocity aspect of the Big Data trend is the main driver of

ork done for over a decade in the area of data stream mining –

ong before the Big Data term was coined. Among the proposed

echniques in the area come a long list of classification techniques.

pproaches to data stream classification varied from approxima-

ion to ensemble learning. Two motives stimulated such develop-

ents: (1) fast model construction addressing the high speed na-

ure of data streams; and (2) change in the underlying distribution

f the data, in what has been commonly known as concept drift. 

Hoeffding Inequality [16] has found its way from the statistical

iterature in the 60s of the last century to make an impact in data

tream mining, having a number of techniques, mostly in classi-

cation, with notable success. The Hoeffding bound is a statistical

pper bound on the probability that the sum of a random vari-

ble deviates from its expected value. The basic Hoeffding bound

as been extended and adopted in successfully developing a num-

er of streaming techniques that were termed collectively as Very

ast Machine Learning (VFML) [20] . 

Earlier work on data stream mining addressed the aforemen-

ioned issues. However, the end user perspective has been greatly

issing, and hence the user’s trust in such systems was frequently

uestioned. This issue has been discussed in a position paper by

liobaite et al [17] . 

In this paper we address this issue, attempting to provide the

nd user with the most expressive knowledge representation for

ata stream classification, i.e., rules. We argue that rules can pro-

ide the users with informative decisions that enhance the trust in

treaming systems. Fig. 1 shows a hierarchy of output expressive-

ess, with rule-based models being at the top of all of the other

lassification techniques. 

.1. Rule induction from data streams 

FLORA is a family of algorithms for data stream rule induc-

ion that adjusts its window size dynamically using a heuristic

ased on the predictive accuracy and concept descriptions. The

ost recent FLORA algorithm, FLORA4, addresses the issue of con-

ept drift. It can use previous concept descriptions in situations
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Fig. 2. An example of the replicated subtree problem for the rules: IF w = 0 AND 

x = 1 THEN class = a, IF y = 0 AND z = 1 THEN class = a . Otherwise, class = b. 
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f recurring changes and is robust to noise in the data stream

21] . From the AQ-PM family of algorithms, the AQ11-PM system

s the most representative. AQ11-PM uses learned rules to select

ata instances from the training data that lie on the boundaries

f induced concept descriptions and is storing these so-called ‘ex-

reme ones’ in partial memory [22] . However, those approaches

re still not adapted to high speed data stream environments, es-

ecially those featuring continuous attributes. The FACIL [23] al-

orithm works similarly to AQ11-PM. However, FACIL does not re-

uire all stored data instances to be extreme and the rules are not

evised immediately when they become inconsistent. Adaptation to

rift is achieved by simply deleting older rules. Nevertheless, none

f these approaches was evaluated on massive datasets with nu-

erical values (FACIL requires that the numeric data is normalised

etween 0 and 1). The most recent approach is VFDR [13,24] that

hares ideas with VFML and was implemented and tested in MOA

14] , a workbench for evaluating data stream learning algorithms.

FDR is able to learn an ordered or unordered rule set. 

VFDR is the most similar algorithm to our approach (Hoeffding

ules). The main difference between VFDR and the Hoeffding Rules

pproach proposed in this paper is that Hoeffding Rules induction

s based on Prism [12] while VFDR induction is similar to the in-

uction of Hoeffding Tree. Moreover, the Hoeffding Rules approach

an abstain from classifying, which contributes to the high expres-

iveness of the induced rule set. 

For a more in-depth review of the related work we refer the

eader to a survey on incremental rule-based learners [25] . 

. Hoeffding Rules: expressive real-time classification rule 

nducer 

This section highlights the development of the proposed Ho-

ffding Rules classifier conceptually. It involves the induction of an

nitial classifier in the form of a set of expressive ‘IF… THEN…’

ules. The section first highlights expressive rule sets in general

n Section 3.1 , and then discusses the Prism algorithm as a ba-

ic approach for inducing such rules on batch data in Section 3.2 .

rism has been adopted by Hoeffding Rules as the basic process

or inducing expressive rules. However, it has been enhanced with

 more expressive rule term induction method for continuous at-

ributes as described in Section 3.3 based on probability density

istribution. Section 3.4 then describes the Hoeffding bound used

y Hoeffding Rules as a metric to estimate a good dynamic win-

ow size of the data stream to induce expressive rules from. Lastly,

ection 3.5 illustrates the overall Hoeffding Rules real-time induc-

ion process. 

.1. Expressive rule representation and induction 

Expressive classification rules are learnt from a given set of la-

elled data instances, which consists of attribute values and rule

earning algorithms to construct one or more rules of the form: 

F t 1 AND t 2 AND t 3 ... AND t k THEN class ω i 

The left side of a rule is the conditional part of the rule, which

onsists of a conjunction of rule terms. A rule term is a logical test

hat determines whether a data example to be classified has the

lassification ω i or not. A classification rule can have one up to k

ule terms, where k is the number of attributes in the data. 

A rule term can have different forms for both categorical and

ontinuous attributes. A rule term for categorical attributes typi-

ally has the form α = v in which v is one of the possible values of

ttribute α. For continuous attributes, binary splitting techniques

re widely used such as in [26–28] . With binary splitting a rule

erm is of the form ( α < v ) or ( α ≥ v ), in this case, v is a con-

tant from the range of observed values for attribute α. Hence, if
he data instances satisfy the body or conditional part of the rule,

hen the rule predicts ω i as the class label. 

.2. Predictive rule learning process 

This section discusses the induction of expressive rules such as

he ones described in Section 3.1 based on the Prism algorithm

12] . Hoeffding Rules’ basic rule induction strategy is also based on

rism. Prism uses a ‘separate-and-conquer’ approach to induce ex-

ressive rules. In contrast, the ‘divide-and-conquer’ rule induction

pproach (which generates decision trees), Prism generates deci-

ion rules directly from training data and not in the intermediate

orm of a tree, such as for example the C4.5 algorithm [29] : 

F w = 0 AND x = 1 THEN class = a 

IF y = 0 AND z = 1 THEN class = a 

Otherwise , class = b 

The three rules above cannot be represented in the form of a

ecision tree, as they do not have any attributes in common. Rep-

esenting these rules in a decision tree would require adding un-

ecessary and meaningless rule terms. This is also known as the

replicated subtree problem’ [30,31] illustrated in Fig. 2 for the two

ules above. 

The tree structure example in Fig. 2 is generated under the as-

umption that there exist only the four attributes (w, x, z, y) ; that

ach attribute is either associated with the value 0 or 1 ; and in-

tances covered by the two rules above are classified as belonging

o class a whereas the remaining rules predict class b . 

This example reveals that the ‘divide-and-conquer’ rule induc-

ion approach can lead to unnecessarily large and complex trees

30] , whereas the Prism algorithm is able to induce modular rules

uch as the two rules above, that have no attribute in common.

lso, the authors of [32] discuss that decision tree models are less

xpressive, as they tend to be complex and difficult to interpret

y humans once the tree model grows to a certain size. Also, the

uthors of the well-known C4.5 decision tree induction algorithm

29] acknowledged that pruning a decision tree model does not

uarantee simplicity and can still be too cumbersome to be un-

erstood by humans. 



130 T. Le et al. / Neurocomputing 265 (2017) 127–141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Cut-point calculations to induce a rule term for continuous and categorical 

attributes. 
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It has been shown in [28] that Prism’s induction method of ex-

pressive rules achieves a similar classification accuracy compared

with decision tree based classifiers and sometimes even outper-

forms decision trees (especially if the data is noisy or there are

clashes in the data) [28] . Thus, Prism has been chosen as a ba-

sic rule induction strategy for Hoeffding Rules. Another reason for

choosing Prism is that it naturally abstains from classification, if

no rule matches, whereas a decision tree based approach forces a

classification [9] . Abstaining may be necessary in critical applica-

tions where miss-classifications are very costly, such as in medical

or financial applications. 

Prism follows the ‘separate-and-conquer’ approach which re-

peatedly executes the following two steps: (1) induce a new rule

and add it to the rule set and (2) remove all data instances cov-

ered by the new rule. The stopping criterion for executing these

two steps is usually when all data instances are covered by the

rule set. Hence, this approach is also often referred to as the ‘cov-

ering approach’. Cendrowska’s original Prism algorithm for categor-

ical attributes implements this ‘separate-and-conquer’ approach as

shown in Algorithm 1 , where t α is a possible attribute value pair

Algorithm 1: Learning classification rules from labelled data 

instances using Prism. 

1 for i = 1 → C do 

2 D ← Dataset; 
3 while D does not contain only instances of class ω i 

do 

4 forall the attributes α ∈ D do 

5 Calculate the conditional probability, P (ω i | t α) 
for all possible rule terms t α; 

end 

7 Select the t α with the maximum conditional 
probability, P (ω i | t α) as rule term; 

8 D ← S, create a subset S from D containing all 
the instances covered by t α; 

end 

10 The induced rule R is a conjunction of all t α at line 
7; 

11 Remove all instances covered by rule R from 

original Dataset; 
12 repeat 
13 lines 3 to 9; 

until all instances of class ω i have been removed ; 

end 

(rule term) and D is the training data. The algorithm is executed

for each class ω i in turn on the original training data D . 

There have been variations of Prism, such as N-Prism which

also deals with continuous attributes [28] ; PrismTCS which im-

poses an order of the rules in the rule set [33] ; PMCRI which is

a scalable parallel version of PrismTCS [31] and Prism based en-

semble approaches such as Random Prism [34] . 

Hoeffding Rules uses this basic Prism approach to induce rules

from a recent subset of the data stream. However, different com-

pared with Prism, Hoeffding Rules uses a more expressive repre-

sentation of rule terms for continuous data, which will be dis-

cussed next in Section 3.3 ; and also uses the Hoeffding bound to

adapt the induced rule set to concept drifts in the data stream in

real-time, as will be discussed in Section 3.4 . 
.3. Probability density distribution for expressive continuous rule 

erms 

The original Prism algorithm [12] only works on categorical

ttributes and produces rule terms of the form (α = ν) . eRules

9] and Very Fast Decision Rules (VFDR) [13] are among the few

lgorithms specifically developed for learning rules directly from

 data stream in real-time. For continuous attributes, eRules and

FDR produce rule terms of the form ( α < ν), or ( α ≥ ν) and ( α
ν), or ( α > ν), respectively. 

A summary of the process of how eRules and VFDR deal with

ontinuous attributes can be described as follows: 

1. For each possible value αj of a continuous attribute α, calculate

the conditional probability for a given target class for both rule

terms ( α < ν) and ( α ≥ ν) or ( α ≤ ν) and ( α > ν). 

2. Return the rule term, which has the overall best conditional

probability for the target class. 

It is evident that this process of dealing with continuous at-

ributes requires many cut-point calculations for the conditional

robabilities for each possible value αj of a continuous attribute. 

The example illustrated in Fig. 3 comprises just six data in-

tances, one continuous attribute, one categorical attribute, and

wo possible class labels. It shows how many cut-point calcula-

ions are needed by eRules or VFDR in order to induce one rule

erm. The number of cut-point calculations needed for each con-

inuous attribute is the number unique values of the attribute mul-

iplied by 2. Clearly both algorithms, eRules and VFDR, still require

 lot of calculations even though the data in the example is very

mall. This is a drawback as computationally efficient methods are

eeded for mining data streams. Furthermore, eRules and VFDR

se a ‘separate-and-conquer’ strategy, which requires many itera-

ions until a rule is completed. 

G-eRules uses the Gaussian distribution of the attribute associ-

ted with a class label as introduced in [35] , to create rule terms

f the form ( x < α ≤ y ), and thus avoids frequent cut-point calcu-

ations. Evidence of the improvements in performance while main-

aining the accuracy of the induced rules is discussed in [35] . This

ethod is also used in the Hoeffding Rules algorithm to avoid fre-

uent cut-point calculations. It is also more expressive than induc-

ng rule terms from binary splits, as rule terms of the form ( x < α
y ) can describe an interval of data. One would need to use two

ule terms induced by binary splitting to describe the same inter-

al of data values of a particular attribute. For each continuous at-

ribute of the the instances, a Gaussian distribution representing

ll possible values of that continuous attribute for a given target

lass is used to generate these more expressive rule terms. 

If the data instances have class labels of ω 1 , ω 2 , . . . , ω i then we

an compute the most relevant value of a continuous attribute that

s the most relevant one to a particular class label based on the
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Fig. 4. The shaded area represents a range of values of continuous attribute α for 

class ω i . 
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Fig. 5. Sliding windows process. 
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aussian distribution of the values associated with this particular

lass label. 

The Gaussian distribution is calculated for a continuous at-

ribute α with a mean μ and a variance σ 2 from all possible nu-

eric values associated with the class label ω i . The class condi-

ional density probability is calculated as in the Eq. (1) : 

 (t α| ω i ) = P (t α| μ, σ 2 ) = 

1 √ 

2 rσ 2 
exp(− (t α − μ) 2 

2 σ 2 
) (1)

Hence, a heuristic based on P (ω i | t α) , or equivalently

og(P (ω i | t α)) is calculated and used to determine the proba-

ility of a class label for a valid value of a continuous attribute as

n the Eq. (2) : 

og(P (ω i | t α)) = log(P (t α| ω i )) + log(P (ω i )) − log(P (t α)) (2)

The probability between two values, �i , can be calculated for

he range between these two values such that if x ∈ �i , then x be-

ongs to class ω i . This method may not guarantee to capture the

ull details of the intricate continuous attributes, but the compu-

ational and memory efficiency can be improved significantly as

hown in [35] compared with binary splitting technique. The effi-

iency as a result of using Gaussian distribution only needs to be

alculated once and can be incrementally updated over time with

ust two variables, μ and σ 2 . 

As illustrated in Fig. 4 , the shaded area between x and y should

epresent the most common values of a continuous attribute α for

lass w i . A good rule term of a continuous attribute is derived by

hoosing an area under the curve of the corresponding distribution

or which the density class probability P (x < α ≤ y ) is the greatest.

This technique is used to identify a possible rule term in the

orm of ( x < α ≤ y ), which is highly relevant to a range of values

f the continuous attribute α for a target class ω i from a subset

f data instances. The process can be described in the following

teps: 

1. Mean μ and variance σ 2 of each class label is calculated for

each available continuous attribute. 

2. Eqs. (1) and ( 2 ) are used to work out the class conditional den-

sity and posterior class probability for each value of a continu-

ous attribute for a target class. 

3. A value with the greatest posterior class probability is selected.

4. Choose a smaller value compared with the value selected in

step 3 that also has the greatest posterior class probability

among all small er values. Choose also a greater value com-

pared with the value selected in step 3 that also has the great-

est posterior class probability among all greater values. 
5. Calculate density probability with the two values in step 4

by using the corresponding Gaussian distribution calculated in

step 1 for the target class. 

6. Select the range of the attribute ( x < α ≤ y ) as a rule term, for

which the density class probability is the maximum. 

The normality assumption should not cause major problems if

arge enough sample sizes are used ( > 30 or 40) [36] . As stated by

ltman and Bland [37] , the distribution of data can be ignored if

he samples consist of hundreds of observations. This is the case

or data stream classifiers such as Hoeffding Rules, as they are

esigned for infinite data streams. Also, there are a few notable

oints from the central limit theorem [37,38] regarding the nor-

ality assumption: 

• If the sample data is approximately normally distributed, then

the sampling distribution will also be normal distributed. 

• If the sample size is large enough ( > 30 or 40) then, the sam-

pling distribution tends to be normally distributed, regardless

of the actual underlying distribution of the data. 

From the points just mentioned above, true normality is consid-

red to be a myth but a good estimation of normality can be con-

rmed by using normal plots or significance tests [37] . The main

dea behind these tests is to show whether data significantly devi-

tes from normality [36–38] . 

The next section describes the adaptation of the rule induction

rocess to data streams. 

.4. Using the Hoeffding bound to ensure quality of learnt rules from 

 data stream 

It is reasonable to assume that the recent data in a data stream

s more likely to reflect the current concept more accurately com-

ared with older data [39] . Some works [9,13,40–42] in data min-

ng discuss and use a sliding windows process as illustrated in

ig. 5 . 

The fundamental idea of the sliding windows process is that a

indow is maintained which stores most recently seen data in-

tances, and from which older data instances are dropped accord-

ng to some set of rules. Data instances in a window can be used

or the following three tasks [14,43] : 

1. To detect change. Using a statistical test to compare the under-

lying probability distribution between different sub-windows. 

2. To obtain updated statistics from recent data instances. 

3. To rebuild or revise the learnt model after data has changed. 

By using sliding windows technique, algorithms will not be af-

ected by stale data and they can also be used as a tool to approx-

mate the amount of memory required [1] . 

The proposed Hoeffding Rules algorithm uses Hoeffding Inequal-

ty [16] to estimate the confidence of, whether adding a rule term

o a rule, or stopping the rule’s induction process is appropriate.

his makes it more likely that the rule will cover instances from

he stream that match the rule’s target class. The use of Hoeffding



132 T. Le et al. / Neurocomputing 265 (2017) 127–141 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

s  

i  

s  

d

3

 

t  

o  

t  

d  

s  

a  

c  

P  

p

 

q  

u  

r  

R

3

 

b  

s  

m  

p  

s  

p  

p  

5  

m  

r

Inequality in Hoeffding Rules was inspired by [10,44,45] . In addi-

tion, the word ‘Hoeffding’ in our algorithm name is derived from

the name of the formula called Hoeffding Inequality [16] , which

provides a statistical measurement in confidence of the sample

mean of n independent data instances x 1 , x 1 , . . . , x n . If E true is the

true mean and E est is the estimation of the true mean from an in-

dependent sample then the difference in probability between E true 

and E est is bounded by Eq. (3) , where R is the possible range of the

difference between E true and E est : 

P [ | E true − E est | > ε] < 2 e −2 nε2 /R 2 (3)

From the bounds of the Hoeffding Inequality, it is assumed that

with the confidence of 1 − δ, the estimation of the mean is within

ε of the true mean. In other words, we have: 

P [ | E true − E est | > ε] < δ (4)

From Eqs. (3) and ( 4 ) and solving for ε, a bound on how close

the estimated mean is to the true mean after n observations, with

a confidence of at least 1 − δ, is defined as follows: 

ε = 

√ 

R 

2 ln (1 /δ) 

2 n 

(5)

By using Hoeffding bound as an independent metric to verify

the true likeness of a rule term, we say that the rules that satisfy

the Hoeffding bound are likely to be as good as the rules learnt

from an infinite data stream. 

ε is calculated after the rule term with the best conditional

probability for class ω i is selected. However, the rule term will be

added to the current rule unless the difference of the conditional

probabilities between the selected (best) and the second best rule

term is greater than ε. Otherwise, the rule’s induction process is

completed and the rule is added to the rule set. A new iteration

for a new rule is started again with data instances covered by the

previous rule removed. 

If G ( t α) is the heuristic measurement that is used to test the

rule term t α , then R in Eq. (5) represents the range of G ( t α). G ( t α)

in our approach is the conditional probability P (class = i | t α) at

which a rule term t α covers a target class ω i . Hence, the proba-

bility range of a rule term R is 1. n is the number of data instances

that the rule has covered so far. 

Concerning the goodness of the best rule term, let t α j 
be the

rule term with the highest conditional probability from the cur-

rent iteration, and t α j−1 
be the rule term with the second highest

conditional probability from the current iteration, then: 


G = G (t α j 
) − G (t α j−1 

) (6)

If 
G > ε, then the Hoeffding bound guarantees that with

a probability of 1 − δ, the true 
G ≥ (
G − ε) . If this is the

case, we include the rule term into the current rule as part of

Algorithm 1 at step 7 and continue to search for a new rule term if

the rule still covers data instances of different classifications than

the target class. Once all possible rules are induced for all class la-

bels from the current window, then all instances covered by the

rules are removed and the instances not covered are added to a

temporary buffer. This buffer is then combined with the data from

the next sliding window for inducing new classification rules. 

Essentially, we use the Hoeffding bound to determine a prob-

ability with the confidence of 1 − δ that the observed conditional

probability, with which the rule term covers the target class in n

examples, is the same as we would observe for an infinite number

of data instances. 

The next section brings the previously outlined methods for

rule induction, dealing with continuous attributes and adaptation

to concept drift together. 
.5. Overall learning process of Hoeffding Rules 

The following sections describe how we adapted and combined

liding windows, Hoeffding Inequality, and the Prism algorithm to

nduce and maintain an adaptive modular set of decision rules for

treaming data. These techniques have been discussed in greater

etail in the Sections 3.1 –3.4 . 

.5.1. Inducing the initial classifier 

The first step of Hoeffding Rules’ execution is the generation of

he initial classifier, which is done in a batch mode using Prism

n the first n instances in the window. As described in Section 3.2 ,

he Prism algorithm is able to induce expressive classification rules

irectly from training data by using ‘separate-and-conquer’ search

trategy. The method of inducing numerical rule terms using this

lgorithm has been replaced with the computationally more effi-

ient way of inducing numerical rule terms, based on the Gaussian

robability Density Distributions described in Section 3.3 in this

aper. 

For the first window, the window size n is predefined. Subse-

uently the number of data instances for each window consists of

nseen data instances plus the data instances not covered by the

ules from the previous window. The learning process of Hoeffding

ules is described in Algorithm 2 . 

Algorithm 2: Hoeffding Rules – inducing rules from an infi- 

nite data stream. 

R ← Learnt rule set; 

r ← A classification rule; 

S ← Stream of data instances; 

W unseen ← Buffer of unseen data instance; 

W HB ← Buffer of data instances not covered by rules from 

previous W unseen ; 

n : pre-defined window size; 

7 while S has more data instance do 

8 i → new instance from S ; 

9 if r ∈ R covers i then 

10 Validate the rule r and remove if necessary; 

else 

12 Add i to W unseen ; 

13 13 if W unseen = n then 

14 W 

′ := W unseen + W HB ; 

15 empty( W unseen , W HB ); 

16 Learn rule set, R ′ , in batch mode as in Algorithm 3 

from W 

′ ; 
17 Add R ′ to R ; 

18 W HB := data instances not covered by r ∈ R ′ in W 

′ ; 
end 

end 

end 

.5.2. Evaluating existing rules and removing obsolete rules 

The evaluation and removal of rules is done online. Once la-

elled instances are available, then the rules of the current clas-

ifier are applied on these instances. Each rule remembers how

any instances it has correctly and incorrectly classified in the

ast. From this, the rule can update its accuracy after each clas-

ification attempt. If a rule’s classification accuracy drops below a

re-defined threshold (by default 0.8) and the rule has also taken

art in a minimum number of classification attempts (by default

), then the rule is removed. The reason for considering a mini-

um number of classification attempts is to avoid that the rule is

emoved too early. 
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Algorithm 3: Hoeffding Rules – inducing rules in batch mode. 

1 for i = 1 → C do 

2 D ← input Dataset; 
3 while D contains classes other than ω i do 

4 forall the α in D do 

5 if α is categorical then 

6 Calculate the conditional probability, 
P (ω i | t α) for all rule terms t α; else if α is 
continuous then 

7 calculate mean μ and variance σ 2 of 
continuous attribute α for class ω i ; 

8 foreach value α j of attribute α do 

9 Calculate P (α j | ω i ) based on created 

Gaussian distribution created in line 
8; 

end 

11 Select α j of attribute α, which has 
highest value of P (α j | ω i ) ; 

12 Create t α in form of x < α ≤ y as 
discussed in Section 3.3; 

13 Calculate P (t α| ω i ) , where t α is in the 
form of x < α ≤ y ; 

end 

end 

16 Calculate Hoeffding bound, 

ε = 

√ 

R 2 ln (1 /δ) 
2 ∗( no. instances in D ) 

; 

17 if P (t α| ω i ) best − P (t α| ω i ) second−best > ε then 

18 Select t α for which P (t α| ω i ) is a maximum; 
else 

20 Stop inducing current rule; 

end 

22 Create subset S of D containing all the instances 
covered by t α; 

23 D ← S; 

end 

25 R is a conjunction of all the rule terms built at line 
17; 

26 Remove all instances covered by rule R from input 
Dataset; 

27 repeat 
28 lines 2 to 22; 

until all instances of ω i have been removed ; 
30 Reset input Dataset to its initial state; 

end 

return induced rules ; 
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Fig. 6. Combining data instances that satisfy the Hoeffding bound from the previ- 

ous window with the unseen data instances from the current window. 
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For example, if the rule’s minimum number of classification at-

empts before removal is only 1, then it would be removed already

f the first classification attempt fails. However, with the default

ettings, the rule would at least ‘survive’ 5 attempts. Assuming that

nly the first of the 5 attempts fails, then the rule would be re-

ained, as it has an accuracy of 4 ÷ 5 = 0 . 8 , which is the minimum

lassification accuracy required. 

The default settings may be adjusted according to the user re-

uirements. A lower minimum accuracy will result in the classifier

dapting slower, however, a high accuracy may result in rules ex-

iring quickly, and thus more computation is required to induce

ew rules. Also a low number of minimum classification attempts

ill result in rules expiring quickly and a high number of mini-

um classification attempts will result in a slower adaptation. In
ur experiments, we have found that the default values work well

n most cases. The default values have been used in all experimen-

al results presented in this paper. 

.5.3. Storing data instances that do not satisfy the Hoeffding bound 

One of the notable features of Hoeffding Rules is the use of Ho-

ffding Inequality to determine the credibility of a rule term as

escribed in Section 3.4 . For an algorithm based on ‘separate-and-

onquer’ strategy in batch data, a new rule term is searched and

dded to a current rule until the rule only covers data instances of

he target class. Sliding window technique is used as described in

ection 3.4 to actively learn rules in real-time. The window con-

ains the most recent training data instances, and these data in-

tances are used to induce classification rules over time. However,

oeffding Rules algorithm does not always induce rules that cover

nly examples of the target class, because Hoeffding Rules will stop

nducing further rule terms if the rule does not satisfy the Hoeffd-

ng bound metric from the current subset of data instances. 

As illustrated in Fig. 6 , once all possible rules are induced from

he sliding window then all data instances that are not covered by

he newly created rules are stored in a buffer. This buffer is com-

ined with the next window of unseen data instances from the

tream. Hence, after the first window, each sliding window is filled

ith unseen data instances from the window and the instances

rom the Hoeffding bound buffer from the previous windows. The

oeffding bound buffer contains instances that are not covered by

he current rule set. 

.5.4. Addition of new rules 

The addition of new rules also takes place online. As outlined

n Section 3.5.2 , Hoeffding Rules applies its current rules to new

ata instances that are already labelled, in order to evaluate the

ule set’s accuracy. However, if none of the rules applies to a la-

elled data instance, then this data instance is added to the win-

ow. Once the window of unseen instances reaches the defined

hreshold, data instances are learnt as outlined in Algorithm 2 to

nduce new rules, which are then added to the current classifier.

ext the window is reset by removing all instances from it. 

This is based on the assumption that the instances in the win-

ow will primarily cover concepts that are not reflected by the
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current classifier. Thus, rules induced from this window will pri-

marily reflect these missing concepts. By adding these rules to the

classifier, it is expected that the classifier will adapt automatically

to new emerging concepts in the data stream. 

4. Experimental evaluation and discussion 

An empirical evaluation has been conducted to evaluate Ho-

effding Rules in terms of accuracy, adaptivity to concept drift and

the trade off between accuracy for a white box model such as

Hoeffding Rules compared with a less expressive model such as

Hoeffding Tree. In addition, Hoeffding Rules has also been eval-

uated in terms of its expressiveness compared with its more di-

rect competitors Hoeffding Tree and VFDR. This has been accom-

plished empirically by measuring the number of average decision

steps needed for classifying an unseen data instance, and qualita-

tively by examining some of the decision rules induced by Hoeffd-

ing Rules on two examples. The implementation of the proposed

learning system was developed in Java, using the MOA [14] en-

vironment as a test-bed. MOA stands for Massive Online Analysis

and is an open-source framework for data stream mining. Related

to the WEKA project [46] , it includes a collection of machine learn-

ing algorithms and evaluation tools special to data stream learning

problems. The MOA evaluation features (i.e., prequential-error im-

plemented as EvaluatePrequential) were used in our experiments.

For the MOA evaluation, the sampling frequency was set to 10,0 0 0.

This technique and setting are commonly used in the data stream

mining literature as such in [14,47] . In the remainder of this sec-

tion, unless stated otherwise, the default parameters of the MOA

platform were used. 

4.1. Experimental setup 

Two different classifiers were used for comparing and analysing

the Hoeffding Rules algorithm. 

• VFDR (Very Fast Decision Rules) [13] , is to the best of our

knowledge the state-of-art in data stream rule learning. 

• Hoefffding Tree [10] , is state-of-art in decision tree learning

from data streams. 

The rationale behind this choice is twofold: (1) Hoeffding Tree

has established itself for the last decade as the state-of-the-art in

data stream classification, with a long history of success; and (2)

both techniques use the Hoeffding bound for result approximation,

which we have also adopted in our technique. It is worth noting

that opaque black box methods recently trialed in a data stream

setting like deep learning [48] lack the expressiveness element,

and thus have not been chosen for our experimental study. 

Table 1 shows the default parameters for the classifiers that

were used in all of our experiments unless stated otherwise. 

4.2. Datasets 

Different synthetic and real world datasets were used in our

experiments. As for synthetic datasets, stream generators available

in MOA were used. The real world datasets ‘Airlines’ and ‘Forest

Covertype’ are known and used for batch learning, in which case

all data instances from datasets are read and learnt in one pass.

However, we simulate these datasets into data streams by read-

ing data instances from these dataset in ordered sequence over the

time. 

Each dataset used in our experiments can be summarised as

follows: 

• SEA artificial generator was introduced in [49] to test their

stream ensemble algorithm. The dataset has two class labels
and three continuous attributes in which one attribute is ir-

relevant to the class labels and underlying concept of the data

stream. More information how this data stream is generated is

described in [49] . Bifet et al. [9,13,15] also use this dataset in

their empirical evaluations among other datasets. 

• RandomTree Generator was introduced in [10] and generates

a stream based on a randomly generated tree. The generator is

based on what is proposed in [10] . It produces concepts that in

theory should favour decision tree learners. It constructs a de-

cision tree by choosing attributes at random for splitting and

assigns a random class label to each leaf. Once the tree is built,

new examples are generated by assigning uniformly distributed

random values to attributes, which then determine the class la-

bel using the randomly generated tree. 

• STAGGER was introduced by Schlimmer and Granger [50] to

test the STAGGER concept drift tracking algorithm. The STAG-

GER concepts are available as a data stream generator in MOA

and has been used as a benchmark to test for concept drift in

[50] . The dataset represents a simple block world defined by

three nominal attributes size, colour and shape, each compris-

ing 3 different values. The target concepts are: 

size ≡ small ∧ color ≡ red 

color ≡ green ∨ shape ≡ circular 

size ≡ ( medium ∨ large ) 

While performing preliminary experiments with the data

stream generators in MOA, it became apparent that the con-

cepts defined did not match the ones proposed in the orig-

inal paper. This was observed from the rules generated by

our approach from the STAGGER data stream. Meanwhile, the

‘bug’ was reported to the MOA development team and the

current, corrected implementation of the generator has been

used for the experiments presented in this section. This high-

lights the expressiveness of the rules induced by Hoeffding

Rules. 

• Forest CoverType contains the forest cover type for 30 × 30

meter cells obtained from US Forest Service (USFS) Region 2

Resource Information System (RIS) data. It contains 581,012 in-

stances and 54 attributes, and it has been used in several pa-

pers on data stream classification, i.e., in [51] . 

• Airlines dataset was generated based on the regression dataset

by Elena Ikonomovska, which consists of about 50 0,0 0 0 flight

records. The main task of this dataset is to predict whether a

given flight will be delayed based on the information of sched-

uled departure. This dataset has three continuous and four cat-

egorical attributes. Elena Ikonomovska also uses this dataset in

one of her studies on data streams [52] . This dataset was down-

loaded from the MOA website and used in our empirical exper-

iments without any modifications. 

All synthetic data stream generators are controllable by param-

ters and Table 2 shows the settings used for all synthetic streams

n our evaluation. 

.3. Utility of expressiveness 

The empirical evaluation is focused on the cost of expressive-

ess when comparing the accuracy and performance between clas-

ifiers for data streams. 

.3.1. Accuracy loss band 

As mentioned in [17] , a learnt model from the labelled data in-

tances may produce high predictive accuracy for unlabelled data,

ut the learnt model can be hard and complex to understand for

uman users or even domain experts. All classifiers were evalu-

ted on the same base datasets in order to examine the trade-off

etween rule-based classifiers such as VFDR and Hoeffding Rules
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Table 1 

Parameter settings for classifiers used in the experiments. 

Hoeffding Rules VFDR (Very Fast Decision Rules) Hoeffding Tree 

VF.P: 0.1 HT.NUE: Gaussian observer 

VF.SC: 0.0 HT.NOE: Nominal observer 

HR.SW: 200 VF.TT: 0.05 HT.GP: 200 

HR.MRT: 3 VF.AAP: 0.99 HT.SC: Information gain 

HR.RVT: 0.7 VF.PT: 0.1 HT.SCON: 0.0 

HR.HBT: 0.01 VF.AT: 15 HT.TTH: 0.05 

HR.APT: 0.5 VF.GP: 200 HT.BS: false 

VF.PF: First hit HT.RPA: false 

VF.OR: false HT.NPP: false 

VF.AD: false HT.LP: NBAdaptive 

VF.P: % of total samples seen in the node HT.NUE: Numeric attribute estimator 

VF.SC: Split confidence HT.NOE: Categorical attribute estimator 

HR.SW: Sliding window size VF.TT: Tie threshold HT.GP: Grace period 

HR.MRT: Minimum rule tries VF.AAP: Anomaly probability threshold HT.SC: Split criterion 

HR.RVT: Rule validation threshold VF.PT: Probability threshold HT.SCON: Split confidence 

HR.HBT: Hoeffding bound threshold VF.AT: Anomaly threshold HT.TTH: Tie threshold 

HR.APT: Adaptation threshold VF.GP: Grace period HT.BS: Binary split 

VF.PF: Prediction function HT.RPA: Remove poor attribute 

VF.OR: Ordered rules HT.NPP: No pre-prune 

VF.AD: Anomaly detection HT.LP:Leaf predictive 

Table 2 

Parameter settings for synthetic stream generators used in the experiments. 

Random Tree Random Tree with drift SEA SEA with drift STAGGERS STAGGER with drift 

Before drift After drift Before drift After drift Before drift After drift 

RT.TRSV: 1 SEA.F: 1 ST.IRS: 1 

RT.ISV: 1 RT.TRSV: 1 RT.TRSV: 5 SEA.IRS: 1 ST.F: 1 

RT.NCL: 4 RT.ISV: 1 RT.ISV: 5 SEA.BC: true ST.BC: true 

RT.NCA: 5 RT.NCL: 4 RT.NCL: 4 SEA.NP: 10% SEA.F: 1 SEA.F: 2 

RT.NNA: 5 RT.NCA: 5 RT.NCA: 5 SEA.IRS: 1 SEA.IRS: 1 ST.IRS: 1 ST.IRS: 1 

RT.NVPCA: 5 RT.NNA: 5 RT.NNA: 5 SEA.BC: true SEA.BC: true ST.F: 1 ST.F: 2 

RT.MTD: 5 RT.NVPCA: 5 RT.NVPCA: 5 SEA.NP: 10% SEA.NP: 10% ST.BC: true ST.BC: true 

RT.FLL: 3 RT.MTD: 5 RT.MTD: 5 

RT.LF: 15% RT.FLL: 3 RT.FLL: 3 

RT.LF: 15% RT.LF: 15% 

Drift at: 150,0 0 0 Drift at: 150,0 0 0 Drift at: 150,0 0 0 

Drift width: 10,0 0 0 Drift width: 10,0 0 0 Drift width: 10,0 0 0 

RT.TRSV: Tree random seed value 

RT.ISV: Instance seed value 

RT.NCL: Number of class labels 

RT.NCA: Number of categorial attribute(s) SEA.F: Classification function as defined in paper 

RT.NNA: Number of numerical attribute(s) SEA.IRS: Seed for random generation of instances ST.IRS: Instance random seed 

RT.NVPCA: Number of values per categorical attribute SEA.BC: Balanced class ST.F: Classification function 

RT.MTD: Max tree depth SEA.NP: Noise percentage ST.BC: Balanced class 

RT.FLL: First leaf level 

RT.LF: Leaf fraction 

∗ 40 0,0 0 0 data instances are generated for each experiment. 
∗ In each experiment, all classifiers are given identical data instances and same sequenced order. 
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ompared with tree based classifiers such as Hoeffding Tree. Con-

ept drift was also simulated in all synthetic datasets from 150,0 0 0

ata instances onwards for approximately 10 0 0 further instances,

here both concepts were present before switching completely to

he new concept. The accuracy loss band ζ can be either positive

r negative, where positive values indicate that Hoeffding Rules

chieves a better accuracy and negative values indicate the short-

all in accuracy compared with its competitor. 

Figs. 7 a–f, 8 a and b show that accuracy loss band ζ of Hoeffd-

ng Rules is very competitive compared with Hoeffding Tree while

learly outperforming VFDR in most cases. The reader should note

hat the existing implementations of Hoeffding Tree, VFDR and

ynthetic data generators in MOA were used, these classifiers may

ave been optimised to work well on these synthetic datasets. Two

eal datasets Airlines and CoverType are chosen and included for

n unbiased evaluation. VFDR is the closest algorithm to Hoeffding

ules because it is a native rule-based classifier with the ability to

roduce rules directly from the seen labelled data instances. How-

ver, VFDR does not offer abstaining and forces a classification. Ev-
 s  
dently, Hoeffding Rules has a positive loss band compared with

FDR on both real and synthetic datasets and outperforms Hoeffd-

ng Tree on the Airlines dataset, while suffering a minor negative

oss band on a few occasions on the Covertype dataset. 

.3.2. Cost of expressiveness 

We also estimated the cost of expressiveness in terms of steps

equired for a model to predict a class label. This evaluation is

ocussed on the most expressive rule and tree based algorithms.

ore decision making steps in rule and tree based algorithms im-

lies more and potentially unnecessary and costly tests for a user

o obtain a classification, which is not desirable [12,53] . Support

ector Machines and Artificial Neural Networks based algorithms

re not investigated here as they are nearly non-expressive and dif-

cult to comprehend by human analysts. Also instance based and

robabilistic models are not very interesting to the human analyst

n terms of expressiveness as they only indirectly explain a clas-

ification through either the enumeration of data instances in the
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Fig. 7. Difference in accuracy compared with other classifiers for synthetic data streams. 

Fig. 8. Difference in accuracy compared with other classifiers for real data streams. 
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case of instance based learners, or through basic probabilities in

the case of probabilistic learners. 

Classification steps for Hoeffding Rules and VFDR refer to the

number of rule terms (conditions) in a rule that are needed for

classifying a data instance. Similarly classification steps for Hoeffd-

ing Tree refer to the number of nodes that need to be visited (con-

ditions) from the root of the tree to the leaf that provides a partic-

ular classification. As shown in Fig. 9 a–h, Hoeffding Rules is more

competitive in terms of number of classification steps over time

compared with the Hoeffding Tree classifier. We observed in all

experiments that Hoeffding Tree does not start building its tree
odel until several thousand data instances have been buffered to

atisfy the Hoeffding Inequality . Hoeffding Tree does not limit the

epth of the tree nor does it have a built-in pruning mechanism

o restrict its size, thus it grows larger over time. This is reflected

n the increasing number of steps required over time to classify

ata instances as can be seen in Fig. 9 a–h. In addition, we ex-

ect all three classifiers to adapt to concept drifts. The rule-based

lassifiers will change their rule sets, whereas Hoeffding Tree will

eplace obsolete subtrees with newer subtrees. Either way, a con-

ept drift may alter the number of steps needed to reach a clas-

ification significantly. This explains the more abrupt changes of
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Fig. 9. The average number of classification steps needed by Hoeffding Rules compared with Hoeffding Tree and VFDR. 

Fig. 10. Abstaining rates of Hoeffding Rules. 
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Table 3 

Accuracy evaluation between Hoeffing Tree, VFDR and Hoeffding Rules. 

Algorithm Measure (%) Dataset 

SEA Random Tree STAGGER Forest Covertype Airlines 

No drift With concept drift No drift With concept drift No drift With concept drift 

Hoeffding Rules Tentative accuracy 82.6 84.30 81.86 75.62 100 98.50 74.24 66.74 

Abstaining rate 8.07 6.43 49.51 56.02 22.27 28.52 10.04 16.47 

VFDR Overall accuracy 81.3 82.26 52.28 47.07 100 86.20 61.32 62.50 

Hoeffding Tree Overall accuracy 88.08 89.23 88.98 61.08 100 99.75 82.04 66.04 

Fig. 11. Learning time Hoeffding Rules, Hoeffding Tree and VFDR. 
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classification steps of some algorithms for the STAGGER and Cover-

type data streams depicted in Fig 9 f and h. Regarding the Cover-

type data stream, it consists of real data and thus it is not known

if there is a concept drift. However, the more abrupt changes of the

number of classification steps indicates that there is a drift starting

somewhere between instances 150,0 0 0 to 20 0,0 0 0. Thus we have

used a separate concept drift detection method, a version of the

Micro-Cluster based concept drift detection method presented in

[54,55] , which has confirmed a drift starting at position 150,0 0 0

instances. 

Fig. 9 a–h also compare the average number of classification

steps of Hoeffding Rules with VFDR. The figures show that VFDR

has a very similar average number of classification steps compared

with Hoeffding Rules. For all observed cases, except for the Cover-

type data stream, Hoeffding Rules needs an average of about 1.5

classification steps only. However, as shown in Table 3 , Hoeffd-

ing Rules achieves a much higher classification accuracy than VFDR

and in most cases also requires less time to learn as illustrated in

Fig. 11 . In most cases where there is concept drift it can be seen

that the number of average classification steps increases for Ho-

effding Tree, whereas Hoeffding Rules’ and VFDR’s average number

of classification steps stays almost constant. 

The number of steps required for a classification task demon-

strates the effort required to translate a classification from a tree

based model into the form of an expressive ‘IF... THEN...’ rule. The

current implementation of Hoeffding Tree in MOA, as well as the

Hoeffding Tree algorithm presented in its original paper [10] , do

not provide any mechanism for translating a leaf into an expres-

sive rule. One can argue that a set of decision rules can be easily

extracted from an existing tree model as Quinlan [56] has men-

tioned as early as in 1986. An extracted decision rule from a hi-

erarchical model represents logic tests from a root node to a leaf.

However, as Hoeffding Tree is designed to adapt to changes in data

streams, this extraction process would need to repeat every time

the tree expands or changes its structure. Therefore, maintaining

an accurate and up-to-date rule set from a Hoeffding Tree could

be a challenge and a computationally demanding task. 

For synthetic datasets with concept drift at 150,0 0 0 in Fig. 9 b, d

and f, we detected notable changes in the number of steps required

for classification using Hoeffding Tree but not for using Hoeffding
ule and VFDR. This is an expected behaviour because Hoeffding

ree may need to replace an entire subtree or in the worst case the

ntire tree from the root node if there is a drift in the data stream.

owever, rule-based classifiers such as Hoeffding Rules and VFDR

o not need to replace larger numbers of rules, as rules can be

xamined, altered and replaced individually. Examining, replacing

nd altering individual ‘rules’ (decision paths from the root node

o a leaf node) is not possible in trees without also altering further

rules’ that are connected to the rule to be changed through inter-

ediate tree nodes. For real datasets, we do not have an absolute

round truth whether concept drifts are encoded in the data or

ot, but we expect to see concept drifts in real-life data streams.

n particular, we saw a correlated behaviour between abstaining

nd classification steps in Figs. 9 h and 10 for the Covertype dataset

etween 150,0 0 0 and 20 0,0 0 0 instances. As mentioned before we

ave used a version of the Micro-Cluster based concept drift de-

ection method presented in [54,55] , which confirmed a drift start-

ng at position 150,0 0 0 instances. In this particular case Hoeffding

ules dropped slowly in the average number of steps needed for

lassification, and Hoeffding Tree suddenly stopped growing and

talled for about 50,0 0 0 data instances before starting to grow fur-

her. Hence, we believe that Hoeffding Tree also adapted to a drift

ere. 

.3.3. Expressive rules’ ranking and interpretation 

At any given time a user can inspect the decision rules directly

rom the rule set produced by Hoeffding Rules and can be con-

dent that the rules reflect the underlying pattern encoded in the

ata stream at any given time. For example, we extracted the top 3

ules (based on the rules’ individual classification accuracy) learnt

rom the two real datasets, Covertype and Airlines at 50,0 0 0 data

nstances: 

• Covertype dataset: 

• IF Soil-Type40 = 0 AND Soil-Type30 = 0 AND Soil-Type38 = 0

THEN Class = 0 

• IF Soil-Type38 = 1 THEN Class = 7 

• IF Soil-Type10 = 1 AND 0.57 < Aspect < = 0 . 64 THEN Class

= 6 

• Airlines dataset: 

• IF AirportTo = CHA AND DayOfWeek = 3 AND AirportFrom =
AT L AND Airline = EV THEN Class = 1 

• IF AirportFrom = CLT THEN Class = 0 

• IF AirportTo = AZO THEN Class = 1 

As it can be seen, rules induced by Hoeffding Rules can be mod-

lar (independent from each other) meaning that the rules not

ecessarily have any attributes in common, which is not possible

hen rules are presented in a tree structure. Rules extracted from

 tree will have at least the attribute chosen to split on the root

ode in common, even if this attribute may not be necessary for

ome classification tasks. Thus a tree structure may result in poten-

ially unnecessary and costly tests for the user. This is also known

s the replicated subtree problem [30] . We refer to Section 3.2 for

n explanation of the replicated subtree problem. 
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In addition as mentioned in Section 4.2 , while performing pre-

iminary experiments with the data stream generators in MOA, it

ecame apparent that the concepts defined for the STAGGER gen-

rator did not match the ones proposed in the original paper [50] .

his further highlights the expressiveness of the rule set induced

y Hoeffding Rules. This ‘bug’ was reported to the MOA develop-

ent team and a corrected version of the stream generator was

sed for the experiments described in this paper. 

.4. Abstaining from classification 

The results presented in Section 4.3 showed the tolerance of

ule-based classifiers compared with decision tree based classifiers

or the utility of expressiveness. Another important feature of Ho-

ffding Rules is the ability to abstain. In Fig. 10 , we observe that

he abstaining rate of Hoeffding Rules decreases as Hoeffding Rules

rocesses more instances, except for the Random Tree dataset.

or synthetic datasets with concept drift, we also notice that at

he point of simulated concept drift (150,0 0 0), the abstaining rate

piked up but quickly recovered to adapt to the new concept. This

ndicates one of the major benefits of abstaining instances from

lassification, when Hoeffding Rules is uncertain about a classifi-

ation it does not risk classifying unseen data instances. This fea-

ure is desirable or even crucial in domains and applications where

iss-classification is costly or irreversible. As mentioned before we

ave used a version of a Micro-Cluster based concept drift detec-

ion method presented in [54,55] , which confirmed a drift starting

t position 150,0 0 0 instances. 

Table 3 shows the accuracy evaluation between Hoeffding Tree,

FDR and Hoeffding Rules. One unique feature of Hoeffding Rules

s its ability to refuse a classification if the classifier is not confi-

ent to output a decisive prediction from its rule set. We recorded

he tentative accuracy and abstaining rate for Hoeffding Rules as

ell as overall accuracy for Hoeffding Tree and VFDR. Tentative ac-

uracy for Hoeffding Rules is the accuracy for instances where the

lassifier is confident to produce a reliable prediction. The tentative

ccuracy was also used for estimating the utility of expressiveness

hown in Section 4.3 . 

We can see that Hoeffding Rules outperforms VFDR in all cases

nd is very competitive compared with Hoeffding Tree, both on

ynthetic and real data streams. Hoeffding Rules is also competitive

ith Hoeffding Tree, the accuracy of both classifiers is very close,

ith Hoeffding Rules outperforming Hoeffding Tree in 3 cases.

owever, compared with Hoeffding Tree, Hoeffding Rules produces

 more expressive rule set and fundamentally does not suffer from

he replicated subtree problem. Also, the classification rules gen-

rated by Hoeffding Rules can be easily interpreted and examined

y human users or domain experts. Decision trees would first need

o undergo a further processing step before a human user can in-

erpret the rules. This would translate the tree into rules starting

n single passes from the root node down to each leaf. This may

ell be a too cumbersome and a too time consuming task for the

ecision taker. 

Automating tree traversal to increase expansiveness is an addi-

ional linear process with respect to the number of tree nodes, or

n its best case for balanced trees, it can be O ( log ( t n )) where t n is

he number of nodes in the tree [57] . 

.5. Computational efficiency 

In order to examine Hoeffding Rules’ computational efficiency,

e have compared Hoeffding Rules, VFDR and Hoeffding Tree on

he same data streams as in Table 3 . As shown in Fig. 11 , the ex-

cution time of Hoeffding Rules outperforms that of VFDR by far

nd is also very close to that of Hoeffding Trees. 
It can be seen that Hoeffding Rules is particularly superior to

FDR for data streams with mostly numerical attributes such as

he SEA and Random Tree (RT) data streams. This is expected as

FDR needs many cut-point calculations for inducing new rule

erms from numerical attributes, whereas Hoeffding Rules just

eeds to update the Gaussian Probability Density Distributions.

his computational difference has been discussed in Section 3.3 

In summary, loosely speaking, Hoeffding Rules shows a much

etter performance in terms of utility of expressiveness compared

ith its direct competitor VFDR and is also competitive com-

ared with its less expressive competitor Hoeffding Tree. The same

ounts for the evaluation with respect to computational efficiency,

oeffding Rules’ runtimes are much shorter compared with VFDR

nd only slightly longer compared with Hoeffding Tree. 

. Conclusions 

The research presented in this paper is motivated by the fact

hat rule-based data stream classification models are more expres-

ive than other models, such as decision tree models, instance

ased models and probabilistic models. Inducing a classifier on

ata streams has some unique challenges compared with data

ining from batch data, as the pattern encoded in the stream may

hange over time which is known as concept drift. While most

ata stream mining classification techniques focus on achieving a

igh accuracy and quick adaptation to concept drift, they are often

ather unfriendly, cumbersome or too complex to provide trustful

ecisions to the users, which is undesirable in many domains such

s surveillance or medical applications. 

This paper proposed the new Hoeffding Rules data stream

lassifier that focusses on producing an expressive rule set that

dapts to concept drift in real-time. Compared with less expres-

ive data stream classifiers, Hoeffding Rules explains how a deci-

ion is reached. The algorithm is based on a ‘separate-and-conquer’

pproach and the Hoeffding bound to adapt the rule set to con-

ept drifts in the data. Different compared with existing well es-

ablished data stream classifiers, Hoeffding Rules may decide to

bstain from classifying a data instance if it is uncertain about the

rue class label. This again is desirable in applications where a false

lassification label may be very costly such as in medical appli-

ations or network intrusion detection. Additionally, the abstained

ata instances can also be considered for active learning, which is

 direction to go forward for our proposed Hoeffding Rules classi-

er to improve and maximise the effectiveness of the learnt model.

n this way, the abstaining feature is not just reducing the miss-

lassification but can also potentially improve the accuracy of the

verall model. 

An empirical evaluation examined the utility of inducing ex-

ressive rules with Hoeffding Rules compared with its competi-

ors VFDR and Hoeffding Tree. VFDR is another highly expressive

ule-based classifier, and Hoeffding Tree is a less expressive but

tate-of-the-art tree based data stream classifier. The evaluation

easured the loss band ζ between the competitors and the speed

f inducing rules on streaming data. The results show that Hoeff-

ng Rules outperforms its direct competitor VFDR in terms of ac-

uracy loss band and execution time. Compared with Hoeffding

ree, the proposed algorithm only showed a slight loss of accu-

acy and runtime. However, Hoeffding Rules produces more ex-

ressive rules compared with Hoeffding Tree and is also able to

bstain from classification when it is uncertain. The experimental

ork has shown that Hoeffding Rules provides an array of unique

dvantages over other stream classifiers: (1) the fastest rule-based

treaming method; (2) a trusted method that effectively handles

ncertainty; and (3) the most expressive stream classifier with a

mall ζ when compared with the closest less expressive method

Hoeffding Tree). As such and to the best of our knowledge, the
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reported results evidence that Hoeffding Rules is the fastest and

most trustworthy stream classifier. 
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