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Highlights 

 First publication of field maps for sugar beet crop value and quality 

 Patches of lowest crop value in fields were 7-56% of maximum 

 High yielding patches had higher plant populations, soil moisture and organic matter 

 Amino acid and potassium in roots were associated with soil type and topography 

 Uniform agronomy of sugar beet fields may lead to sub-optimal use of inputs 

 

Graphical summary 

 

Field maps of variability of potential driving variables of sugar beet yield value in White Patch field at 

Brooms Barn Research Station in the east of England in 2012. It is a 9 ha field, measuring 

approximately 300 x 300 m. Field correlations (R) with yield value are shown for crop and weed 

population densities, for some soil variables (clay, organic matter, sand and moisture in July) and for 

mean canopy temperature over the growing season. 
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Abstract 

Spatial variability of sugar beet yield and quality within fields and their correlation with 

environmental variables was investigated in order to explore the potential for more precise agronomy. 

In three uniformly-managed, commercial sugar beet fields in the east of England spatial variation in 

the commercial value of the sugar yield ranged from £230 to £3320 per hectare. This variation was not 

random; there were high and low yielding patches in each field. Sugar beet root yield was positively 

correlated with the spatial distribution of crop plant population, soil organic matter and soil moisture, 

but negatively with weed density and canopy temperature. Correlations of sugar beet yield with soil 

type, elevation and soil available phosphate, potassium and magnesium were, however, inconsistent 

between the three fields and over two seasons. With respect to sugar beet quality, spatial variation in 

the amino acid and potassium concentrations in the sugar beet roots was associated with soil type and 

elevation, whereas sugar percentage varied randomly in two of the fields. Interventions and research 

that could help to optimize yield on a spatially-variable basis are discussed.  

Keywords: Sugar beet; Yield map; Plant population; Weed competition; Soil map; Precision 

agriculture. 

1 Introduction. 

Commercial sugar beet fields are generally managed uniformly. Soil, however, varies at different 

spatial and temporal scales within fields (Webster and Oliver, 2007), and this variability, together with 

spatial variation in biotic constraints such as weeds, pests and diseases, may cause spatial and 

temporal variability in crop development and yield (Heege, 2013, Oliver et al., 2013). Sugar beet is 

expected to respond similarly (Richter et al., 2006). 

Although yield maps of combinable crops can be produced cheaply and routinely during harvesting 

(Heege, 2013), yield monitors do not currently feature on sugar beet harvesters. Yield maps reflect 

crop responses to stresses or other constraints on yield, but different environmental variables may 

cause similar patterns of stress (Jones and Schofield, 2008). An accurate field map of variables which 
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may be influencing yield variation is required to implement more precise crop agronomy. Such maps 

usually need to be based on field sampling, which is expensive (Webster and Lark, 2012). Moreover, 

the samples only quantify soil variables where samples are taken (Scannavino et al., 2011) although 

Kriging can be used to predict the values at unsampled locations provided adequate numbers of 

samples are available (Oliver, 2010). 

Previous research in sugar beet fields has mapped spatial variability of single factors including soil 

organic matter (Karaman et al., 2009a), soil available nitrogen and phosphate (Franzen, 2004, 

Karaman et al., 2009b), soil moisture content (Zhang et al., 2007, 2011) and Heterodera schachtii, the 

beet cyst nematode (Reynolds, 2010, Hbirkou et al., 2011). Associations of this spatial variability with 

sugar beet growth, yield and quality were not, however, reported. Since within-field variation is likely 

to be influenced by combined effects of pedo-climatic and biotic factors, it could be misleading to 

focus on single factors. This paper therefore investigates field scale correlations of sugar beet yield 

and quality with variation in a range of factors both separately and in combination. 

Variation in plant population, especially where a result of poor crop establishment, is likely to affect 

the ability to detect post-emergence correlations with pedo-climatic variables. Sugar beet yields follow 

typical asymptotic yield-density relationships (Holliday, 1960, Jaggard and Qi, 2006). In eleven 

experiments carried out on a range of soil types in England over three growing seasons, yields were 

maximised in eight of the experiments with 100000 sugar beet plants per hectare, the economic 

optimum after allowing for seed costs, being 80000 per hectare (Jaggard et al., 2011). These optima, 

although not the actual yields, were the same in different soil types and locations. 

Other biotic constraints also influence the ability to discern impacts of environmental variables, not 

least of which is weeds. Sugar beet is highly susceptible to weed competition especially in early stages 

of growth until canopy closure (Kropff et al., 1992). Reflecting this vulnerability to weeds, when this 

research commenced in 2012, UK sugar beet crops were receiving an average of 4.1 herbicide 

treatments and sugar beet was treated with more herbicide (3.2 kg active ingredients per hectare) than 

any other arable crop in the UK (Garthwaite et al., 2013). In the fields where this research was carried 
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out, weeds were managed uniformly and received above average treatments, but nevertheless still 

contained significant weed infestations in patches.  

This paper mainly explores associations of both root yield and economic value with pedo-climatic 

variables within individual fields after accounting for any impacts of crop and weed plant population 

densities. The long-term goal is to identify opportunities for more precise sugar beet management in 

relation to pedo-climatic variables. 

2 Materials and methods.  

Three commercial sugar beet fields were selected in the east of England (Table 1). These fields were 

White Patch at Broom’s Barn Research Station, near Bury St. Edmunds (32 km east of Cambridge), 

and T32 and WO3, near Cambridge (Table 1). Fields were purposively selected on the basis of their 

having considerable variation in soil type (based on pre-existing soil maps) and topography (elevation 

and aspect – based on visiting the fields). The farm managers were wholly responsible for managing 

the crops and applied all inputs (Table 1) uniformly across the sampled areas of each field. White 

Patch and T32 were studied in 2012, and WO3 in 2013. To facilitate geostatistical analysis (Webster 

and Oliver, 2007), there were 90-114 samples per field arranged in an irregular grid with some nested 

samples over shorter distances (Table 1, Figure 1). Yield maps of the preceding crops in T32 and 

WO3 and a soil map in White Patch were available and guided sampling, especially for locating the 

nested samples, which were included to enhance the accuracy of the predicted maps (Pereira et al., 

2013).  

Sample locations were geo-referenced using a differential Global Positioning System (dGPS), Trimble 

Nomad 900B Mobile Computer in White Patch and T32, while an RTK GPS, Topcon Model GRS-1 

(Topcon Positioning Systems, Inc., 7400 National Drive, Livermore, CA 94550 USA) provided more 

accurate geo-referencing in WO3. The latitude, longitude and altitude data provided by the GPS were 

used to estimate the slope and aspect of each sample location using ArcGIS software edition 10 (ESRI, 

Redlands, CA, USA). Except where noted otherwise, crop and soil sampling took place in 2x2 m plots 
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300 m 

A. White Patch B. T32 

C. WO3 

at each sampling location. These plots comprised four rows of sugar beet with 50 cm spacing between 

rows. 

 

 

 

 

 

 

 

 

 

Figure 1: Kriged elevation maps and the distribution of the sampling points in the fields, White Patch 

(A), T32 (B) and WO3 (C). Elevations (heights above mean sea level) were obtained from the GPS 

instruments. Some areas in White Patch were unavailable for sampling. 

2.1. Measurements. 

2.1.1. Crop assessments 

To improve accuracy, the sugar beet plant population density at each sampling location was assessed 

by counting plants in 8 m
2
 (4 rows x 4 m) extending  the two-metre plot length used for most 

measurements by 2 m, taking care to avoid tractor wheelings. Counts were multiplied by 1250 to 

express the densities on a per hectare basis. 

The plots were harvested manually (Table 1) shortly before commercial harvest. The two central rows 

from each plot (2 m
2
) were harvested in White Patch and T32 fields. In WO3 the harvested area for 

some plots had to be increased to include the whole plot (4 m
2
) or extended to 8 m

2
 to achieve the 10-

15 kg samples required for analysis. The roots were dug with a modified (two-pronged) fork to avoid 

damage and the leaves were separated from the roots by cutting just below the crown using knives 
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designed for hand topping sugar beet. The roots were then put in large woven polypropylene sacks (30 

x 45cm), and sent within 16 h to the British Sugar factory at Wissington, 45 km NE of Cambridge, 

where they were analysed exactly as for commercial samples. 

At the factory the roots were washed and weighed and the clean samples then went through the factory 

system to determine the sugar content based on polarimetry methods, while the flame photometry was 

used to measure impurities and the root content of amino acids and potassium in mg/100 gm of beet as 

specified by the International Commission for Uniform Methods of Sugar Analysis (Whalley and 

Siegfried, 1964). The yield value was computed as follows: 

Yield value (£/ha) = [Root yield (t/ha)] × P × F 

where P was the British Sugar price per tonne of roots (£27.53 and £26.51 in the 2012 and 2013 

seasons, respectively), and F is a quality adjustment to that price, which ranged between 0.72 and 1.32 

for sugar percentages in the root between 13 and 20% (C. Walters, British Sugar, personal 

communication). 

2.1.2. Weed assessments 

Densities of weeds surviving or emerging after herbicide treatments were counted and identified in the 

whole plot area (4 m
2
) (Table 1). 

2.1.3. Soil sampling and analysis. 

Soil was sampled in each plot to a depth of 30 cm using a 5 cm diameter Dutch auger in early July 

(Table 1). Three soil cores were taken diagonally across each 2x2 m plot, bulked, mixed thoroughly, 

air dried and then stored in polythene bags at 4 ºC prior to analysis. Percentages of clay and sand were 

estimated using the hydrometer method (Sheldrick and Wang, 1993). Total soil organic matter was 

estimated by loss-on-ignition (Jones Jr, 1999). Soil pH and EC and available potassium (K), 

phosphorus (P) and magnesium (Mg) were measured using Palintest Soil Test Model 10 (Palintest Ltd, 

Palintest House, Kingsway, Team Valley, UK) using Palintest soil extraction and reagent kits. The 

tests for P and Mg are based on colour comparison methods, while the K test is based on turbidity 

(cloudiness). Extraction solutions were 50 mL of 0.1 M magnesium acetate, 0.5 M sodium bicarbonate 



8 
 

and 1.0 M potassium chloride for P, K and Mg, respectively, to which 2 mL soil was added (P and K) 

or 10 mL for Mg. Containers were shaken for one minute (P and K) or two minutes (Mg), filtered, and 

then 10, 2 or 1 mL of filtrate were placed in 10 mL photometer tubes, for K, P and Mg, respectively. 

Volumes were made up to 10 mL with deionised water and specific Palintest reagent tablets for each 

element were added and left for 2, 10 and 5 min, respectively. The photometer was reset to zero by 

inserting a blank tube after which a sample tube was inserted and the result recorded. Eddy and 

Johnston (2009) carried out a comparison of these procedures for Palintest Soil Testing Kits with 

recognised laboratory soil analysis methods. Correlation coefficients for available K, P and Mg were 

all better than 0.95. 

Soil volumetric moisture content was estimated in the top 20 cm of the soil profile on different dates 

(Table 1) using a FieldScout Model TDR 300 (Spectrum Technologies, Aurora, IL 60504, USA). On 

each date, soil moisture was measured in all plots in a given field within a period of 2-3 h when it was 

not raining. 
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Table 1: Field operations, sampling and the dates of some measurements in the fields, White Patch, 

T32 and WO3. 

 

2.1.4. Climatological data. 

Weather data for White Patch were recorded at the Broom’s Barn weather station located 300 m from 

the field. For T32 and WO3, data were obtained from CEDA (2014) for the nearest weather station 

which was located at Cambridge University Botanic Garden (52.194ºN, 0.1294ºE, 11 m above mean 

 

White Patch, 2012 T32, 2012 WO3, 2013 

Latitude, °N 

Longitude, °E 

52.257 

0.573 

52.182 

0.105 

52.167 

0.143 

Area ha 9 12.4 14 

Previous crop Winter wheat Winter wheat Winter wheat 

Sugar beet variety Valeska Bullfinch SY Muse 

Crop drilled 23 March 16 March 5 March 

Plots harvested 25 September 2 October 26 November 

Crop plants/ha, (range) 91000 (66000-116000) 95000 (70000-115000) 51000 (22000-81000) 

Total plots (number) 91 90 114 

Nested plots (number) 13 15 36 

Sampling intervals, m 24-40 main grid, 10 nested 40 main grid, 20 nested 36 main grid, 9 nested 

Soil sampling date 2 July 7 July 8 July 

Canopy data logging 

No. of data loggers 

31 May to 25 September 

45 

1 June to 2 October 

45 

22 May to 26 November 

90 

Soil moisture measured 2 June, 5 July and 13 August 6 June, 6 July and 13 August 6 June, 9 July and 11 Sept. 

Weed assessment  13 August 17 August 20 July 

Weed species Mayweed (Matricaria perforata), Speedwell (Veronica 

hederifolia), Fat hen (Chenopodium album), Black-grass 

(Alopecurus myosuroides) and Wild-oat (Avena fatua).  

Black-grass (Alopecurus 

myosuroides) and Brassica 

napus. 

Nitrogen, kg N per ha  40, 3 April; 80, 13 April 58, 23 March; 80, 25 May 60, 9 April (only) 

Herbicide applications,  

amount per ha 

17 May: 1.25 L Betanal 

Maxxpro; 1 L Bettix Flo; 1 L 

Oil. 

24 May: 1.25 L Betanal 

Maxxpro; 0.4 L Venzar. 

22 March: 3 L Takron. 

17 May: 2.5 L Beetup; 0.39 L 

Oblix 500; 20.5 g Debut; 0.4 L 

Venzar Flo; 0.5 L Defiant; 

1.033 L Cropspray 11E. 

22 July: 2.5 L Opteman; 5.16 

kg Bittersalz; 0.55 L Laser; 

1 L Cropspray 11E. 

14 March: 4 L Takron. 

25 April: 1 L Beetup; 0.45 L 

Oblix 500; 0.8 L Target SC; 

1 L Opteman. 

7 May: 1.6 L Beetup; 1.55 L 

Defiant SC; 0.8 L Target SC; 

1.13 L Opteman. 

17 June: 2.46 L Beetup; 0.5 L 

Defiant; 1 L Cropspray 11E. 
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sea level), 2.1 km north-east of T32 and 3.2 km north of WO3. The nearest location capturing global 

solar radiation was Chilford Hall, Linton (52.1162°N, 0.287°E, 78 m above mean sea level), 

Cambridgeshire, 25 km south-west of White Patch and 11 and 15 km south-east of WO3 and T32, 

respectively. The incident solar radiation for each plot was estimated from the figures for global solar 

radiation combined with the slope and aspect of each plot following the method developed by Kumar 

et al. (1997). 

Crop canopy temperature and humidity were logged with iButton data loggers (Thermocron model 

DS1922L and Hygrochron model DS1923, Maxim Integrated Inc., Wokingham, UK). Loggers were 

installed when the plants had two pairs of leaves and temperature was recorded every 30 min until 

plots were harvested (Table 1). The loggers were shielded from direct solar radiation, wind, rain and 

wild animals by placing them in the crop canopy in the 2012 season. In 2013, loggers in WO3 were 

covered by white polystyrene cups, which were kept near the top of the canopy and covered with 

aluminium foil to reflect radiation. Seasonal mean, minimum and maximum canopy temperatures 

were calculated. As there were insufficient loggers to place one in every plot (Table 1), they were 

distributed as evenly as possible to allow mapping. For correlations, temperatures in plots without 

loggers were estimated by averaging the temperature in the nearest four plots containing loggers. 

2.2. Data analysis. 

Summary statistics were calculated for all variables. An initial indication of variability was provided 

by the Coefficients of Variation (CV). Skewness values exceeding +1 indicate departure from a 

normal distribution, and the data were transformed to logarithms to avoid overestimation of the 

variance (Oliver and Webster, 2014). Variograms were then computed using GenStat 17
th

 edition 

(Payne, 2009) based on Matheron’s Method of Moments (Oliver and Webster 2014) as follows: 

 

𝜸𝒉 =
𝟏

𝟐𝒎𝒉
∑[𝒁𝒙 − 𝒁(𝒙+𝒉)]𝟐

𝒎𝒉

𝐢=𝟏
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Where 𝛾ℎ is the semi-variance for 𝑚ℎ paired comparisons at lag distance h, and 𝑍𝑥  and 𝑍(𝑥+ℎ) are the 

values of the property at two locations separated by distance h. 

The best fitting variogram model was then selected based on a combination of visual assessment and 

the lowest residual sum of squares (RSS). For mapping, interpolations were made using ordinary 

punctual kriging, based on the following equation: 

𝐙̌𝐱𝟎
= ∑ 𝛌𝐢𝐙𝐱𝐢

𝐧

𝐢=𝟏

 

Where  Žx0 is the estimated value of the property at the unsampled location  (x0)  and λi  is the 

weighting applied to values (Zxi
) at n sampled locations. The sum of weights equalled one to give an 

unbiased estimate. Interpolations and field maps were then produced for each variable using ArcGIS 

software edition 10 (ESRI, Redlands, CA, USA: Johnston et al., 2001) based on the variogram’s 

parameters (range, sill and nugget). 
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Figure 2: Monthly precipitation (A-C) and mean minimum, mean maximum and overall mean air 

temperatures (D-F), respectively at weather stations close to White Patch (A, D) and T32 (B, E) in 

2012 and WO3 (C, F) in 2013. Data are only shown during the cropping season, which was longer in 

2013. 
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Overall relationships between individual crop and environmental variables were assessed using 

Pearson correlation coefficients. Combined or confounded relationships were determined with 

Redundancy Analyses (RDA) using Canoco version 5 software (Šmilauer and Lepš 2014). RDA is a 

form of Principal Components, multi-variate regression analysis in which sugar beet yield and quality 

were identified as response variables and weed and crop plant population densities and environmental 

factors were used as explanatory variables (Kenkel et al., 2009). The method assumes that the sugar 

beet yield and quality are a linear multivariate function of the explanatory variables and results are 

visualised using ordination plots. Since spatial variability of soil moisture content varied similarly at 

different times, only the measurements from early June were used for the RDA. 

3. Results. 

The relatively high (≥10%) coefficients of variation (CV) for most variables gives evidence of 

significant spatial variability in the fields. The highest CVs (76 to 356%) were for soil available 

phosphate, magnesium and weeds (Table 2). Conversely, sugar concentration, soil pH, canopy 

temperature and incident solar radiation were relatively uniform (CVs < 6%: Table 2). 

Crop plant population densities were optimal in 2012 with mean values of 91065 and 95000 plants/ha 

in White Patch and T32, respectively (Table 2). By contrast, establishment in WO3 in 2013 was much 

lower and more variable than the farmer’s target of at least 80000 plants/ha, with a mean population 

density of only 50800 plants/ha, ranging from 22000 to 81000 plants/ha (Tables 1, 2). 

The mean root yield and sugar percentage were generally higher in T32, which therefore resulted in a 

higher mean yield value of £2500 per ha (Table 2) compared to £1850 and £1870 in White Patch and 

WO3, respectively. The variability in final economic yield was however much higher in WO3 than in 

T32 with CVs of 32 and 11.3%, respectively (Table 2). Nevertheless, these CVs perhaps mask their 

financial importance, since yield values ranged from £230 to £3127, £1120 to £2990 and £1870 to 

3320 per ha (Table 2) in WO3, White Patch and T32, respectively. 

Rainfall during the 2012 growing season (March to September) was abundant amounting to 502 and 

441 mm in White Patch and T32 respectively, whereas it was lower (401 mm) in the longer 2013 
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growing season (March to the end of November). Low rainfall shortly after drilling in March and 

April 2013 was also associated with lower temperatures (< 5ºC) than in 2012 (Fig. 2 D-F). 

Precipitation in July 2012 was very high (>130 mm; Fig. 2) resulting in uniform and high mean soil 

moistures of 53 (CV: 8%) and 41% (CV: 12.2%) in White Patch and T32, respectively. By contrast in 

July 2013, soil moisture in WO3 was only 22% and more variable (CV: 25%). Lower precipitation in 

August in all fields and in WO3 throughout the season led to more variable soil moisture (CVs: 14.6 to 

27%), probably reflecting variability in soil type and water retention (Table 2).  

Incident solar radiation was higher and more variable in WO3 in 2013 compared to White Patch and 

T32 in 2012. Soil pH was high in all fields due to the chalk soils and was highest (8.4) in White Patch 

compared to T32 (7.5) and WO3 (7.8) (Table 2). Soil phosphate was almost unavailable in WO3 at the 

time of sampling, being undetectable in over 90% of the plots with mean value of 0.55 mg/L (Table 

2). 

3.1. Geostatistical analysis. 

Most variables were approximately normally distributed with a low skewness (<1) (Table 2). 

Exceptions were soil available phosphate and magnesium and weed density in all fields and soil 

available potassium in T32, which were each positively skewed. Acceptable skewness values (0.03 to 

0.75) were achieved for the soil nutrients after logarithmic transformation (Table 2).  

The significant spatial variation occurring in most variables was bounded and accounted for by the 

sampling scheme in each field since most variograms reached a sill, becoming slightly flat over longer 

lag distances (Suppl. Figs S1-S3). The spatial variability in root yield and yield value was best 

accounted for by the circular model in all three fields and the exponential model best described the 

spatial variation in amino acid content of the beet (Suppl. Table S1). By contrast the spatial 

dependency and variability in sugar concentration was low such that the variogram appeared as pure 

nugget in T32 and WO3 (Suppl. Table S1, Suppl. Figs S1-S3). Soil available potassium was also pure 

nugget in White Patch and WO3, which, in this case, can be attributed to large and apparently random 

changes in available potassium over short distances. In general, however, most of the observed 
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variation was spatially correlated, and the calculated spatial dependency was strong or moderate, 

ranging from 0 to 71%, 12 to 49% and 14 to 63% in White Patch, T32 and WO3, respectively (Table 

2: the lower the value, the greater the spatial dependency). Spatial dependence in yield value was very 

strong in White Patch (0%: nugget variance of zero), and moderate in T32 (38%) and WO3 (35%) 

(Table 2, Suppl. Figs S1K-S3K). 

The distance over which variation is spatially dependent, quantified by the range parameter and 

differed between fields and variables, being 64 m for soil moisture but 220 m for soil available 

magnesium in White Patch, and varying from 93 to 380 m in T32 and from 44 to 208 m in WO3 

(Suppl. Table 1). 
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Table 2: Summary statistics for the crop and environmental variables in all three fields. The canopy temperature is the average for the growing season (Table 1) 

Spatial dependency is the ratio of nugget: sill expressed as a percentage; the lower the value, the greater the spatial dependence. 

 White Patch, 2012 T32, 2012 WO3, 2013 

Variables Mean Range CV% 
Skew-

ness 

Spatial 

depend-

ency, % 

 

Mean Range CV% 
Skew-

ness 

Spatial 

depend-

ency,% 

 

Mean Range CV% 
Skew-

ness 

Spatial 

depend-

ency,% 

Clay, % 28.6 21 19.8 0.03 0  20.8 13 13.6 0.18 22  40 22 11.6 0.32 46 

Sand, % 67 29 10.5 -0.05 11  74 15 4.7 -0.28 48  52.6 30 10.5 -0.29 41 

Soil organic matter, % 3.4 3.1 15.1 0.47 31  3.4 2.2 11.9 0.03 39  4.3 3.2 13 0.62 45 

Soil pH 8.4 1.2 3.6 -0.22 0  7.5 2.1 5.7 -0.57 29  7.8 0.9 2 0.03 41 

Soil electrical conductivity, µS 116.8 90 16.9 -0.24 23  92.9 110 28.5 0.38 45  235 120 9.3 0.13 63 

Soil moisture in June, % 36.7 33 16.8 0.04 20  28 25 18.6 0.005 37  27 23 22.3 0.26 14 

Soil moisture in July, % 53 24 8 0.5 26  41 22 12.2 0.15 13  22 24 25 -0.15 16 

Soil moisture in August, % 24 25 20.3 0.57 7  19 20 27 -0.54 12  20 14 14.6 -0.13 27 

Soil magnesium, mg/L 24.6 143 136 1.8 Na  8.4 64 132 2.7 Na  16 62 76 1.54 Na 

Soil log magnesium, mg/L 1 1.8 59 0.43 71  1.6 4.2 65 0.41 42  2.5 3.2 30.3 -0.09 60 

Soil phosphate, mg/L 3.4 11 88.5 1.57 Na  8.9 37 106 1.22 Na  0.55 13 356 4.6 Na 

Soil log phosphate, mg/L 0.93 2.5 78 0.75 43  1.56 3.64 78 0.03 38  232  440  63  0.43  Na 

Soil potassium, mg/L 330  417 39.3 -0.6 Na  185  300 38.4 1.22  Na  Na Na Na Na Na 

Soil log potassium, mg/L Na Na Na Na Na  2.24  0.7  6.8 0.48 48   Na Na Na Na Na 

Seasonal incident radiation, J/m2 1404 298 3.5 -0.011 54  1332 171 2.5 -0.23 52  1773 413 3.9 -0.13 16 

Mean canopy temperature,°C 16.6 3.7 1.03 0.53 Na  16.2 3.1 4.4 0.51 Na  14.6 2.2 2.5 0.55 Na 

Min canopy temperature,°C 12  2.1  2.7  0.95 Na  12.2  1.7  3.0  0.15 Na  9.1  1.4  3.1  0.02 Na 

Max canopy temperature,°C 23  9.5  7.9  0.65 Na  21.7  7.7  6.3  0.28 Na  21.4  6.9  4.3  0.3 Na 

Weed density/m2 2.6 22 165 3.3 Na  0.58 3.2 106 1.98 Na  1.05 7.8 136.5 2.45 Na 

Crop plant population, 1000s/ha 91 49.8 14.5 0.0 28  95 45 13.1 -0.19 49  50.8 59 20.9 -0.05 24 

Root yield, t/ha 58.4 53 21.2 0.47 0  75.7 42 11 -0.04 42  68 111 31.6 -0.59 36 

Sugar, % 17.7 2.4 2.4 -0.13 42  18.3 1.5 1.7 -0.02 Na  16.2 2.3 2.2 0.22 Na 

Yield value, £/ha 1850 1870 21.3 0.41 5  2500 1450 11.3 0.05 46  1870 2897 32.0 -0.63 37 

Amino acid, mg/100g beet 6.45 9 29.3 0.87 55  6.2 6 21.9 0.54 45  14.8 11 15.9 0.53 26 

Potassium, mg/100g beet 110 55 9 0.71 50  121 43 7.2 0.28 25  127 63 10.8 0.56 45 

Na: no data available or not applicable 
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The Kriged maps show low and high yielding zones in each field. In White Patch, the most 

productive areas with yield value above the average of £1850 per ha were in the west of the field and 

extended toward the north-east, while the less productive areas were mainly in the south-east and 

extended to the middle with a small patch on the north side (Fig. 3 I). In T32, above average yields 

occurred in the south east extending towards the middle (Fig. 4 I). In WO3, yield values varied by an 

order of magnitude, being higher in the south-west extending northwards, while the south east corner 

was the least productive (Fig. 5 I).  

3.2. Correlations and redundancy analyses. 

Comparing the yield maps with the maps of other variables indicates some possible associations 

(Figs 3-5). Corroboration of both positive and negative correlations at field level is provided by 

Pearson correlation coefficients and the Redundancy Analyses (RDA) (Tables 3 and 4; Suppl. Table 

S2). In the RDA, the first two axes accounted for 60.9 and 54.6% of the variation in White Patch and 

T32, respectively (P<0.01), but only the first axis was significant in WO3 (Table 3, Fig. 6). 

Variables, which were consistently and significantly (P<0.05) correlated with root yield and which 

were statistically significant in the RDA (Table 4, Fig. 6), include plant population density, soil 

organic matter and soil moisture content (compare Figs 3-5 H with Figs 3-5 G, C and F; Fig. 6) with 

correlation coefficients ranging from 0.33 to 0.72 (Suppl. Table 2). High yielding areas of all fields 

were, however, always negatively correlated with seasonal incident solar radiation, weed density and 

mean seasonal canopy temperature (compare Figs. 3-5 H, with E, L and M, and Fig. 6) with 

correlation coefficients of -0.10 to -0.56 (Suppl. Table S2). 

Other associations were inconsistent from field to field. For example, in White Patch, higher root 

yields occurred in the most clayey areas (Fig. 3 A, H), whereas clay was associated with lower root 

yields in WO3 (Fig. 5 A, H) with correlation coefficients of 0.36 and -0.26, respectively (Suppl. 

Table S2). In T32, there was no clear visual association between the maps of root yield and soil clay 

content, but areas with a higher percentage of sand tended to be lower yielding (Fig. 4 B, H) with an 

overall correlation coefficient of -0.27 (Suppl. Table S2). Topographically, inconsistent relationships 
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occurred with elevation, the low yielding areas of WO3 being in the highest parts of the field, 

whereas in White Patch and T32, the lowest yields were in the lowest parts of these fields (compare 

Figs 2 A-C with Figs 3-5 H). Slope and aspect were, however, never spatially associated with root 

yield (Fig. 6). Although relationships with elevation and soil type were inconsistent between fields, 

they were significant in the RDA (P=0.05; Fig. 6, Table 4). Soil pH and EC also showed inconsistent 

and weak visual spatial associations with root yield (Figs 3-5 G; Suppl. Figs 4-6), as did soil 

available magnesium (Figs 3-5 G, D) accounting for some variation in White Patch and WO3 (P≤ 

0.05; Table 4, Fig. 6).  

Although most variables had significant independent associations with the response variables, the 

RDA stepwise analysis identified only a few variables, whose partial effects on the explained 

variation were statistically significant (P≤0.05; Table 4). Of these, plant population density, soil clay, 

organic matter and moisture content, weed density, elevation and canopy temperature had significant 

partial effects in more than one field (Table 4). Perhaps the most important explanatory variable was 

the sugar beet plant population density, which was correlated with root yield, soil organic matter and 

soil moisture content in each field (Figs 3-5 and Fig. 6). This association was greatest in WO3 (Fig. 6 

C) where plant population density accounted for 40.1% of the variation in response variables (Table 

4) compared to 18.9 and 17.6% in White Patch and T32, respectively (Table 4). 

Sugar beet quality variables (i.e. root content of sugar, amino acids and potassium) were closely 

related to each other in White Patch, but almost unrelated to the root yield (Fig. 6 A), while in T32, 

higher root yields were associated with higher root content of amino acids, but lower concentrations 

of potassium and sugar (Fig. 6 B). 
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Figure 3: Interpolation maps of sugar beet yield, quality and some potential explanatory pedo-climatic- 

biotic variables in White Patch field in 2012. 
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Figure 4: Interpolation maps of sugar beet yield, quality and some potential explanatory pedo-

climatic-biotic variables in T32 in 2012.   
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Figure 5: Interpolation maps of sugar beet yield, quality and some potential explanatory pedo-

climatic-biotic variables in WO3 in 2012.   
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Table 3: Summary statistics of the Redundancy Analyses for the first four axes in each field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Field Axis 1 Axis 2 Axis 3 Axis 4 

White Patch     

Eigenvalues 0.467 0.14 0.0001 0.0001 

Explained variation  46.7 60.9 61.0 61.0 

P value 0.002 0.008 1 1 

T32     

Eigenvalues 0.399 0.146 0.0037 0.0001 

Explained variation  40.0 54.6 55.0 55.0 

P value 0.002 0.03 1 1 

WO3     

Eigenvalues 0.558 0.061 0.0013 0 

Explained variation  55.8 61.9 62.1 62.1 

P value 0.002 0.064 1 1 
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Table 4: Results of Redundancy Analyses showing A) independent and B) partial effects of the 

explanatory pedo-climatic-biotic variables on the percentage variance of the response variables 

(yield, sugar, amino acid and potassium content of beet) accounted for in the three fields. Results are 

ordered by the variance accounted for as independent variables in White Patch. Abbreviations in 

brackets are used in Fig. 6. 

A White Patch T32 WO3 

Explanatory variable %variance P %variance P %variance P 

Weed density/m
2
 (Weeds) 26.6 0.002 12.6 0.002 6.2 0.002 

Plant population density per ha (PP) 18.9 0.002 17.6 0.002 40.1 0.002 

Max canopy temperature, ºC (Tmax) 18.7 0.002 3.0 0.064 7.4 0.002 

Soil organic matter, % (SOM) 16.4 0.002 20.2 0.002 7.9 0.002 

Soil moisture content, % (SMC) 11.7 0.002 5.4 0.08 27.7 0.002 

Clay, % 9.6 0.002 2.6 0.12 12.2 0.002 

Mean canopy temperature, ºC (T) 7.4 0.002 1.2 0.32 4.8 0.012 

Sand, % 6.3 0.01 3.1 0.072 15.4 0.002 

Radiation, J/m
2
 5.3 0.016 0.8 0.49 2.8 0.056 

Elevation, m  4.1 0.022 1.8 0.20 26.1 0.002 

Available magnesium, mg/L (Mg) 4.0 0.034 0.7 0.52 8.1 0.002 

Slope, % 3.3 0.03 1.1 0.38 0.5 0.48 

Available potassium, mg/L (K) 1.8 0.0.2 1.4 0.27 0.2 0.72 

Min canopy temperature, ºC (Tmin) 1.2 0.37 1.0 0.42 6.1 0.006 

Aspect, º 0.8 0.52 0.2 0.87 0.8 0.42 

Available phosphate, mg/L (P) 0.8 0.48 0.5 0.66 0.7 0.38 

Electrical conductivity, μS (EC) 0.5 0.63 1.2 0.34 0.6 0.50 

pH 0.2 0.88 4.0 0.038 1.0 0.34 

B       

Weed density/m
2
 26.6 0.002 10.6 0.002 1.2 0.066 

Plant population density per ha   11 0.002 6.6 0.002 40.1 0.002 

Max canopy temperature, ºC 1.3 0.082 0.9 0.23 0.7 0.17 

Soil organic matter, % 2.5 0.028 20.2 0.002 1.7 0.018 

Soil moisture content, % 7.8 0.002 0.8 0.30 9.2 0.002 

Clay, % 1.2 0.15 0.6 0.47 1.6 0.034 

Mean canopy temperature,  ºC 1.1 0.15 1.1 0.18 0.2 0.53 

Sand, % 0.2 0.68 2.8 0.02 0.3 0.55 

Radiation, J/m
2
 0.8 0.21 0.9 0.25 0.2 0.56 

Elevation, m  1.3 0.08 2.8 0.026 2.7 0.002 

Available magnesium, mg/L 2.4 0.01 0.1 0.19 1.2 0.048 

Slope, % 0.4 0.40 0.5 0.47 0.2 0.53 

Available potassium, mg/L 0.1 0.75 0.3 0.66 0.4 0.31 

Min canopy temperature, ºC 1.1 0.14 0.7 0.33 0.5 0.32 

Aspect, º 0.7 0.25 0.3 0.68 0.2 0.52 

Available phosphate, mg/L 1.4 0.10 0.4 0.57 0.6 0.26 

Electrical conductivity, μS 0.4 0.50 0.1 0.91 0.1 0.74 

pH 0.6 0.30 1.5 0.09 0.9 0.11 
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Figure 6: Ordination biplots based on redundancy analyses of the sugar beet root yield and quality as 

response variables (solid blue arrows) with pedo-climatic-biotic explanatory variables (open red 

arrows) in A) White Patch, B) T32 and C) WO3. See Table 4 for abbreviations used for explanatory 

variables. Potassium in beet is shown as K (Beet) and amino acid content as Amino (Beet). 

 

4. Discussion 

4.1. Variograms. 

The variograms for most variables were almost isotropic, indicating similar patterns of variation in 

all directions and the semi-variances were mainly a function of lag distances (Piccini et al., 2014). 

Since the variograms for most variables reached a sill, the spatial variation throughout each field was 

patchy and could mostly be accounted for by the sampling scheme for each field. The nugget 

variance was, however, high for some variables in T32, which could be the unresolved variation due 

to the longer sampling intervals in this than in the other two fields (Table 1) or it could be 

measurement error (Webster and Oliver, 2007, Oliver, 2010). Such explanations do not account for 

high nugget variance for root yield and yield value in WO3 where yield sometimes varied erratically 

over short distances, such that some plots had to be extended to provide enough roots for analysis.  
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4.2. Spatial variability in the economic yield of sugar beet. 

This paper is the first to provide yield maps for sugar beet and it is clear that economically 

significant spatial variability in yield existed in each field. Even in T32 - the most uniform of the 

three fields assessed, yield values still varied from £1870 to £3320 per ha. With hindsight the south 

corner of WO3, which returned a yield value of £230 per ha was probably not worth planting. The 

reasons for this variability clearly merit further discussion and testing.  

4.3. Potential biotic constraints on the economic yield of sugar beet. 

Crop and weed population densities – were identified as key potential driving variables of sugar beet 

yield and quality variation in the RDA in all three fields. Plant population density was positively 

while weed density was negatively correlated with root yield in all fields. In WO3 in particular, the 

mean plant population density (51000/ha) was only half that recommended for maximum yield and 

even the highest among the 114 sampling locations (81000/ha) only just exceeded Jaggard et al.’s 

(2011) economic optimum of 80000/ha. Reporting older research from 1967, Jaggard and Qi (2006) 

stated that “on mineral soils a population of 75000/ha is the minimum required for maximum sugar 

yield”. Moreover the asymptotic relationship of sugar yield to plant density means that most plots in 

WO3 were sub-optimal and increasingly severe yield penalties would be expected and were found as 

density decreased. A major reason for lower yield at low density is the decrease in solar radiation 

interception (Jaggard and Qi, 2006). Poor and very uneven crop establishment of sugar beet was 

reported in the 2013 season by many farmers in the East of England, particularly by those who 

planted their crops earlier than average (Stevens, 2013) and WO3 was one of the earliest crops sown 

in the UK. Stevens (2013) reported that the dry weather and much lower temperatures in 2013 were 

associated with slower emergence and large numbers of abnormal seedlings. The variability in plant 

establishment in WO3 was perhaps also exacerbated by relatively low soil moisture content and soil 

organic matter in areas of low plant population. Moreover, spatial variability in plant population was 

strongly and negatively associated with weed density suggesting that the areas of low plant 
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population allowed more space for new weeds to emerge in summer and would be expected to result 

in greater weed competition (Kropff et al., 1992). 

4.4. Potential environmental constraints on the economic yield of sugar beet. 

Spatial variability in sugar beet yield was also associated with environmental variables. One of the 

likely driving variables for crop yield was soil moisture content, which was positively correlated 

with sugar yield in all three fields. Dry matter accumulation in sugar beet roots is known to be 

greatly affected by available soil moisture during July and August (Kenter et al., 2006). Jaggard et 

al. (1997) found that yields of sugar beet were lower in dry summers. The amount of water available 

under dry conditions depends on soil water holding capacity and soil hydraulic conductivity 

(Hakojärvi et al., 2013) which varies within and between fields. Soil water holding capacity and 

other soil physical, chemical and biological properties are themselves affected by another potential 

driving variable, namely soil organic matter (D’Hose et al., 2014), which was associated with root 

yields in White Patch and T32. Interestingly, yield was negatively related to canopy temperature in 

all three fields. The negative association between root yields and maximum canopy temperature in 

all three fields could be due to higher rates of respiration and evapotranspiration under higher canopy 

temperature (Draycott, 2008). The low yielding areas had lower soil moisture early in June and 

higher mean canopy temperatures indicating scope for site-specific irrigation early in the season. 

Soil type showed different correlations from one field to another, perhaps due to the differences in 

weather conditions in 2012 and 2013. For example, sugar beet yield was positively related to soil 

clay content in White Patch and negatively related in WO3. This might be accounted for by poorer 

emergence of sugar beet in clayey soils, especially at the low temperature which occurred in March 

2013 (mean temperature: 3.5°C, Fig. 2, CEDA, 2014). As noted above, this cool weather affected 

emergence in WO3 and many early sown fields of sugar beet in the East of England (Stevens, 2013). 

With respect to soil type, the low yielding areas in T32 had a relatively high sand content. Field 

aspect and slope and hence the calculated incident solar radiation varied significantly across each 

field, but there were not significant association with sugar beet yield and quality, even though it was 
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significantly associated with maximum canopy temperature, which might be expected to reduce 

sugar beet yield and quality (Kenter et al., 2006). Clearly both the amount of incident radiation and 

the efficiency of its use are important (Jaggard et al., 2009). 

4.5. Identifying the potential driving variables of sugar beet yield and quality using RDA. 

Different methods have been used to identify the environmental variables associated with yield 

variability. Zhu et al. (2013) produced a functional soil map in which soil properties were layered to 

identify those associated with the yields of corn and soybean. Liu et al. (2013) used factorial kriging 

with step-wise multiple regression analyses to detect association between soil attributes, while 

Simmonds et al. (2013) applied a regression tree to classify the underlying cause of the spatial 

variability in a rice yield. Here RDA was used to identify the key environmental variables efficiently, 

although the assumption that correlations applied similarly at different locations or spatial scales 

within each field needs to be tested (Metcalfe et al., 2016). The main merit of RDA, which 

distinguishes it from other methods, is that it can show how different explanatory variables relate to 

each other as well as to the response variables of sugar beet yield and quality. In the RDA, many 

variables were significantly associated with the response variables when considered independently, 

but few retained statistical significance when effects were combined. Some variables were therefore 

important predictors, but only if considered individually, since they could be explaining variability 

which has already accounted by other variables. Rodriguez-Moreno et al. (2014) stated that if two 

variables are strongly related to yield, it is expected that they will also be strongly related to each 

other, an example here being the visual association between soil type, soil moisture content and 

elevation. It appears that the spatial variability in sugar beet yield might, however, have resulted 

from the combined effects of several environmental and biotic variables, as each of these variables 

accounted for some of the variability in sugar beet yield and quality.  

In addition, much variability was not accounted for in the RDA and this might relate to unassessed 

variables such as soil micro-nutrients, soil infiltration rate, and the diffusion of soil water and 
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nutrients (Lark, 2012) or to management practices (Taylor et al., 2003), which all need to be 

investigated in future studies.  

4.6. Why is investigating the spatial variability important? 

It is therefore clear that mapping the spatial variability in sugar beet yield and identifying the main 

associated environmental variables highlights an incentive for farmers to manage sugar beet fields 

more precisely rather than uniformly as in the three fields studied. Irrigation, fertilization and weed 

control are obvious targets for precision farming, since these can be managed site-specifically using 

existing technology, providing geo-referenced maps are available. Soil organic matter, soil type and 

field topography are, however, difficult to manage. Spatially variable compost, manure or crop 

residue management and reduced tillage in areas of low soil organic matter at appropriate stages in 

crop rotation might, however, improve the soil biological, chemical and physical properties in those 

parts of the field (D’Hose et al., 2014). Less intensive cultivation and perhaps adoption of zero 

tillage for the combinable crops or strip tillage for crops like sugar beet could also help to mitigate 

soil moisture stress. Canopy temperature is also outside the grower’s control, but the negative 

association between canopy temperature and soil moisture content might suggest irrigating the areas 

of higher canopy temperature to compensate the losses of soil water. Most importantly, however, the 

significance of poor emergence cannot be over-emphasised and redrilling patches with low 

emergence might have been justified. 

Research is needed to validate these inferences and also to facilitate early predictions of within field 

variability. 
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5. Conclusions:  

1. Mapping sugar beet yields identified high and low yielding patches with final economic 

yields of sugar beet ranging from £1120 to £2990, £1870 to £3320 and £230 to £3127 per ha in 

the fields, White Patch, T32 and WO3, respectively.  

2. In all three fields, root yield was highly and positively correlated to the plant population 

density and the spatial distribution of soil organic matter and soil moisture, but negatively 

correlated with weed density and canopy temperature (mean and maximum). 

3. Redundancy Analysis (RDA) accounted for the separate and combined effects of biotic and 

environmental variables associated with the variability in sugar beet yield and quality. The results 

of RDA were supported by the visual association of variables in Kriging maps. 

4. The variability observed suggests that uniform field management of sugar beet is likely to lead to 

sub-optimal use of inputs. Further research is needed to explore how soil moisture, nutrients and 

weeds might be managed site-specifically during the growing season to increase the crop 

productivity and value across the field and especially in low yielding areas. 

5. An early prediction of spatial variability in sugar beet yield and its relation to the environment is 

needed, so that a spatially variable crop management can be applied to the sugar beet crop. 
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Supplementary information 

Suppl. Table 1: Geostatistical analysis for crop and environmental variables in the three fields, White Patch, T32 and WO3. Spatial dependency is the 

ratio of nugget: sill expressed as a percentage; the lower the value, the greater the spatial dependence. Soil nutrients all relate to available amounts. 

 

 White Patch, 2012 T32, 2012 WO3, 2013 

Variables Model 
Range 

(m) 

Sill 

variance 

Nugget 

variance 

Spatial 

dependency 
Model 

Range 

(m) 

Sill 

variance 

Nugget 

variance 

Spatial 

dependency 
Model 

Range 

(m) 

Sill 

variance 

Nugget 

variance 

Spatial 

dependency 

Clay, % Spherical 106 29.4 0 0 Pentaspherical 116 5.9 1.66 22 Circular 81 10.6 8.9 46 

Sand, % Exponential 190 49.8 6 11 Pentaspherical 305 6.8 6.2 48 Circular 85 15.4 10.7 41 

Organic matter, % Exponential 69 0.18 0.08 31 Circular 190 0.11 0.07 39 Pentaspherical 112 0.17 0.14 45 

Soil pH Exponential 123 0.09 0 0 Circular 141 0.12 0.05 29 Circular 73 0.016 0.011 41 

Log soil magnesium, mg/L Exponential 220 0.13 0.25 71 Circular 95 0.64 0.44 42 Circular 44 0.23 0.34 60 

Electrical conductivity,  µS Exponential 106 282 88.4 23 Circular 127 340 283 45 Circular  58 157 270 63 

Seasonal incident radiation, J/m2 Circular 80 928 1110 54 Pentaspherical 261 535 579 52 Exponential 108 3875 721 16 

Soil moisture, June, % Spherical 64 33 8.6 20 Exponential 266 23.6 13.8 37 Circular 121 32 4.9 14 

Soil moisture, July, % Spherical 119 12.4 4.3 26 Exponential 270 27 4 13 Circular 114 27.5 5.3 16 

Soil moisture, August, % Exponential 127 24 1.76 7 Spherical 169 18 25 12 Circular 169 4.8 1.8 27 

Roots yield, t/ha Circular 94 149 0 0 Circular 224 45.7 33 42 Circular 115 253.4 140.6 36 

Sugar, % Circular 109 0.116 0.08 42 Pure nugget - - - - Pure nugget - - - - 

Yield value, £/ha Circular 93 144320 8152 5 Circular 241 48933 41956 46 Circular 117 190964 113393 37 

Plant population /ha Circular 117 9.7 3.8 28 Exponential 315 9.2 0.9 49 Exponential 126 6.7 2.1 24 

Amino acid, mg/100g beet Exponential 100 0.03 0.037 55 Exponential 380 1.2 0.99 45 Exponential 208 4.4 1.55 26 

Potassium, mg/100g beet Circular 90 49 49.4 50 Exponential 255 74.8 24.4 25 Pentaspherical 122 93 77 45 

Log soil phosphate, mg/L Spherical 207 0.35 0.26 43 Pentaspherical 93 0.82 0.51 38 ... ... ... ... ... 

Soil potassium, mg/L Pure Nugget  ... ... ... ... ... ... ... ... ... Pure Nugget  ... ... ... ... 

Log soil potassium, mg/L ... ... ... ... ... Exponential  180  0.013  0.012  48  ... ... ... ... ... 
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Suppl. Figure 1: The experimental variograms in White Patch field in 2012 for: (A) clay, %; (B) 

sand, %; (C) organic matter, %; (D) soil pH; (E) log magnesium, mg/L; (F) electrical conductivity, 

µS (variance x 100); (G) seasonal incident radiation, J/m
2 

(variance x 100); soil volumetric moisture 

content, %, in (H) June, (I) July and (J) August; (K) root yield, t/ha; (L) sugar, %; (M) yield value, 

£/ha (variance x 1000); (N) log amino acid, mg/100g; (O) potassium in beets, mg/100g; (P) log 

available soil phosphate, mg/L; (Q) available soil potassium, mg/L. 
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Suppl. Figure 2: The experimental variograms in T32 field in 2012 for: (A) clay, %; (B) sand, %; (C) 

organic matter, %; (D) soil pH; (E) log magnesium, mg/L; (F) electrical conductivity, µS 

(variance x 10); (G) seasonal incident radiation, J/m
2 

(variance x 100); soil volumetric moisture 

content, %, in (H) June, (I) July and (J) August; (K) root yield, t/ha; (L) sugar, %; (M) yield value, 

£/ha (variance x 1000); (N) log amino acid, mg/100g; (O) potassium in beets, mg/100g; (P) log 

available soil phosphate, mg/L; (Q) available soil potassium, mg/L. 
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Suppl. Figure 3: The experimental variograms in WO3 field in 2013 for: (A) clay, %; (B) sand, %; 

(C) organic matter, %; (D) soil pH; (E) log magnesium, mg/L; (F) electrical conductivity, µS 

(variance x 10); (G) seasonal incident radiation, J/m
2
(variance x 100); soil volumetric moisture 

content, %, in (H) June, (I) July and (J) September; (K) root yield, t/ha; (L) sugar, %; (M) yield 

value, £/ha (variance x 1000); (N) log amino acid, mg/100g; (O) potassium in beets, mg/100g; (Q) 

available soil potassium, mg/L. 
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Suppl. Figure 4: Interpolation maps of some environmental variables and beet sugar concentration in 

White Patch in 2012.  
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Suppl. Figure 5: Interpolation maps of some environmental variables in T32 in 2012.  
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Suppl. Figure 6: Interpolation maps of some environmental variables and of weed density in WO3 in 

2013.  
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Suppl. Table 2: Correlations of sugar beet yield and quality and environmental variables in the fields, White Patch, T32 and W03.Numbers are 

overall Pearson correlation coefficients for the fields; values in bold differ significantly from zero (P< 0.05). 

 

 White Patch  T32  WO3 

   Beet content of    Beet content of    Beet content of 

 

Plant 

popul-

ation 

Root 

yield 
Sugar 

Amino 

acid 

Pot-

assium 

 Plant 

popul-

ation 

Root 

yield 
Sugar 

Amino 

acid 

Pot-

assium 

 Plant 

popul-

ation 

Root 

yield 
Sugar 

Amino 

acid 

Pot-

assium 

Soil properties                  

Clay, % -0.07 0.36 -0.01 -0.06 0.19  0.08 0.09 0.1 0.19 0.21  -0.34 -0.33 -0.26 0.11 0.45 

Sand, % 0.10 -0.27 0.01 0.05 -021  -0.18 -0.27 -0.15 -0.22 -0.02  0.38 0.41 0.33 -0.18 -0.44 

Organic matter, % 0.18 0.51 0.12 0.0 0.08  0.32 0.35 0.01 0.09 -0.54  0.17 0.33 0.15 -0.06 -0.06 

pH -0.02 -0.01 -0.21 -0.19 -0.09  0.15 0.25 0.05 0.24 -0.15  -0.10 -0.05 -0.07 -0.20 -0.16 

EC, µS 0.08 0.056 -0.09 -0.13 -0.08  0.13 0.15 0.05 0.16 -0.04  0.07 -0.015 -0.20 0.22 0.13 

Available phosphate, mg/L 0.15 -0.03 0.14 0.12 0.09  -0.18 -0.17 0.08 -0.29 0.03  0.10 -0.01 -0.17 -0.09 -0.09 

Available potassium, mg/L -0.19 -0.13 0.15 0.05 0.13  -0.05 -0.14 0.14 0.19 0.09  0.10 0.05 013 -0.09 -0.02 

Available magnesium, mg/L -0.06 0.04 0.03 -0.10 0.10  0.15 -0.19 -0.16 -0.03 0.06  0.29 0.33 0.16 -0.03 -0.09 

Soil moisture content, % 
                 

June 0.04 0.47 0.15 -0.11 0.16  0.24 0.33 0.06 0.27 -0.02  0.40 0.56 0.30 -0.37 -0.44 

July 0.10 0.45 0.07 -0.09 0.25  0.28 0.52 -0.01 0.18 -0.24  0.23 0.37 0.18 -0.07 -0.30 

August or September 0.13 0.53 0.25 -0.06 0.36  0.23 0.47 0.08 0.34 -0.12  0.20 0.23 -0.16 0.13 -0.08 

Canopy temperature °C                  

 Mean  -0.25 -0.32 -0.11 -0.15 -0.16  -0.07 -0.16 0.1 -0.24 -0.05  -0.30 -0.27 -0.09 0.05 0.22 

Minimum -0.09 0.09 0.28 -0.03 0.13  -0.39 -0.22 0.16 -0.37 0.013  -0.29 -0.24 -0.15 0.10 0.28 

Maximum 0.23 -0.56 -0.23 -0.14 -0.01  -0.04 -0.25 -0.03 -0.18 0.07  -0.30 -0.33 -0.21 0.11 0.34 

Incident radiation, J/m2 -0.28 -0.30 -0.04 0.05 0.14  -0.14 -0.10 -0.10 -0.17 0.06  -0.26 -0.18 -0.03 -0.09 -0.11 

Elevation, m -0.47 0.27 -0.05 0.35 0.32  0.04 -0.10 0.12 0.23 0.14  -0.46 -0.51 -0.34 0.51 0.20 

Weed density/m2 -0.06 -0.40 -0.06 -0.28 -0.31  -0.24 -0.50 0.11 -0.39 0.03  -0.11 -0.22 -0.12 -0.01 0.16 

Plant population /ha  0.51      0.51      0.72    

Beet quality                  

Sugar, % -0.06 0.02 -    -0.06 -0.11 -    0.23 0.34 -   

Amino acid, mg/100g beet -0.25 -0.02 0.06    0.38 0.36 -0.32    -0.18 -0.17 -0.34   

Potassium, mg/100g beet -0.36 0.03 0.31    -0.31 -0.18 -0.16    -0.45 -0.52 -0.31   
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