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ON M-IDEALS AND o–O TYPE SPACES

KARL-MIKAEL PERFEKT

Abstract

We consider pairs of Banach spaces (M0,M) such that M0 is defined in terms of a little-

o condition, and M is defined by the corresponding big-O condition. The construction is

general and pairs include function spaces of vanishing and bounded mean oscillation, vanishing
weighted and weighted spaces of functions or their derivatives, Möbius invariant spaces of

analytic functions, Lipschitz-Hölder spaces, etc. It has previously been shown that the bidual
M∗∗

0 of M0 is isometrically isomorphic with M . The main result of this paper is that M0 is

an M-ideal in M . This has several useful consequences: M0 has Pe lczýnskis properties (u) and

(V), M0 is proximinal in M , and M∗
0 is a strongly unique predual of M , while M0 itself never

is a strongly unique predual.

1. Introduction

The aim of this work is to show that Banach spaces whose definitions are given in
terms of little-o conditions are M-embedded. That is, to show that they are M-
ideals in their bidual spaces, the latter spaces which may be canonically identified
with the Banach spaces defined by the corresponding big-O conditions. We will
treat a large class of spaces, our main result yielding that a vast array of classical
spaces studied in analysis in fact turn out to be examples of M-ideals: spaces of
vanishing mean oscillation, vanishing weighted spaces of continuous, harmonic,
or analytic functions or their derivatives, the little versions of general Möbius
invariant spaces of analytic functions, Lipschitz-Hölder spaces, and many more.

The notion of the M-ideal, as a Banach space analogue of a two-sided ideal
in a C∗-algebra, was born in Alfsen’s and Effros’ influential paper [1]. As for
M-embedded spaces, their systematic study was initiated by Harmand and Lima
[8]. We refer to the comprehensive monograph of Harmand, D. Werner, and W.
Werner [9], not only for further notes on the literature, but also for an excellent
presentation of the available theory of M-ideals.

From the point of view of this paper, showing that a Banach space is M-
embedded carries the benefit of the immediate application of the rich theory
associated with M-ideals. For instance, M-embedded spaces have Pe lczýnskis
properties (u) and (V), which the author in [18] utilized to characterize all weakly
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compact operators acting on spaces defined by little-o conditions. Further exam-
ples of the strong geometric results available for an M-embedded Banach space
Z are given by the facts that Z is always proximinal in Z∗∗ and that Z∗ is the
strongly unique predual of Z∗∗. We shall return to these applications later in
this section, as corollaries of the main result.

The present work is motivated by the fact that known examples of non-
reflexive M-embedded Banach spaces Z often have the character of a little space
– ”vanishing at infinity” in some sense, if one permits the use of vague terminol-
ogy – while the space Z∗∗ acts as the corresponding big space. This is of course
exhibited by the archetypal M-embedded space, namely, the sequence space c0;
c0 is an M-ideal in c∗∗0 = `∞. To observe similar behavior of many other concrete
examples of M-embedded spaces, we refer for example to ([9], III.1) [10], [15], or
[19].

The goal of this article is therefore, in a sense, to formalize the intuition
presented in the previous paragraph. In [17], the author considered a general
construction of pairs of Banach spaces (M0,M) – a little space M0 defined by
a little-o condition, and a big space M defined by the corresponding big-O con-
dition. One of the main results of the aforementioned paper is that M∗∗0 ' M
in a canonical way. The main theorem of the present work states that M0 is
in fact an M-ideal in M . This gives a new range of concrete examples of M-
embedded spaces taken from harmonic and complex analysis, since examples
of pairs (M0,M) include vanishing and bounded mean oscillation in one and
more variables, general Möbius invariant spaces of holomorphic function, and
Lipschitz-Hölder spaces. Note that these spaces are all considered with their
intrinsic norms. We will in a moment define the spaces M0 and M , but we refer
to [17] for a detailed treatment of the realization of these examples within the
framework.

The definition of (M0,M) relies on several auxiliary objects, which we now
fix. Let X and Y be two Banach spaces, where X is separable and reflexive. The
norm of M will be determined through a collection L ⊂ B(X,Y ) of bounded
linear operators L : X → Y . By equipping L with a topology τ we are able
to give meaning to the statement that elements of M0 vanish at infinity. The
topological space (L, τ) should be Hausdorff, σ-compact, and locally compact,
and for every x ∈ X the map L 7→ Lx should act continuously from (L, τ) to Y .
The limit L→∞ is now given the standard meaning of L escaping all compact
sets of (L, τ), or equivalently that L tends to∞ in the one-point compactification
αL = L ∪ {∞} of L.
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The spaces M and M0 are defined by

(1) M(X,L) =

{
x ∈ X : sup

L∈L
‖Lx‖Y <∞

}
and

(2) M0(X,L) =

{
x ∈M(X,L) : lim

L3L→∞
‖Lx‖Y = 0

}
.

We assume that M(X,L) is dense in X under the X-norm, and that M(X,L)
is a Banach space continuously contained in X under the norm

‖x‖M = sup
L∈L
‖Lx‖Y .

To ask the question whether M0 is M-embedded by being an M-ideal in M , we
must first isometrically identify the bidual space M∗∗0 with M . In [17] it was
shown that M∗∗0 is canonically isometrically isomorphic with M (see Theorem
2.1) if and only if we have the following approximation property, which we refer
to as Assumption A. In the sequel we always assume that Assumption A holds.

Assumption A. For every x ∈M(X,L) there is a bounded sequence (xn)∞n=1

in M0(X,L) such that xn converges weakly to x in X and supn ‖xn‖M(X,L) ≤
‖x‖M(X,L).

We are now in a position to state the main theorem.

Theorem 1.1. Suppose that Assumption A holds. Then M0(X,L) is an M -
embedded Banach space. That is, it is an M-ideal in M0(X,L)∗∗ 'M(X,L).

As mentioned previously, Theorem 1.1 has a number of immediate corollaries.
In [17] the distance between an element x ∈M and the space M0 was computed.
Since M -embedded spaces are always proximinal in their biduals [1], [2] (the
distance between an element of the bidual and the space has a least minimizer),
we obtain in conjunction with the distance calculation the following result.

Corollary 1.2. For every x ∈M(X,L) it holds that

dist(x,M0(X,L))M(X,L) = min
x0∈M0

‖x− x0‖M = lim
L3L→∞

‖Lx‖Y .

A Banach space Z is said to be the strongly unique predual of Z∗ if every
isometric isomorphism from Z∗ onto W ∗, W a Banach space, is the adjoint of an
isometric isomorphism of W onto Z. From Proposition 2.10 of ([9], p. 122) we
obtain the following corollary. The reflexive case M0 = M has to be excluded.

Corollary 1.3. Suppose that M0(X,L) 6= M(X,L). Then

(1) M0(X,L)∗ is the strongly unique predual of M(X,L).
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(2) M0(X,L) is never a strongly unique predual.

Remark 1.4. Part (1) of Corollary 1.3 was previously shown, with a different
proof, in [17].

Theorem 2.1 implies that M∗0 is separable, hence also that M0 always is a
separable space. Godefroy and Li [7] proved that a separable M-embedded space
is an L∞ space (see for instance [14]) if and only if it is isomorphic to c0.

Corollary 1.5. If M0(X,L) is an L∞ space, then M0(X,L) is isomorphic
to c0 and M(X,L) is isomorphic to `∞.

Remark 1.6. Let D denote the unit disk in the complex plane C, and denote
by v : [0, 1]→ [0,∞] a continuous, decreasing weight function such that v(1) = 0.
The vanishing weighted space of holomorphic functions

(Hv)0 = {f : D→ C holomorphic : lim
|z|→1

|f(z)|v(|z|) = 0}

is a basic example of a space of the form M0. Lusky [16] has completely charac-
terized the weights v for which (Hv)0 is isomorphic to c0.

For the final corollary, we note that M-embedded spaces possess Pe lczýnskis
properties (V) [6] and (u) [5]. We hence obtain the following, which is restate-
ment of the fact that M0 has property (V) (see ([9], p. 128)).

Corollary 1.7. If Z is a Banach space and T : M0(X,L)→ Z is a bounded
operator, then T is weakly compact if and only if there does not exist a subspace
F ⊂M0(X,L) isomorphic to c0 such that T |F is an isomorphism.

Remark 1.8. Several recent papers [3], [11], [12], [13] have made use of the
construction of c0-subspaces to characterize the compactness of composition and
integration operators acting on spaces of analytic functions of M0 type. These
concrete operators all exhibit the behavior of being compact precisely when
weakly compact. This is investigated further in [18].

The remainder of this paper is organized as follows. Section 2 discusses pre-
liminaries of the spaces M0 and M , M-ideals, and some vector-valued integration
theory. In Section 3 the main result is proven.

2. Definitions and preliminaries

2.1. The spaces M0 and M
M(X,L) and M0(X,L) were previously defined in (1) and (2), but we now
recall the precise formulation of the fact that M∗∗0 ' M isometrically. For the
statement, note that M0 can be considered a closed subspace of both M∗∗0 and
M .
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Theorem 2.1 ([17]). Suppose that Assumption A holds. Then X∗ is contin-
uously contained and dense in M0(X,L)∗. Denoting by

I : M0(X,L)∗∗ → X

the adjoint of the inclusion map J : X∗ → M0(X,L)∗, the operator I is an
isometric isomorphism of M0(X,L)∗∗ onto M(X,L) which acts as the identity
on M0(X,L).

2.2. M-ideals
Suppose that Z is a Banach space. A (closed) subspace J ⊂ Z is called an
M-ideal if the annihilator J⊥ ⊂ Z∗ is the range of an L-projection – a projection
L : Z∗ → Z∗ such that

‖z∗‖ = ‖Lz∗‖+ ‖z∗ − Lz∗‖, ∀z∗ ∈ Z∗.

An M -embedded space Z is a Banach space which is an M -ideal when considered
as a subspace of its bidual Z∗∗. Note that there is always a canonical projection
π : Z∗∗∗ → Z∗ with range Z∗ and kernel Z⊥ ⊂ Z∗∗∗,

(πz∗∗∗)(z) = z∗∗∗(z), z∗∗∗ ∈ Z∗∗∗, z ∈ Z.

Here and in the sequel we freely consider any Banach space to be a subspace
of its bidual without special notation. It is a basic fact ([9], p. 102) that Z is
an M -ideal in Z∗∗ if and only if the canonical projection π is an L-projection.
Hence the fact that Z isM -embedded is equivalently expressed by saying that the
canonical decomposition Z∗∗∗ = Z∗ ⊕ Z⊥ induced by π is an `1-decomposition,

Z∗∗∗ = Z∗ ⊕1 Z
⊥.

2.3. Measure theory
The proof of Theorem 1.1 relies on studying duality via the embedding V :
M(X,L)→ Cb(L, Y ),

(V x)(L) = Lx, x ∈M, L ∈ L.

Here Cb(L, Y ) denotes the space of bounded continuous Y -valued functions on
(L, τ), equipped with the supremum norm

‖T‖Cb
= sup

L∈L
‖T (L)‖Y , T ∈ Cb(L, Y ).

Note that V isometrically embeds M(X,L) into Cb(L, Y ) and that it similarly
embeds M0(X,L) into the space C0(L, Y ) of continuous functions vanishing at
∞.

We will require a few elements of Y -valued measure theory. We refer to [4],
[17], and [20]. The space of countably additive Y ∗-valued Baire measures of
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bounded variation is denoted by cabv(L, Y ∗). It is equipped with the usual
variation norm

‖µ‖cabv = sup
∑
‖µ(Ei)‖Y ∗ <∞,

where the supremum is taken over all pairwise disjoint partitions of L into sets
Ei.

The reason for introducing cabv(L, Y ∗) is of course the Riesz-Zinger theorem;
cabv(L, Y ∗) is isometrically isomorphic with the dual space C0(L, Y )∗ and we
will freely identify the two. To be more precise about the identification, we
introduce the pairing 〈T, µ〉 between a function T ∈ Cb(L, Y ) and a measure
µ ∈ cabv(L, Y ∗),

(3) 〈T, µ〉 =

∫
L
T (L) dµ(L).

Theorem 2.2 ([4], [17]). For every ` ∈ C0(L, Y )∗ there is a unique measure
µ ∈ cabv(L, Y ∗) such that `(T ) = 〈T, µ〉 for all T ∈ C0(L, Y ). Conversely, each
measure µ defines an element ` ∈ C0(L, Y )∗ through (3), and ‖`‖C∗

0
= ‖µ‖cabv.

Furthermore, each T ∈ Cb(L, Y ) defines an element k ∈ cabv(L, Y ∗)∗ by
the formula k(µ) = 〈T, µ〉, and ‖k‖cabv∗ = ‖T‖Cb

. The isometric embedding of
Cb(L, Y ) into cabv(L, Y ∗)∗ given by T 7→ k extends the canonical embedding of
C0(L, Y ) into C0(L, Y )∗∗.

3. Proof of the main theorem

We begin by explaining the notation to be used in the proof of Theorem 1.1.
For m ∈ M(X,L)∗, m ◦ V −1 acts on VM(X,L) ⊂ Cb(L, Y ), which we as in
Theorem 2.2 view as a subspace of cabv(L, Y ∗)∗. By the Hahn-Banach theorem,
m◦V −1 hence extends to a functional m̄ ∈ cabv(L, Y ∗)∗∗ satisfying ‖m̄‖ = ‖m‖.
Applying the canonical decomposition Z∗∗∗ = Z∗ ⊕ Z⊥ with Z = C0(L, Y ) we
obtain

cabv(L, Y ∗)∗∗ = cabv(L, Y ∗)⊕ C0(L, Y )⊥,

and we decompose m̄ accordingly,

m̄ = m̄ω∗ + m̄s, m̄ω∗ ∈ cabv(L, Y ∗), m̄s ∈ C0(L, Y )⊥.

On the other hand, letting I : M0(X,L)∗∗ → M(X,L) be the isometric
isomorphism of 2.1, we obtain a second decomposition m◦I = (m◦I)ω∗ +(m◦I)s
from

M(X,L)∗ 'M0(X,L)∗∗∗ = M0(X,L)∗ ⊕M0(X,L)⊥.

Here (m ◦ I)ω∗ ∈M0(X,L)∗ and (m ◦ I)s ∈M0(X,L)⊥.
Claim 3.5 of [17] amounts to the fact that the first decomposition is an ex-

tension of the second. We restate this here, as a lemma.
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Lemma 3.1. In the above notation, we have

m̄ω∗ ◦ V ◦ I = (m ◦ I)ω∗

and

m̄s ◦ V ◦ I = (m ◦ I)s,

as functionals on M0(X,L)∗∗.

We are now prepared to prove the main theorem.

Theorem 1.1. M0(X,L) is an M-ideal in M(X,L). That is,

M(X,L)∗ 'M0(X,L)∗∗∗ = M0(X,L)∗ ⊕1 M0(X,L)⊥.

Proof. Let h ∈M0(X,L)∗∗∗ and define m ∈M(X,L)∗ by m = h ◦ I−1. We
employ the notation of this section, so that constructs involving m are defined
as above. Let µ ∈ cabv(L, Y ∗) be the measure corresponding to m̄ω∗ , which in
particular means that

m̄ω∗(T ) =

∫
L
T (L) dµ(L), T ∈ Cb(L, Y ).

Denote by ` the restriction of m̄s to Cb(L, Y ), and let

m̃ = m̄|Cb(L,Y ) = µ+ `.

Here and in the remainder of the proof we understand µ as a functional on
Cb(L, Y ), as well as a measure in cabv(L, Y ∗), by slight abuse of notation which
is justified in Theorem 2.2.

Let K1 ⊂ K2 ⊂ · · · be an increasing sequence of compact Baire measurable
subsets of (L, τ) such that L =

⋃∞
n=1Kn. Denote, as before, by αL = L∪{∞} the

one point compactification of L. For each n, let sn : αL→ [0, 1] be a continuous
function such that s−1n (1) ⊃ Kn and sn(∞) = 0.

Now let µn = µ|Kn
be the restriction of the measure µ to Kn, and consider

the functional m̃n = µn + ` acting on Cb(L, Y ). For fixed n, given ε > 0, let
S, T ∈ Cb(L, Y ) be such that

‖S‖Cb
= ‖T‖Cb

= 1, µn(S) > ‖µn‖C∗
b
− ε, `(T ) > ‖`‖C∗

b
− ε.

Note that by construction we have

m̃n(snS + (1− sn)T ) = µn(snS) + `((1− sn)T )

= µn(S) + `(T ) > ‖µn‖C∗
b

+ ‖`‖C∗
b
− 2ε.

Observing that ‖snS + (1− sn)T‖Cb
≤ 1, we deduce in letting ε→ 0 that

‖m̃n‖C∗
b

= ‖µn‖C∗
b

+ ‖`‖C∗
b
.
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Since ‖µ− µn‖C∗
b
≤ ‖µ− µn‖cabv → 0, we obtain by also letting n→∞ that

‖m̃‖C∗
b

= ‖µ‖C∗
b

+ ‖`‖C∗
b
.

Since ‖m‖M∗ = ‖m̃‖C∗
b

= ‖m̄‖cabv∗∗ , we conclude that

‖m‖M∗ = ‖µ‖C∗
b

+ ‖`‖C∗
b
.

In view of Lemma 3.1 we get the following inequality:

‖h‖M∗∗∗
0

= ‖m‖M∗

= ‖µ‖C∗
b

+ ‖`‖C∗
b

= ‖m̄ω∗‖C∗
b

+ ‖m̄s‖C∗
b

≥ ‖m̄ω∗‖(VM)∗ + ‖m̄s‖(VM)∗

= ‖m̄ω∗ ◦ V ‖M∗ + ‖m̄s ◦ V ‖M∗

= ‖m̄ω∗ ◦ V ◦ I‖M∗∗∗
0

+ ‖m̄s ◦ V ◦ I‖M∗∗∗
0

= ‖(m ◦ I)ω∗‖M∗∗∗
0

+ ‖(m ◦ I)s‖M∗∗∗
0

= ‖hω∗‖M∗∗∗
0

+ ‖hs‖M∗∗∗
0

,

where

hω∗ = (m ◦ I)ω∗ ∈M0(X,L)∗, hs = (m ◦ I)s ∈M0(X,L)⊥,

and h = hω∗+hs. To finish the proof we only need to note the opposite inequality

‖h‖M∗∗∗
0
≤ ‖hω∗‖M∗∗∗

0
+ ‖hs‖M∗∗∗

0
,

which is obvious.
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