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Representation, representativity, representativeness error, forward interpolation error,
forward model error, observation-operator error, aggregation error and sampling error
are all terms used to refer to components of observation error in the context of data
assimilation. This article is an attempt to consolidate the terminology that has been used in
the earth sciences literature and was suggested at a European Space Agency workshop held
in Reading in April 2014. We review the state of the art and, through examples, motivate
the terminology. In addition to a theoretical framework, examples from application areas of
satellite data assimilation, ocean reanalysis and atmospheric chemistry data assimilation are
provided. Diagnosing representation-error statistics as well as their use in state-of-the-art
data assimilation systems is discussed within a consistent framework.
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1. Introduction

At its core, data assimilation relies on comparing each available
observation of a variable with a prior estimate of the variable,
generally taken from a discrete dynamical model, to deduce a
revised estimate on the model grid. In the Bayesian formulation
of data assimilation, this process of comparing and updating
requires knowledge of, or assumptions on, the error characteristics
or uncertainty properties of the observed value and prior
estimate. Among the difficulties encountered in this process
is the fact that the discrete geophysical model is not able
to represent all of the spatial and temporal scales, nor all
the physical processes, of the observed geophysical state and
additional approximations are needed to represent the equivalent
of any observation. The prior estimate may therefore differ
substantially from the observed value, even in the absence of
any measurement (or instrument) error, and this difference
results in a perceived error that must be accounted for in order
to update the prior estimate properly. For example, a perfect
(measurement-error-free) observation of surface pressure at the
centre of a strong tropical cyclone will typically be much lower
than the forecast value from a numerical weather prediction

model, resulting at least in a perceived bias to be estimated in
some way.

This basic difference between the modelled representation
of an observation and what is actually observed has generally
been handled by introducing what has been variously called
representation, representativity or representativeness error in the
literature. Thus, the observation error has two components, the
representation error and the measurement error. The aim of
this article is to review some of the literature that has grown
around representation error in recent years and, in so doing,
to explain and consolidate the terminology that has evolved in
different disciplines. The terminology has sometimes been used
inconsistently between different authors, so we first introduce the
basic terminology used in this article and discuss some of the
variations that have appeared in the literature. Representation
error is distinct from, and does not include, the measurement
(or instrument) error, which is the error associated with the
measuring device alone, independently of how the measurements
are used, for instance in the data assimilation process.

One component of the representation error arises due to a
mismatch between the scales represented in the observations and
the model fields. For instance, an observation may represent

c© 2017 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

http://orcid.org/0000-0003-2675-0347
http://orcid.org/0000-0003-1690-3338
http://orcid.org/0000-0002-7783-6434


T. Janjić et al.

the value of a geophysical variable at a single point in space
and time, whereas the model prior will represent a spatial and
temporal average, depending, among other things, on the model’s
discretization. The observation and the prior will then differ, in
a way that depends on the true geophysical variability at scales
different from those represented by the model. An example is
illustrated in Figure 1, where the satellite image of a cyclone
shows much more spatial structure than its coarser resolution
model counterpart, in which deep convection is parametrized.
This component of representation error is referred to as the error
due to unresolved scales and processes.

Another component of representation error arises from
the observation operator. Particularly for remote-sensing
observations, such as satellite radiances, the observed variables
are not usually state variables. In this case, approximations
are typically involved in formulating the observation operators
needed to pass from state space to observation space. The
resulting observation-operator error, or forward model error, also
contributes to the representation error.

Finally, quality control or pre-processing of observations can
introduce another type of representation error. Quality-control
procedures are required in practice to reject observations that
cannot be modelled adequately, such as those affected by incom-
plete knowledge of the appropriate observation operator or by
instrument calibration problems. These procedures often depend
on particulars of either the geophysical model or the data assimi-
lation algorithm (for example, height assignment of atmospheric
motion-vector observations or superobservations of radar data).
Furthermore, pre-processing is at times performed to derive
a quantity that is closer to the state variables of the forecast
model. This may introduce further errors depending on the
pre-processing algorithm (for example, the retrieval of atmos-
pheric variables from satellite radiances). Errors associated with
imperfections in these procedures that depend on the geophysical
model, observation operator or data assimilation algorithm, here
called pre-processing or quality-control errors, will also be consid-
ered as part of the representation error. Those that arise from
incomplete knowledge of the observation operator can, of course,
be thought of as part of the observation-operator error. Pre-
processing of the observations that is independent of components
of the data assimilation process (i.e. the geophysical model and
data assimilation algorithm) will not be considered as part of rep-
resentation error, since in that case the observations and the geo-
physical model can still be considered as two independent sources
of information on the current state of the geophysical system.

Thus the representation error, as defined here, encompasses
error due to unresolved scales and processes, forward model or
observation-operator error and pre-processing or quality-control
error. We will show in section 2 how representation error can in
theory be separated into these three parts, although the separation
is cleanest in the case of linear observation operators. Such a
separation becomes problematic, however, when it comes to the
practical matter of diagnosing representation-error statistics, for
it is difficult to distinguish between observation error and model
error, as discussed for instance by Dee (1995, 2005). We return
to this point in section 5.

Lorenc (1981, 1986) pointed out that the state that we want to
estimate in atmospheric data assimilation is defined by the model
and therefore ‘observation error contains contributions from
variations on scales smaller than those we wish to analyze in both
space and time’. Even high-resolution models in use today are not
able to capture all scales and resolve all processes of geophysical
systems. Lorenc (1986) used the term representativeness error to
describe a difference between the observation and the model’s
equivalent of the observation. In the 1990s, both forward
interpolation error (Daley, 1993; Mitchell and Daley, 1997a, 1997b)
and representativeness error (Lorenc, 1986; Cohn, 1997) were used.
Forward interpolation error has its origin in the term forward
model, which was usually used to indicate a linearized version of
the observation operator in inverse theory literature. The term

error due to unresolved scales was introduced by Mitchell and
Daley (1997b) to distinguish the part of the error that arises from
subgrid-scale processes. More recent literature (Waller et al.,
2014b) has introduced the term representativity error. Note that
this term is not new when referring to the sampling error, due
to the spacing in the observations. Daley (1991) also uses the
term representativeness error to refer to the sampling error of the
observation grid. For Schutgens et al. (2016), the term (spatial)
sampling error is a synonym for error due to unresolved scales and
processes. Etherton and Bishop (2004) and van Leeuwen (2015)
use the term representation error for error due to unresolved scales
and processes. Ponte et al. (2007) use the term representation error
for error that is composed of pre-processing error and error due
to unresolved scales and processes, while Janjić and Cohn (2006)
and Oke and Sakov (2008) use it for error due to unresolved
scales and processes and observation-operator error.

Although in this article we will focus on representation error in
the data assimilation context, there is a wide body of literature on
representation error in other contexts, such as when two different
types of observations are intercompared, or in the context of
forecast verification. Common to these applications is the idea
that two quantities are compared that represent different scales
or processes, e.g. different sampling volumes of two instruments.
In these contexts as well, different terminology has been used. For
example, Zawadzki (1975) used space smoothed data, Berenguer
and Zawadzki (2008, 2009) refer to scale-dependent errors and
Bulgin et al. (2016b) and Seed et al. (1996) refer to (spatial)
sampling error for error due to unresolved scales and processes.
The term representativeness error was used as well in Kitchen and
Blackall (1992), Ciach and Krajewski (1999) and Mandapaka et al.
(2009). While there is some commonality in the underlying issues
in these other areas, here our attention is restricted to the data
assimilation context.

We introduce the notation of this manuscript in section 2.
In section 3 we illustrate the representation error in different
applications and through theoretical considerations. Proper
specification of representation-error statistics is important for
optimal use of the observations, because it tells us how the
observations are to be assimilated in order best to adapt to the
model’s resolution. Also, accurate specification of these statistics
is important for verification of forecast results (Hamill, 2001;
Bowler, 2008; Candille and Talagrand, 2008). However, it is
also necessary to modify the data assimilation algorithms to
include the representation error and its characteristics (i.e. state
and time dependences and spatial correlations). In section 4,
we will summarize a method of Janjić and Cohn (2006)
derived for this purpose. In section 5, we review methods for
modelling observation-error statistics and, since representation
error introduces correlations in observation errors, we will
discuss the use of correlated observation errors in practice. We
describe previously unpublished experiments demonstrating the
use of ensembles for computing part of the representation-
error statistics. Further, we indicate how the representation
error is included in the observation-space diagnostic approaches
of Hollingsworth and Lonnberg (1986) and Desroziers et al.
(2005) and we discuss current and future research challenges in
diagnosing and implementing correlated observation errors in
operational data assimilation systems. Finally, in section 6 we
discuss the scale-matching approach, which attempts to filter
the data to a resolution similar to that of the model before
assimilation. Section 7 concludes the article and summarizes
directions for future research.

2. Definitions

As illustrated in Figure 1, the observation error, εo, consists of
a measurement error, εm, and a representation error, εR. On
the left we see visible satellite imagery, considered here to be an
observable arising from the true (continuum) atmospheric state
w, but not to be a state variable itself, and on the right similar
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Figure 1. Illustration of observation error εo, consisting of measurement error εm and representation error. The observation is denoted by y and its equivalent is
obtained by the discrete operator h acting on resolved state wr. See text in section 2 for details. The time index k is omitted in this illustration. Hurricane images in
this figure are courtesy of ECMWF.

imagery is shown at low resolution to represent imagery from a
numerical weather prediction model on its grid. An arrow between
these two images represents the (unknown) map of the true state
to the true (resolved) model state wr. The instrument taking
a measurement is represented by hc, the (generally nonlinear)
continuum observation operator that acts on the true state
to produce the observation y that is contaminated with the
measurement error. If the observation y is pre-processed, it could
be contaminated with the pre-processing error as well (see the
Appendix for more details in this case). To compare the model-
produced data and the observed data, it is necessary to apply a
discrete operator, h, to the model output. The difference between
the observation and the prior, y − h(wr), is then the sum of the
representation error and the measurement error.

Both the full w and the resolved state wr are defined on
the continuum and therefore can be written as a vector of
functions in space x and time t. Each component of these
vectors is one dynamical variable (e.g. temperature) and therefore
mathematically a function, for both resolved and full states, in
the same function space (e.g. in L2). In what follows, we always
assume that there is a one-to-one correspondence between the
geophysical model and wr(x, t), a property we will use explicitly
in section 5. For example, if the discretization of the numerical
model is spectral, wr(x, t) is a finite sum over weighted spherical
harmonics, although the model itself would contain spherical
harmonic coefficients.

The observation-operator error is an intrinsic part of the
representation error, because the dynamical model dictates the
discrete observation operator. Here the nonlinear observation
operators will be denoted with small letters and linear operators
with capital letters. If the result of the observation operator acting
on a state is a scalar then it is denoted by h(wr) and if it is a vector
then h(wr).

In the following, we would like to define mathematically the
categories of error due to unresolved scales and processes and
observation-operator error, as well as motivate their names. The
observation error can be written as

εo = y − h(wr)

= hc(w) + εm + ε′′′ − h(wr)

= ε′′′ + hc(w) − hc(wr)

+ hc(wr) − h(wr) + εm. (1)

Here, h(wr) is a vector in observation space, denoting the
nonlinear observation operator h acting on the resolved state
wr(x, t) defined on the continuum (in space and time). The true
(unknown) nonlinear observation operator hc can act on both
the full atmospheric state w(x, t) and the resolved state wr(x, t),
since we assume wr(x, t) is one possible realization of the state
of the atmosphere, i.e. mathematically both functions belong
to the same function space. The term εm is the measurement
error and each instrument will have different measurement error
characteristics.

The term ε′′′ denotes pre-processing error. This error is
different for each observation type and will be described in
more detail in section 3.

The term

ε′ ≡ hc(w) − hc(wr) (2)

is the error due to unresolved scales and processes. Thus, the error
due to unresolved scales and processes defined in (2) represents
the difference between a perfect (noise-free) observation and a
perfect observation of the true resolved signal that we would like
to have. Note that, since the observation operator is not linear,

ε′ �= hc(w − wr). (3)

However, in the case of a linear observation operator, from (2)
ε′ = Hc(w − wr). The equation in the linear case motivates the
name, since it is then clear that the error depends on all of
the scales and processes unresolved by the geophysical model.
Therefore this error will exist as long as we are not able to describe
completely the full dynamical system being observed. However,
as will be illustrated in Example 2 of section 3.4, if hc filters the
true atmospheric signal to be of a lower resolution than wr, it
may be possible to minimize this error.

The term

ε′′ ≡ hc(wr) − h(wr) (4)

is associated with the observation-operator error. The observation-
operator error contains the error caused by an approximation
of the operator hc with h, for example representing the infinite-
dimensional operator with its finite-dimensional approximation
that acts only on resolved scales or not knowing perfectly
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all properties of the true system necessary to describe hc, or
simply errors in approximations that are made to minimize
computational cost. As with error due to unresolved scales
and processes, for nonlinear observation operators we have
ε′′ �= [hc − h](wr).

Each of the components of observation error can have a bias,
which would need to be accounted for in the application of data
assimilation algorithms. Using the Ide et al. (1997) notation,
the observation-error covariance matrix will be denoted R, the
instrument-error covariance matrix E and the representation-
error covariance F and R = E + F. The states defined only at
discrete times, such as analysis, forecast and their covariances,
will have fixed time k as subscript.

3. Examples of representation error

How the representation error appears and is treated in data
assimilation applications is illustrated through examples of the
assimilation of radiance data in numerical weather prediction
(NWP: section 3.1), for ocean reanalysis (section 3.2) and for
atmospheric chemical modelling (section 3.3). Further, three
theoretical examples are given in section 3.4 that discriminate
mathematically between the observation-operator error and the
error due to unresolved scales and processes. These are useful to
aid our thinking, but the boundaries between the categories may
be blurred for some observations, as described next.

3.1. Use of radiance observations in NWP

By far the largest number of observations assimilated for global
NWP are satellite radiances. Most commonly, the satellite
radiances are used in clear-sky conditions only and a clear-
sky radiative transfer model serves as the observation operator
(e.g. Collard and McNally, 2009; Bormann et al., 2013).
However, increasingly, efforts to treat these observations in all-sky
conditions are bearing fruit and here the radiative transfer model
includes the effects of clouds or rain (Bauer et al., 2011). We will
consider both of these examples here.

For the representation error in satellite data assimilation, we
can think along the lines of the three categories introduced earlier,
which can be identified as follows.

• Observation-operator error is the error associated with
mapping the model fields to the observation equivalent. In
the case of radiances, this is the error due to uncertainties
or approximations in the radiative transfer model used to
assimilate the data, for instance RTTOV (Matricardi and
Saunders, 1999). Uncertainties in spectroscopic parameters
contribute to this error, along with inaccuracies in line-
shape models or assumed gas concentrations that may
not be consistent with the truth (e.g. Dudhia et al., 2002;
Ventress and Dudhia, 2014). Other approximations are
also usually made, such as discretization, approximations
for computational speed (e.g. Sherlock, 2000) or the
representation of the atmosphere as a single vertical
column. Further uncertainties arise from the instrument
characterization: response functions are often not known
accurately and are approximated (e.g. Chen et al.,
2013). In strong-constraint 4DVAR, the forecast model
also contributes to the observation-operator error, a
contribution that is particularly relevant for assimilation of
cloud-affected radiances due to uncertainties in the physics
parametrizations (e.g. Geer and Bauer, 2011).

• Pre-processing or quality-control error is the error associated
with imperfections in the preparation and selection of the
observations, in terms of either the derivation of a quantity
(e.g. the retrieval of an atmospheric profile from satellite
data; height for atmospheric motion vectors, see Cordoba
et al., 2016) or our ability to identify observations that have
unmodelled contributions and hence should be rejected

(Waller et al., 2016a). For clear-sky radiance assimilation,
this contribution is primarily the result of failures in cloud
detection, aimed at removing cloud-affected observations
so that a clear-sky radiative transfer model can be used
(e.g. McNally and Watts, 2003). Such quality control
is never perfect and this can contribute significantly to
the error budget. For clear-sky radiance assimilation, one
could consider this error as observation-operator error
instead, as it is an effect of neglecting clouds in the forward
model. However, in operational practice, reductions in
pre-processing error are usually achieved through changes
in the quality control rather than the forward model, so it
is useful to think of it as a pre-processing or quality-control
error. The increasing focus on convective-scale modelling
and the assimilation of cloudy radiances will remove the
need to discard cloud-affected observations and hence
reduce the pre-processing error. However, some quality-
control errors may still exist, for instance when identifying
situations with known deficiencies in the model clouds or
radiative transfer.

• Error due to unresolved scales and processes is the error
associated with spatial and temporal scales, as well as
features and processes represented in the observations and
not in the NWP model. For satellite sounding radiances,
the footprint sizes of most instruments vary between 15
and 45 km, whereas the spatial scales represented in models
are around four times the current typical horizontal model
resolution of 10–20 km for operational global models and
1.5–3 km for mesoscale models. For some features, such
as clouds, the spatial representativeness in models may be
much larger than this and is linked to the predictability
of these features and physical parametrizations (e.g. Geer
and Bauer, 2011). The differences lead to a mismatch
between the representation of spatial or temporal scales
in observations and NWP models. One could argue that
the error due to unresolved scales and processes would
diminish as the model’s resolution increases. However,
even high-resolution global models are not able to capture
all observed atmospheric scales. This is illustrated in
Figure 2. The upper two panels of Figure 2 show that there
appears to be more detail and structure in the clouds in the
Met Office UKV model at 1.5 km resolution compared with
the SEVIRI observations at approximately 6 km resolution.
Conversely, the lower two panels of Figure 2 show that there
is more detail and structure in the SEVIRI observations
than in the modelled cloud in the Met Office global model
at approximately 17 km resolution. As illustrated in the
figure, the differences between both model forecasts and
the observations are still very large, indicating that the error
due to unresolved scales and processes would have different
structure and make a large contribution to the observation
error if the satellite data sets were to be assimilated. If the
unresolved scales contain a lot of energy, as they may in the
boundary layer or in convective situations, then neglecting
the representation error in data assimilation would alias
the unresolved signal on to the resolved scales.

In satellite radiance assimilation, all three of these error
categories will contribute to a varying degree. For clear-sky
assimilation of mid-tropospheric infrared temperature-sounding
radiances, the quality-control and observation-operator errors
are likely to dominate. In contrast, the error associated with how
clouds are represented in the forecast model is likely to be the
largest source of representation error in the assimilation of cloudy
radiances.

In the context of satellite data assimilation, the represen-
tation error is usually estimated with diagnostic techniques
discussed in section 5, i.e. the representation-error covariance
matrix F is estimated, together with the measurement-error
covariance matrix E in the joint observation-error covariance
matrix R.
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Figure 2. (a, c) Observed and (b, d) simulated SEVIRI 10.8 μm IR channel imagery for (b) Met Office UKV and (d) global models over the North Atlantic and
European area. The UKV case is taken from 1500 UTC on 24 August 2015 and the global case is taken from 0600 UTC on 19 October 2015. Simulated imagery is
produced by running a radiative transfer model on NWP model output and preserves the resolution of the model (Blackmore et al., 2014).

3.2. Example on ocean reanalysis

For ocean reanalysis, representation error arises primarily from
the error due to unresolved scales and processes. The topic of
representation error is handled briefly in most oceanographic
literature (e.g. Guinehut et al., 2012; Good et al., 2013). An
exception is the careful examination of the representation error
associated with satellite altimetry by Oke and Sakov (2008). Here
we revisit Oke and Sakov (2008) in the context of satellite altimetry
and then examine two additional measurement systems: tropical
moored temperature time series, where unresolved temporal
scales are evident, and surface drifter velocity, where unresolved
physical processes are important contributors to the error due to
unresolved scales and processes.

The error due to unresolved scales and processes is the error
introduced by the presence in the observations of signal
due to motion at scales below those resolved by the
model, as well as signal due to processes that are not
included in the model (Lorenc, 1986; Oke and Sakov,
2008). The current generation of ocean reanalyses are built
around global general circulation models of the ocean
and sea ice systems, solving the primitive equations of
motion and conservation equations for temperature and
salt. These equations, as implemented in the current
generation of models such as the Geophysical Fluid
Dynamics Modular Ocean Model version 5, include a
number of approximations, such as the assumptions that

gravity is constant (excluding gravitational tides) and that
motion has time-scales longer than a day (damping internal
gravity waves and diurnal convection) and parametrization
of important unresolved processes (such as salt fingering
and eddy mixing). Current model implementations have
typical resolutions of 0.25◦ × 0.25◦ × 10 m in the upper
ocean. Such a model resolution is, for example, insufficient
to describe the ocean eddy field, the scales of which vary
from 200 km in the Tropics to 10 km in the Arctic.

A satellite altimeter is a radar that measures the time it
takes for a radar pulse to travel from the satellite to the
ocean surface and back and thus infers sea level, typically
along the nadir of the satellite track. The JASON series
of satellites are in an exact repeat orbit with a period of
slightly less than 10 days, an equatorial spacing of the orbit
tracks of 3◦ and an along-track sampling of about 4 km
(signal averaging during 1 s of satellite flight time). An
example of the resulting sea level for the western South
Atlantic is shown in Figure 3. Oke and Sakov (2008) use
an objective mapping with a spatial scale of a few hundred
kilometres and a two-week time-scale, such as that shown in
Figure 3(a) to represent the model. The difference between
this map and the 1 s sea-level sampling (black line in an
example shown in Figure 3(b)) is treated as the error due to
unresolved scales and processes. A visual inspection reveals
the presence of an unresolved signal of several centimetres,
which also includes the 2 cm measurement error. Although
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T. Janjić et al.

–0.6

–0.4

–0.2

0.0

0.2

0.4

0.6

–75° –70° –65°

–0.4 –0.3 –0.2 –0.1 0.0
Sea level (m)

0.1 0.2 0.3 0.4 0.5–0.5

–60°

–60°

–55°

–55°

–50°

–50°

–45°

–45°

–40°

–40°

–35° –30°

–35°

–30°

(a)

(b)

1 101 201 301 401 501 601 701 801

Figure 3. (a) Sea-level anomaly in the western South Atlantic averaged for 1–14
September 2014, reconstructed from Jason-2, SARAL/AltiKa and CryoSat satellite
altimetry. Warm colours represent elevated sea level, while cool colours represent
depressed sea level (units are metres). (b) Sea-level anomaly (black) sampled
at 1 s intervals along a single ascending JASON-2 pass (cycle 227, pass 137),
the position of which is shown in black in the upper panel. Several warm- and
cold-core eddies are evident, with amplitudes of tens of cm. Sea-level anomaly
derived from altimetry must be corrected for a number of unresolved processes.
One of the largest corrections is for aliasing due to the presence of primarily
semidiurnal gravitational tides (blue), which is unresolved by the 10 day sampling
of the JASON altimeters. Data were provided by Dr Eric Leuliette of the NOAA
Laboratory for Satellite Altimetry.

not emphasized in Oke and Sakov (2008), their use of the
observations to estimate the error due to unresolved scales
and processes means that spatially correlated errors in
the observations, such as the 1000 km scale correction for
aliasing by semidiurnal tides (Figure 3(b), blue line), will
appear in both and thus be excluded from the difference in
their approach.

Representation error due to unresolved temporal scales
is most evident in pure form in observation time series
such as those produced by the Rama (Indian Ocean),
TAO/Triton (Pacific Ocean) and PIRATA (Atlantic Ocean)
tropical moored arrays. Figure 4 shows a 10 month time
series of six-hourly temperature at 40 m depth (black) and
100 m depth (blue) at a location a few degrees north of
the Equator in the Eastern Pacific. Temperature at 40 m
depth shows 0.25 ◦C daily fluctuations superimposed on
dramatic seasonal warming, reflecting the onset of the
2015/16 El Niño. These daily fluctuations reflect local
surface heating and wind-stirring processes unresolved by
the ocean reanalyses. At 100 m depth, larger 1◦C daily
fluctuations result from internal wave related vertical
excursions of the thermocline, the explicit physics of which
is excluded by the numerical time-stepping and hydrostatic
assumption. These 100 m fluctuations are most evident in
northern spring, when the stratification is strongest at
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Figure 4. Daily average temperature as recorded at two depths, 40 m (black)
and 100 m (blue), at the TAO–Triton mooring at 5◦N, 140◦W in the tropical
eastern Pacific Ocean. Temperature at 40 m reflects the temperature of the bulk
mixed layer and shows 0.25 ◦C quasi-daily fluctuations superimposed on seasonal
warming associated with the current El Niño. Temperature at 100 m shows even
larger 0.5◦C quasi-daily fluctuations that are most prominent in northern spring,
when the thermocline is shallow at this location.

this depth, thus illustrating how seasonality may enter the
representation error due to shifts in the background state.

Velocity observations from a surface drifter also contain
representation error that is due to unresolved physics.
This error is spatially and temporally correlated, due
to the Lagrangian nature of the observations. Surface
drifters and freely floating surface buoyed drifters with
drogues at 15 m depth are designed to track the horizontal
movement of water in the mixed layer. In Figure 5,
the changing position of one drifter in the subtropical
North Pacific during a 35 day period is displayed. The
position track shows the characteristic scallop shape of
local wind-forced inertial oscillations, the period of which
at this latitude is about 28 h. These inertial oscillations may
introduce velocity errors of 10 cm s−1 or larger, however
their spatial inhomogeneity makes removal by simple time-
filtering problematic. How best to handle such Lagrangian
observations remains an open question.

For the altimetric measurements, pre-processing error would,
for example, include correction of data for tides through
tide models. Representation error due to modelled tides
is usually set to a constant value, although it is known
that spatial variability exists. In addition, altimetric data
are corrected for the wrong atmospheric pressure with the
simple inverted barometer correction. This part of pre-
processing error is usually larger than tide errors (Ponte
et al., 2007).

For the current generation of ocean reanalyses, the represen-
tation errors are typically modelled by combining them with an
estimate of measurement error into a single observation-error
covariance matrix, which is also assumed homogeneous, spatially
uncorrelated and stationary in time (e.g. Carton and Giese 2008;
Li et al., 2015).

3.3. Example on air pollution/atmospheric chemistry/greenhouse
gases

In atmospheric chemistry studies, the representation errors
are crucial in explaining the mismatch between model and
observations. They are significantly larger than the instrument
errors. The representation errors are mostly of the unresolved
scales and processes type but can also be due to what we defined as
observation-operator error, depending on the nature of the control
variables.

That is why we will, in the following, distinguish between (i)
the case where the control variables are pollutant concentrations
directly related to concentration measurements, e.g. in air-quality
forecast studies, and (ii) the case where the pollutant emission
fluxes are the control variables, e.g. in greenhouse gas inverse
modelling studies.
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Figure 5. (a) Six-hourly position of a 15 m drogued surface drifter (Number 101905) in the central North Pacific during a 35 day period beginning on 14 February
2014 (position indicated by the solid dot). The scalloping of the track is the result of local wind-forced inertial oscillations superimposed on large-scale motion. (b)
Time series of the zonal component of velocity during the five days 14–19 February estimated from six-hourly position measurements at the left. Note the strong
imprint of inertial oscillations on velocity estimates. Drifter data were obtained from the NOAA Atlantic Oceanographic and Meteorological Laboratory GDP Drifter
Data Assembly Center.

In the air pollution context, where the control variables are
the pollutant concentrations, representation error is mostly due
to unresolved scales and unaccounted-for subgrid processes. In situ
measurements of pollutants are strongly impacted by the loca-
tions of the observation stations. The air pollutant concentrations
depend on the topography, local meteorological climatology and
proximity to sources and sinks of primary species (Koohkan and
Bocquet, 2012). That explains why, in most air pollution studies,
a qualitative classification is used to discriminate between the sta-
tions. One distinguishes (i) background stations, which are meant
to be representative over large distances and possibly match the
model resolution, (ii) rural stations, also quite representative but
affected by rural (chemical) conditions, and (iii) suburban and
urban stations, more impacted by human activity: dense traffic
and industries, urban heating, and urban topography. The clas-
sification of the stations can be obtained using statistics of past
observations (Joly and Peuch, 2012). Based on such a classifica-
tion, the observations would be used differently or not used at all.
In data assimilation studies, their error statistics would be deter-
mined by such a preliminary classification (Elbern et al., 2007).
The errors due to unresolved scales and processes, both spatial and
temporal, are also present when using a satellite data estimation
of constituent concentrations (Boersma et al., 2015), in addition
to the observation-operator error due to retrieval assumptions.

Representation error also plays a major role in atmospheric
chemistry inverse modelling studies, focused on the retrieval of
pollutant emissions. In this context, the control variables are
the discretized emission fluxes, which model the true pollutant
emission field. For these control variables, representation error
is often called aggregation error. Quite often, especially when the
transport and chemical model is approximately linear, the model
is defined by the sensitivity matrix of the observations to the
emission control variables, which is then called the observation
operator (or Jacobian, or source-receptor matrix, etc.), as it
relates the observations directly to the unknown fluxes. In this
case, representation error is due to both unresolved scales of the
emission fields (the coarse discretization of the control space of
the fluxes) and observation operator error, i.e. any error in the
construction of the forward operator. Aggregation error has a
strong impact in inverse modelling studies of pollutant sources,
fluxes and sinks. One way to regularize an inversion with high-
resolution control space of unknown emission fluxes, i.e. to make
it less underconstrained, is to aggregate these fluxes. This comes
with the price of representation error (Kaminski et al., 2001).
The issue has been examined quite early in inverse modelling of
greenhouse gas fluxes, meant to refine the greenhouse gas budget.
The goal is to find the optimal compromise minimizing the total
error between the analysis error (due to underdetermination) and
the representation error (Peylin et al., 2001). In the absence of
model error and using a formal expression for the representation
error, it was shown that such a balance does not exist in theory.
Higher resolutions systematically increase the information gain
in the inversion (Bocquet et al., 2011; Wu et al., 2011), provided

the representation error is well estimated and accounted for in the
data assimilation scheme. This theoretical result is little affected
by resolution-dependent model error and approximation in the
inversion scheme (Turner and Jacob, 2015).

In the context of atmospheric chemistry data assimilation,
the representation error issue can be partly addressed using
several distinct methods. In air-quality studies, one can make
use of the station classification mentioned above, which would
be determined in a prior stage (Gaubert et al., 2014). The
representation error in inversion studies can be estimated and
used to design a flux-space adaptive grid that, for any given
number of parameters, minimizes the representation error while
maximizing the information content of the observations (Bocquet
et al., 2011). Other studies use more general error-estimation
techniques, such as those discussed in section 5, in order to
estimate the representation error (Schwinger and Elbern, 2010).
Representation error can sometimes be parametrized using an
adaptative statistical approach, i.e. the new parameters that mea-
sure the representation error of each station are estimated within
the data assimilation scheme (Koohkan and Bocquet, 2012).

3.3.1. Illustration

We illustrate the estimation of the representation error with
the inversion of sources of carbon monoxide (CO) over France
(Koohkan and Bocquet, 2012) using in situ measurements. The
observation network has 80 stations that measure CO hourly
concentrations. The stations that are close to urban areas or
in the vicinity of industries are mainly and strongly impacted
by local sources. A Eulerian chemistry transport model at a
resolution of 25 km cannot account for those subgrid processes.
As a result, while the measurements can be highly peaked, the
coarse-resolution CO simulation is not able to reproduce those
peaks quantitatively. This can be seen in Figure 6, where the
blue curve corresponds to the observation profile, while the red
curve corresponds to the free simulation. A 4D-Var estimation
of the fluxes is highly impacted by the representation error
and increases the estimated fluxes artificially so as to account
for the bias. A subgrid-scale model that relates the source to
the local inventory defined at coarse resolution is parametrized
for each station by an a priori unknown representation factor.
The 80 factors, one for each station, are jointly estimated with
the fluxes. This allows estimation of the representation error,
an objective characterization of the stations, and leads to an
important correction in the 4D-Var estimates (black curve),
with a bias that is very significantly reduced. Carbon monoxide
forecasts are considerably improved using this method.

3.4. Theoretical examples

Both error due to unresolved scales and processes and
observation-operator error depend on the geophysical model and
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T. Janjić et al.

Figure 6. Observation and simulation of CO concentrations in Paris at Auteuil station during the first hours of January 2005 using source inventories obtained
without correction, with 4D-Var and with 4D-Var that accounts for the representation error via a statistical adaptation.

observation operators. Here, we illustrate them with idealized
examples and show how they interact depending on the
observation operator properties and the resolved scales (Janjić,
2001).

Example 1. For x ∈ [0, 2π], let us define wr(x, t) as a Fourier
truncation of a scalar field w(x, t), i.e.

wr(x, t) ≡
N∑

n1=−N

ŵ(n1, t)ein1x, (5)

where N is given through the dynamical model and ŵ(n1, t)
are Fourier coefficients of the full state w(x, t). Furthermore,
suppose that there is a single observation and that Hc and H
are bounded, linear operators, i.e. the result of applying the
observation operator is a scalar:

Hcw(·, t) =
∫ 2π

0
w(x, t)c(x) dx, (6)

Hwr(·, t) =
∫ 2π

0
wr(x, t)d(x) dx, (7)

for some instrument weighting functions c(x) and d(x). For
example, c(x) can be a Gaussian with the length-scale Lc, i.e. up

to a constant c(x) = e−x2/(2L2
c ), and d(x) can be a Gaussian with a

different length-scale Ld, i.e. d(x) = e−x2/(2L2
d).

From (2), the error due to unresolved scales and processes is

ε′ =
∫ 2π

0
(w(x, t) − wr(x, t))c(x) dx; (8)

hence, by the Parseval–Plancherel formula and (5),

ε′ = 2π
∑

|n1|>N

ŵ(n1, t)ĉ(−n1), (9)

containing all the wavelengths not resolved by the model.
The observation-operator error, from (4), can similarly be

calculated as

ε′′ = 2π

N∑
n1=−N

ŵ(n1, t)(ĉ(−n1) − d̂(−n1)). (10)

We see that if d̂(n1) = ĉ(n1) for n1 = −N, . . . , N, then ε′′
k = 0.

In the case of Gaussian weighting functions, ĉ(−n1) = c̄e−n2
1L2

c /2

and d̂(−n1) = d̄e−n2
1L2

d/2, with some constants c̄ and d̄, (10) results
in a non-zero observation-operator error ε′′ with a potentially
significant contribution for small wave numbers.

Also, if we discretize (7) further, then we would have, for
example,

Hwr(·, t) =
j∑

i=1

d̃(xi)wr(xi, t), (11)

where d̃(xi) are interpolation coefficients here. Therefore, the
observation-operator error may not be zero even if d̂(n1) = ĉ(n1).
It would depend on the scales present in the model, how well
we are able to represent function c with d and what kind of
quadrature formula we have used in (7).

Example 2. Now consider the case where the observation
operator has a lower resolution than the model, analogously
to the satellite data. If we wish a perfect filter, ĉ(−n1) = 0 for
n1 > p, where p is some integer smaller than N, then the error
due to unresolved scales and processes from (9) is zero. If, on the
other hand, the weighting function is Gaussian, the error due to
unresolved scales and processes will not be zero and will again
depend on all of the scales unresolved by the model.

For the perfect filter case, the observation-operator error can
be calculated as

ε′′ =2π

p∑
n1=−p

ŵr(n1, t)(ĉ(−n1) − d̂(−n1))

+ 2π

−p−1∑
n1=−N

ŵr(n1, t)(−d̂(−n1))

+ 2π

N∑
n1=p+1

ŵr(n1, t)(−d̂(−n1)). (12)

From (12), we note that the observation-operator error could
be made smaller once appropriate filtering is performed on the
model’s fields in order to compare them with the low-resolution
observations.

Therefore, when the observation operator has a lower
resolution than the model, scale mismatch will still depend on
the unresolved scales and processes. Further representation error
might be smaller if the appropriate filtering of the model’s fields
could be found.

Example 3. So far ,we have considered a spectral discretization
of the model. In this example, suppose that wr(x, t) is the piecewise
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constant approximation of w(x, t) on intervals

In1 = [xn1 − �x

2
, xn1 + �x

2
],

with equally spaced collocation points xn1 ∈ [0, 2π], n1 =
−N, ..., N and distance �x. Further, suppose that there is a single
observation and that Hc and H are bounded, linear operators
given by (6) and (7). Since Hc is linear, the error due to unresolved
scales and processes once again depends on w(x, t) and c(x), i.e.

ε′ =
N∑

n1=−N

∫
In1

c(x)

[
w(x, t) − 1

�x

∫
In1

w(z, t) dz

]
dx. (13)

Formula (13) has been used, for example, in estimating the
representation error from the data in the study by Oke and Sakov
(2008). Note that the observation-operator error ε′′ = 0 if

Hwr(·, t) =
N∑

n1=−N

wr(xn1 , t)

∫
In1

c(x) dx. (14)

This example illustrates the relative nature of the representation
error, the properties of which (compare (9) and (13)) depend on
the geophysical model one is using.

4. Including representation error in the data assimilation
algorithms

As pointed out by Cohn (1997), in order to take representation
error into account, data assimilation in the continuum needs to
be considered. Here, we first review the methods of including the
error due to unresolved scales and processes in the Kalman-filter
algorithm that were presented in Janjić and Cohn (2006). The
interested reader may also like to explore Cohn (1997), Bocquet
et al. (2011), Hodyss and Nichols (2015) and van Leeuwen
(2015), who use a Bayesian approach. A brief treatment of the
observation-operator error is given in section 4.2.

4.1. Including error due to unresolved scales and processes in the
Kalman-filter algorithm

In this section, we focus only on the error due to unresolved
scales and processes; the observation-operator error and pre-
processing error are assumed negligible. To simplify the notation,
the state we would like to estimate is assumed to be a scalar
field in this section. In the presence of error due to unresolved
scales, the observation error is spatially and temporally correlated.
However, let us consider the augmented vector of the resolved
and unresolved scales,

w̃(x, tk) ≡
[

wr(x, tk)
wu(x, tk)

]
, (15)

where both the resolved, wr, and unresolved scales, wu = w − wr,
are defined on the continuum (see section 2). The Kalman-filter
equations can be formally written for the augmented vector. Our
objective is to estimate wr(x, tk) at a fixed time tk, which represents
the truth that is resolved by the model.

The dynamics of the large and small scales of the true signal
are typically coupled in nonlinear systems. Janjić and Cohn
(2006) assume instead the following equation for the continuum
dynamics:[

wr

wu

]
(x, tk+1) = Mk+1,k(w̃(x, tk))

=
[ Mr

k+1,k 0
Mur

k+1,k Mu
k+1,k

] [
wr

wu

]
(x, tk).

(16)

In (16), the resolved scales are influenced only by the ‘resolved’-
scale dynamics. Subgrid-scale parametrizations approximate the
feedback from unresolved scales to resolved ones, so that Mr

k+1,k
can represent the large-scale part of the true dynamics more
accurately. The subgrid-scale parametrization can be assumed
already to be a part of Mr

k+1,k. The alternative of adding them
explicitly in (16) through Mru

k+1,k is not explored here. Although
the unresolved scales evolve depending on both the resolved and
unresolved scales, we do not have a geophysical model of their
evolution.

The observations

yk = hc
k(w̃(·, tk)) + εm

k

≈ [
hk hu

k

] [
wr(·, tk)
wu(·, tk)

]
+ εm

k (17)

contain contributions from both resolved and unresolved scales.
Note that, for the augmented state vector, the observation error
is not spatially and temporally correlated, since it consists of
measurement error only. We assume here that the observation
operator hc

k is such that we can write the observation as a sum
of hk(wr(·, tk)) and hu

k (wu(·, tk)). Here hk and hu
k are observation

operators that take us from the corresponding state space to
observation space and act only on the spatial dimension denoted
with a dot, for example hk(wr(·, tk)). A simple derivation of
the main idea can be performed assuming linear observation
operators, i.e. h = H, hu = Hu and hc = Hc, as in Janjić and Cohn
(2006), under the assumption �H = Hc − H = 0. In order to
take nonlinear observation operators into account, the ensemble
Kalman filter approach could be used once the equations are
derived; this approximates the covariances through the ensemble
on which nonlinear observation operators are applied first.

The forecast (analysis) error covariance for the augmented
state for any two points in space x1,x2 and discrete time k can be
written in the form[

Brr
k (x1, x2) Bru

k (x1, x2)
Bur

k (x1, x2) Buu
k (x1, x2)

]
. (18)

Here, the covariances Bru and Bur describe the cross-correlations
between the resolved and unresolved scales, while Buu is the
covariance of the unresolved scales. From the Kalman-filter
equations for the augmented space, we can obtain equations for
the estimation of resolved scales only, which, however, require us
to estimate the unresolved scales simultaneously.

As a first approximation, Janjić and Cohn (2006) suggest
disregarding the estimation equation for wu and this yields
the Schmidt–Kalman filter (Jazwinski, 1970, p285). In the
Schmidt–Kalman filter, wr,f

k , wr,a
k , Brr,f

k and Brr,a
k , which represent

the forecast and analysis of the resolved scales and their error
covariances, are estimated. The error covariance of the unresolved
scales is not calculated during the assimilation and is therefore
different from Buu

k . In order to emphasize this, in the following
we will label the error covariance of the unresolved scales by
Wuu

k . Besides Wuu
k , there are a couple of new terms compared

with the standard equation for the Kalman filter (e.g. Nakamura
and Potthast, 2015) in the Schmidt–Kalman-filter equations.
These equations require estimates of the mean of the unresolved
scales Hu

k 〈wu(·, tk)〉 at the observation locations, the covariance
between the resolved and the unresolved scales Bru,a

k and estimates
of the unresolved covariance at the observation points. A term
Hu

k [Hu
k Wuu

k (·, ·)]T appears in the estimation equation for wr,a
k

in order to reduce the accuracy of the observation, taking into
account the fact that we do not have an observation of wr

k only.
The inclusion of the cross-covariance Bru,a

k allows a small-scale
signal in the observations to influence the estimation of the
resolved scales. Neglecting this term gives too little weight to
the resolved-scale covariance compared with the observations.
Once the analysis is computed, the evolution in time of Bru,a

k
will require knowledge of the evolution of the unresolved-scale
dynamics Mur

k+1,k,Mu
k+1,k.
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Neglecting the correlation between the resolved and unresolved
scales in the Schmidt–Kalman filter formulation, we come to

wr,a
k (x) =wr,f

k (x)

+ Kr
k(x)

(
yk − Hkwr,f

k (·) − Hu
k 〈wu(·, tk)〉

)
, (19)

Kr
k(x) =

(
HkBrr,f

k (x, ·)
)T

O−1
k , (20)

Brr,a
k (x1, x2) = Brr,f

k (x1, x2) − Kr
k(x1)HkBrr,f

k (·, x2), (21)

Ok = Hk[HkBrr,f
k (·, ·)]T + Hu

k [Hu
k Wuu

k (·, ·)]T + Ek. (22)

This is the traditional filter, which was suggested in Lorenc
(1986). In Cohn (1997), a Bayesian derivation is proposed for
this filter, which requires that the temporal correlation, as well
as the cross-correlation between scales, must be neglected. The
appropriate equivalents of the traditional filter equations are
used in variational data assimilation methods, where, to our
knowledge, equations similar to the Schmidt–Kalman filter have
not been derived to date. Note that the Schmidt–Kalman filter
does not require us to make an assumption of no correlation
between the background and observation error, which is not valid
due to the presence of unresolved scales. Both filter formulations
require that additional covariances be estimated, although the
traditional filter formulation requires estimates of only the mean
and error covariance of the unresolved scales (see (19) and (22)).
Grooms et al. (2014) suggest the use of stochastic physics for the
mean and covariance of the unresolved scales. We believe that
this would be a promising approach for the Schmidt–Kalman
formulation as well.

The difference between the traditional and Schmidt–Kalman
filter results may not be very large, depending on the amount of
energy in the resolved scales and the decorrelation time between
the resolved and unresolved scales. For example, Janjić and Cohn
(2006) have an idealized two-dimensional example of a passive
tracer being advected on a sphere in the presence of wind shear. In
it, both the traditional and Schmidt–Kalman filter perform very
well, converging to the solution. Only small differences are seen
in their performance towards the end of the assimilation, when
the trace of true covariance is also smaller than the estimated one
for the traditional filter.

4.2. Including observation-operator error in the Kalman-filter
algorithm

In section 4.1, we made an assumption that �H = Hc − H = 0.
Now we consider the case where this assumption does not hold. Let
us assume that we will be using either the Schmidt–Kalman filter
or traditional filter to include the error of unresolved scales when
estimating wr

k(x). In the case �H �= 0, the estimation equation for
wr

k(x) needs to be augmented further for the correction due to the
error in the observation operator (Gelb, 1974) or the correction
terms can simply be derived as in Jazwinski (1970, p. 245). As
shown in Jazwinski (1970), the error in the observation operator
would produce a bias, ma

k(x), that needs to be corrected for in wr,a
k

(Dee, 2005; Auligne et al., 2007). The bias would be propagated
in time with the resolved-scale dynamics and would initially be
zero, while at analysis times it would satisfy the formula

ma
k(x) = [I − KrHk]Mr

k,k−1ma
k−1(x) − Kr�Hk〈wr

k〉. (23)

If we correct only the bias, the analysis-error statistics calculated
through either the Schmidt–Kalman filter or the traditional
filter would not be correct and therefore, in addition, evolution
equations for the correlation between the error and the state
would need to be included (Jazwinski, 1970; Gelb, 1974).

5. Diagnosing and using correlated observation-error covari-
ance matrices in data assimilation

Representation error depends on the continuum state of the
dynamical system; therefore, it is state- and time-dependent.
Due to its dependence on the state of the geophysical
system, representation error can introduce spatial correlations
in the observational-error statistics. The contribution of the
representation error is difficult to estimate because it depends
on both the geophysical model and the observations we use. If
the representation error is underestimated, then we would fit
the analysis to what the model considers to be noise, while if it
is overestimated then we are discarding useful information. In
practice, assigned variances of observation error are commonly
inflated, to counteract and reduce the effect of neglected
observation-error correlations (Courtier et al., 1998; Bormann
et al., 2016). For variable model resolutions, estimates of the
representation error also need to be scale-adaptive. Attempts have
been made to estimate statistics of the error due to unresolved
scales and processes by assuming that a higher resolution model
represents the true state(Etherton and Bishop, 2004; Ponte et al.,
2007; Waller et al., 2014b) or that higher resolution observations
represent the truth (Oke and Sakov, 2008). In addition, statistical
adaptation within the data assimilation scheme has been suggested
as a novel means to estimate the statistics of this error (Koohkan
and Bocquet, 2012), as well as stochastical models (Grooms
et al., 2014). Attempts have also been made to estimate the full
representation-error statistics by assuming a structure for the
covariance and then estimating its parameters (Ménard et al.,
2000; Janjić and Cohn, 2006). Ponte et al. (2007) estimate pre-
processing errors for altimeter data based on tide model errors
and differences between atmospheric models for pressure-driven
signal corrections. The interested reader may also like to explore
other techniques, such as the maximum-likelihood method of
Dee and da Silva (1999), the method based on analysis innovation
statistics of Desroziers and Ivanov (2001), the online estimation
method of Li et al. (2009), the adjoint sensitivity method of Daescu
and Todling (2010), the method proposed by Karspeck (2016),
which uses an ensemble of model simulations, and the Bayesian
estimation approach of Ueno and Nakamura (2016). In addition,
methods based on observations that have different sampling
volumes can be used to estimate the statistics of representation
error (Ciach and Krajewski 1999; Berenguer and Zawadzki, 2008,
2009; Bulgin et al., 2016b).

Recently, a number of authors have begun to consider
estimating and using representation-error statistics in data
assimilation using diagnostic methods. In this section, we review
techniques for diagnosing the full observation-error covariance
matrix from observation minus forecast and observation minus
analysis residuals and from alternatives, physically based error
inventories and an ensemble approach. We also discuss methods
for implementing fully correlated observation-error covariance
matrices in data assimilation.

5.1. Diagnostic methods

Quantifying observation-error correlations is not a straightfor-
ward problem. A particular issue is that the distinction between
biased and correlated errors can be blurred in practical contexts
(Wilks, 1995, section 5.2.3). Methods considered in this section
assume a priori that biases in observations and in background
model states are removed. In addition, for practical applications
of the diagnostics, temporal and/or spatial averaging may be
needed in order to obtain sufficient samples. Hence, any state
dependence in the errors will only be detectable if it is slowly vary-
ing (Waller et al., 2014a). Furthermore, these methods make no
attempt to calculate the separate contribution from each source
of representation error.

In this section, we focus on the techniques currently enjoying
the most popularity: the Hollingsworth–Lönnberg method
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(Hollingsworth and Lonnberg, 1986) and the Desroziers et al.
(2005) diagnostic. Recently, Hodyss and Nichols (2015) and
Hodyss and Satterfield (2016) have pointed out that these methods
only deliver correct observation-error covariance estimates with
typical current assimilation systems if there is no model error
on the resolved scales, otherwise the estimates will include a
portion of the background-error covariance. New versions of the
diagnostics that allow estimation of the model error covariance
have been published recently (Bowler, 2017; Howes et al., 2017).
However, in this article we only discuss the standard diagnostics.
These diagnostics are relatively simple to implement and use
data that are commonly output from operational assimilation
systems.

The Hollingsworth–Lönnberg method (Hollingsworth and
Lonnberg, 1986) makes use of forecast residuals, often called
innovations. These are defined as

do
f = y − h(wf ) (24)

and represent the difference between the observation y and the
mapping of the model forecast vector, wf , on to observation space
by the modelled (nonlinear) observation operator h. Equation
(24) can be expanded to make its dependence on representation
error more explicit, using the notation of section 2, with wr

representing the truth. Thus, we have

do
f = hc(w) + εm + ε′′′ − h(wf )

= εm + ε′′′ + [
hc(w) − h(wr)

] +
[

h(wr) − h(wf )
]

≈ εm + εR + H(wr − wf )

= εm + εR + Hεf , (25)

where H is the linearized version of the observation operator,
εm is the instrument error and εf is the background error.
The representation error εR contains errors due to unresolved
scales, observation-operator error and pre-processing error. If
the background errors and observation errors are mutually
uncorrelated, then taking the statistical expectation of the outer
product of the innovations results in

E[do
f do

f
T] ≈ HBHT + R = HBHT + E + F. (26)

Note that B, E and F (see section 2) all represent the true
covariance matrices in this equation, but H is the linearization
of the approximate observation operator, which may be quite
inaccurate. The assumption, used in the calculation, that
observation and background errors are mutually uncorrelated
may not hold in practice, e.g. if background fields are used in
observation pre-processing or in the presence of unresolved scales.
However, it is a commonly used assumption in data assimilation.

The Hollingsworth–Lönnberg method separates contributions
from background and observation errors in innovation statistics,
assuming that the background errors carry spatial correlations
while the observation errors do not. For example, Stewart
et al. (2014) used the method for IASI data to estimate
observation-error variance. With additional assumptions on
the background-error statistics, the method was modified to
account for correlated errors in the observations by Garand
et al. (2007) for AIRS data, showing significant interchannel
error correlations. Bormann and Bauer (2010) and Bormann
et al. (2010) applied the method to ATOVS, AIRS and IASI data
used in the ECMWF analysis, again demonstrating considerable
correlation structures in certain wavelength bands. However,
when observation errors are correlated, deciding how to split
the contributions between observation and background errors
may be difficult and is subjective. Furthermore, this splitting is
often obtained by fitting correlation functions to the innovation
statistics; in this case, the resulting observation and background-
error statistics are highly dependent on the choice of the fitted
correlation function (Bormann and Bauer, 2010).

Continuing under the assumption that background errors
and observation errors are mutually uncorrelated, Desroziers
et al. (2005) found a method to separate observation and
background errors with autocorrelations. Initially proposed as
a consistency check, this method uses post-analysis diagnostics
from linear estimation theory to approximate the covariances of
the observation errors. We assume that the analysis is determined
using

wa = wf + B̃HT(HB̃HT + R̃)−1do
f , (27)

where H is the observation operator linearized about the
current state and R̃ and B̃ are the assumed observation and
background-error covariances used to weight the observations
and background in the assimilation. This notation makes explicit
the distinction between assumed covariance matrices used in
the assimilation (with tildes) and covariance matrices describing
the true distributions (without tildes, as in (26)). The analysis
residuals are then

do
a = y − h(wa) (28)

≈ y − h(wb) − HB̃HT(HB̃HT + R̃)−1do
f . (29)

Desroziers et al. (2005) show that an estimate of the observation-
error covariance matrix can be obtained by taking the expectation
of the outer product of the analysis and background residuals,

E[do
a do

f
T] = R̃(HB̃HT + R̃)

−1
(HBHT + E + F) = Re, (30)

where Re is the estimated observation-error covariance matrix
and B, E, F are the exact background, instrument-error and
representation-error covariance matrices. If the observation and
forecast errors used in the assimilation are exact, R̃ = R = E + F
and B̃ = B, then

E[do
a do

f
T] = R = E + F. (31)

In practice, the statistics used in the assimilation will not be
exact, but Desroziers et al. (2005) show that in this case
the diagnostic may still be used to gain an estimate of the
observation-error variances and correlations. As with (26), there
is also an implicit assumption that do

f and do
a are unbiased,

although results using bias-corrected data may also be valid
(Waller et al., 2016a).

The initial work of Desroziers et al. (2005) suggested
applying the diagnostic in successive iterations. Theoretical and
idealized results relating to the diagnostic under some simplifying
assumptions provide information on how to interpret the results
of iterating the diagnostic when the errors used in the assimilation
are not exact (Chapnik et al., 2004, 2006; Desroziers et al., 2005,
2009; Ménard et al., 2009; Ménard, 2016). It is important not
to iterate on both the estimates of background and observation
errors concurrently, but to treat them separately. Concurrent
iteration results in convergence in one step to a solution that
may or may not be close to the true statistics (Ménard et al.,
2009; Ménard, 2016). Furthermore, iterating the diagnostic can
be computationally costly and time-consuming and may produce
disappointing results, due to the many assumptions that are
already required to permit operational assimilation. For example,
Desroziers et al. (2005) state that it ‘appears that the adjustment
of background and observation-error variances is only relevant if
those errors have different structures’. As a result, it is often
stated that the method will not yield an accurate result if
the scales in the background and observation-error statistics
are similar (Bormann and Bauer 2010; Bormann et al., 2010;
Stewart et al., 2014; Weston et al., 2014). However, it is actually
the convergence of the iterations that may be slow or even
fail if the scales in the true observation and background or
assumed observation and background-error covariance matrices
are proportional. Although this scale separation causes problems
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for the iteration procedure, it may not result in the failure of the
diagnostic (Waller et al., 2014a).

In some cases, the computational framework for including
correlated errors in the assimilation is not yet developed and
hence iteration of the diagnostic is not always feasible. Indeed,
most of the studies using the diagnostic in operational NWP to
date have considered only the first iterate and still gained useful
information. For example, the diagnostic has also been applied to
calculate satellite interchannel error covariances (Stewart et al.,
2009, 2014; Bormann and Bauer, 2010; Bormann et al., 2010;
Weston et al., 2014; Waller et al., 2016a) and spatial error
covariances (Cordoba et al., 2016; Waller et al., 2016a, 2016c)
in variational assimilation systems, as well as in ensemble data
assimilation systems (Lange and Janjić, 2016; Schraff et al., 2016).
It has been applied in atmospheric chemistry (Schwinger and
Elbern, 2010) as well. Further work investigating the diagnostic in
simple model experiments includes both variational (Stewart,
2010) and ensemble (Li et al., 2009; Miyoshi et al., 2013)
data assimilation systems and its use to estimate time varying
observation errors (Waller et al., 2014a).

Nevertheless, as pointed out by Todling (2015), careful thought
must be applied in interpreting the results from the diagnostic.
The idealized study of Waller et al. (2016b) shows the dependence
of the first iterate on the assumed statistics used in the cost
function. These results have potential use for interpreting the
derived covariances estimated using an operational system. Even
though the results of the diagnostic are subject to uncertainty, they
usually still provide useful information. For example, hypotheses
about sources of error can be tested by varying the choices made
in the assimilation (background errors, superobbing, observation
operator, etc., e.g. Waller et al. (2016a, 2016c). However, using
more than one approach is likely to be more successful, for
example using the diagnostics in conjunction with the error
inventory approaches described in section 5.2.

5.2. Uncertainty budgets

While the diagnostic approaches discussed in section 5.1 use
output from the assimilation system to diagnose errors, assuming
all the components of the system are in place, the uncertainty
budget method computes uncertainty estimates without using the
data assimilation system. Thus uncertainty budgets can include
state-dependent errors (e.g. Forsythe and Saunders, 2008; Geer
and Bauer, 2011). There is a large body of literature on this topic,
since most, if not all, observing systems used in operations have
had some kind of uncertainty study associated with them. In
this section, we give only a few examples of the types of study
mainly useful for estimation of representation uncertainty for
data assimilation.

Precise metrological studies (e.g. Bulgin et al., 2016a) take
the propagation of uncertainty approach defined by the Joint
Committee for Guides in Metrology (2008). If we consider a
variable z, related to a set of input quantities ui, i = 1, 2, . . . m,
by z = f (u1, u2, . . . , um), then ε2(z), the estimated variance
associated with z, is given by

ε2(z) =
m∑

i=1

m∑
j=i

(
∂f

∂ui

) (
∂f

∂uj

)
ε(ui, uj), (32)

where ε(ui, uj) is the estimated covariance associated with the two
inputs ui and uj (see Joint Committee for Guides in Metrology,
2008, eq. (13)).

A rigorous propagation of uncertainties following (32) is,
however, often not practical, so Monte Carlo simulations, together
with error inventory approaches, are at times used instead. For
instance, this has been attempted to estimate contributions from
cloud screening, radiative transfer and spatial representativeness
error for the assimilation of hyperspectral infrared radiances (e.g.
Chun et al., 2015). Several studies have carried out simulation

studies to examine pre-processing errors (e.g. Bormann et al.,
2014; Lean et al., 2015). Errors arising from observation-operator
uncertainty have been considered by Sherlock et al. (2003)
and Matricardi (2009) in the context of fast radiative transfer
modelling.

5.3. Ensemble method for error due to unresolved scales and
processes

The missing covariance of error due to unresolved scales and
processes in (22) of the traditional filter formulation can also be
approximated through an ensemble, in the following way.

Usually, we would take a sample of forecasts at different times
to form an initial ensemble of size Nens. Instead, we take a larger
sample, on which we perform a singular-value decomposition and
order the singular values from largest to smallest. We hypothesize
that singular values smaller than the Nensth value correspond
to the unresolved scales and construct the full unresolved scales
matrix Hu

k [Hu
k Wuu

k (·, ·)]T in (22) as a sample covariance by
applying the observation operator to those singular vectors. The
sample of size Nens, as well as the larger sample, will contain only
scales resolved by the model. Therefore, this approach is similar
to the method used in estimating the model error covariance,
which sets it proportional to the background-error covariance,
except that in this case we use an estimate from singular vectors
that are not contained in the ensemble of size Nens that we are
propagating during assimilation for estimation of background
error.

In order to illustrate this approach, we consider two models
for unresolved-scale covariance at the locations where the
observations are. One is a diagonal matrix with equal values on
the diagonal corresponding to the trace of the unresolved-scale
singular values. The other model uses the full unresolved-
scale matrix at the observation locations. This was applied
to assimilation of sea-surface temperature (SST) retrievals in
experiments identical to those described in Losa et al. (2014),
except for the observation-error specification where a diagonal
matrix with standard deviation (SD) of 0.8 ◦C was used in Losa
et al. (2014). The recommended error for SST retrievals is a SD
of 0.6 ◦C. Figure 7 illustrates the verification against independent
in situ salinity measurements through time at Arkona station in
the Baltic Sea. In the figure, the verification is shown for (a) the
free model run, the diagonal observation-error covariance with
the SD values 0.6, the inflated diagonal of 0.8 and 1.2 and (b) the
diagonal plus the correlation structure estimated at time 0 from
the ensemble for the 0.6 and 0.8 cases. Inclusion of the correlation
degrades the verification results in the 0.6 SD case, but improves
the results in 0.8 SD case. Following the study by Kivman et al.
(2001) and Losa et al. (2004), in Losa et al. (2014) the maximum
entropy approach was suggested as an additional criterion for
assessing the assumed prior error statistics in ensemble-based
systems in situations when little is known about model and data
quality (a typical case in oceanographic applications). Calculation
of the entropy values (Losa et al., 2014) leads to 3.59, 3.99 and
4.10 for inflated variance values of 0.6, 1.2 and 0.8. Once the full
unresolved error covariance is added in the 0.8 case, the entropy
value increases further to 4.24, indicating a best verification result.
Therefore, this simple approach of including the full covariance
matrix of the unresolved scales through an ensemble could give
a benefit over further inflating the diagonal if variances are not
underestimated. A similar approach could be used for missing
covariances in the Schmidt–Kalman filter formulation.

5.4. Implementation issues

Due to the complexity of diagnosing and using full observation-
error covariance matrices in practice, it is natural to question
whether accounting for correlations has any advantage compared
with using diagonal approximations. When observation errors are
incorrectly assumed to be uncorrelated, increasing the observation
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Figure 7. Temporal evolution of root-mean-square error (RMSE) of the salinity forecast against independent observations at one of the Marnet stations in the Arkona
Basin (the Baltic Sea). (a) Validation with use of diagonal observation-error covariance is against in situ salinity data (green line), for the free model run (solid black
line), the diagonal observation-error covariance with SD 0.6 (blue line) and the inflated diagonal with SD of 0.8 (red line) and 1.2 (dashed line). (b) Validation with use
of the diagonal plus the correlation structure estimated at time 0 from the ensemble is against in situ salinity data (green line), for the free model run (solid black line),
with SD 0.6 (blue line) and SD of 0.8 (red dashed line). In the right panel, the result with inflated diagonal with SD of 0.8 (red line) is redrawn for easier comparison.

density beyond some threshold value has been shown to yield
little or no improvement in analysis accuracy (Liu and Rabier,
2003; Berger and Forsythe, 2004; Dando et al., 2007; Jacques
and Zawadzki, 2014). Furthermore, Stewart et al. (2008) and
Stewart (2010) showed that the observation information content
in the analysis is severely degraded. Such studies, combined
with examples demonstrating that ignoring correlation structure
hinders the use of satellite data (e.g. constraining channel selection
algorithms: Collard, 2007), suggest that error correlations for
certain observation types have an important role to play in
improving numerical weather forecasting.

When the correlated observation errors are accounted for, it has
been shown to lead to a more accurate analysis (Healy and White,
2005; Stewart, 2010; Stewart et al., 2013) and improvements in
the forecast skill score (Weston et al., 2014; Bormann et al.,
2016). Indeed, Stewart et al. (2008, 2013) and Healy and White
(2005) show that even the use of a crude approximation to
the observation-error covariance matrix may provide significant
benefit.

However, the computational demands of using full
observation-error correlation matrices appear to be significant.
The size of the matrices to be stored is reduced by assuming that
the observation-error covariance matrix has a block-diagonal
structure, with (uncorrelated) blocks corresponding to different
instruments. If spatial correlations are neglected, the size of the
full submatrices can be reduced further, as has been done for
the operational representation of interchannel correlations at the
Met Office (Weston, 2011, 2014). The representation of spatial
correlations is less straightforward and may require different
parallelization strategies for the assimilation scheme. A num-
ber of approximated forms of spatial correlation matrices (or
their inverses) have been proposed in the literature to increase
numerical efficiency while preserving observation information
content and analysis accuracy (Healy and White, 2005; Fisher,
2005; Stewart et al., 2008, 2013; Stewart, 2010).

A further issue in variational assimilation is the speed of
convergence of the minimization problem. Typical operational
systems are pre-conditioned with the square root of the
background-error covariance matrix (Bannister, 2008). This is
a sensible approach for cost functions with diagonal observation-
error covariance matrices, where the conditioning of the
minimization problem is dominated by the condition number
of the background-error covariance matrix (Haben, 2011; Haben
et al., 2011). However, Weston (2011) found in an operational
application that reconditioning of diagnosed observation-error
covariance matrices was necessary to ensure convergence of the
variational assimilation problem.

Including observation-error correlations changes how obser-
vation information is filtered in the analysis (Daley, 1991, section
4.8). Using spatial correlations, Seaman (1977) noted an increase
in the accuracy of gradients of observed fields represented in

the analysis and Rainwater et al. (2015) an improvement in the
smallest scales resolved by an NWP model. Weston et al. (2014)
and Bormann et al. (2016) note that accounting for interchan-
nel correlations modifies the weighting of the observations in a
situation-dependent way. When observation-minus-background
departures project strongly on to the leading eigenvectors of the
covariance matrix (associated with the largest eigenvalues), taking
error correlations into account will result in a relative down-
weighting of the observations. However, if the departures project
strongly on to the higher order eigenvectors, taking error correla-
tions into account will increase the relative weight on these data.

6. Scale-matching approach

In operational practice, it has often been assumed that the
observation errors are uncorrelated, as this allows them to be
treated simply and computationally cheaply, with a diagonal error
covariance matrix. In most cases, to compensate for the omission
of error correlation, the observation-error variances are inflated so
that the observations have a more appropriate lower weighting in
the analysis (e.g. Courtier et al., 1998; Hilton et al., 2009; Bormann
et al., 2016). Furthermore, data reduction methods are employed
to help ensure that the zero-correlation assumption holds (or
almost holds) in practice. For example, observations are spatially
thinned so that the distances between assimilated observations are
greater than the observation-error horizontal correlation length.
Another technique, known as superobbing, reduces the density of
the data by averaging innovations in a region and assigning this
average (plus the background value) as a single superobservation
value. Within the context of convective-scale data assimilation,
the generation of superobservations is quite necessary for Doppler
radar observations and, with the rapid increase in satellite data
at finer pixel spacing, there is a clear need for superobservations.
A mathematical derivation by Berger and Forsythe (2004) shows
that the superobbing procedure reduces the uncorrelated portion
of the error; however, the correlated error is not reduced. A similar
result was derived by van Leeuwen (2015) for averages of raw
observations: the correlated part of the error does not decrease
as the number of observations included in the average increases.
However, the assumptions required for the derivations may not
hold in practice. Hence, superobbing or averaging is often used
alongside thinning (e.g. Waller et al., 2016c).

The question arises as to whether there is a benefit in filtering
the data before they are assimilated into the model, to the
approximate resolution of the model. Such approaches are
particularly attractive if accounting fully for the representation
error is more difficult, for instance due to the presence of spatial
error correlations. Sources of spatial correlations can be the error
due to unresolved scales and processes, observation-operator
error or pre-processing error. Daley (1993) and Liu and Rabier
(2002) found that there is an optimal match between the analysis
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grid spacing and the instrument spatial averaging, which results
in the minimum representation error. Wu et al. (2011) showed
that it is possible to design a grid of control variables in such a way
that representation error is minimized for a given observation
network.

Janjić et al. (2012b) assimilated time-varying dynamical ocean
topography data (Skachko et al., 2008; Janjić et al., 2012a) filtered
to three different spatial resolutions into a global finite-element
ocean model (Danilov et al., 2004; Wang et al., 2008) with
an ensemble Kalman-filter algorithm. The results indicate that
assimilating data that contain representation errors does not seem
to degrade the accuracy of the large-scale analysis as long as the
observation-error variance is inflated appropriately. However,
in the study, assimilation of the higher resolution data did not
affect the SST analysis significantly in higher spectral bands. This
might be a result of using a diagonal observation-error covariance
matrix that most likely limits us from exploring the full data
resolution further (Rainwater et al., 2015).

In a second study, carried out at the Met Office (Peter
Weston, 2016; personal communication), default Cross-track
Infrared Sounder (CrIS) data from the ∼14 km resolution field
of view (FOV) was compared against averaged CrIS data created
by averaging the 3 × 3 FOV in each field of regard (FOR) to
create superobservations with an effective resolution of ∼42 km.
The motivation for this study was better to match the scales
between the observations and the models being used, where
the forecast model is N768 (∼17 km horizontal resolution) and
the assimilation model is N216 (∼60 km resolution). The error
characteristics of both datasets were estimated using a posteriori
diagnostics, such as those described in section 5, and showed
that the averaged dataset had smaller error standard deviations
and weaker correlations due to smaller representation errors and
lower instrument noise through the averaging. Another effect
of the averaging is that the number of observations suitable for
assimilation is reduced, due to more of the larger FOVs being
contaminated by cloud. When compared in NWP assimilation
trials (including correlated observation-error covariances and
using a 4DVar algorithm), the results were broadly neutral,
with very slight degradations of up to 0.5% in background fits
to observations sensitive to mid-tropospheric temperature and
humidity. Therefore, it appears that the negative effects of the
reduction in the number of observations assimilated due to cloud
contamination has more of an effect than the smaller errors due
to the better scale matching and reduced instrument noise.

7. Conclusions

Updating the state of a geophysical system given by a
discrete dynamical model by assimilating observations of the
system through time in the data assimilation process requires
quantification of the errors, or uncertainties, in the observations
and in the model. The observation error is often much larger
than the measurement error, which is the error associated with
the measuring device alone, particularly in the case of remotely
sensed observations. We have suggested the term representation
error to refer to the totality of observation error distinct from
measurement error.

The need to quantify representation error arises in many
different earth science disciplines. It has given rise simultaneously
to successful approaches and a sometimes discipline-specific
array of terminologies. To help foster overall progress in data
assimilation and to help enable effective communication between
researchers in different disciplines, we have attempted to review
the literature on representation error and its quantification and
to consolidate the terminology used in different disciplines.

To consolidate the terminology, we have partitioned the
representation error into the error due to unresolved scales and
processes, the observation-operator error and the pre-processing
error and shown how these can be described mathematically. We
have illustrated these aspects of representation error by means of

examples in satellite radiance data assimilation, ocean reanalysis
and atmospheric composition analysis. We have shown how the
error due to unresolved scales and processes and the observation-
operator error can be treated, once quantified at least, in Kalman
filter-type data assimilation algorithms. A promising avenue to
treat the error due to unresolved scales and processes in the
context of (ensemble) Kalman filtering is to use stochastic physics
to determine the mean and covariance of the unresolved scales as
they evolve.

We have described a variety of methods that have been
used, or are currently being explored, to diagnose the statistics
of the representation error and its components. A large
number of studies have used forecast and analysis residual
diagnostics to determine observation-error correlations in bulk,
i.e. without attempting to distinguish among components of the
representation error. Further progress with residual diagnostics
may ensue by attempting to distinguish them, for example by
making and testing hypotheses on the different representation-
error components (Waller et al., 2016c). Ensemble methods are
being explored to estimate the error due to unresolved scales and
processes. Statistical adaptation and stochastic modelling are also
just beginning to be explored.

It has become clear that observation-error statistics are just
as important as background-error statistics in data assimilation
and that methods to estimate statistics of the representation error
must therefore begin to receive much more research attention.
Our hope is that this article helps to focus efforts in this direction.
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Appendix A

In a case in which the observations have been pre-processed,
we can describe this mathematically in terms of a function g
acting on the observations ỹ that have not been pre-processed,
i.e. y = g(ỹ). Denoting with a tilde the observation operators
and measurement error associated with observations ỹ, then the
observation error can be written as

εo = y − g(h̃(wr))

= g(h̃c(w) + ε̃m) − g(h̃(wr)).

Expanding the term g(h̃c(w) + ε̃m) in a Taylor series, we obtain
g(h̃c(w) + ˜εm) = g(h̃c(w)) + εm + ε′′′, with εm = ˜εmg′(h̃c(w))
now being the measurement error of the pre-processed
observations and ε′′′ the remainder term denoting the pre-
processing error. Therefore,

εo = y − g(h̃(wr))

= ε′′′ + g(h̃c(w)) − g(h̃c(wr))

+ g(h̃c(wr)) − g(h̃(wr)) + εm. (A1)
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If we set hc := g(h̃c) and h := g(h̃), we recover (1).
Note that, in the examples discussed in section 3 of pre-

processing for clear-sky radiance assimilation and correction of
data for tides, on one hand the pre-processing would reduce the
error due to unresolved scales and processes while on the other
hand it would introduce pre-processing error.
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