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ABSTRACT

Strongly coupled data assimilation emulates the real-world pairing of the atmosphere andocean by solving the

assimilation problem in terms of a single combined atmosphere–ocean state. A significant challenge in strongly

coupled variational atmosphere–ocean data assimilation is a priori specification of the cross covariances be-

tween the errors in the atmosphere and ocean model forecasts. These covariances must capture the correct

physical structure of interactions across the air–sea interface as well as the different scales of evolution in the

atmosphere and ocean; if prescribed correctly, they will allow observations in one medium to improve the

analysis in the other. Here, the nature and structure of atmosphere–ocean forecast error cross correlations are

investigated using an idealized strongly coupled single-column atmosphere–ocean 4D-Var assimilation system.

Results are presented from a set of identical twin–type experiments that use an ensemble of coupled 4D-Var

assimilations to derive estimates of the atmosphere–ocean error cross correlations. The results show significant

variation in the strength and structure of cross correlations in the atmosphere–ocean boundary layer between

summer and winter and between day and night. These differences provide a valuable insight into the nature of

coupled atmosphere–ocean correlations for different seasons and points in the diurnal cycle.

1. Introduction

Strongly coupled atmosphere–ocean data assimilation

treats the atmosphere and ocean as a single coherent

system, applying a single assimilation scheme to a fully

coupled model. Interest in the potential use of coupled

data assimilation techniques for generating initial condi-

tions for medium- to long-range coupled forecasting and

in coupledmodel reanalysis has grown in recent years and

is now an increasingly active area of research (Laloyaux

et al. 2016; Lea et al. 2015). Strongly coupled variational

atmosphere–ocean assimilation systems require specifi-

cation of the relationship between the errors in the at-

mosphere and ocean model forecasts. Unfortunately, the

characterization of the statistics of these errors is non-

trivial; the atmosphere–ocean error cross-covariance in-

formation must capture the correct physical structure of

processes occurring across the air–sea interface as well as

the different scales of evolution in the atmosphere and

ocean. The purpose of this study is to investigate the

nature and structure of the coupled atmosphere–ocean

forecast error correlations with a view to developing new

methods for incorporating this information within four-

dimensional variational (4D-Var) coupled data assimila-

tion schemes. If done correctly, a priori prescription of

atmosphere–ocean cross covariance information in the

4D-Var background error covariance matrix will allow

observations in one fluid to improve the analysis in-

crements in the other, so that both fluids are adjusted

consistently. This is expected to lead to better use of near-

surface observations and generation of more physically

balanced analysis states, which should in turn lead to

more reliable coupled model forecasts, reanalyses, and

better prediction of coupled atmosphere–ocean phe-

nomena (Smith et al. 2015).

Traditionally, in uncoupled variational assimilation

systems, the background error covariance matrix is held

fixed for each assimilation cycle, but more recently

Corresponding author: Polly J. Smith, p.j.smith@reading.ac.uk

Denotes content that is immediately available upon publica-

tion as open access.
This article is licensed under a Creative Commons

Attribution 4.0 license (http://creativecommons.

org/licenses/by/4.0/).

OCTOBER 2017 SM I TH ET AL . 4011

DOI: 10.1175/MWR-D-16-0284.1

� 2017 American Meteorological Society

mailto:p.j.smith@reading.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


methods have been developed to include ensemble-

derived information within the variational framework.

Ensemble data assimilation methods, such as the en-

semble Kalman filter (EnKF) capture the flow de-

pendence of the uncertainty in the background errors by

evolving the covariance matrix according to the un-

derlying model dynamics. The advantages and disadvan-

tages of the variational and ensemble methods are widely

discussed in the literature (e.g., Lorenc 2003; Kalnay et al.

2007; Whitaker et al. 2008). Schemes that aim to exploit

the merits of both the variational and ensemble ap-

proaches by using a combination of the two are known as

‘‘hybrid’’ assimilation schemes. For example, Météo-
France and the European Centre for Medium-Range

Weather Forecasts (ECMWF) use the statistics from an

ensemble of 4D-Var assimilations to diagnose the error

variances for the background error covariance matrix in

their deterministic operational 4D-Var systems (Bonavita

et al. 2012; Raynaud et al. 2011). The methodology has

recently been extended to incorporate flow-dependent

ensemble information into the modeled error covariance

structures (Bonavita et al. 2016). Another option is to use

an ensemble to compute a sample estimate of the full

forecast error covariance matrix and then apply locali-

zation and filtering techniques to remedy problems with

low rank and spurious correlations arising due to sam-

pling error (Buehner et al. 2010a,b). A further, and po-

tentially more robust and flexible, approach is to use a

weighted linear combination of the static (climatological)

and ensemble-based covariance formulations as is done,

for example, in the Met Office global hybrid ensemble–

variational assimilation system (Clayton et al. 2013). Kuhl

et al. (2013) have also investigated using a similar ap-

proach in observation space within the framework of the

Naval Research Laboratory Atmospheric Variational

Data Assimilation System-Accelerated Representer

(NAVDAS-AR) dual-form 4D-Var scheme.

The relative infancy of coupled atmosphere–ocean

data assimilation means that there has, to date, only

been a limited number of published studies exploring

the estimation and implementation of coupled error

covariances, and the majority of these have employed

ensemble-based assimilation methods (e.g., Han et al.

2013). For coupled assimilation it is generally recog-

nized that hybrid ensemble–variational-based schemes

would offer the required flexibility in terms of time

and space scales, allowing the blend of static and flow-

dependent components of the forecast error covariance

matrix to be adjusted for different types of application

(e.g., resolving large versus small-scale processes and

flows, large versus small ensembles, long versus short

assimilation and forecast window length), and thus en-

abling the coupled system to make the most of the

available observations (Lawless 2012). Frolov et al.

(2016) have recently begun to explore this idea in a 3D-

Var framework by experimenting with the use of hybrid

static–ensemble error covariances in their interface

solver: a 3D-Var–based system that solves an approxi-

mation to the strongly coupled atmosphere–ocean as-

similation problem. In this study, we use ensembles of

cycled 4D-Var data assimilations to gain insight into the

characteristics of atmosphere–ocean forecast error cross

correlations in strongly coupled systems; the method-

ology is based on the approach described in Zagar et al.

(2005) and uses the statistics of differences between

pairs of forecast ensemble members to derive estimates

of the forecast error covariance matrix. Experiments are

performed within an idealized 1D single-column cou-

pled atmosphere–ocean model framework. The system

employs the incremental 4D-Var algorithm and was

previously used in a systematic comparison of the un-

coupled, weakly coupled, and strongly coupled ap-

proaches to treating the coupled model initialization

problem (Smith et al. 2015; Fowler and Lawless 2016).

Our results show that the strongest error cross corre-

lations occur within the near-surface atmosphere–ocean

boundary layer between atmosphere and ocean model

variables that are directly related via surface boundary

conditions. This broad findingwas foreseen, but the detail,

including notable variation in the strength and structure of

the atmosphere–ocean correlations between summer and

winter, and between day and night, has provided valuable

new knowledge that is now being used to inform the de-

velopment of a full hybrid ensemble–variational frame-

work for our idealized system; this study therefore

represents an important step in the advancement of cou-

pled atmosphere–ocean data assimilation methods.

The scientific and technical challenges of strongly

coupled data assimilation mean that most operational

centers are focusing their initial efforts on developing

intermediate, or weakly coupled, assimilation systems

that do not include explicit atmosphere–ocean error

cross covariances. Nevertheless, the increased un-

derstanding of the type and significance of error corre-

lations arising from strong atmosphere–ocean coupling

that has been gained from this study will aid the design

of innovative methodologies for incorporating cross-

fluid error covariance information into both weakly and

strongly coupled assimilation systems of the future.

This paper is organized as follows: in section 2 we in-

troduce our coupled atmosphere–ocean system, briefly

describing the nonlinear model and incremental 4D-Var

algorithm upon which our strongly coupled assimilation

system is based, and explaining the method used to

compute the ensemble forecast error correlations. Details

of the experimental design are given in section 3, and the
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results are presented in section 4. Finally, in section 5 we

summarize the conclusions from this work.

2. The coupled 4D-Var system

We begin with an overview of our idealized 1D cou-

pled atmosphere–ocean model and the strongly coupled

incremental 4D-Var algorithm, and then introduce the

forecast error covariance estimation methodology. The

assimilation system and dynamical model are the same

as that described in Smith et al. (2015).

a. The model

The coupled atmosphere–ocean model was built by

coupling a stripped back version of the ECMWF single-

column atmospheric model (SCM), which is based on an

early version of the Integrated Forecasting System (IFS)

code, to a single-column K-profile parameterization

(KPP) ocean mixed layer model, which is based on the

scheme of Large et al. (1994).

The atmosphere component solves the primitive

equations for temperature T, specific humidity q, and the

zonal and meridional wind components u and y, using

a hybrid vertical coordinate system (Simmons and

Burridge 1981) that extends over 60 levels from the sur-

face to around 0.1hPa with finest resolution in the plan-

etary boundary layer. The original (ECMWF) version of

the SCM code includes the parameterization of physical

processes such as radiation, turbulent mixing, moist

convection, and clouds. Our reduced version includes

tendencies due to vertical advection and turbulent dif-

fusion only, but is still able to produce a good approxi-

mation to the evolution of the atmosphere when

compared to the full version, and is therefore adequate

for the purposes of this study. The surface pressure, ver-

tical velocity, tendencies due to horizontal advection, and

geostrophic wind components are prescribed externally.

The ocean component describes the evolution of the

mean values of temperature, salinity, and zonal and me-

ridional currents on a fixed vertical grid that stretches

from a depth of 1 to 250m. The grid resolution is in-

creased near the surface to allow simulation of upper-

ocean diurnal variability. There are 35 levels in total, with

25 in the top 50m. The time evolution of each field is

expressed as the vertical divergence of its kinematic

fluxes. In the ocean surface boundary layer, the kinematic

fluxes are parameterized using K profiles; mixing in the

ocean interior is assumed to be governed by a combina-

tion of shear instability and internal wave activity. Terms

describing the effects of nonlocal transport and double

diffusion were omitted. Shortwave and longwave radia-

tion forcing at the ocean surface and the geostrophic

component of the currents are prescribed externally.

The atmosphere and ocean model components ex-

change information at every time step. The surface

boundary conditions for atmospheric temperature and

specific humidity depend on the sea surface temperature

(SST; a no-slip condition is used for the u and y wind

components) and the ocean surface boundary conditions

depend on the near-surface atmospheric state. The

surface boundary condition for ocean temperature has

turbulent and nonturbulent (radiative) elements, which

combine to give the net heat flux,

Q
net

5 Q
SW

1Q
LW

1Q
E
1Q

H
, (1)

where QSW is surface shortwave radiation, QLW is net

surface longwave radiation, and QE and QH are the

(turbulent) latent and sensible heat fluxes. The surface

boundary condition for salinity depends on the turbu-

lent freshwater flux,

F5Q
E
/L

y
, (2)

where Ly is the latent heat of evaporation, and the sur-

face boundary conditions for the ocean currents depend

on the zonal and meridional components of the surface

wind stress, tx and ty. The latent and sensible heat and

momentum fluxes are all computed within the atmo-

sphere model component using the bulk formulas
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2 q

sat
(SST)], (6)

where the subscript n represents the lowest atmosphere

model level,

jU
n
j5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2
n 1 y2n

q
(7)

is the approximate 10-m wind speed, ra is the density of

air, and qsat(SST) is the surface saturation specific hu-

midity. The drag coefficient CD and the transfer co-

efficients for heat CH and moisture CE are computed

using the method of Louis et al. (1982).

A complete description of the system, including the

model equations, is given in the appendix of Smith

et al. (2015). Despite the modifications outlined, the

SCM’s description of the air–sea exchange processes

is sufficiently realistic for our results to be relevant to

full 3D systems. The validation of the model is de-

scribed in section 3.1 of Smith et al. (2015); it gener-

ally compares well against the original ECMWF

version of the code and also with ERA-Interim and

Mercator Ocean reanalysis data for forecasts of up to
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around 5 days, but beyond this its performance is

hindered by the simplified physics and lack of hori-

zontal processes.

b. Strongly coupled incremental 4D-Var

The problem of variational data assimilation is to

find the initial state such that the model forecast best

fits the available observations over a given time win-

dow, subject to the initial state remaining close to a

given a priori, or background, estimate and allowing

for the errors in each. Rather than searching for the

initial state directly, the incremental 4D-Var algorithm

(e.g., Courtier et al. 1994; Lawless et al. 2005) seeks

increments dx0 to the initial background state estimate

by solving a sequence of linearized inner-loop least

squares cost function minimizations and outer-loop

nonlinear update steps.

1) INNER LOOP

Minimize

J(‘)[dx
(‘)
0 ]5

1

2
f[xb0 2 x

(‘)
0 ]2 dx

(‘)
0 gTB21

0 f[xb0 2 x
(‘)
0 ]2 dx

(‘)
0 g

1
1

2
�
n

i50

[d
(‘)
i 2H

i
dx

(‘)
i ]TR21

i [d
(‘)
i 2H

i
dx

(‘)
i ] ,

(8)

subject to

dx
(‘)
i 5M[t

i
, t

0
, x(‘)]dx

(‘)
0 , (9)

where

d
(‘)
i 5 y

i
2 h

i
[x

(‘)
i ] ,

xb0 2 R
m is the background model state, used as a first

guess at t0; x
(‘)
0 2 R

m is the estimate of the initial model

state at outer-loop iteration ‘; yi 2 R
ri is a vector of ri

imperfect observations at time ti; the operator Hi 2
R

ri3m is the tangent linear of the nonlinear observation

operator hi:R
m /R

ri ; M is the tangent linear of the

nonlinear model operator M,

x
(‘)
i 5M[t

i
, t

0
, x

(‘)
0 ], i5 0, . . . ,n ,

and B0 2 R
m3m and Ri 2 R

ri3ri are the background and

observation error covariance matrices.

2) OUTER LOOP

Update

x
(‘11)
0 5 x

(‘)
0 1 dx

(‘)
0 . (10)

The strongly (or fully) coupled 4D-Var approach

treats the atmosphere and ocean as a single coherent

system; the incremental 4D-Var control vector, dx in (8),

consists of both the atmosphere and ocean prognostic

variables, and the coupled model is used in both the

inner and outer loops.

The background (or forecast) error covariance

matrix B0 should contain information on the statistics

of the errors in the background state. Note that

since the initial background state is typically a model

forecast from a previous analysis, the terms ‘‘back-

ground’’ and ‘‘forecast’’ are used interchangeably.

For a coupled system with dx5 (dxTA, dx
T
O)

T, where

dxA represents the atmosphere increment and dxO
the ocean increment, the matrix B0 can be decom-

posed as

B
0
5

 
B

AA
B

AO

BT
AO B

OO

!
. (11)

Here BAA and BOO represent the background error co-

variances for the atmosphere and ocean state variables,

respectively, and BAO represents the cross covariance

between background errors in the atmosphere and ocean

states. The inclusion of cross covariances between the

atmosphere and ocean means that atmosphere observa-

tions can influence the ocean analysis (and vice versa).

Background error cross covariances are implicitly gen-

erated by the incremental 4D-Var algorithm, so even if

we assume that the errors in the atmosphere and ocean

fields are uncorrelated at t0 (i.e., we set BAO to zero),

nonzero cross covariances will be produced throughout

the rest of the assimilation window.However, we can also

explicitly prescribe nonzero cross covariances a priori by

including them in B0.

c. Ensemble error covariances

Formulation of the 4D-Var algorithm assumes that

the background errors eb are random and unbiased with

Gaussian probability distribution functions. The matrix

B0 is then defined as

B
0
5E[(xb0 2 xt0)(x

b
0 2 xt0)

T],

5E[eb0(e
b
0)

T] , (12)

where xt0 is the true system state at t0 and eb0 represents

the error in the background state at t0. In practice, the

true error statistics are unknown and so must be ap-

proximated in some manner; the accuracy of their de-

scription is crucial to the success of the assimilation

process. Variational methods prescribe a static matrix

B0 at the start of each assimilation window, whereas

sequential, Kalman-filter-based methods evolve the
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background covariance matrix according to the un-

derlying model dynamics and thus attempt to capture

the flow dependence of the uncertainty in the forecast

errors. In the filtering case, the forecast error covariance

matrix is denoted Pb
k:

Pb
k 5E[ebk(e

b
k)

T] , (13)

where the subscript k indicates time dependency, and

ebk 5 xbk 2 xtk.

The standard approach in ensemble methods is to use

the covariance statistics of the differences between each

ensemble member and the forecast ensemble mean as a

proxy for Pb
k. The ensemble estimate, at a given time tk,

is constructed as

Pe
k 5

1

N2 1
�
N

j51

(xb,jk 2 xbk)(x
b,j
k 2 xbk)

T, (14)

where xb is the mean of the forecast ensemble, N is the

ensemble size, and xb,j ( j 5 1, . . . , N) denotes the jth

forecast ensemble member. The division by (N 2 1) in

(14) ensures that the ensemble covariance matrix is

an unbiased estimate of the true covariance matrix.

Averaging at time tk provides an estimate of the in-

stantaneous Pb
k matrix; alternatively, averaging may be

performed over multiple assimilation cycles for an esti-

mate of the climatological covariance matrix.

In (14) the ensemble mean, xb represents the best

estimate of the ‘‘truth,’’ but, since it is computed from

the sum of the individual ensemble members, it is un-

likely to itself be a valid realization of the state and may

actually lie outside the model attractor. An alternative

method that avoids reference to the mean is to use the

statistics of differences between pairs of forecast en-

semble members (Berre et al. 2006; Fisher 2003; Zagar

et al. 2005).

Let

~xbk 5M(t
k
, t

0
, ~xa0), (15)

denote a forecast at time tk from an analysis ~xa0, at t0 made

by adding Gaussian random perturbations ~eb0 and ~h to an

unperturbed initial background state xb0 and set of ob-

servations y. We can write this analysis state as

~xa0 5 f(xb0 1 ~eb0, y1 ~h), (16)

where f represents the assimilation system. If we define

the error in the forecast ~xbk relative to an unperturbed

(or control) forecast xbk as

~ebk 5 ~xbk 2 xbk , (17)

and consider the difference between (15) and a second

forecast x̂bk from an analysis made with different initial

background and observation perturbations êb0 and ĥ, we

have

~xbk 2 x̂bk 5 xbk 1 ~ebk 2 xbk 2 êbk,

5 ~ebk 2 êbk . (18)

If we assume that the perturbations ~ebk and êbk are un-

correlated and have the same statistics as the un-

perturbed forecast errors ebk, that is,

~ebk, ê
b
k ;N(0,Pb

k), E[~eb(êb)T]5 0,

then it can be shown (e.g., Berre et al. 2006) that the co-

variance of the difference (18) is equal to twice that of the

error covariancematrix of the unperturbed forecast errors

E[(~ebk 2 êbk)(~e
b
k 2 êbk)

T]5 2Pb
k . (19)

We can approximate this using an ensemble of per-

turbed forecasts as

P
ens

’
1

2(N2 1)
�
N21

j51

(xb,j 2 xb,j11)(xb,j 2 xb,j11)T, (20)

since (eb,j 2 eb,j11)5 (xb,j 2 xb,j11). For an ensemble ofN

members there will be N 2 1 independent pairs of

members. The full theoretical justification for this ap-

proach is given in Zagar et al. (2005).

In a cycled 4D-Var system, the forecast from the

analysis is used to provide the background state for the

start of the next assimilation cycle, so an initial back-

ground guess only needs to be explicitly specified at the

start of the first cycle. Similarly, if we perform an en-

semble of cycled 4D-Var analyses, we only have to ex-

plicitly generate an ensemble of perturbed background

states for the first cycle and thus can generate a series of

perturbed analysis and forecast states from a single set of

initial background perturbations; the schematic shown

in Fig. 1a illustrates this idea and summarizes how the

4D-Var cycling is implemented in this study (the full

details of the experimental design are given in the next

section). For each assimilation cycle, the error co-

variance matrix formed from (20) after forecasting the

analysis ensemble forward to the end of the current

window will represent both an approximation of the

forecast error covariance matrix at the end of the cur-

rent cycle and an approximation of the initial back-

ground error covariance matrix for the next cycle. If we

use pairs of forecast ensemble members collected over

several assimilation cycles in the computation of (20),

we can increase the effective ensemble size and thus
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confidence in the reliability of this estimate.1 Note that

in practice this matrix is not actually implemented in the

4D-Var algorithm; instead, it is conventional to use the

same predefinedmatrixB0 in the assimilation step for all

cycles, as is the case for the experiments described in the

next section.

3. Experimental design

In these experiments, we use an ensemble of strongly

coupled 4D-Var assimilations withN5 500 members to

derive estimates of the atmosphere–ocean forecast error

covariance matrix for a summer and a winter test case.

Using such a high ratio of ensemble members to the

dimension of the coupled state vector (which is 380 in

this case) would not be computationally practical in

many operational-scale systems, but the relative sim-

plicity and small dimension of our idealized system

means that we are able to run large ensembles com-

paratively cheaply. Using a large ensemble size (relative

to the dimension of the system) reduces the potential for

contamination with sampling noise and increases confi-

dence that the estimates of the atmosphere–ocean

forecast error correlation structures we obtain are real.

In more complex systems, small ensembles are typically

used in combination with methods designed to alleviate

issues associated with undersampling, such as co-

variance localization and inflation. The potential for

using a limited ensemble size together with vertical lo-

calization has been examined for our system and will be

reported in a separate publication.

The experiments are identical twin–type; the coupled

nonlinear model is assumed to be perfect and is used to

forecast the truth or reference trajectory from which

observations are then generated at 3-hourly intervals.

The true initial state for the summer case is given by

a 24-h coupled model forecast valid at 0000 UTC

on 2 June 2013; the true initial state for the winter case is

given by a 24-h coupled model forecast valid at

FIG. 1. Schematics illustrating the cycled ensemble 4D-Var experiment. (a) The initialNmember background ensemble xb,j(t0), j5 1, . . . ,N,

for the first cycle is generated by adding random perturbations eb,j0 ;N(0, B0) to the control state xb0 . For cycle 2 onward, the initial

background ensemble is produced by forecasting the t0 analysis ensemble from the previous cycle forward 12 h. For each cycle, obser-

vations yk are generated at forecast lead times tk 5 3, 6, 9, and 12 h. A different set of perturbed observations is produced for each

ensemble member by adding random perturbations eo,j0 ;N(0, R) to yk. The same background and observation error covariance matrices

B0 andR are used for all cycles. (b) Each cycle starts at either 0000UTC (local day) or 1200UTC (local night) and uses a 12-h assimilation

window; eight cycles are run, giving a total period of 4 days. The 1200UTC error correlations are computed after forecasting the t0 analysis

ensembles from cycles 1, 3, 5, and 7 to the end of their respective assimilation window, and the 0000 UTC error correlations are computed

after forecasting the t0 analysis ensembles from cycles 2, 4, 6, and 8 to the end of their respective assimilation window.

1 For example, if we forecast an ensemble of N members over a

single 12-h cycle from 0000 to 1200UTC, we will have a sample size

of (N2 1) pairs valid at 1200 UTC, but if we run eight consecutive

12-h cycles across a 4-day period, we will have 4N forecasts [or 43
(N 2 1) pairs] starting from 0000 UTC and verifying at 1200 UTC

and 4N forecasts starting from1200UTCand verifying at 0000UTC;

that is, by averaging over four cycles, we quadruple the

sample size.
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0000 UTC 2 December 2013. The initial background

control state xb0 for each case is given by a second 24-h

coupled model forecast initialized from a perturbed

initial state. The initial atmosphere and ocean states

and forcing data for these forecasts are derived from

the ERA-Interim (Dee et al. 2011) and Mercator

Ocean reanalyses (Lellouche et al. 2013), and a model

time step of 15min is used in all cases. A complete

description of the design of this setup is given in Smith

et al. (2015).

A total of eight 4D-Var cycles are run for each ex-

periment. Each cycle uses a 12-h assimilation window

with three outer loops and starts at either 1200 or

0000 UTC. This gives us a sample of 499 3 4 5 1996

differences between 12-h forecasts valid at 0000UTC and

499 3 4 5 1996 differences between 12-h forecasts valid

at 1200 UTC, that is, two daily analysis times (this is il-

lustrated schematically in Fig. 1b). Our point is located at

258N, 188.758E in the northwest Pacific Ocean and was

chosen for consistency with previous studies using the

same system (Smith et al. 2015; Fowler and Lawless

2016). This location has a UTC offset of approximately

11 h, which means that 1200 UTC corresponds to

the early hours of the morning local time (;0100 LT)

and 0000 UTC corresponds to the early afternoon

(;1300 LT). This enables us to also compare the struc-

ture of the error correlations between day and night.

The ensemble is generated by perturbing both the

initial background state and the observations. At the

start of the first assimilation cycle, an ensemble of initial

background states is generated by adding random per-

turbations to the control state xb0; these are drawn from a

Gaussian distribution with zero mean and standard de-

viation consistent with the 4D-Var background error

covariance matrix B0 (see next paragraph). For the

second cycle onward, the initial background ensemble is

given by the analysis ensemble from the end of the

previous assimilation window, as illustrated in Fig. 1a.

The observations are randomly perturbed across all

cycles according to the observation error statistics in R.

A different random perturbation is added to each ob-

servation at each different observation time and model

level, but the standard deviation of the perturbations is

fixed for a given observation type (see Table 1); thus,

each ensemble member assimilates a different set of

observations for every cycle.

The 4D-Var background error covariance matrix is

assumed to be diagonal and is fixed for all cycles. It is

standard practice in 4D-Var to use a static background

error covariance matrix, and starting each new cycle

from the same diagonal B0 allows us to better un-

derstand the type of flow-dependent covariance and

cross-covariance structures that are generated by the

implicit propagation of B0 across the assimilation win-

dow by the 4D-Var algorithm (see, e.g., Bannister 2008).

The background error variances are calculated from a

24-h coupled model forecast time series as described in

section 4.2 of Smith et al. (2015); they vary for each

model variable and are different for the June and De-

cember cases, as illustrated in Figs. 2 and 3. Although

the prescribed ocean background error variances are

smaller than would normally be used in a full-scale un-

coupled ocean assimilation system, they are appropriate

for our model system and reflect the fact that the ocean

evolves more slowly than the atmosphere over the time

scales we consider. The scales of variability represented

by the background error variances should be consistent

with the model and the length of the assimilation-

forecast window. For example, in the weakly coupled

assimilation system developed at ECMWF (Laloyaux

et al. 2016), they have reduced the ocean background

error variances to a third of the values used in their

uncoupled ocean assimilation system to account for the

fact that their coupled system uses a much shorter as-

similation window length (24 h compared to 10 days). If

the prescribed background errors are too large, the as-

similation will overfit to the observations, and this will

negatively impact the analysis. We discuss the effect of

larger-amplitude ocean initial perturbations and back-

ground error variances on our system in section 4.

The observation error covariance matrix is also taken

to be diagonal, with a fixed error variance for each ob-

servation type. The observations are generated by add-

ing uncorrelated random Gaussian errors, consistent

with the prescribed statistics (see Table 1), to the truth

trajectory. Because the observations are direct, the

prescribed error variances represent measurement error

only; hence, the values we use are smaller than would

ordinarily be used in an operational setting (where the

observation errors will vary with instrument type and

will also incorporate representativity error). In practice,

it is the relative weighting of the background and

TABLE 1. Observation error standard deviations by field.

Atmosphere

temperature (K)

u wind

(m s21)

y wind

(m s21)

Ocean

temperature (K)

Salinity

(psu)

u current

(m s21)

y current

(m s21)

Original experiment 0.5 1.5 1.5 0.01 0.001 0.01 0.01

Inflated ocean errors experiment 0.5 1.5 1.5 0.05 0.015 0.05 0.05
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observation errors that is important in an assimilation

system rather than their actual magnitudes. If the ob-

servation errors are large relative to the variability of the

model, the observations will not bring any additional

information to the system. For example, the variability

of the ocean salinity in our 1D system is limited on the

time scales we consider; in order to enable the salinity

observations to have some impact in the assimilation,

the variance of their errors was set at a value lower than

that of a typical salinity data source.

Observations of atmospheric temperature and u and

y wind components are assimilated at 17 of the 60 at-

mosphere model levels, selected to approximately cor-

respond to the standard pressure levels (which range

from 10 to 1000 hPa). Since the atmospheric model does

not include the parameterization of processes such as

moist convection, clouds, and precipitation, we do not

assimilate observations of specific humidity q. Obser-

vations of ocean temperature, salinity, and zonal and

meridional currents are assimilated at 23 of the 35 ocean

model levels; these are irregularly spaced at depths

ranging from 1 to 250m. In the upper ocean, where the

model grid is finest, the observation locations are chosen

to approximate the resolution of a typical ocean obser-

vation profile; below this the vertical frequency of the

observations is limited by the relative coarseness of the

model grid. Although insufficient spatial–temporal res-

olution means that observations of ocean currents are

not routinely assimilated into uncoupled operational

assimilation systems, this is an idealized study and we

are not attempting to emulate a real-world observing

system. Assimilating observations of all ocean variables

will provide guidance on the type of error covariance

information that can be generated by (and should be

incorporated into) an ideal coupled assimilation system.

The same observation network is used for all cycles, so

the same number of observations is assimilated at each

observation time and the observation error covariance

FIG. 2. June 2013 test case: initial background (solid line) and observation (dashed line) error standard deviations for (top) atmosphere

and (bottom) ocean model variables. (from left to right) (top) T (K), q (kg kg21), and u and y wind (m s21) and (bottom) T (K), salinity

(psu), and u and y current (m s21); circles represent observation locations.
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matrix R is constant. Note that the 3-hourly observation

frequency excludes the start of each 12-h assimilation

window, that is, observations are at forecast lead times

tk 5 3, 6, 9, 12 h.

4. Results

Since the aim of this study is to understand the re-

lationships between the errors in the atmosphere and

ocean forecasts, we focus our discussion on the coupled

atmosphere–ocean error cross correlations.We consider

cross correlations rather than cross covariances because

different components of the coupled state vector have

very different levels of variability; standardizing pre-

vents variables with large error variances from domi-

nating the structure of the covariancematrix.Using a 12-h

assimilation window enables us to compute one set of

error correlations from 12-h forecast ensembles from

day to night (valid at 1200 UTC) and one set of error

correlations from 12-h forecast ensembles from night to

day (valid at 0000 UTC).

Before beginning our discussion, we reemphasize that

we are examining the nature of the correlations between

the errors in different atmosphere and ocean forecast fields

rather than between the forecast fields themselves. The

errors in two different variables will not necessarily in-

teract in the same way as the model variables themselves,

and this interaction may not be linear, especially when

there are multiple variables at play and the relationships

between them are strongly nonlinear. A positive correla-

tion between the errors in twofieldsmeans that an increase

(decrease) in the error in one field will be associated with

an increase (decrease) in the error in the other, and a

negative correlation means that an increase (decrease) in

the errors in one field will be associated with a decrease

(increase) in the error in the other. If an error has negative

sign, ‘‘increase’’ means that its value moves toward zero,

and so its magnitude will actually decrease. Similarly, if a

negative error value ‘‘decreases,’’ then it becomes more

negative and its magnitude increases.

Selected results for the June andDecember 500-member

ensembles are shown in Figs. 4, 6, 11, and 12; there

FIG. 3. As in Fig. 2, but for December 2013 test case.

OCTOBER 2017 SM I TH ET AL . 4019



is significant variation in the atmosphere–ocean error

cross correlation structures between summer and

winter, and also between day and night. The strongest

cross correlations are seen in the lower part of the at-

mosphere and upper portion of the ocean column; be-

yond this the atmosphere–ocean errors appear to be

mostly uncorrelated. This is consistent with what we

would expect as the atmosphere–ocean boundary layer

is the region directly influenced by air–sea exchange

processes, and therefore the area where errors in one

fluid are likely have the greatest impact on the other. In

the following discussion, we explain the various corre-

lation patterns we observe by considering knowledge of

the underlying coupled model physics, external forcing,

and known atmosphere–ocean feedback mechanisms.

a. June ensemble

In the summer, solar insolation is strong (the pre-

scribed radiation forcing assumes a clear sky) and the

mean net heat flux is positive (i.e., into the ocean); the

ocean mixed layer is shallow (maximum ;25m depth),

which implies that the upper ocean is thermally strati-

fied. The atmosphere–ocean surface temperature dif-

ference and hence the magnitudes of the turbulent heat

fluxes are small relative to the winter case, implying less

air–sea heat exchange and weaker coupling. Conse-

quently, the atmosphere–ocean error correlations are

generally fairly small and concentrated in the top few

meters of the ocean and bottom 100hPa or so of the

atmosphere. The exceptions to this are the correlations

between errors in the upper-ocean currents and near-

surface winds (Fig. 4) and between the errors in the

near-surface ocean salinity and atmosphere tempera-

ture and humidity (Figs. 6f,h).

1) WIND-CURRENT ERROR CROSS CORRELATIONS

The errors in the near-surface u-wind and u-current

components have strong positive correlation, as do

the near-surface y-wind and y-current components.

The surface boundary conditions for the uo and yo

FIG. 4. June 500-member 4D-Var ensemble: atmospherewind and ocean current error cross correlations for (top)

0000 UTC (local day) and (bottom) 1200 UTC (local night): (a),(c) u and (b),(d) y components. The approximate

mean height of the ABL and approximate mean depth of the ocean mixed layer are 970 hPa and 1.9m at 0000 UTC

and 980 hPa and 16.5m at 1200 UTC (these values are diagnosed from the truth trajectory).
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components of the ocean velocity depend on the

zonal and meridional components of the surface

wind stress tx and ty,
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where Ku and Ky are turbulent exchange coefficients;

these stresses act to transfer momentum from the at-

mosphere to the ocean and drive the ocean surface

currents, and they are a function of wind speed and di-

rection [(3) and (4)]. Equation (21) tells us that, at the

ocean surface, the vertical shear of the uo (yo) current is

proportional to the zonal (meridional) wind stress. In

the absence of rotation, the ocean surface currents will

accelerate in the direction of the force of the wind stress;

therefore, the effect of a positive perturbation in tx (ty)

will be to increase momentum (and thus velocity) in the

direction of the uo (yo) current, and the converse will

apply for a negative tx (ty) perturbation.

Now, if we consider a small perturbation dun to the

zonal component of the surface wind un and take the

tangent linear of (3) for tx (assuming ra and CD are

unperturbed), we find

dt
x
’ r

a
C

D
[u2

n(u
2
n 1 y2n)

2(1/2) 1 (u2
n 1 y2n)

1/2]du
n
, (22)

where dtx is the resultant perturbation in tx. The drag

coefficient CD, air density ra, and terms inside the square

brackets of (22) are positive, so this tells us that errors in tx
and un will, to first order, be positively correlated; we can

use a similar argument to show that the same holds true for

errors in ty and yn. We therefore expect errors in the near-

surface u wind and u current, and y wind and y current, to

be positively correlated. Below the ocean surface, mixing

diffuses the wind-induced momentum downward so that

the influence of the wind forcing (and wind forcing errors)

on the ocean currents decays with depth; instead, Coriolis

and horizontal pressure gradient forces dominate.

Wenote that, the idealizing assumptionsmade byEkman

(e.g., Stewart 2008, chapter 9) do not typically hold for our

model and so it does not consistently simulate the spiraling

vertical flow predicted by the theory. In addition, the dif-

ference between two Ekman velocity profiles formed from

different surface stresses and vertical eddy viscosities will

not necessarily also be an Ekman spiral. Therefore,

even when the structure of the ageostrophic component

of the model forecast flow is close to the classical Ekman

spiral the (truth–forecast) error vectors do not exhibit

the same regular pattern of rotation with depth, instead

they fluctuate both in direction and magnitude; this is

illustrated for an example case in Fig. 5.

2) ATMOSPHERE–OCEAN TEMPERATURE ERROR

CROSS CORRELATIONS

The correlations between errors in the atmosphere

and ocean temperature are overall weak for the summer

case, with minimum and maximum values of 20.29

and10.5, respectively (Figs. 6a,b). Intuitively, we might

expect the errors in the near-surface region to be neg-

atively correlated (atmosphere gaining too much heat,

implying the ocean losing too much heat), but they ap-

pear small and positive both day and night.

During daylight hours, the temperature of the upper

ocean is essentially being driven by the strong summer

solar insolation. The atmosphere temperature field is

gaining heat from the ocean via the sensible heat flux

QH, but this loss of heat from the ocean to the

FIG. 5. June 500-member 4D-Var ensemble: ageostrophic ocean current velocity vectors in the top ;20m of the ocean at the end of

assimilation cycle 1 (a) truth, (b) ensemble forecast mean, and (c) truth forecast. The solid red lines represent the direction of the surface

wind (not to scale).
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FIG. 6. June 500-member 4D-Var ensemble: (a),(b) atmosphere–ocean temperature; (c),(d) wind

speed–ocean temperature; (e),(f) atmosphere temperature–ocean salinity; and (g),(h) specific humidity–

ocean salinity error cross correlations for (left) 0000 UTC (local day) and (right) 1200 UTC (local

night). The approximate mean height of the ABL and approximate mean depth of the ocean mixed

layer are 970 hPa and 1.9m at 0000 UTC and 980 hPa and 16.5m at 1200 UTC (these values are

diagnosed from the truth trajectory).
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atmosphere is small relative to the magnitude of the

shortwave radiation flux, and so the net heat flux Qnet

[(1)] into the ocean is positive, meaning that it is also

gaining heat, as illustrated in Fig. 7. For a given en-

semble member, the forecast ocean surface temperature

will

(i) become too warm if the ocean heat gains too much

heat relative to the truth, that is, Qnet . 0 is

overestimated, or

(ii) become too cold if the ocean is not gaining enough

heat relative to the truth, that is, Qnet . 0 is

underestimated.

Similarly, the forecast atmosphere surface tempera-

ture will

(iii) become toowarm if the atmosphere gains toomuch

heat relative to the truth, that is, jQHj overesti-
mated, QH , 0, or

(iv) become too cold if the atmosphere is not gaining

enough heat relative to the truth, that is, jQHj
underestimated, QH , 0.

During the night, the atmosphere temperature field is

still gaining heat from the ocean viaQH, but the net heat

flux Qnet becomes negative and so the ocean will be

losing heat (see Fig. 7). For given ensemble member, the

forecast ocean surface temperature will

(v) become too warm if the ocean loses too little heat

relative to the truth, that is, jQnetj underestimated,

Qnet , 0, or

(vi) become too cold if the ocean loses too much heat,

that is, jQnetj overestimated, Qnet , 0.

The relationship between error in predicted heat gain or

loss and error in predicted temperature is illustrated

graphically in Fig. 8.

To summarize, a positive atmosphere–ocean surface

temperature error correlation during the day implies

that the atmosphere and ocean are

1) both gaining too much heat relative to the truth [cases

(i) and (iii)] or

2) both gaining too little heat relative to the truth [cases

(ii) and (iv)],

and a positive atmosphere–ocean surface temperature

error correlation during the night implies that

3) the atmosphere is gaining too much heat and the

ocean is losing too little heat [cases (iii) and (v)] or

4) the atmosphere is not gaining enough heat and the

ocean is losing too much heat [cases (iv) and (vi)].

Since QSW and QLW are prescribed, errors in the mag-

nitude of Qnet, and in turn the amount of heat lost or

gained by the ocean, will come from the combination of

errors in the magnitude of the latent and sensible heat

fluxes QE and QH. Assuming both QH , 0 and QE , 0,

for each of the combinations 1–4 above to hold, jQEj
must be underestimated when jQHj is overestimated and

vice versa, suggesting that errors in QE and QH are

negatively correlated for this case. These ideas are il-

lustrated schematically in Fig. 9.

Figure 10a shows a scatterplot of the errors in the

sensible and latent heat flux for every ensemble member

at the end of each assimilation window; there is a mod-

erate negative trend between them with positive errors

in QE associated with negative errors in QH and vice

versa, thus agreeing with our conjecture. The size of the

errors in QE are bigger than those in QH, which would

suggest that the errors inQnet are being driven by errors

in QE; scatterplots of the errors in QE versus Qnet and

QH versus Qnet (Figs. 10b,c) confirm this to be the case.

The model equation for QE [(6)] does not directly de-

pend on the atmosphere temperature; rather, the errors

in ocean heat gain/loss appear to be primarily coming

from errors in the exchange of moisture; this would help

to explain why the correlations between the near-

surface atmosphere and ocean temperature errors are

overall quite weak.

3) ATMOSPHERE TEMPERATURE–OCEAN

SALINITY ERROR CROSS CORRELATIONS

Errors in ocean salinity and atmosphere temperature

in the atmosphere–ocean boundary layer show strong

correlation for the forecast valid at 1200 UTC (close to

midnight local time, Fig. 6f). The correlations are strong

and positive in the near-surface region and switch to

negative around the height of the atmospheric boundary

layer (ABL). The potential origin of this relationship is

not immediately obvious from the model equations as

neither is explicitly included in the surface boundary

condition of the other. However, it may be explained via

the relationship between the errors in the ocean salinity

and specific humidity, which show an almost equal but

opposite (negative) correlation in the same region

(Fig. 6h). The surface boundary condition for salinity

depends on the latent heat flux QE. From Eq. (6) we

expect a positive linear association between errors in the

surface specific humidity qn and errors in QE, and scat-

terplots of the errors in these two fields for each en-

semblemember confirm this (Fig. 10d). An overestimate

(underestimate) of the surface specific humidity will

therefore be associated with an overestimate (un-

derestimate) of the magnitude of QE (relative to the

truth). Assuming QE , 0, an overestimate of the mag-

nitude ofQEwill result in an overestimate of evaporation

from the ocean surface, and this will cause errors in the
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surface salinity to decrease [remember that since error5
(truth2 forecast) ‘‘decrease’’ can alsomean becomemore

negative and thus increase in magnitude]. Conversely,

an underestimate of the magnitude of QE will lead to too

little evaporation and an increase in the surface salinity

error. By this reasoning, we expect the near-surface sa-

linity and specific humidity errors to be negatively corre-

lated, and this holds for our results (Fig. 6h).

Next, we consider the relationship between the near-

surface atmosphere temperature and specific humidity

errors; from (5) we expect errors in the atmosphere sur-

face temperature and the sensible heat flux QH to be

positively correlated to first order, and, as previously

stated, (6) tells us that errors in the surface specific hu-

midity and the latent heat flux QE will be positively cor-

related too. From our explanation of the mechanism for

the observed positive near-surface atmosphere–ocean

temperature error correlations, we know that, for this

case, an overestimate of the magnitude of QH will gen-

erally be associated with an underestimate of the magni-

tude of QE (and vice versa, see Fig. 10a); given this, we

would expect errors in the near-surface atmosphere tem-

perature and specific humidity fields to be negatively cor-

related. Although weak, this relationship is seen for both

the 1200 and 0000 UTC forecast error correlations (not

shown). Together, the negative relationship between

errors in near-surface salinity and specific humidity,

and between errors in near-surface atmosphere tem-

perature and specific humidity, would imply a positive

relationship between errors in the near-surface salinity

and atmosphere temperature, hence explaining the

correlations seen in Fig. 6f.

More generally, errors in the heat and moisture con-

tent of the lower atmosphere will lead to errors in the

model-predicted ABL height and misplacement of the

position and gradient of the temperature inversion

capping the ABL; this will introduce something akin to

a phase error and hence explain the change in sign of

the near-surface salinity–atmosphere temperature and

salinity–humidity error correlations at around 900 hPa.

The same strength of correlation between the errors in

the near-surface ocean salinity and atmosphere tem-

perature and humidity are not seen for the forecast valid

at 0000 UTC (local day; Figs. 6e,g). During the day,

strong solar insolation warms and stabilizes the upper

ocean; because the turbulent heat fluxes, and their er-

rors, are relatively small in magnitude, the structure of

the ocean is dominated by this solar heating. At night,

the ocean is losing heat and the stratification of the water

column is weaker; the ocean is more responsive to per-

turbations in the turbulent fluxes, thus enabling stronger

error cross correlations to develop.

4) WIND SPEED–OCEAN TEMPERATURE ERROR

CROSS CORRELATIONS

The structure of the near-surface ocean temperature

and wind speed error cross correlations almost mirrors

those of the atmosphere–ocean temperature errors

FIG. 7. Schematic illustrating how the shortwave radiation fluxQSW affects the net heat flux

Qnet and in turn ocean heat gain or loss between day and night. In our model, all fluxes are

positive downward; this simplified representation assumes that SST.Tsurf so that bothQE, 0 and

QH , 0.
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(cf. Figs. 6a and 6c and Figs. 6b and 6d). Stronger surface

winds act to draw heat from the ocean and induce ocean

mixing. If the surface wind speed is persistently over-

estimated (underestimated), turbulent heat exchange

will be enhanced (reduced) and ocean heat loss will also

be overestimated (underestimated); this will cause the

ocean temperature to become underestimated (over-

estimated) relative to the truth, that is, the ocean will

become too cold (warm), or even colder (warmer) if it is

already too cold (warm). Therefore, a negative corre-

lation between errors in near-surface ocean temperature

and wind speed is consistent with what we would expect

physically. Analogous to the misplacement of the ABL,

errors in ocean–atmosphere heat exchange will result in

errors in the vertical structure of the ocean and the

modeled mixed layer depth, thus explaining the change

in sign of the error wind speed–ocean temperature cor-

relations around the bottom of the mixed layer.

b. December ensemble

In the winter, the strength of the incoming solar ra-

diation is reduced and themean net heat flux is negative.

The surface winds and air–sea surface temperature dif-

ferences are large compared to the summer case leading

FIG. 8. Schematic illustrating the relationship between error in predicted heat gain or loss

and error in predicted temperature, for example, due to error in Qnet (ocean) or QH (at-

mosphere). (a),(b) The solid black line denotes the truth and the red and blue lines represent

realizations of temperatures for different initial values and different rates of heat gain/loss.

(c),(d) The evolution of the (truth 2 estimate) errors for each temperature estimate. (left)

Temperature errors increase if heat gain is underestimated (red lines) and decrease if heat

gain is overestimated (blue lines) regardless of whether the initial temperature is over-

estimated (solid lines) or underestimated (dashed lines). (right) Temperature errors decrease

if heat loss is underestimated (red lines) and increase if heat loss is overestimated (blue lines)

regardless of whether the initial temperature is overestimated (solid lines) or underestimated

(dashed lines).
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to turbulent heat fluxes of greater magnitude and more

heat exchange. The upper ocean is less stable and the

nighttime ocean mixed layer is deeper (maximum depth

of ;80m). Greater air–sea coupling means that we see

much stronger atmosphere–ocean error cross correla-

tions in this case (Figs. 11, 12), and the influence of er-

rors at the air–sea boundary spreads higher into the

atmosphere and deeper into the ocean, as deep as ap-

proximately 50m in the ocean and as high as approxi-

mately 500 hPa in the atmosphere. For the summer case,

the differences between the day and night error cross

correlations are relatively small, whereas for the winter

case there are clear changes in correlation magnitude

and sign between day and night, with stronger error

correlations in the 0000 UTC (local day) forecast. In

parallel with the near-surface salinity–atmosphere

temperature and salinity-specific humidity error corre-

lations in the summer case, the cross correlations typi-

cally seem to switch sign near the top of the ABL.

We now discuss the December atmosphere–ocean

error cross correlation patterns in more detail; the var-

ious physical processes and atmosphere–ocean feedback

mechanisms we describe are illustrated schematically in

Fig. 13.

FIG. 9. Schematic illustrating how different combinations of errors in the magnitude of the latent and sensible

heat fluxesQE andQH affect the correlation between errors in the atmosphere and ocean surface temperature:

(a) during the day when the net heat flux Qnet . 0 and (b) during the night when Qnet , 0. Blue text indicates

a negative atmosphere–ocean temperature error correlation and red text indicates a positive atmosphere–ocean

temperature error correlation. In our model, all fluxes are positive downward; this simplified representation assumes

that SST . Tsurf so that both QE , 0 and QH , 0.
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1) ATMOSPHERE–OCEAN TEMPERATURE ERROR

CROSS CORRELATIONS

In contrast to the summer case, the winter atmosphere–

ocean temperature error cross correlations are reasonably

strong and clearly structured (Figs. 11a,b). The corre-

lations for the 1200UTC (local day to night) forecast are

relatively strong and negative within the atmosphere–

ocean boundary layer (Fig. 11b), whereas the 0000 UTC

(local day) correlations (Fig. 11a) are relatively weak

and positive within the boundary layer but become

stronger around the top of the ABL and then switch

sign to negative; again, this indicates that errors in the

heat and moisture exchange at the atmosphere–ocean

boundary induce errors in the lower-atmosphere mixing

scheme and in turn errors in the lower-atmosphere

temperature and specific humidity profiles, particularly

across the boundary-layer capping inversion.

Following the logic given for the positive June

atmosphere–ocean temperature error correlations in the

previous section, we expect one of scenarios 1 or 2 to hold

at 0000 UTC (local day). This implies that the errors in

the latent and sensible heat fluxes are negatively corre-

lated, and a scatterplot of the errors inQE andQH for the

0000 UTC forecast ensembles confirms this to be the case

(Fig. 14a). A negative atmosphere–ocean temperature

error correlation during the night (1200 UTC) would

imply that either the atmosphere temperature field is

gaining too much heat and the ocean is losing too much

heat, or that the atmosphere temperature field is not

gaining enough heat and the ocean is losing too little heat

(relative to the truth). For this relationship to hold, we

would expect the errors in QE and QH at 1200 UTC

to show a positive association; again, a scatterplot of the

errors in QE and QH for the 1200 UTC forecast ensem-

bles confirms this to be true here (Fig. 14b).

FIG. 10. June 500-member 4D-Var ensemble: (a) ensemble sensible heat flux errors vs

latent heat flux errors, (b) ensemble latent heat flux errors vs net heat flux errors, (c) ensemble

sensible heat flux errors vs net heat flux errors, and (d) ensemble surface specific humidity

errors vs latent heat flux errors. Note that errors from 1200 and 0000UTC forecasts have been

combined.

OCTOBER 2017 SM I TH ET AL . 4027



FIG. 11. December 500-member 4D-Var ensemble: (a),(b) atmosphere–ocean temperature; (c),(d)

wind speed–ocean temperature; and (e),(f) wind speed–ocean salinity error cross correlations for (left)

0000 UTC (local day) and (right) 1200 UTC (local night). The approximate mean height of the ABL and

approximate mean depth of the ocean mixed layer are 840 hPa and 6.5m at 0000 UTC and 900 hPa and

76m at 1200 UTC (these values are diagnosed from the truth trajectory).
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To explain why the correlation between errors in the

sensible and latent heat fluxes changes sign between day

and night, we need to consider where these errors may

originate from. Equations (5) and (6) tell us that errors

in QH or QE will come from error in the magnitude of

the transfer coefficientCH or CE, error in the magnitude

of the surface wind speed jUnj, and/or error in the air–

sea temperature difference DT or air–sea humidity dif-

ferenceDq. Considering the effect of a small perturbation

to DT in (5) and to Dq in (6) tells us that errors in QH

and DT, and errors in QE and Dq, will be positively

correlated. Similarly, errors in DT and the atmosphere

surface temperature will be positively correlated, as will

errors in Dq and the surface specific humidity. However,

errors in near-surface atmosphere temperature and

specific humidity are negatively correlated; thus, we

expect errors in DT and Dq to also be negatively corre-

lated. The negative association between the errors inQH

and QE at 0000 UTC therefore implies that they are

primarily being driven by errors in DT and Dq, re-

spectively. The positive correlation between the errors

in QH and QE at 1200 UTC shown in Fig. 14b indicates

that they are being dominated by a different source at

night. Again using (5) and (6), we know that an error in

the estimated surface wind speed will affect the esti-

mated magnitude of QH and QE in the same way. As-

sumingQE,QH , 0, the effect of an increase (decrease)

in the magnitude of the wind speed will be a decrease

(increase) in error for bothQH andQE, thus leading to a

positive error correlation between them. This suggests

that, rather than temperature and specific humidity er-

rors, it is errors in the wind speed that are mainly

influencing the errors in QH and QE at night.

2) WIND SPEED–OCEAN TEMPERATURE AND

WIND SPEED–OCEAN SALINITY ERROR CROSS

CORRELATIONS

Unlike the summer ocean temperature–wind speed

error correlations, the winter ocean temperature–

wind speed correlations (Figs. 11c,d) do not mirror

the atmosphere–ocean temperature correlations in the

near-surface layer (Figs. 11a,b). In this case, it is the

ocean temperature–wind speed and salinity–wind speed

error correlations that reflect one another (Figs. 11e,f);

errors in temperature and salinity will have opposing

effects on the ocean density profile, and so this pattern of

behavior is expected.

For the 1200 UTC (local night) forecast ensemble, the

ocean temperature–wind speed error correlations are

negative between the ABL and near-surface ocean but

then become positive further into the ocean mixed layer,

whereas the salinity–wind speed error correlations are

positive between the ABL and near-surface ocean and

become negative within the mixed layer. The explanation

for a positive relationship between the near-surface salinity

and wind speed errors follows from that given in the dis-

cussion of the June results for the negative correlation

between the near-surface ocean temperature–wind speed

errors (since errors in the near-surface ocean temperature

and salinity are negatively correlated); overestimation

(underestimation) of the surface wind speed will enhance

(reduce) the evaporation of moisture from the ocean sur-

face and thus cause the near-surface ocean salinity to be-

comeoverestimated (underestimated) relative to the truth.

During the night, the ocean is typically less buoyant

and less stable, and this leads to greater vertical turbulent

FIG. 12. December 500-member 4D-Var ensemble: atmospherewind–ocean current error cross

correlations for (a) 0000 UTC (local day) and (b) 1200 UTC (local night).
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mixing and a deepening of the ocean mixed layer. Errors

in the extent of this mixing will produce errors in the

ocean temperature and salinity profiles. A potential

source of mixing errors are errors in the vertical shear of

the ocean velocity, which can in turn be generated by

errors in surface wind stress caused by errors in the lower

atmosphere wind profile. Figure 12b shows that the

structure of the 1200 UTC correlations between errors in

themagnitude of the atmospherewind and ocean velocity

is consistent with this argument: they are almost identical

to that of the wind speed-ocean temperature and wind

speed–salinity error correlations (Figs. 11d,f), although

FIG. 13. Schematic illustrating how the correlation between errors in the sensible and latent

heat fluxes affects the air–sea error cross correlations in theDecember case: (a) during the day

when errors are driven by errors in the air–sea temperature and air–sea humidity difference

and (b) during the night when errors are driven by errors in the near-surface wind speed. Note

that, although these assume that the wind speed is overestimated, when the wind speed is

underestimated the sign of everything is reversed and so the pattern of error cross correlations

stays the same.
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stronger in magnitude (and of opposite sign to those for

wind speed–ocean temperature). The change in sign of

the error correlations within the mixed layer suggests

that, in order to restore uniformity of density, the wind-

driven errors near to the surface are counterbalanced by

reversing the direction of errors from below.

The 0000 UTC (local day) wind speed–ocean temper-

ature and wind speed–salinity error cross correlations

(Figs. 11c,e) are stronger than the 1200 UTC (local night)

correlations and extend higher into the atmosphere. The

wind speed–ocean temperature correlations are strong

and positive throughout the lower atmosphere–upper

ocean, and strong and negative around the top of the

ABL; the wind speed–salinity errors display the opposite

pattern, as in the 1200 UTC (local night) case. Figure 12a

shows that these error correlations again have a similar

structure to those between the atmosphere wind–ocean

velocity errors but are reduced in magnitude, although in

this case it is the wind speed–ocean temperature error

correlations that have the same sign. During the day the

absorption of solar radiation has a stabilizing effect and so

the ocean column is typicallymore stratified and buoyant.

This buoyancy acts as a barrier to vertical mixing, and so

changes in the turbulent surface fluxes will not have the

same effect on the ocean as at night (also recall that the

errors in the daytime sensible and latent heat fluxes

show a negative correlation which suggests that they are

being driven by errors in the air–sea temperature and

humidity differences rather than the errors in the wind

speed). Because mixing is limited, the response of the

ocean model to a perturbation in the near-surface wind

profile will be more linear, that is, the ocean simply shifts

from one stable density profile to another, hence the

uniform structure of the correlations between the errors.

Indeed, the weaker appearance of the 1200 UTC error

cross correlations is perhaps a consequence of the non-

linearity of the vertical mixing process. The 1200 UTC

ensemble error standard deviation profiles for ocean

temperature and salinity both show sharp increases

around the bottom of the mixed layer, which is consistent

with the idea that the nighttime ocean is less stable, more

turbulent, and thus more nonlinear in its response to

perturbations in the near-surface wind.

c. Sensitivity to amplitude of errors in the
ocean model

In these experiments, the amplitude of the initial

background error perturbations and background error

variances were chosen to be consistent with the vari-

ability of our 1D model system. In particular, the errors

in the ocean model are much smaller in amplitude than

would be expected in a full-scale 3D coupled model

system. To investigate the effect of initial ocean errors

comparable to those in a full-scale 3D system on the

atmosphere–ocean error cross-correlation patterns, we

reran our December experiment using an initial back-

ground state with larger ocean errors; this state was

generated by inflating the size of the perturbations

added to the ocean variables at the start of the initial

24-h spinup forecast. The prescribed background error

standard deviations for the ocean variables were in-

creased accordingly, as shown in Fig. 15. Initially, the

prescribed observation error standard deviations were

kept unchanged, but this led to overfitting of the ocean

observations. Although the errors in the ocean state are

initially more realistic in that they reflect the amplitude

of errors that would be found in a 3D ocean model, they

become damped by the dynamics of the idealized model

and return to levels closer to those in the original ex-

periment; this means that although the prescribed error

FIG. 14. December 500-member 4D-Var ensemble: (a) ensemble sensible heat flux errors vs

latent heat flux errors at 0000 UTC and (b) ensemble sensible heat flux errors vs latent heat

flux errors at 1200 UTC.
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variances in B0 are consistent with the size of the initial

background perturbations, they are much larger than,

and inconsistent with, the actual forecast variability of

the 1D model. The 4D-Var algorithm then assumes that

the model forecast state is far less accurate than it ac-

tually is and erroneously draws the analysis more closely

to the observations. The analysis increments are there-

fore dominated by the observations, and we lose in-

formation about the error cross-correlation structures of

the background flow.

To prevent this overfitting and maintain similar

background to observation error ratios as in the original

experiment, the error standard deviation of the ocean

temperature, salinity, and current observations were

increased to 0.05K, 0.015 psu, and 0.05m s21, re-

spectively. The initial (truth 2 background) errors and

prescribed background and observation error standard

deviations for this case are shown in Fig. 15. The large

errors in the initial ocean background state lead to poor-

quality analyses in the first two assimilation cycles (i.e.,

analysis ensemble mean is far from the true state), so

these are excluded from the computation of the error

correlations via (20). A selection of the resulting en-

semble error cross correlations is shown in Fig. 16. The

0000 UTC (local day) error cross correlation structures

are broadly similar to the original case (Figs. 11, 12),

except that they do not extend as deep into the upper

ocean; the atmosphere–ocean temperature and wind

speed–ocean salinity error cross correlations (Figs. 16a,e)

are also weaker in magnitude. The corresponding

1200 UTC (local night) atmosphere–ocean error cross

correlations match the original case less closely but are

generally of the same sign in the near-surface region.

We would expect to see some differences in the detail

of error correlation patterns for this new case as the

initial background state has a different structure, and all

ensemble estimates will inevitably contain sampling er-

rors. Further, we reduced the effective sample size by

excluding the results of the first two assimilation cycles.

Nonetheless, these results are a useful reminder of how

FIG. 15. December 500-member 4D-Var ensemble with inflated ocean errors: (top) initial background (solid line) and observation

(dashed line) error standard deviations; circles represent observation locations. (bottom) Initial truth 2 background errors (absolute

value): (left to right) ocean T (K), salinity (psu), and u and y current (m s21).
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FIG. 16. December 500-member 4D-Var ensemble with inflated ocean errors: (a),(b) atmosphere–

ocean temperature; (c),(d) wind speed–ocean temperature; (e),(f) wind speed–ocean salinity; and

(g),(h) atmosphere wind speed–ocean current speed error cross correlations for (left) 0000 UTC

(local day) and (right) 1200 UTC (local night).
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it is the relative weighting of the background and ob-

servation errors that is important in an assimilation

system and demonstrate the reliance of the ensemble

methodology on an appropriate choice of these weights

for the model system being studied.

5. Summary

To fully realize the potential of coupled atmosphere–

ocean data assimilation, proper representation of the

relationship between the errors in the atmosphere and

ocean model forecasts is needed.We have been using an

idealized 1D coupled atmosphere–ocean model to ex-

plore ensembles of 4D-Var data assimilation as a means

of capturing the characteristics and structure of the

atmosphere–ocean forecast error cross correlations in

coupled systems.

The strongest error cross correlations are seen in the

near-surface atmosphere–ocean boundary layer, but

beyond this the atmosphere and ocean errors appear to

be mostly uncorrelated. Within the boundary region

there is notable variation in the strength and structure of

the error cross correlations between summer and winter,

and also between day and night. These differences

provide a valuable insight into the nature of coupled

atmosphere–ocean forecast error correlations for differ-

ent seasons and points in the diurnal cycle. They are most

distinct in the winter case when the effect of solar in-

solation on ocean stability is reduced, surface winds are

high, and the atmosphere–ocean surface temperature

difference is large; these combine to produce turbulent

heat fluxes of greater magnitude so that air–sea coupling

is strong. The observed forecast error correlations can be

explained by a careful consideration of the underlying

model physics, forcing, and known atmosphere–ocean

feedback mechanisms.

Introducing improved cross-covariance information

between the two fluids in coupled assimilation will enable

greater use of near-surface observations and should in

turn produce more accurate and balanced atmosphere–

ocean analysis states and more reliable coupled model

forecasts and reanalyses. In addition to offering an in-

dication of the type of error correlation structures that

could be expected from coupled systems, this study has

highlighted the fact that atmosphere–ocean forecast error

cross correlations are very state and model dependent;

they will naturally vary depending on factors such as lo-

cation and time of day and year, but will also depend on

features of themodel and assimilation systemdesign, such

as window length. So, although it is expected that the in-

clusion of cross-covariance information in the 4D-Var

forecast error covariance matrix will have a positive im-

pact on the coupled assimilation, the staticB0 formulation

assumed in traditional 4D-Var may not be sufficient;

rather, it will be important to introduce an element of flow

dependence.

The knowledge gained from this study is now being

used to develop new methods for approximating the

statistics of the atmosphere–ocean forecast errors and for

incorporating this information within a variational data

assimilation framework. Longer term, this will include

the development of a strongly coupled hybrid ensemble–

4D-Var system. The next stage in this process is to in-

corporate the ensemble atmosphere–ocean forecast error

cross-covariance information into our 1D strongly and

weakly coupled 4D-Var assimilation systems and assess

whether they do in fact help to generate more accurate

and/or balanced analysis states.
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