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Dimensionally split advection schemes are attractive for atmospheric modelling due to
their efficiency and accuracy in each spatial dimension. Accurate long time steps can
be achieved without significant cost using the flux-form semi-Lagrangian technique. The
dimensionally split scheme used in this paper is constructed from the one-dimensional
Piecewise Parabolic Method and extended to two dimensions using COSMIC splitting. The
dimensionally split scheme is compared with a genuinely multi-dimensional, method-of-
lines scheme which, with implicit time-stepping, is stable for Courant numbers significantly
larger than 1.

Two-dimensional advection test cases on Cartesian planes are proposed which avoid the
complexities of a spherical domain or multi-panel meshes. These are solid-body rotation,
horizontal advection over orography and deformational flow. The test cases use distorted
non-orthogonal meshes either to represent sloping terrain or to mimic the distortions near
cubed-sphere edges.

Mesh distortions are expected to accentuate the errors associated with dimension splitting,
however the accuracy of the dimensionally split scheme decreases only a little in the presence
of mesh distortions. The dimensionally split scheme also loses some accuracy when long
time steps are used. The multi-dimensional scheme is almost entirely insensitive to mesh
distortions and asymptotes to second-order accuracy at high resolution. As is expected for
implicit time-stepping, phase errors occur when using long time steps but the spatially
well-resolved features are advected at the correct speed and the multi-dimensional scheme
is always stable.

A naive estimate of computational cost (number of multiplies) reveals that the implicit
scheme is the most expensive, particularly for large Courant numbers. If the multi-
dimensional scheme is used instead with explicit time-stepping, the Courant number is
restricted to less than 1, the accuracy is maintained, and the cost becomes similar to the
dimensionally split scheme.
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1. Introduction

Many traditional weather and climate models use latitude--
longitude meshes, but new models are being developed on quasi-
uniform meshes in order to better exploit modern computers
(e.g. Skamarock and Gassmann, 2011; Staniforth and Thuburn,
2012; Weller et al., 2012; Lauritzen et al., 2014; Katta et al., 2015).
Latitude–longitude meshes need measures to enable long time

steps near the poles such as polar filtering, semi-implicit and
semi-Lagrangian methods (Davies et al., 2005). These methods
necessarily have large domains of dependence near the poles
which lead to poor parallel scaling at high resolution. Quasi-
uniform meshes avoid parallel scaling bottlenecks near the poles
but lead to non-orthogonal meshes (e.g. the cubed-sphere) or
different structures (e.g. icosahedra). Therefore accurate and
efficient transport (or advection) schemes on non-orthogonal
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meshes are required. There is an abundance of desirable properties
of advection schemes, including:

1. Inherent local conservation of the advected quantity.
2. Stability in the presence of large Courant numbers.
3. Accuracy in the presence of large Courant numbers.
4. High-order accuracy.
5. Low computational cost, good parallel scaling and multi-

tracer efficiency.
6. Low phase and dispersion errors (advection of all

wavenumbers of the advected quantity at close to the
correct speed).

7. Low diffusion errors (maintaining amplitude of all
wavenumbers of the advected quantity).

8. Boundedness, monotonicity, positivity and maintaining
correlations between multiple advected tracers.

Four (important) properties are listed together in the final item
because they will not be addressed here. In this paper, we
address the issue of conservative, accurate, efficient advection
schemes on logically rectangular, non-orthogonal meshes which
are stable in the presence of large Courant numbers. These
schemes would be particularly relevant for cubed-sphere meshes
and for terrain-following meshes. Another novel aspect of this
paper is that, for simplicity, we test advection schemes entirely
on planar meshes rather than on the sphere, proposing test
cases to challenge advection schemes on non-orthogonal meshes
without the need to implement meshes in spherical geometry. We
assume that a large fraction of the numerical errors associated
with terrain-following co-ordinates and the cubed-sphere grid are
due to the mesh non-orthogonality, distortion and discontinuity.
Other sources of numerical errors, such as those associated
with the representation of spherical geometry, are not addressed
here.

Dimensionally split schemes (operating separately in each
spatial dimension) are attractive for atmospheric modelling due
to their efficiency and high accuracy in each spatial dimension
(e.g. Leonard et al., 1996; Lin and Rood, 1996; Brassington and
Sanderson, 1999; Putman and Lin, 2007; Katta et al., 2015).
Inherent conservation is guaranteed by using the flux-form semi-
Lagrangian (FFSL or forward in time) technique (e.g. Colella and
Woodward, 1984) which integrates the dependent variable over a
swept distance upstream of every face in order to calculate fluxes in
and out of cells. Accurate long time steps can be achieved without
significant cost by calculating cumulative mass fluxes along lines of
cells (Leonard et al., 1995). One-dimensional schemes can be used
with operator splitting to create dimensionally split, temporally
second-order-accurate schemes (e.g. Leonard et al., 1996) on
logically rectangular, multidimensional meshes. Dimensionally
split schemes have been found to give good accuracy on non-
orthogonal meshes such as the cubed-sphere if special treatment
is applied over cube edges to improve accuracy: for example,
Putman and Lin (2007) use the average of two one-sided schemes
at cube edges. Katta et al. (2015) use a multi-dimensional
transport scheme with dimensionally split reconstructions. They
create ghost cells outside each cube panel boundary and
achieve accuracy between second and fourth order. Guo et al.
(2014) report error growth around cube edges using Strang
splitting.

Meshes also become non-orthogonal when orography is
represented with terrain-following layers. The problem is
commonly alleviated by smoothing terrain-following layers to
reduce non-orthogonality away from the ground (e.g. Schär
et al., 2002), or by using floating Lagrangian vertical coordinates
(Lin, 2004). The special treatment applied to dimensionally
split schemes for cubed-spheres cannot be applied for terrain-
following layers because sloping orography appears throughout
the domain. Dimension splitting may account for some of the
errors over orography reported by Kent et al. (2014), although
they do not cite this as a reason for errors.

Dimension-splitting errors on distorted meshes can be
eliminated by using genuinely multi-dimensional advection

schemes. These can be either FFSL (i.e. swept area; e.g. Lashley,
2002; Lipscomb and Ringler, 2005; Miura, 2007; Thuburn et al.,
2014), method of lines (MOL, discretising space and time
separetely; e.g. Weller et al., 2009; Skamarock and Gassmann,
2011; Katta et al., 2015; Shaw et al., 2017) or conservative
semi-Lagrangian (with conservative re-mapping; e.g. Iske and
Kaser, 2004; Zerroukat et al., 2004; Lauritzen et al., 2010). Few
FFSL and MOL multi-dimensional schemes have been extended
to work with Courant numbers significantly larger than 1, a
notable exception being Ullrich and Norman (2014), whose FFSL
method is stable for Courant numbers up to around 2.5. FFSL
multi-dimensional schemes could be extended to handle larger
time steps by integrating the upstream swept volume over a large
upstream volume, interacting with a large number of upstream
cells. However, the integration cost would be proportional to the
time step since an upstream swept volume would overlap with
more cells. MOL multi-dimensional schemes can be extended
to work with Courant numbers larger than 1 by using implicit
time-stepping. This will increase the computational cost per
tracer advected since the solution of a matrix equation would be
needed for every advected tracer. Other disadvantages of implicit
time-stepping are the large phase errors when long time steps
are used (e.g. Durran and Blossey, 2012; Lock et al., 2014), the
difficulty of achieving monotonicity, and the parallelization cost
of linear solvers. This is in contrast to semi-Lagrangian or FFSL
schemes which maintain accuracy with long time steps (Purnell,
1976; Pudykiewicz and Staniforth, 1984; Leonard et al., 1995)
although monotonocity with long time steps is still challenging
(Bott, 2010). Conservative semi-Lagrangian (e.g. Zerroukat et al.,
2004) naturally extends to long time steps but the conservative
remapping is complicated and expensive, particularly on non-
rectangular meshes, and will not be investigated here. Lauritzen
et al. (2014) described how the FFSL technique with a
long time step can be made equivalent to the conservative
semi-Lagrangian.

It is therefore not clear what approach should be taken for
achieving long time steps when advecting multiple tracers on
distorted meshes. In this paper, we show the effect of dimension-
splitting errors using a FFSL dimensionally split scheme on a
number of test cases which use distorted and undistorted meshes,
and compare with a genuinely multi-dimensional implicit MOL
scheme using large and small Courant numbers.

The theoretical properties of dimensionally split advection
schemes are often tested on uniform, orthogonal meshes (e.g.
Leonard et al., 1996) which is inadequate for a scheme that will
eventually be used on a cubed-sphere. Developing a transport
scheme to the extent that it can be used on a multi-panel cubed-
sphere with special treatment of cube edges is a considerable
undertaking. Hence there is a need for more challenging advection
test cases which are simpler to implement, without the need for
spherical meshes. We therefore propose some modifications of
existing test cases to use distorted meshes, or distorted co-ordinate
systems, on a logically rectangular, two-dimensional plane. These
test cases will mimic the problems encountered at cubed-sphere
edges.

The long-time-step-permitting, dimensionally split scheme
and the long-time-step-permitting multi-dimensional scheme
are defined in section 2. In section 3 we present results of three
advection test cases on distorted meshes in two-dimensional
planes using Courant numbers above and below 1. These are: the
solid-body rotation test case of Leonard et al. (1996), modified
to use a mesh (or co-ordinate system) with distortions similar to
a cubed-sphere (section 3.1); the horizontal advection test case
over orography (Schär et al., 2002), examining sensitivity to time
step, resolution and mountain height, all on the basic terrain
following mesh without smoothing of terrain following layers
(section 3.2); and a modification of the deformational flow test
case of Lauritzen et al. (2012) for a periodic rectangular plane
(section 3.3). Some estimates are made of computational cost in
section 3.4 and final conclusions are drawn in section 4.

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
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2. Transport schemes

We present two conservative advection schemes suitable for long
time steps (stable for Courant numbers significantly larger than
1) for solving the linear advection equation:

∂φ

∂t
+ ∇ · (uφ) = 0, (1)

where the dependent variable φ is advected by a divergence
free velocity field u(x, t). The dimensionally split scheme is the
piecewise parabolic method (PPM; Colella and Woodward, 1984)
which uses the FFSL approach extended to long time steps
following Leonard et al. (1995) with COSMIC splitting Leonard
et al. (1996) to extend PPM to two dimensions. The multi-
dimensional scheme uses the method-of-lines approach (treating
space and time independently). The second-order accurate spatial
discretistaion of Shaw et al. (2017) is combined with an explicit,
second-order Runge–Kutta time-stepping scheme and with an
implicit, Crank–Nicholson time-stepping scheme to allow long
time steps. Neither scheme has monotonicity or positivity
preservation. The dimensionally split scheme is third-order
accurate in one dimension but the COSMIC splitting reduces
the temporal order to two. The multi-dimensional scheme uses
cubic interpolations but uses cell centroids as Gauss points so the
order of accuracy is limited to two. When explicit time-stepping
is used, the cost of both schemes is similar (section 3.4). These
schemes are therefore considered suitable for comparison.

The code for dimensionally splitting scheme is available
at https://github.com/yumengch/COSMIC-splitting. The multi-
dimensional scheme is implemented using OpenFOAM (2016)
and is available at https://github.com/AtmosFOAM/. The set-up
of the test cases is available at https://github.com/hilaryweller0/
multiDadvectCases (all accessed 26 July 2017).

2.1. One-dimensional PPM with long time steps

We describe a long-time-step version of PPM for solving the
one-dimensional advection equation:

∂φ

∂t
+ ∂uφ

∂x
= 0. (2)

Colella and Woodward (1984) defined PPM with monotonicity
constraints and for variable resolution but for simplicity (and for
comparison with the multi-dimensional scheme) we will define
PPM without monotonicity constraints and for a fixed resolution
�x, and time step �t. With these restrictions, PPM should be
fourth-order accurate in one dimension for vanishing time step.

We define the dependent variable, φ(n)
i , to be the mean value of φ

in cell i at time-level n where xi = i�x and t = n�t. Since PPM
is a flux-form finite-volume method, φ(n)

i is updated using:

φ
(n+1)
i = φ

(n)
i + XC (φ) (3)

= φ
(n)
i − ui+1/2φi+1/2 − ui−1/2φi−1/2

�x
, (4)

where XC (φ) is the conservative advection operator for φ in the
x direction. The fluxes, ui±1/2φi±1/2, are found by integrating a
piecewise polynomial p, along the distance travelled in each time
step upwind of cell boundary xi±1/2. The polynomial is defined
in each cell i, such that:

φi = 1

�x

∫ xi+1/2

xi−1/2

pi(x) dx (5)

by

pi(x) = pi−1/2 +ξ

[
pi+1/2−pi−1/2+(1−ξ)6

×
{
φi− 1

2

(
pi−1/2+pi+1/2

)}]
, (6)

where ξ = (x − xi−1/2)/�x and

pi+1/2 = 7

12
(φi + φi+1) − 1

12
(φi+2 + φi−1). (7)

In order to cope with long time steps, we follow Leonard et al.
(1995) and divide the Courant number into a signed integer part,
cN, and a remainder, cr. The departure point of location xi− 1

2
is

thus computed as xd = xi− 1
2

− ui− 1
2
�t, and the departure cell,

for cell edge i − 1
2 , is id = i − cN − 1 for ui− 1

2
> 0 and id = i − cN

for ui− 1
2

< 0. Then for ui− 1
2

> 0, the flux through xi−1/2 between

times n�t and (n + 1)�t is:

ui− 1
2
φi− 1

2
= 1

�t

∫ x
i− 1

2

xd

p(x) dx

= 1

�t

(
Mi− 1

2
−Mi−cN− 1

2
+

∫ x
id+ 1

2

xd

p(x) dx

)
, (8)

where Mi− 1
2

is the cumulative mass from the start point to

position xi− 1
2

:

Mi− 1
2

=
∑
k<i

�xφk. (9)

This departure point calculation assumes that the velocity is
uniform on the computational mesh which has a first-order error
which could be particularly damaging for long Courant numbers,
when the wrong departure cell could be found. The departure
point calculation could be improved by using a second-order
predictor–corrector departure point calculation (e.g. Melvin
et al., 2010).

The velocity is derived from a stream function and the Jacobian
of the co-ordinate transform:(

u
v

)
= J

(
�y

−�x

)
. (10)

For stability, the time step is restricted by the deformational
Courant number:

cd =

�t max

(∣∣∣∣∂u

∂x

∣∣∣∣,∣∣∣∣∂u

∂y

∣∣∣∣,∣∣∣∣∂u

∂z

∣∣∣∣,∣∣∣∣∂v

∂x

∣∣∣∣,∣∣∣∣∂v

∂y

∣∣∣∣,∣∣∣∣∂v

∂z

∣∣∣∣,∣∣∣∣∂w

∂x

∣∣∣∣,∣∣∣∣∂w

∂y

∣∣∣∣,∣∣∣∣∂w

∂z

∣∣∣∣) (11)

(Pudykiewicz and Staniforth, 1984) such that cd ≤ 1.

2.2. COSMIC splitting

COSMIC operator splitting (Leonard et al., 1996) allows single-
stage, one-dimensional schemes such as PPM to be used stably in
two or more dimensions whilst retaining conservation, constancy
preservation and second-order accuracy (on orthogonal meshes).
As we are now considering two spatial dimensions, we define φij,
uij and vij, the values of φ and the velocity components, u and v
in cell (i, j) where x = i�x and y = j�y. COSMIC splitting uses
both advective (A) and conservative (C) advection operators in
the x and y directions:

XC(φ) = − 1

�x
(ueφe − uwφw) , (12)

YC(φ) = − 1

�y
(vnφn − vsφs) , (13)

XA(φ) = XC(φ) + φij

�x
(ue − uw) , (14)

YA(φ) = YC(φ) + φij

�y
(vn − vs) , (15)

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society
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where φn = φi,j+1/2, φs = φi,j−1/2, φe = φi+1/2,j, φw = φi−1/2,j,
vn = vi,j+1/2, vs = vi,j−1/2, ue = ui+1/2,j and uw = ui−1/2,j are the
values of φ, u and v at the (n, s, e and w) cell boundaries.
If COSMIC is being used to extend PPM to two spatial
dimensions, then φn,s,e,w are calculated from Eq. (8). Assuming
C-grid staggering, vn, vs, ue and uw are dependent variables.
Instead of using cell-centred velocity (Lin and Rood, 1996) or
upwind velocity (Leonard et al., 1996), the advective operators
are calculated in a similar manner to Lin (2004).

Mesh distortions can be included in the advection equation
with a co-ordinate transform with Jacobian J:

∂|J|−1φ

∂t
+ ∂|J|−1uφ

∂x
+ ∂|J|−1vφ

∂y
= 0. (16)

The operators XC, YC, XA and YA are then:

XC(φ) = − 1

�x

(|J|−1
e ueφe − |J|−1

w uwφw
)

, (17)

YC(φ) = − 1

�y

(|J|−1
n vnφn − |J|−1

s vsφs
)

, (18)

XA(φ) = XC(φ) + φij

�x

(|J|−1
e ue − |J|−1

w uw
)

, (19)

YA(φ) = YC(φ) + φij

�y

(|J|−1
n vn − |J|−1

s vs
)

, (20)

which are combined to update φij in each cell by:

φ
(n+1)
ij = φn

ij + |J|ijXC

{
φ

(n)
ij + |J|ij

2
YA

(
φ

(n)
ij

)}
+ |J|ijYC

{
φ

(n)
ij + |J|ij

2
XA

(
φ

(n)
ij

)}
. (21)

where |J|ij is the determinant of Jacobian at the centre of cell
(i, j), and �x and �y give the cell size in uniform computational
domain.

2.3. Multi-dimensional method-of-lines (MOL) scheme

The MOL scheme uses the finite volume method for arbitrary
meshes and is implemented in OpenFOAM (2016). This uses
a cubic upwind spatial discretization (Weller and Shahrokhi,
2014; Shaw et al., 2017) combined with either implicit
Crank–Nicholson in time or explicit RK2 (see below). Although
the interpolation uses a cubic polynomial, cell centre values are
approximated as cell average values and face centre values are
approximated as face average values so the method is limited
to second-order accuracy in space. The advection scheme uses
Gauss’s divergence theorem to approximate the divergence term
of the advection equation:

∇ · (uφ) ≈ 1

V

∑
f ∈c

φf uf · Sf , (22)

where V is the cell volume, the summation is over all faces, f , of
cell c, φf is the value of the dependent variable, φ interpolated
onto face f , uf is the velocity at face f and Sf is the vector normal
to face f with magnitude equal to the area of face f (i.e. the face
area vector). The advection scheme uses a fit to a 2D (or 3D)
polynomial using an upwind-biased stencil of cells (Figure 1) in
order to interpolate from known cell values onto a face. In 2D,
the cubic polynomial is:

φ = a0 + a1x + a2y + a3x2 + a4xy

+ a5y2 + a6x3 + a7x2y + a8xy2, (23)

omitting the y3 term, where x is the direction normal to a cell
face and y is perpendicular to x. (The y3 term is omitted because

ϕ

ϕ

ϕ ϕf x
y

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ
ϕup

ϕdown

Figure 1. Stencil of upwind-biased cells for interpolating onto face f using a
2D cubic polynomial for a rectangular mesh structure for the multi-dimensional
scheme. The tracer, φ, is stored at cell centres (grey dots). ‘up’ and ‘down’ refer
to upwind and downwind cells relative to the central face, f , and x–y is the
co-ordinate system relative to f .

it cannot be set with a stencil that is narrow in the direction of
the flow.) Coefficients ai are set from a least-squares fit to the cell
data in the stencil. The least-squares problem involves a 9 × m
matrix singular value decomposition (where m is the size of the
stencil) for every face and for both orientations of each face.
However this is purely a geometric calculation and is therefore a
pre-processing activity since the mesh is fixed. This generates a
set of weights for calculating φf from the cell values in the stencil,
leaving m multiplies for each face for each call of the advection
operator. The stencils are found for three-dimensional, arbitrarily
structured meshes by finding the face(s) closest to upwind of the
face we are interpolating onto, taking the two cells either side of
the upwind face(s) and then taking the vertex neighbours of those
central cells (Figure 1). For each face there are two possible stencils
depending on the upwind direction. Both of the stencils are stored
and the interpolation weights for both stencils are calculated.

In order to ensure that the fit is accurate in the cells either
side of face f and to ensure that the values in these adjacent cells
have the strongest control over φf , rows associated with these
values in the least-squares fit matrix are weighted a factor of 1000
relative to the other rows (following Lashley, 2002). This does not
affect the order of accuracy. Mathematically, an arbitrarily large
value of the weight can be used to ensure that the fit goes exactly
through the upwind and downwind cell. However if a value too
large is used, the singular value problem becomes ill-conditioned.
The stabilization procedures described by Shaw et al. (2017) are
in the code but are not activated for these test cases because the
meshes are sufficiently regular. The value φf is then calculated as
a higher-order correction to first-order upwind:

φf = φup +
∑

c

wcφc, (24)

where wc are the weights for each cell of the stencil calculated
from the least-squares fit, with wup reduced by 1 to make the fit a
correction on upwind.

2.3.1. Implicit and explicit time-stepping

Assuming that the velocity field and mesh are constant in time,
the explicit Runge–Kutta 2 (Heun) time-stepping is defined as

φ′ − φn

�t
= − 1

V

∑
f ∈c

(
φn

up +
∑

c

wcφ
n
c

)
uf · Sf , (25)

φn+1 − φn

�t
= − 1

2V

∑
f ∈c

(
φn

up + φ′
up

+
∑

c

wcφ
n
c +

∑
c

wcφ
′
c

)
uf · Sf . (26)
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The trapezoidal implicit or Crank–Nicolson time-stepping
leads to a matrix equation which needs to be solved to find
all the φs at the next time step. In order to ensure that the
matrix is diagonally dominant for arbitrary time steps, the
cubic interpolation applied is a deferred correction on first-
order upwind so that only the coefficient corresponding to the
upwind cells are included in the matrix. This means that more
than one implicit solves are needed per time step so that the
higher-order terms are solved to be second-order accurate in
time. If the Courant number is less than or close to 1, we use two
implicit solves per time step. Consequently, assuming that the
velocity field and mesh are constant in time, the time-stepping
scheme is defined as:

φ′ − φn

�t
= − 1

2V

∑
f ∈c

(
φn

up+φ′
up+2

∑
c

wcφ
n
c

)
uf · Sf , (27)

φn+1−φn

�t
= − 1

2V

∑
f ∈c

(
φn

up + φn+1
up

×
∑

c

wcφ
n
c +

∑
c

wcφ
′
c

)
uf · Sf . (28)

For Courant numbers larger than 1, we use four implicit solves
per time step, although sensitivity to this choice has not been
investigated.

2.3.2. Matrix solvers and tolerances

If this implicit scheme is applied on a logically rectangular, two-
dimensional mesh with horizontal and vertical Courant numbers
cx and cz, then the diagonal coefficients of the matrix would
be 1 + cx/2 + cz/2 and, assuming two upwind directions, there
would be exactly two off-diagonal elements, −cx/2 and −cz/2.
Consequently the matrix is very sparse, asymmetric and diagonally
dominant for all time steps. It is solved using the OpenFOAM
bi-conjugate gradient solver using DILU pre-conditioning to a
tolerance of 10−8 every iteration. Sensitivity to the solver or
solver tolerance have not been investigated. Information about
the number of solver iterations for different test cases in given in
section 3.4.

3. Results of test cases in planar geometry

In order to make test cases as simple as possible without the need
for incorporating spherical geometry, multi-panel meshes or non-
rectangular cells, our computational domain consists of a periodic
two-dimensional plane with deformations and discontinuities
in the co-ordinate system (or mesh) mimicking the kind of
distortions which are produced near cubed-sphere edges. We also
use a two-dimensional vertical slice test case over orography using
terrain-following co-ordinates (or terrain-following meshes).

A range of test cases are undertaken on uniform and distorted
meshes using the dimensionally split scheme and the multi-
dimensional scheme in order to evaluate the influences of mesh
distortions, the validity of using a dimensionally split scheme on
a distorted mesh, and the schemes’ accuracy and stability for long
time steps.

3.1. Solid-body rotation

The solid-body rotation test case of Leonard et al. (1996) is
used to compare the accuracy of the dimensionally split and
multi-dimensional schemes on orthogonal and non-orthogonal
meshes. We define this test case on a domain that is 104 × 104 m2.
The velocity is defined by numerically differentiating the
streamfunction which can be defined at mesh vertices, x, by:

ψ(x, t) = A|x − xc|2, (29)

where xc is the centre of the domain, and A = 5π/3000 s−1 so
that the angular velocity is 2A. The initial tracer takes a Gaussian
distribution in order to ensure that all advection schemes achieve
their theoretical order of accuracy:

φ(x) = exp

(
−1

2

|x − xφ |2
r2
φ

)
, (30)

where xφ = xc + rcφ j is the initial centre of the tracer distribution,
rcφ = 2500 m, rφ = 500 m and j is the unit vector in the y
direction. The analytic solution has the same tracer distribution,
but with the centre of the tracer at

xφ = xc + rcφ

(
cos(π/2 + 2At)
sin(π/2 + 2At)

)
, (31)

and the Gaussian rotates anti-clockwise exactly one revolution in
600 s.

The solid-body rotation test case is performed on a uniform,
orthogonal mesh and on a non-orthogonal mesh on a plane with
non-orthogonality similar to that of a cubed-sphere mesh. For the
dimensionally split scheme, non-orthogonality is achieved using
the co-ordinate transform:

X = x, Y =

⎧⎪⎪⎨⎪⎪⎩
ym

(
1+ y − f

2ym−f

)
for y ≥ f ,

ym

(
1+ y − f

f

)
for y < f ,

(32)

where ym = 5000 m and f is the equation for a y position of
uniform Y half way up the domain. In order to create angles of
120◦ in the mesh, similar to a cubed-sphere, f is given by:

f =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ym

(
1 + 1

2
√

3

)
− x√

3
for x ≤ xm,

ym

(
1 − 1

2
√

3

)
+ x − xm√

3
for x > xm,

(33)

where xm = 5000 m. For a 50 × 50 mesh this gives the x and y co-
ordinate locations as shown in Figure 2. The multi-dimensional
scheme model uses Cartesian co-ordinates and a distorted mesh
rather than a non-orthogonal co-ordinate system on a Cartesian
mesh. However, this does not affect the numerical results
assuming that the co-ordinate transforms are implemented in
a consistent way to the distorted mesh in Cartesian co-ordinates.

For the dimensionally split scheme, bi-periodic boundary
conditions are applied. For the multi-dimensional scheme, it was
more straightforward to impose fixed-value boundary conditions
of φ = 0 where the velocity is into the domain and zero normal
gradient where the velocity is out of the domain. However, φ

remains almost zero near the boundaries so these boundary
conditions do not affect the accuracy.

Results of this test case on the orthogonal and non-orthogonal
meshes of 100 × 100 cells with �t = 1 s are shown in Figure 3
for both advection schemes (which gives a maximum Courant
number close to 1). The contours show the tracer value every
100 s and the colours show the errors summed every 100 s. The
dimensionally split scheme outperforms the multi-dimensional
scheme on both meshes due to the higher-order accuracy of
the split scheme. The dimensionally split scheme introduces a
small error at 300 s where the tracer goes through the change in
direction of the mesh which would be ameliorated if we were using
monotonicity constraints. The second-order, multi-dimensional
scheme shows phase lag but errors are almost entirely insensitive
to the mesh distortions. The results in Figure 3 use implicit time-
stepping but the results using explicit time-stepping are similar
(not shown).

The multi-dimensional and dimensionally split schemes take
very different approaches to handling large Courant numbers. The
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Figure 2. The non-orthogonal mesh on a plane with 50 × 50 mesh points and
angles up to 120◦ designed to have similar angles to a cubed-sphere mesh.

multi-dimensional scheme uses implicit time-stepping whereas
the dimensionally split scheme uses a FFSL approach, integrating
over a line of cells in order to calculate the flux across a face.
Implicit schemes are known to suffer from phase errors (e.g.
Durran and Blossey, 2012; Lock et al., 2014) for long time steps,
whereas the accuracy of semi-Lagrangian is less sensitive to time-
step (Pudykiewicz and Staniforth, 1984). Therefore we present
results of both schemes on orthogonal and non-orthogonal
meshes for time steps ten times those used in Figure 3 (�t = 10 s)
giving maximum Courant numbers of around 10 using 100 × 100
cells in Figure 4. The error of the multi-dimensional scheme is
again much larger than the dimensionally split scheme on both
meshes. The dimensionally split scheme is accurate at large
Courant numbers despite the first-order calculation of departure
points. However, the dimensionally split scheme introduces
oscillations on the non-orthogonal mesh, particularly where
the mesh changes direction, whereas for the multi-dimensional
scheme, errors are not strongly affected by the non-orthogonality.
Figure 4 clearly shows phase errors of the implicit time-stepping
but, despite the large Courant number, the well-resolved part of
the profile is propagating at close to the correct speed. Dispersion
analysis (Lock et al., 2014) shows that high-frequency oscillations
(which are poorly resolved in time and space) will be slowed
dramatically, but fast-moving features which are well-resolved in
space will propagate at a much more realistic speed, supporting
the results shown in Figure 4. The explicit multi-dimensional
scheme is not stable for this time step.

In order to compare convergence with resolution of the
different numerical methods, we use the 	2 and 	∞ error norms
defined in the usual way:

	2 =
√∫

V
(φ − φT)2 dV

/∫
V

φ2
T dV , (34)

	∞ = max |φ − φT| / max |φT|, (35)

where φT is the analytic solution and the integrations and maxima
are over the whole domain, with volume V . Figure 5 shows
convergence with resolution of the 	2 and 	∞ error measures
for meshes of 50 × 50, 100 × 100, 200 × 200 and 400 × 400 cells
with time steps scaled in order to maintain a maximum Courant
number of 1 (�t = 2, 1, 0.5, 0.25 s) or scaled to achieve a
maximum Courant number of 10 (�t = 20, 10, 5, 2.5 s). The
error norms are calculated at t = 500 s, when the tracer has
made 5/6 of one revolution in order to avoid error cancellation.

On both orthogonal and non-orthogonal meshes, the multi-
dimensional scheme has second-order convergence once errors
are low enough to avoid error saturation (stable errors are
bounded at around 1). With a large Courant number, both
schemes are less accurate. For the multi-dimensional scheme, this
is due to phase errors of the implicit time-stepping whereas for
the multi-dimensional scheme the first-order errors in calculating
the departure point and trajectory will be emerging and there
could also be significant errors from the second-order COSMIC
splitting. On the orthogonal mesh, the dimensionally split scheme
has third-order convergence for the Courant number close to 1
and second-order for the larger Courant number (consistent with
the results of Colella and Woodward, 1984; Leonard et al., 1996).
On the non-orthogonal mesh, the dimensionally split scheme has
second-order convergence for both Courant numbers. Results of
the explicit multi-dimensional scheme are also shown in Figure 5
for the shorter time step on the non-orthogonal mesh. The explicit
RK2 scheme is more accurate than the implicit (Crank–Nicolson)
scheme with the same order of convergence, but does not come
close to the accuracy of the dimensionally split scheme.

The different time-stepping schemes of the two models also
affect convergence with time step. The 	2 and 	∞ error measures
as a function of time step for meshes of 100 × 100 cells are shown
in Figure 6. The dimensionally split scheme, which uses FFSL
time-stepping, has errors reducing as time step increases, up to a
Courant number of 2 (�t = 2 s), whereas the multi-dimensional
scheme using implicit method-of-lines to treat space and time
separately always has error reducing as time steps reduce. The
FFSL technique discretizes space and time together and the error
is not very sensitive to time step. However, the shorter the time
step, more time steps need to be taken, and so errors can actually
accumulate more from taking more time steps. (This is consistent
with the order of accuracy of semi-Lagrangian being �xp/�t
for interpolation using polynomials of degree p, as described
by Durran, 2010). The explicit version of the multi-dimensional
scheme has errors that decrease as time step increases due to the
spatial discretization errors that are being introduced at every
time step.

In summary, the dimensionally split scheme has excellent
behaviour at large and small Courant numbers on the orthogonal
meshes with up to third-order convergence for small Courant
numbers, and the errors increase and order of convergence
decreases on non-orthogonal meshes. In contrast, the multi-
dimensional scheme is insensitive to the orthogonality, converges
with second-order as expected, and suffers from phase errors
at large Courant numbers due to the use of Crank–Nicolson
implicit time-stepping.

3.2. Horizontal advection over orography

Non-orthogonal meshes (or co-ordinate systems) are usually
necessary for representing orography with terrain-following
coordinates. This is a challenge for dimensionally split schemes.
Horizontal–vertical split schemes are commonly used in this
context (e.g. Dennis et al., 2012; Wan et al., 2013) since most
weather/climate models use higher resolution in the vertical than
in the horizontal. We present results of the Schär et al. (2002)
horizontal advection over orography test case for a range of
resolutions and Courant numbers for the dimensionally split and
multi-dimensional schemes.

All simulations use basic terrain-following co-ordinates (BTF;
Gal-Chen and Somerville, 1975) in order to present a challenging
test case that maximizes the non-orthogonality that can be
introduced by terrain-following coordinates. The transformation
is given by:

X = x, Z = H
z − h(x)

H − h(x)
, (36)

where H is the domain height and h is the terrain height. The test
case uses a domain of width 300 km, height, H = 25 km and a
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Figure 3. Results of the solid-body rotation test case on (a, c) orthogonal and (b, d) non-orthogonal meshes every 100 s for meshes of 100 × 100 cells and �t = 1 s,
giving a maximum Courant number of around 1. (a, b) show the dimensionally split scheme, and (c, d) the multi-dimensional scheme. The contours show the tracer
value every 0.1 from 0.1 to 0.9 and the colours show the errors. The dashed contour shows the initial conditions. The minimum and maximum errors are given in
each panel.

mountain range defined by

h =
⎧⎨⎩h0 cos2 πx

λ
cos2 πx

2a
for |x| ≤ a,

0 otherwise,
(37)

with the maximum mountain height, h0 = 3 km, half-width
a = 25 km and wavelength λ = 8 km. These values give a
maximum terrain gradient of close to 45◦. The wind is given
by a streamfunction which is defined at vertices so that the wind
field is discretely divergence-free. The streamfunction at vertices
is calculated analytically from the wind profile:

u(z) = u0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for z2 ≤ z,

sin2

(
π

2

z − z1

z2 − z1

)
for z1 < z ≤ z2,

0 for z < z1,

(38)

with u0 = 10 m s−1, z1 = 4 km and z2 = 5 km. The initial tracer
position is given by:

φ =
⎧⎨⎩cos2 πr

2
for r ≤ 1,

0 otherwise,
(39)

with r =
√(

x − x0

Ax

)2

+
(

z − z0

Az

)2

,

initial tracer centre (x0, z0) = (−50 km, 9 km) and halfwidths
Ax = 25 km, Az = 9 km. At time t = 5000 s the tracer is above

the mountain and the simulation finishes at t = 10 000 s by which
time the analytic solution is centred at (50, 8 km).

The tracer advection over orography is shown in Figure 7
for the split and multi-dimensional schemes at a resolution of
�x = 1 km, �z = 500 m and for a range of Courant numbers.
The multi-dimensional scheme uses implicit time-stepping. The
horizontal Courant number is defined as u0�t/�x and ranges
from 0.25 to 10. The maximum Courant number is the maximum
of the multi-dimensional Courant number which is defined for
cell with faces f as

c = 1

2V

∑
f

|uf · Sf |�t (40)

(section 2.3 defines the variables), and ranges from 0.74 to
29.6. The time-step restriction for the split scheme is based
on the deformational Courant number, cd ≤ 1, (Eq. (11)).
The maximum deformational Courant number is also given
in Figure 7. The contours in Figure 7 show the tracer values at
0, 5 000 s and 10 000 s after initialization and the colours show
the errors from the analytic solution. For horizontal Courant
numbers less than 1 (maximum Courant number up to 3), both
schemes give accurate results with the dimensionally split scheme
tending to give oscillations and the multi-dimensional scheme
producing more diffusion. For larger Courant numbers, when
the deformational Courant number is greater than 1, the split
scheme is unstable, while the multi-dimensional scheme produces
large phase errors due to the errors associated with implicit
time-stepping. The term responsible for the large deformational
Courant number is ∂u/∂z where the velocity shears from
u0 = 10 m s−1 at z = z2 to zero at z = z1.
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Figure 4. As Figure 3, but for �t = 10 s, giving a maximum Courant number of around 10.

We examine the convergence with resolution in Figure 8 which
shows the 	2 and 	∞ error norms as a function of �x. These
simulations all use a maximum Courant number less than 1, a
horizontal Courant number of 0.25, a maximum deformational
Courant number of about 0.2 and fixed ratios of �x, �z and
�t. The width and height of the orography is kept constant.
Both schemes give similar accuracy with the dimensionally split
scheme having faster convergence with resolution.

In summary, the dimensionally split scheme has good
accuracy over orography for modest Courant numbers but
larger errors for larger Courant numbers, and is unstable when
the deformational Courant number is greater than 1, whereas
the multi-dimensional scheme with implicit time-stepping is
stable for all Courant numbers. The multi-dimensional scheme
is second-order convergent and the dimensionally split scheme
converges faster.

3.3. Deformational flow

For deformational flow, there is no analytical solution and
therefore we follow the approach of Nair and Lauritzen (2010)
and Lauritzen et al. (2012) and define an evolving velocity field
that reverses direction half-way through the simulation, taking
the tracer back to the initial conditions. Error norms can then
be calculated by comparing the final and initial tracer fields. The
deformational velocity field is added to a fixed solid-body rotation
that does not reverse so as to avoid error cancellation between
the forward and backward periods (solid body here meaning
horizontal wind on a periodic domain).

We define a Cartesian version of the deformational, non-
divergent test case of Lauritzen et al. (2012) with a domain
between −π and π in the x direction (Lx = 2π) and between
−π/2 and π/2 in the y direction (Ly = π) with periodic boundary

conditions in the x direction and zero gradient, and zero flow
boundary conditions in the y direction. The streamfunction
adapted to Cartesian co-ordinate is:

ψ =
ψ̂

T

(
Lx

2π

)2

sin2

{
2π

(
x

Lx
− t

T

)}
cos2

(
πy

Ly

)
cos

(
π t

T

)
− Lxy

T
, (41)

where ψ̂ = 10 and T = 5 is the time for one complete revolution
of the periodic domain for the solid-body rotation part of the
flow. In order to test the order of convergence of the advection
schemes, we use the infinitely smooth Gaussian distribution for
the initial tracer concentration:

φ =0.95 exp

(
−|x − x0|2

A

)
+ 0.95 exp

(
−|x − x1|2

A

)
, (42)

where xT = (x, y), xT
0 = (5Lx/12, 0), xT

1 = (7Lx/12, 0) and A =
1/5.

A mesh with distortion similar to a cubed-sphere is defined by
the co-ordinate transform:

X = x, Y =

⎧⎪⎪⎨⎪⎪⎩
Ly

y − f

Ly − 2f
for y ≥ f ,

Ly
y − f

Ly + 2f
for y < f ,

(43)

where f is:

f =

⎧⎪⎪⎨⎪⎪⎩
1√
3

(π

4
− |x|

)
for |x| ≤ π

2 ,

1√
3

(
|x| − 3π

4

)
for |x| > π

2 .
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Figure 5. Convergence with spatial resolution of the (a, c) 	2 and (b, d) 	∞ errors for the solid-body rotation test case at t = 500 s (5/6 of one revolution) on
orthogonal and non-orthogonal meshes using multi-dimensional and dimensionally split schemes. (a, b) are for c ≈ 1 and (c, d) for c ≈ 10.
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Figure 6. Convergence with temporal resolution of the (a) 	2 and (b) 	∞ errors for the solid-body rotation test case at t = 500 s (5/6 of one revolution) using
orthogonal and non-orthogonal meshes of 100 × 100 cells using multi-dimensional and dimensionally split schemes. Maximum Courant numbers range from
c = 0.25 (for �t = 0.25 s) to c = 10 (for �t = 10 s). The multi-dimensional scheme shows results for implicit and explicit time-stepping on the non-orthogonal
mesh.
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Figure 7. Tracer contours after 0, 5000 and 10 000 s for the horizontal advection over orography, with errors in colour; each row shows a different time step. Spatial
resolution is �x = 1 km, �z = 500 m. Maximum Courant number, horizontal Courant number, c, and maximum deformational Courant number, cd are also given.

The initial conditions and a 120 × 60 mesh with distortion defined
by this co-ordinate transform is shown in Figure 9.

The tracer concentrations after 1, 2, 3, 4 and 5 time units
are shown in Figure 10 using the dimensionally split and multi-
dimensional schemes (with explicit time-stepping, although the
results using implicit time-stepping look identical) on a non-
orthogonal mesh of 480 × 240 cells, a time step of 0.0025 units
(ie 2000 time steps to reach 5 time units) which gives a maximum
Courant number of 1.03. The tracer is stretched out, wound up,
advected around and then wound back into its original position
with some numerical errors. Both advection schemes preserve
fine filaments but suffer from some dispersion errors which
generate small oscillations around zero behind sharp gradients in

the direction of the flow since neither scheme is monotonic or
positive preserving. The dimensionally split scheme returns the
tracer to a more accurate final solution.

Sensitivity to orthogonality, resolution, time step and time
scheme are explored using a range of simulations with maximum
Courant numbers shown in Table 1. The Courant numbers on the
uniform, orthogonal meshes (with no mesh distortions) are 70%
of those on the non-orthogonal mesh since the non-orthogonal
mesh has clustering of mesh points. The deformational Courant
number is less than 1 for all simulations. The convergence with
resolution of the 	2 and 	∞ error norms at the final time are
shown in Figure 11 for both advection schemes using a maximum
Courant number close to 1 and for a maximum Courant number
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Figure 8. Convergence of the (a) 	2 and (b) 	∞ error metrics for horizontal advection over a mountain after 10 000s for the dimensionally split (PPM) scheme and
the implicit multi-dimensional MOL scheme, all using a horizontal Courant number of 0.25. Dotted lines show theoretical first- and second-order convergence.
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Figure 9. The non-orthogonal mesh/co-ordinate system for the deformational flow with 120 × 60 cells and the initial tracer conditions.

close to 10. We will first consider the behaviour of the schemes
at modest Courant number (maximum close to 1). The explicit
multi-dimensional scheme is stable at this Courant number and
errors are almost identical to those of the implicit scheme. All
of the schemes give first-order convergence with resolution at
coarse resolutions due to error saturation (if the scheme is stable,
errors are bounded above by about 1). At higher resolution, the
split scheme converges with nearly third-order for both meshes
whereas the multi-dimensional scheme approaches second-order.
For large Courant numbers (maximum close to 10), the split
scheme converges with first-order for both mesh types due
to the crude estimation of the departure point (section 2.1),
whereas the multi-dimensional scheme is much less accurate but
approaches second-order at high resolution. The dimensionally
split scheme is sensitive to mesh distortions only for large Courant
numbers.

We inspect sensitivity to time step of all schemes on orthogonal
and non-orthogonal meshes of 120 × 60 cells in Figure 12 using

the time steps shown in Table 1 giving maximum Courant
numbers ranging from 0.25 to 10 (deformational Courant
numbers always less than 0.32). Again this shows that the explicit
time-stepping gives almost identical errors to the implicit time-
stepping for time steps at which it is stable. Figure 12 demonstrates
potentially useful properties of the FFSL time-stepping used by
the split scheme. Ignoring errors in calculating the departure
point, semi-Lagrangian schemes have errors proportional to
�t−1 (Durran, 2010) which explains the reduction in error
as time step increases for the split scheme. Once the maximum
Courant number reaches 1 or 2 (�t = 0.01 or 0.02), errors
of the split scheme do grow with the time step, due to the
deformational nature of the flow and first-order errors in
calculating the departure points. In contrast, using the multi-
dimensional scheme which uses method-of-lines time-stepping,
errors increase as the time step is increased. Comparisons between
schemes in Figures 10 and 11 used maximum Courant numbers
of 1 and 10 which showed that the split scheme on the orthogonal
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Figure 10. Results of the deformational flow test case after 1, 2, 3, 4 and 5 time units on the non-orthogonal meshes of 480 × 240 cells using the explicit dimensionally
split (left) and multi-dimensional (right) schemes.

mesh gave better accuracy than the multi-dimensional scheme.
However, Figure 12 shows that this advantage disappears at lower
Courant numbers since the multi-dimensional scheme (method-
of-lines) gets more accurate with lower Courant numbers, whereas
the split scheme (semi-Lagrangian) gets less accurate since more

time steps have to be taken. Both schemes are stable for all time
steps considered.

In summary, the dimensionally split scheme has good accuracy
for deformational flow independent of mesh orthogonality.
The multi-dimensional scheme is competitive at small Courant
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Table 1. Resolutions, time steps and Courant numbers for the non-orthogonal meshes for the deformational flow test case.

Resolution 60 × 30 120 × 60 240 × 120 480 × 240 960 × 480 1920 × 960

�t Maximum Courant numbers (deformational)

0.2 10.3 (0.639) – – – – –
0.1 – 10.3 (0.312) – – – –
0.05 – 5.17 (0.154) 10.3 (0.154) – – –
0.025 – – – 10.3 (0.077) – –
0.02 – 2.06 (0.061) – – – –
0.0125 1.03 – – – 10.3 –
0.01 – 1.03 (0.030) – – – –
0.00625 – – – – – 10.3
0.005 – 0.517 (0.015) 1.03 (0.015) – – –
0.0025 – 0.254 (0.008) – 1.03 (0.008) – –
0.00125 – – – – 1.03 (0.004) –
0.000625 – – – – – 1.03

Maximum Courant numbers are shown inside the table for simulations which are presented in graphs. The maximum Courant numbers on the orthogonal meshes
are 70% of those on the non-orthogonal meshes. The maximum deformational Courant numbers are in brackets for some cases

numbers but the semi-Lagrangian nature of the split scheme
means that errors are very low when the Courant number is close
to 1.

3.4. Computational cost

We cannot compare CPU time, wall-clock time or parallel
efficiency of the two advection schemes because the multi-
dimensional scheme is written in C++ using OpenFOAM and the
split scheme is written in Python; the two codes have been run on
different hardware and the split advection scheme code has not
been parallelised. Instead we consider the number of multiply
operations performed per cell per time step for calculating
the fluxes of each tracer. We appreciate that this is not a
good predictor of efficiency as it does not consider memory
read and write requirements or cache coherency. However all
data that are multiplied have to be fetched from memory
and so, assuming that all data can be arranged optimally in
memory to enable fewest cache misses, the number of multiplies
should be related to the wall-clock time. Neither advection
scheme does significantly more work per memory fetch than
the other.

For both schemes we consider the number of multiplies needed
to calculate the flux of φ at each face, i.e. Eq. (8) for the
dimensionally scheme and Eq. (24) for the multi-dimensional
scheme. We do not consider the computational cost of updating
the cell averages from the fluxes using Gauss’s theorem (Eqs (3)
and (22)) as these are the same for each scheme. For the multi-
dimensional scheme, we do include an estimate of the amount of
work done by the linear equation solver, but we do not consider
the scalability of this solver.

3.4.1. Dimensionally split scheme

The computational cost of PPM with COSMIC splitting is not
strongly time-step-dependent due to the swept area approach
of FFSL. One-dimensional PPM uses four cells for interpolation
to find face values used by the reconstruction. Assuming as
much as possible is pre-computed, this interpolation uses three
multiplies on a non-uniform mesh. The reconstruction then
uses six multiplies to calculate the flux on each face. Only one
additional memory access and one additional multiply are needed
per cell for Courant numbers greater than 1 (Eq. 9) making ten
multiplies per cell for applying PPM in one direction for a
Courant number greater than 1. The COSMIC splitting in two
dimensions involves four applications of the one-dimensional
PPM. This makes 40 multiplies per cell in total for applying PPM
with COSMIC splitting in two dimensions. In three dimensions,
COSMIC splitting requires 12 applications of PPM (Leonard
et al., 1996) leading to 120 multiplies.

3.4.2. Multi-dimensional scheme

The number of multiplies involved in the multi-dimensional
scheme includes the number of multiplies to update the higher-
order advection and the number of multiplications for each
iteration of the linear equation solver. We will also consider the
cost of an explicit version of the multi-dimensional scheme using
an RK2 time-stepping scheme (e.g. as used by Shaw et al., 2017)
which is stable and accurate up to a Courant number of 1 or 2
for this spatial discretization and gives very similar results to the
implicit scheme.

On a logically rectangular two-dimensional mesh, there are 12
cells in each stencil for each face (Figure 1). Each cell has four
faces and the interpolation onto each face is used to calculate the
flux between two cells. This leads to 24 multiplies per cell for each
RK2 stage and hence 48 multiplies per cell per time step. When
using implicit time-stepping, there will be 24 multiplies per cell
for every evaluation of the right-hand side of the matrix for the
higher-order correction on first-order upwind.

We have not explored the sensitivity of the accuracy and
stability to the stencil size and shape in three dimensions. The
three-dimensional equivalent of the stencil of quadrilaterals in
Figure 1 is likely to contain 36 (rather than 12) cells, although it
may be possible to omit some corner cells and use a stencil of 20
cells. For a stencil of 36 cells, the number of multiplies per cell
per time step would be 36 × 3 × 2 = 216.

The implicit version of the multi-dimensional scheme
(section 2.3.1) requires the solution of an asymmetric, diagonally
dominant matrix with three non-zero elements per row for a
logically rectangular two-dimensional mesh. The pre-conditioner
is implemented in file DILUPreconditioner.C in OpenFOAM
3.0.1 and the solver in file PBiCG.C. From these files, we
estimate that, for a mesh of quadrilaterals, the solver will
use 24 multiplies (or divides) per cell, per solver iteration,
including pre-conditioning. The average number of iterations
of the preconditioned bi-CG solver per time step for each of
the simulations is shown in Table 2 (including the number of
solver iterations in each outer iteration). These simulations use
two outer iterations per time step when the maximum Courant
number is ≤ 1.1 (as in Eqs (27) and (28)) but, for stability, use
four outer iterations per time step for the larger Courant numbers.
This partly explains the greater number of iterations for larger
Courant numbers. A solver tolerance of 10−8 is used for each of
the outer solves. Table 2 shows that the total number of iterations
per time step reduces slightly as resolution increases. The total
number of iterations for a complete simulation is reduced by
using larger Courant numbers because the number of iterations
per time step increases less than linearly with increasing Courant
number. In fact, simulations with larger Courant numbers are
considerably cheaper because there are fewer evaluations of the
right-hand side of the matrix equation.
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Figure 11. Convergence with resolution of the (a, c) 	2 and (b, d) 	∞ errors for the deformational flow on orthogonal and non-orthogonal meshes using
multi-dimensional and dimensionally split schemes. (a, b) are for c ≤ 1 and (c, d) for c ≤ 10.

Table 2. Number of solver iterations per time step of the multi-dimensional
scheme for all the simulations on orthogonal/non-orthogonal meshes for the

deformational flow test case.

Resolution 120 × 60 240 × 120 480 × 240 960 × 480 1920 × 960

Max c Iterations per time step (orthogonal/non-orthogonal)

10 33.4/39.5 31.3/38.0 26.0/32.8 19.3/25.0 13.5/18.6
5 22.4/25.7 – – – –
2 13.1/14.6 – – – –
1 6.0/ 6.5 5.4/ 5.8 4.9/ 5.3 4.6/ 4.9 3.9/ 4.2
0.5 4.9/ 5.0 – – – –
0.25 3.9/ 3.9 – – – –

3.4.3. Cost comparisons

Combining the number of solver iterations, the number of
multiply operations per solve and the number of multiply
operations in calculating the explicit higher-order part of the
advection scheme, the total number of multiply operations per
cell per time step for the multi-dimensional scheme is shown

in Table 3 for the non-orthogonal mesh of 120 × 60 cells for
the deformational flow test case. Table 3 also shows the number
of multiplies for using the explicit, RK2 version of the multi-
dimensional scheme and the dimensionally split scheme.

Table 3 shows that the implicit scheme always uses more
multiply operations but particularly uses more multiplies for large
Courant numbers. The explicit version of the multi-dimensional
scheme always uses 48 multiply operations but is not stable for
all time steps whereas the dimensionally split scheme (using
FFSL time-stepping) is stable for all Courant numbers (at this
spatial resolution) and always uses the fewest number of multiply
operations per cell per time step.

There is considerable flexibility in the solver configuration:
the number of outer iterations per time step determines how
frequently the high-order correction on the right-hand side of the
matrix equation is updated, and the solver tolerance per outer
iteration could be modified by using a weaker tolerance on all
but the final matrix solve per time step. These options have not
been explored. It may also be beneficial to create more non-zero
matrix entries rather than having the higher-order correction
entirely a deferred correction on first-order upwind, but such a
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Figure 12. Variation of (a) 	2 and (b) 	∞ errors with time step for the deformational flow on orthogonal and non-orthogonal meshes of 120 × 60 cells using
multi-dimensional and dimensionally split schemes. Different time steps give maximum Courant numbers of 0.25, 0.5, 1, 2, 5 and 10.

Table 3. Total number of multiply operations per cell per time step for different
Courant numbers for the multi-dimensional scheme, an explicit version of
the multi-dimensional scheme (using RK2 or Heun time-stepping) and the
dimensionally split scheme on two-dimensional, logically rectangular meshes for

the deformational flow test case.

Max c Multi-dimensional Dim. split
Implicit Explicit

10 39.5×24 + 48×2 =1 044 – 40
5 25.7×24 + 48×2 =712.8 – 40
2 14.6×24 + 48×2 =446.4 – 40
1 6.5×24 + 48 =204 48 40
0.5 5.0×24 + 48 =168 48 40
0.25 3.9×24 + 48 =141.6 48 40

change would need to ensure that the matrix remains diagonally
dominant.

We also measured the wall-clock computation cost, comparing
the implicit and explicit versions of the multi-dimensional scheme
running the deformational test case in serial on a non-orthogonal
mesh with a maximum Courant number of 1. At the resolution
of 120 × 60, the model using implicit time-stepping is 5% more
expensive that the explicit model. This drops to 2.5% at the
resolution of 960 × 480. Despite the implicit scheme having four
times as many multiplies as calculated for Table 3, the difference in
wall-clock time is negligible. This demonstrates both the danger
of only looking at the number of multiplies and the danger
of using results of timing code. The linear equation solvers on
OpenFOAM have undergone years of optimization whereas the
stencils for calculating the cubic fit have not been optimized and
entail unpredictable memory access patterns and likely frequent
cache misses.

4. Summary and conclusions

We examine the errors associated with using a dimensionally split
advection scheme and a multi-dimensional advection scheme
on distorted meshes. The dimensionally split scheme is the
piecewise polynomial method (PPM; Colella and Woodward,
1984) with COSMIC splitting (Leonard et al., 1996) which
extends it to two spatial dimensions. PPM converges with
third-order in one dimension and COSMIC splitting enables
second-order convergence in two dimensions. PPM is a FFSL

scheme and so can handle large Courant numbers accurately
without significant additional computational cost, with a time-
step restriction based on the deformational Courant number.
The second-order accurate multi-dimensional scheme is split in
space and time (method-of-lines) and uses a cubic polynomial fit
over a stencil of cells for spatial discretisation and explicit RK2
or Crank--Nicolson in time to retain stability for large Courant
numbers. The multi-dimensional scheme uses cell centroids as
Gauss points so the order of accuracy is limited to two. We use
versions of both schemes without any monotonicity constraints
in order to compare the handling of multi-dimensionality of the
two schemes and order of convergence rather than comparing the
limiters of the two schemes. When run explicitly, the cost of the
two schemes is similar. These schemes are therefore considered
suitable for comparison.

Three two-dimensional advection test cases on Cartesian planes
are proposed without the complexities of a spherical domain or
multi-panel meshes but with distorted meshes to mimic the
distortions near cubed-sphere edges or the distortions of terrain-
following co-ordinates. We therefore propose that these test cases
could be used in the initial testing of advection schemes, before
the generation of meshes on the sphere. The first test case is
an extension of the Leonard et al. (1996) solid-body rotation
using a distorted mesh. The second test case is the established
horizontal advection over orography (Schär et al., 2002) using a
basic terrain-following mesh in order to maximize the distortions
due to terrain-following coordinates. The third test case is the
deformational flow test case of Lauritzen et al. (2012) adapted
to a planar, Cartesian domain and a distorted mesh. We use the
version of this test case with smooth initial conditions (the sum
of two Gaussians) in order to examine order of convergence.

The dimensionally split scheme is most accurate on orthogonal
meshes but only loses a little accuracy on highly distorted
meshes, despite a first-order departure point calculation. The
multi-dimensional scheme is almost entirely insensitive to mesh
distortion and asymptotes to second-order convergence at high
resolution. As is expected for implicit time-stepping, phase errors
occur when using long time steps but the spatially well-resolved
features are advected at the correct speed and the multi-
dimensional scheme is always stable. On orthogonal meshes,
the dimensionally split scheme remains highly accurate when
large Courant numbers are used (as long as the deformational
Courant number is low). However, on distorted meshes, the split
scheme loses accuracy at large Courant numbers.
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Computational cost is estimated by the number of multiplies.
The matrix solver associated with the implicit time-stepping of the
multi-dimensional scheme means that it is always more expensive
than the split scheme with cost increasing with Courant number.
We have not investigated sensitivity to solver and pre-conditioner
choices and it may be possible to do better. However in practice
we found that the implicit solution contributed only 2.5–5%
of the total wall-clock computation time. The FFSL method
enables long time steps without any matrix solutions and this will
always be difficult to beat. We also use the multi-dimensional
scheme with explicit time-stepping, making the cost similar to
the dimensionally split scheme.

The dimensionally split scheme is hard to beat, providing
close to third-order convergence, even in the presence of mesh
distortions, and can be very cheaply extended for large Courant
numbers.
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