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ABSTRACT 27 

Here it is demonstrated a novel approach in disinfection regimes where specific molecular 28 

acid resistance systems are inhibited aiming to eliminate microorganisms under acidic 29 

conditions. Despite the importance of the Glutamate Decarboxylase (GAD) system for 30 

survival of Listeria monocytogenes and other pathogens under acidic conditions its potential 31 

inhibition by specific compounds that could lead to its elimination from foods or food 32 

preparation premises has not been studied. The effects of maleic acid on the acid resistance of 33 

L. monocytogenes were investigated and found that it has a higher antimicrobial activity 34 

under acidic conditions than other organic acids, while this could not be explained by its pKa 35 

or Ki values. The effects were found to be more pronounced on strains with higher GAD 36 

activity. Maleic acid affected the extracellular GABA levels while it did not affect the 37 

intracellular. Maleic acid had a major impact mainly on GadD2 activity as also shown in cell 38 

lysates. Furthermore, it was demonstrated that maleic acid is able to partly remove biofilms 39 

of L. monocytogenes. Maleic acid is able to inhibit the GAD of L. monocytogenes 40 

significantly enhancing its sensitivity to acidic conditions and together with its ability to 41 

remove biofilms, make a good candidate for disinfection regimes.  42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 

 51 

 52 

 53 



1. INTRODUCTION 54 

 55 

Listeriosis caused by Listeria monocytogenes is the leading cause of death due to a food 56 

borne illness in the UK (Mook et al., 2011) and as such is a serious problem of Public Health 57 

affecting the Food Industry. L. monocytogenes is a facultative anaerobic bacterium that can 58 

be isolated from soil, water, animal feed, faeces and tissues from various invertebrates and 59 

vertebrate animals including humans (Cooper and Walker, 1998). This bacterium has the 60 

ability to proliferate in a wide range of temperatures even below zero (Hudson et al. 1994) 61 

while it can persist (Fagerlund et al., 2016; Holch et al., 2013) and it is difficult to control in 62 

food processing environments (Salyers and Whitt, 2002). Normally, sodium hypochlorite or 63 

benzalkonium chloride are used while to a lesser extend acidic disinfectants are also used 64 

(Barker and Park 2001; Zhang and Farber 1996). However, a major factor affecting the 65 

popularity of a specific class of disinfectants is their antimicrobial activity and here we 66 

present a concept that could significantly increase the antimicrobial activity of class of acidic 67 

disinfectants. This novel approach that could be used to eliminate L. monocytogenes involves 68 

specifically inhibiting acid resistance mechanisms in combination with acidic conditions. One 69 

such cellular target is the glutamate decarboxylase (GAD) system which is the most 70 

important acid resistance system in L. monocytogenes (Cotter et al., 2001a) that comprises 71 

three decarboxylases (GadD1, GadD2 and GadD3) and two antiporters, (GadT1 and GadT2; 72 

Cotter et al., 2005). The antiporters import extracellular glutamate, which is converted to 73 

GABA and CO2, with a subsequent removal of protons, pH increase and export of GABA in 74 

exchange of another glutamate molecule (Paudyal and Karatzas, 2016). Furthermore, the 75 

decarboxylases can remove protons through processing intracellular glutamate through the 76 

intracellular GAD system (GADi; Karatzas et al., 2012). Therefore, affecting the activity of 77 

the GAD system could enhance the sensitivity to acid treatments, resulting in successful 78 



elimination from food processing environments and food contributing to the reduction of 79 

foodborne disease.  80 

Previously, maleic acid has been shown to inhibit the GAD system of E. coli (Fonda, 1972) 81 

while we are not aware of any similar work on other bacteria. Lately, maleic acid has been 82 

proposed to substitute the more toxic EDTA in dentistry for plaque removal during 83 

implementation of root canals (Ballal et al., 2009b) while it has been shown to eradicate E. 84 

faecalis biofilms (Ferrer-Luque et al., 2010). Organic acids are commonly used in food 85 

preservation and in disinfection because of their antimicrobial effects and their low toxicity. 86 

An example is lactic acid and its salts that are widely used as antimicrobials in various food 87 

products, particularly in meat and poultry (Dibner and Buttin, 2002). However, the 88 

antimicrobial effectiveness of maleic acid and its mode of action have not been thoroughly 89 

investigated and this is what was attempted in the present study. Firstly, various organic acids 90 

such as succinic, acetic, lactic and maleic acid for their inhibitory effects against the growth 91 

of L. monocytogenes were investigated and maleic acid ranked last. Despite that, it ranked 92 

first in bactericidal activity against the same organism under acidic conditions. Subsequently, 93 

its mode of action was investigated through functional genomics and protein activity of the 94 

GAD system activity and its ability to remove biofilms of this organism as it has been shown 95 

to do in dental biofilms (Ballal et al., 2009a).  96 

 97 

2. MATERIALS AND METHODS 98 

 99 

2.1. Bacterial strains and growth conditions.  100 

All strains (Table 1) were stored in cryovials with 7% DMSO at –80oC. Stock cultures from –101 

80oC were passed onto Brain Heart Infusion (BHI) agar (LABM, Lancashire UK) and 102 

incubated at 37oC overnight. Three colonies from each plate were transferred with a loop in 3 103 



ml of sterile BHI (LAB M, Lancashire UK) and incubated overnight at 37oC with shaking 104 

(140 rpm). Subsequently, the overnight cultures were used to inoculate 20 ml of sterile BHI 105 

medium (1% inocula) in 250 ml conical flasks and incubated overnight (~ 18 h) at 37oC with 106 

shaking (140 rpm). These overnight cultures were used for all acid challenges and assays 107 

described below. 108 

 109 

2.2. Determination of Minimum Inhibitory Concentrations (MICs)  110 

Concentrations ranging from 0.5-6.9 mg/ml (4.31-60.30 mM) of maleic, succinic, lactic and 111 

acetic acid were prepared. BHI Broth prepared with different acids was inoculated with 1% 112 

inoculum of overnight cultures and 200 µl of that were placed on 96-well plates. The growth 113 

was measured overnight in a Sunrise machine (Tecan, Mannedorf, Switzerland) operated by 114 

Magellan software (Tecan, Mannedorf, Switzerland) at 620nm with 20 min time intervals 115 

between measurements at 37oC to identify the MIC.  116 

 117 

2.3. Survival under acidic conditions 118 

Twenty ml cultures were prepared in BHI and grown in 250 ml flasks overnight at 37oC with 119 

shaking. Acid challenge took place with the addition of 4.31 mM of succinic, acetic, lactic, 120 

HCl and maleic acid or no acid with the subsequent adjustment of the pH to 3.3 with the 121 

addition of 1 M HCl for EGD-e WT and its gad mutants. For 10403S WT and gad mutants 122 

the concentration used was 8.6 mM with adjustment of pH to 3, as the above conditions used 123 

for EGD-e did not affect the survival of this strain which has previously been shown to be 124 

highly acid tolerant (Karatzas et al., 2012). Samples were obtained prior to pH adjustment 125 

and thereafter every 20 min up to 60 min and used to prepare 10-fold serial dilutions which 126 

were plated onto BHI agar and incubated at 37oC overnight, and subsequently, colonies were 127 



counted to assess survival under lethal acidic conditions. All experiments were performed in 128 

triplicate. 129 

 130 

2.4. GABase assays  131 

GABase assay was used to determine the concentrations of intracellular GABA (GABAi) in 132 

10403S and EGD-e and extracellular GABA (GABAe) in 10403S and LO28. GABAi was 133 

quantified as described by O’Byrne et al., (2011) while GABAe was quantified according to 134 

the method of Tsukatani et al., (2005) as modified by Karatzas et al., (2010). The GABAse 135 

reaction was monitored by the measurement of absorbance at 340nm every 2 min for 3 h at 136 

37oC using a Sunrise spectrophotometer (Tecan, Mannedorf, Switzerland) operated by 137 

Magellan software (Tecan, Mannedorf, Switzerland). All reagents used for the GABase assay 138 

were obtained from Sigma-Aldrich (Steinheim, Germany).  139 

 140 

2.5. GAD activity in protein lysates  141 

Cultures of 10403S and EGD-e were grown in BHI overnight and they were transferred in 50 142 

ml centrifuge tubes supplemented with 10 µg/ml chloramphenicol to prevent any further 143 

protein translation and were centrifuged at 12,000 X g for 15 min. Cell pellets were washed 144 

with sonication buffer as described previously (Abram et al., 2008; Boura et al., 2016) and 145 

final cell suspensions were incubated for 30 min with shaking at 37oC. An Eppendorf tube 146 

was then filled with acid-washed glass beads (106 µm diameter; Sigma-Aldrich, Steinheim, 147 

Germany) and 1ml of cell suspension was transferred to it. Samples were disrupted thrice by 148 

a Mini-Beadbeater (Biospec, Bartesville, USA) for 1 min and cooled for 1 min on ice. Then 149 

0.1% DNAse1 (Sigma-Aldrich, Saint Louis, USA) was added to the cell lysate, incubated at 150 

37oC for 30 min with shaking and 1 ml was transferred into Eppendorf tubes and centrifuged 151 

at 5,000 X g for 15 min. The supernatant was then transferred to sterile Eppendorf tubes and 152 



40 µl of this was mixed with 450 µl of pyridine hydrochloride buffer (P-HCl; Fonda, 1972) 153 

adjusted at pH 4.5 and supplemented with 30 mM glutamate with or without 8.6 mM maleic 154 

acid. Subsequently, GABA levels were measured through GABase assays as described above. 155 

Previously, with the use of standard concentrations of GABA it was shown that maleic acid 156 

does not inhibit the activity of GABase.  157 

  158 

2.6. Determination of GABA by GC-MS 159 

As the activity of the GABase enzyme could be affected by various molecules present in the 160 

cultures or the supernatant or the bacterial lysates, GABA concentrations in randomly 161 

selected samples were also determined by gas chromatography – mass spectrometry as 162 

described previously by Elmore et al., (2005). Results were compared with those by GABase 163 

assay and in all cases levels were + 5%.   164 

 165 

2.7. Biofilm removal by maleic acid   166 

Biofilm formation and its removal by maleic acid was tested on 96-well flat bottom plates. 167 

Biofilm assay protocol was adapted from Borucki et al., (2003) as modified by Harvey et al., 168 

(2007) based on the original work of O’Toole and Kolter, (1998), with modifications. 10403S 169 

WT was inoculated in BHI at 1% and 200 µl of that were placed in each well of the 96 well 170 

plates and incubated at 30°C static for 4 days. Subsequently, liquid cultures were discarded 171 

and biofilms were treated with different maleic acid concentrations (0 - 17.23 mM) at 30°C 172 

for 2 min. Then, plates were washed twice with distilled water and were inverted on a paper 173 

towel to remove excess moisture followed by drying in a laminar flow hood. Biofilms were 174 

stained for 20 min with 0.1% aqueous solution of crystal violet and washed with distilled 175 

water three times followed by drying for 20 min. The adhered biofilms were dissolved in 176 



95% ethanol and the optical density was measured at 620 nm in a Tecan Sunrise microplate 177 

reader (Tecan UK Ltd, Theale, RG7 5AH UK) operated by Magellan software.  178 

 179 

2.8. Calculation of undissociated acids using Henderson-Hasselbalch equation 180 

The undissociated percentage of acid was determined according to the equation of 181 

Henderson-Hasselbalch as adapted by Wemmenhove et al., (2016). 182 

     [Undissociated acid] = [Total acid] /1 + 10 (pH-pKa)    (1) 183 

Molarities of total acid of solutions were pre-set, pH values were those values determined 184 

prior and after incubation. pKa values were used as described in literature. pKa 1.9, 6.07 for 185 

maleic acid, 5.61,4.2 for succinic acid, 4.76 for acetic acid and 3.86, 15.1 for lactic acid. 186 

 187 

2.9. Statistical analysis  188 

In all cases, experiments were run at least in triplicate (unless stated), and the results were 189 

assessed with paired Student t test. P values lower than 0.05 indicated results that were 190 

statistically significant. 191 

 192 

3. RESULTS  193 

 194 

3.1. MICs of different organic acids.  195 

The MICs of WT 10403S for maleic, succinic, lactic and acetic acid were 34 mM, 25 mM, 31 196 

mM and 30 mM which corresponded to pH values prior to growth of 4.84, 5.14, 5.32 and 197 

5.02 respectively (Table 2). Of all compounds tested, maleic acid was the least inhibitory 198 

despite acting at a lower pH (4.84) while succinic was the most inhibitory.   199 

 200 

3.2. Acid survival of WT 10403S and EGD-e in the presence of different acids.  201 



To investigate the effect of different acids on acid survival, the most acid resistant (10403S) 202 

and the weakest (EGD-e) strain were challenged with 8.6 mM and 4.3 mM of each organic 203 

acid at pH 3 and 3.3 respectively. On both strains, maleic acid was the most bactericidal (Fig. 204 

1A, B).   205 

 206 

3.3. Survival of WT 10403S, LO28 and EGD-e in the presence of maleic acid.  207 

Once it was determined that maleic acid was the most bactericidal, the survival of 10403S 208 

and two other strains of L. monocytogenes (LO28 WT and EGD-e) was assessed against 4.3 209 

mM maleic acid at pH 3. In the absence of maleic acid, 10403S WT was the most resistant 210 

strain while LO28 WT intermediate and EGD-e WT the most sensitive (Fig. 2A, B, C). 211 

However, in the presence of maleic acid results were reversed, with the highest antimicrobial 212 

effect seen on 10403S WT followed by LO28 and EGD-e WT (Fig. 2A, B, C). As the GAD 213 

system is known to be the most important acid resistance mechanism in L. monocytogenes 214 

(Cotter et al., 2001b), the GABAe production of these strains was assessed and it was found 215 

that 10403S had the most active GADe followed by LO28 and by EGD-e, with the latter 216 

producing no GABAe (Fig. 2D).  217 

 218 

3.4. The role of GAD genes in the presence of maleic acid in EGD-e  219 

In the absence of maleic acid, there was no significant difference between the strains at pH 220 

3.3 after 60 min (Fig. 3A, B) while when 4.3 mM maleic acid was added, EGD-e WT, 221 

∆gadD1, ∆gadD2 and ∆gadD3 showed 2.46, 2.79, 3.8 and 5.2 log reduction respectively 222 

(Fig. 3A). Thus, ΔgadD3 was the most sensitive strain suggesting that GadD3 is the most 223 

important GAD system component for survival either in the presence of maleic acid (Fig. 224 

3A) or in its absence (Fig. 3B). This coincides with the lower level of GABAi in the ΔgadD3 225 

while there was no statistically significant difference in the levels of GABAi between the 226 



other mutants and the WT (Fig. 3C). Interestingly, although the presence of maleic acid 227 

enhanced the acid sensitivity of all strains (Fig. 3A), it did not seem to affect the GABAi 228 

levels (Fig. 3C).    229 

 230 

3.5. The role of GAD genes in the presence of maleic acid in 10403S  231 

In presence of 8.6 mM maleic acid at pH 3, WT, ∆gadD1, ∆gadD2, ∆gadD3 showed 2.0, 232 

2.55, 2.61 and 3.28 log reduction respectively (Fig. 4A). In the presence of maleic acid, 233 

ΔgadD2 showed a rapid inactivation resulting in approximately 3.2 log reduction of the 234 

CFU/ml the first 20 min, followed by a minor reduction of 0.5 log CFU/ml the next 40 min. 235 

ΔgadD2 was the most sensitive strain followed by ΔgadD3 (Fig. 4A) and the relative 236 

sensitivity between strains was similar in the absence of maleic acid (Fig. 4B).  237 

To understand the role of the components of the GAD system genes in the presence of maleic 238 

acid, the GAD activity of the 10403S WT and its isogenic GAD mutants was assessed. 239 

ΔgadD2 was found to produce no GABAe (Fig. 4C) and very low levels of GABAi (Fig. 4D) 240 

both in the presence or absence of maleic acid. All other gene deletions did not seem to have 241 

any major effect on GABAi levels, while similarly to EGD-e, maleic acid did not seem to 242 

have any significant effect on GABAi levels (Fig. 4D). However, maleic acid significantly 243 

reduced GABAe levels by 61% (P<0.05; paired T-test), 30% and 38% in the WT, ΔgadD1 244 

and ΔgadD3 respectively, while ΔgadD2 was unable to produce any GABAe (Fig. 4C).  245 

 246 

3.6. GAD activity in protein lysates.  247 

GAD activity was determined in protein lysates through the assessment of GABA production 248 

in the presence of glutamate. Our results show that in 10403SWT, maleic acid resulted in a 249 

statistically significant decrease of GAD activity by 21% (P = 0.0053; Fig. 5). It was also 250 

attempted unsuccessfully to setup a similar assay for EGD-e but despite trying different pH 251 



values we were unable to detect any GABA (data not shown). This might be due various 252 

reasons, such as low levels of GadD3 that cannot result in detectable GABA, inability to 253 

recover GadD3 or specific unknown conditions that are required for GadD3 function.  254 

 255 

3.7. Biofilm Formation.   256 

In all cases the OD(620nm) measuring the concentration of crystal violet corresponding to the 257 

concentration of cells in the biofilm present on polystyrene was slightly lower with statistical 258 

significance in the presence of maleic acid than the control (Fig. 6). This effect was seen even 259 

at low maleic acid concentrations (<17.23 mM) suggesting that the latter could partly remove 260 

biofilms of L. monocytogenes.  261 

 262 

3.8. Calculation of the percentage of undissociated acid  263 

One of the two pKas of maleic acid is extremely low (1.9) compared to other weak acids 264 

resulting in a low percentage of undissociated (8.01 – 0.04%, pH 3 - 5.32) and a significant 265 

percentage of dissociated molecules (91.99 – 99.96%, pH 3 - 5.32; Table 3). As seen in 266 

(Table 3), in contrast to the other acids, the majority of the molecules are in dissociated form 267 

in all pH values used.  268 

 269 

4. DISCUSSION 270 

In the present study, a novel and more targeted approach for the disinfection of L. 271 

monocytogenes that might apply to other pathogens is investigated. The concept relies on the 272 

inhibition of major acid resistance systems such as the glutamate decarboxylase system in 273 

combination with the application of acidic conditions. This approach could be followed in the 274 

inactivation of various other pathogenic organisms possessing the GAD system such as E. 275 

coli (Waterman and Small, 2003), Shigella flexneri (Waterman and Small, 2003), 276 



Mycobacterium tuberculosis (Cole et al., 1998; Cotter et al., 2001a), Clostridium perfringens 277 

(Feehily et al., 2013), B. abortus (Roop et al., 2003) or even spoilage organisms such as 278 

several species of lactic acid bacteria (Su et al., 2011).  Further research could identify more 279 

inhibitors of the GAD system or other amino acid decarboxylase systems.  280 

Initially the growth of 10403S WT in the presence of different organic acids namely succinic, 281 

lactic, maleic and acetic was investigated. The MIC of maleic acid was 34 mM which was the 282 

highest compared to the MIC of the other acids suggesting that it was the least inhibitory 283 

(Table 3). This should be expected as one of the pKas of maleic acid is as low as 1.9 and at 284 

relatively mild acidic conditions, such as those used in the MIC experiments (pH ~5), only a 285 

small percentage of the acid would be in the undissociated form (<0.08%; Table 3) which is 286 

more antimicrobial. The other carboxyl would have a minor influence in the formation of 287 

undissociated molecules as the first carboxyl dissociates almost fully (>92%) in pH values 288 

above 3. In contrast, the other acids have a significantly higher percentage of undissociated 289 

molecules than maleic acid (Table 3). 290 

Subsequently, the bactericidal activity of these acids focusing on the survival of two L.  291 

monocytogenes strains EGD-e WT (acid sensitive) and 10403S WT (acid resistant) was 292 

studied at pH 3.3 and 3 respectively. (Fig. 1A, B). Interestingly, maleic acid possessed a 293 

significantly stronger bactericidal activity compared to the other acids which could not be 294 

explained by its pKa since at this pH, most of the molecules would be in the dissociated form 295 

(>92.65%; Table 3). On the contrary, at that pH the pKas of all other acids used, were higher, 296 

suggesting that most of their molecules were in the undissociated and therefore more 297 

bactericidal form compared to that of maleic acid. Despite that, maleic acid excreted 298 

significantly stronger bactericidal activity than the other acids at the same pH. This suggests 299 

that maleic acid could be used to enhance the antibacterial effects of acidic environments. 300 



Furthermore, the bactericidal effects of maleic acid were not due to the classical mechanism 301 

of release of protons intracellularly by undissociated molecules of maleate entering the cell.   302 

In further experiments, the bactericidal effect of maleic acid at pH 3 in three different strains 303 

of L. monocytogenes was investigated. We used L. monocytogenes 10403S which is one of 304 

the most acid resistant strains described in literature, LO28 which has a moderate acid 305 

resistance and EGD-e which is one of the most acid sensitive strains described (Feehily et al., 306 

2014; Fig. 2). Interestingly, the bactericidal activity of maleic acid was more pronounced 307 

with the most acid resistant strain of L. monocytogenes (10403S; Fig. 2C) less pronounced 308 

with moderately acid resistant strain (LO28; Fig. 2B) and least pronounced with the least acid 309 

resistant strain (EGD-e; Fig. 2A). It could be said, that bactericidal effects seemed to be more 310 

pronounced the more acid resistant a strain was, but also the higher its GAD activity was 311 

(Fig. 2D) as these two latter characteristics corresponded well for these 3 strains (Fig. 2). 312 

This suggested that maleic acid could be involved with the function of the GAD system in L. 313 

monocytogenes.  314 

To investigate this hypothesis, it was attempted to see the effect of maleic acid on strains 315 

carrying deletions of the GAD genes. The EGD-e strain does not use the GADe system 316 

mediated mainly by GadD2 but relies on GADi mediated mainly by GadD3 which utilises 317 

intracellular pools of glutamate (Feehily et al., 2014; Karatzas et al., 2012). This is reflected 318 

in the results as the ΔgadD3 was more sensitive than all other strains in the presence or 319 

absence of maleic acid (Fig. 3A, B). This is explained by the inability of this mutant to utilise 320 

the GADi system which mainly comprises GadD3 as seen by the complete absence of 321 

intracellular GABA either in the presence or absence of maleic acid (Fig. 3C). In agreement 322 

with previous work, (Feehily et al., 2014) GadD1 seems to be completely inactive as the 323 

corresponding mutant showed similar survival to the wild type (Fig. 3A). It should be 324 

mentioned here that GadD1 of L. monocytogenes is a designated glutamate decarboxylase 325 



only on the basis of genetic similarity and no worker neither we have ever shown it to 326 

possesses such an activity. Therefore, it is still debatable if GadD1 is a glutamate 327 

decarboxylase. The survival of the other mutants (Fig. 3A) and the levels of GABAi did not 328 

show any possible inhibition by maleic acid. However, it should be stated that GABAi levels 329 

are also affected by its catabolism through the GABA shunt and therefore they do not reflect 330 

GAD activity. Similarly, there was no effect of maleic acid or mutations (apart from gadD2) 331 

on the levels of GADi in 10403S. 332 

On the other hand, there was a major effect of maleic acid on GADi activity in 10403S as all 333 

mutants apart from ΔgadD2, which does not possess GADe activity, showed a reduced GADe 334 

activity in the presence of maleic acid (Fig. 4C). This reduced GADe activity resulted in 335 

increased inactivation in the presence of maleic acid (Fig. 4A). Increased inactivation was 336 

observed also in the case of EGD-e, but this was more enhanced with 10403S. This was 337 

clearly due to the inhibition of GadD2 in 10403S, while inhibition of maleic acid towards 338 

GadD3 might not be so strong.  339 

To investigate further the effect of maleic acid on the GAD system, its effect on the GAD 340 

activity in lysates of 10403S in the presence or absence of maleic acid was investigated. In 341 

these experiments, it was clearly demonstrated that maleic acid inhibits GAD activity by 25% 342 

(P = 0.0053; Fig. 5). Furthermore, our experiments showed that maleic acid acts specifically 343 

on the glutamate decarboxylase and not on the antiporter which is a membrane protein and 344 

thus was removed in the process of producing the lysate. It has been shown in E. coli, that the 345 

glutamate decarboxylase enzymes (GadD1 and GadD2) are in the cytosol at neutral pH and 346 

undergoes conformational change under low pH triggering their move towards the membrane 347 

(Capitani et al., 2003). Previously, it has been shown that maleic acid inhibits glutamate 348 

decarboxylase activity in E. coli (Fonda, 1972) and in Curcurbita moschata (Ohno Mei, 349 



1962) however, to our knowledge this is the first time it is shown to inhibit the GAD activity 350 

in any other bacterium than E. coli.  351 

The ability of various acids to inhibit the GAD system of E. coli has been studied previously 352 

(Fonda, 1972) and estimated the Ki of various acids. The Ki is the measure of the inhibition 353 

of the GAD enzyme and the Ki of succinate is lower than that of maleic for the GAD of E. 354 

coli.  However, in our work maleic showed a much stronger effect on the cells of L. 355 

monocytogenes. However, the final effect is not only the result of the actual inhibition 356 

conferred, but also the ability of the compound to enter the cell.  357 

Furthermore, since GadD2 is the main determinant of GAD system in 10403S it could be said 358 

that maleate that enters the cell inhibits specifically GadD2 activity. Unfortunately, after 359 

several attempts it was impossible to identify the optimum pH for the GADi system of EGD-e 360 

comprising mainly GadD3, to see if there is any inhibitory effect of maleic acid in this strain 361 

as well. We speculated that the optimum pH of GADi driven mainly by GadD3 in EGD-e is 362 

higher than that of GadD2 in 10403S (pH 4.5). However, increasing the pH did not result in 363 

any measurable Gad activity.  364 

Finally, the possibility of using maleic acid to remove biofilms of L. monocytogenes was 365 

investigated. Previously, it has been shown that maleic acid is able to remove E. faecalis 366 

biofilms and it has been suggested to replace EDTA as an irrigant in dentistry due to its lower 367 

toxicity (Ferrer-Luque et al., 2010). Furthermore, L. monocytogenes is known to form 368 

biofilms which are difficult to remove and contribute significantly in the appearance of 369 

various outbreaks and individual cases of this pathogen. Our results show that maleic acid is 370 

able to partly remove biofilms of L. monocytogenes at very low levels (1-2 mM) and in 371 

combination with its ability to enhance the sensitivity of this pathogen in acidic environments 372 

it could be used in disinfections regimes for this purpose.  373 

 374 



5. CONCLUSIONS 375 

Overall our work showcases a novel approach in disinfection regimes through inhibition of 376 

specific molecular acid resistance systems in combination with acidic conditions. Normally 377 

the inhibitor of the acid resistance system and in this specific case, the maleic acid which 378 

inhibits the GAD system, could be added in minor concentrations and bring about major 379 

reduction in the bacterial numbers. If this property is combined with biofilm removal, it could 380 

contribute in the removal of pathogens such L. monocytogenes and other microorganisms 381 

from food and food premises.  382 
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 504 

LEGENDS TO THE FIGURES 505 

Fig. 1 (A) Survival of EGD-e WT in presence of concentration of 0.5 mg/ml maleic, 506 

succinate, HCl, acetate and lactate grown in BHI. Subsequently, cultures were acid 507 

challenged at pH 3.3 with the addition of 1M HCl. (B) Survival of 10403S WT in presence of 508 

1mg/ml concentration of maleic, succinate, HCl, acetate and lactate grown in BHI. 509 

Subsequently, cultures were acid challenged at pH 3 with the addition of 1M HCl. Both (A) 510 

and (B) cells were grown overnight until stationary phase (~18h) at 37ºC with shaking. D.L 511 

denotes detection limit of the experimental setup. 512 

Fig. 2 Survival of WT EGD-e (A), LO28 (B), 10403S (C) respectively. Strains were treated 513 

without and with 4.3 mM of maleic acid grown in BHI until stationary phase (~18 h) at 37oC 514 

with shaking. Subsequently, cultures were acid challenged at pH 3 with the addition of 1M 515 

HCl. (D) Extracellular GABAe through time (min) following the adjustment of pH 4.2 of 516 

overnight cultures of WT EGD-e, LO28 and 10403S grown until stationary phase in BHI.  517 

Fig. 3 Survival of stationary phase cultures of EGD-e WT and its gad mutants after exposure 518 

at pH 3.3 for 60 min in the presence or absence of 4.3 mM of maleic acid (A), or in the 519 

absence of maleic acid at pH 2.5 (B). (C) GABAi of overnight stationary phase cultures of 520 

WT EGD-e and its isogenic gad mutants following exposure at pH 4.2 for 60 min, in the 521 

presence or absence of 4.3 mM maleic acid. Cultures were grown in BHI for ~18 h at 37oC 522 



with shaking, pH was adjusted with the addition of 1 M HCl, while asterisks represent a 523 

statistically significant difference (P<0.05).  524 

 525 

Fig. 4 Survival of stationary phase cultures of 10403S WT and its isogenic gad mutants at pH 526 

3 in the presence or absence of 8.6 mM of maleic acid after 40 min (A) or, in the absence of 527 

maleic acid at pH 2.5 for 60 min (B). Concentration of GABAe (C) and GABAi (D) in 528 

stationary phase cultures of 10403S WT and its gad mutants after 60 min at pH 4.2 in the 529 

presence or absence of 8.6 mM maleic acid. Intracellular GABAi. Cultures were grown in 530 

BHI for ~18 h at 37oC with shaking, pH was adjusted with the addition of 1 M HCl, while 531 

asterisks represent a statistically significant difference (P<0.05).    532 

 533 

Fig. 5 10403S WT cells grown overnight until stationary phase (~18 h) at 37oC with shaking. 534 

Lysates were produced and GAD activity was monitored in them through GABA 535 

measurements. Asterisk represents statistically significant difference (P<0.05). 536 

 537 

Fig. 6 Average optical densities of crystal violet-stained biofilms of L. monocytogenes 538 

10403S WT after growth in 96 well plates at 30oC without shaking. Error bars represent 539 

standard deviation from triplicate observations and asterisks represents statistically 540 

significant difference (P<0.05) with the control containing no maleic acid. 541 

 542 
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