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Abstract 15 

 16 

Mucosa-mimetic materials are synthetic substrates which aim to replace animal tissue in 17 

mucoadhesion experiments. One potential mucosa-mimetic material is a hydrogel 18 

comprised of N-acryloyl-D-glucosamine and 2-hydroxyethylmethacrylate, which has 19 

been investigated as a surrogate for animal mucosae in the mucoadhesion testing of 20 

tablets and solution formulations. This study aims to investigate the efficacy of this 21 

mucosa-mimetic material in the testing of thermogelling semi-solid formulations, which 22 

transition from solution to gel upon warming. Two methods for assessing mucoadhesion 23 

have been used; tensile testing and a flow-through system, which allow for investigation 24 

under dramatically different conditions. It was found that the mucosa-mimetic material 25 
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was a good surrogate for buccal mucosa using both testing methods. This material may 1 

be used to replace animal tissue in these experiments, potentially reducing the number 2 

of laboratory animals used in studies of this type.  3 

 4 

1. Introduction 5 

Many factors can be considered in the development of drug delivery systems. For 6 

topical drug delivery, a key parameter for evaluating dosage forms is their bioadhesion 7 

and, in the case of mucosal membranes, mucoadhesion; the adhesive interaction 8 

between a material and a mucosal membrane (Khutoryanskiy, 2011; Smart, 2005). 9 

Mucoadhesion can improve the retention of the formulation on the mucosal surface, 10 

increasing the retention time at the site of action, improving drug absorption, and thus 11 

bioavailability (Khutoryanskiy, 2014). Novel mucoadhesive systems are of interest in 12 

oral transmucosal (Khan et al., 2016; Shojaei and Li, 1997), nasal (Nakamura et al., 13 

1996; Ugwoke et al., 2005), ocular (Hornof et al., 2003; Ludwig, 2005), vaginal 14 

(Andrews et al., 2009; Friedl et al., 2013), and rectal drug delivery (Değim et al., 2005), 15 

and these systems typically require evaluation on ex vivo animal mucosa (Cook and 16 

Khutoryanskiy, 2015; Ivarsson and Wahlgren, 2012).  17 

 18 

One class of mucoadhesive formulations which is of interest is “thermogelling” 19 

materials, which transition from solution to gel upon warming from room to body 20 

temperature (de Araújo Pereira et al., 2013). Systems which gel in situ are easily 21 

administrated and can improve the retention of dosage forms at desired place, 22 

potentially increasing patient compliance to treatment (Van Tomme et al., 2008). 23 

Poloxamer P407 (also known as Pluronic F127), an ABA triblock copolymer of 24 

poly(ethylene glycol) – b – poly(propylene glycol – b – poly(ethylene glycol), is the 25 
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most commonly used thermogelling material (Nie, 2011), but has several drawbacks, 1 

such as weak gel strength and rapid dissolution (Wu et al., 2011). To attempt to enhance 2 

the mucoadhesion of poloxamer P407, bioadhesive polymers based on cross-linked 3 

poly(acylic acid) (PAA), such as Carbopol® 971P, Carbopol® 974P and polycarbophil,  4 

have been incorporated into poloxamer dispersions (Chang et al., 2002; De Souza 5 

Ferreira et al., 2015; Jones et al., 2009; Junqueira et al., 2016). Poly(acrylic acid) 6 

derivatives were previously reported as mucoadhesive (Jabbari et al., 1993), and the 7 

cross-linked forms, carbopol and polycarbophil, impart high viscosity to formulations, 8 

enhancing mucoadhesion. 9 

 10 

Over the years, the mucoadhesion process has been widely studied (Iqbal et al., 2012; 11 

Peppas and Huang, 2004; Sogias et al., 2008; Sosnik et al., 2014), and in order to asses 12 

it, many different in vitro and ex vivo techniques have been developed (Bassi da Silva et 13 

al., 2017; Cave et al., 2012; Withers et al., 2013). Nevertheless, the force required to 14 

detach a dosage form from mucosal tissue is still the most commonly used technique 15 

(Carvalho et al., 2010; Cook and Khutoryanskiy, 2015; Nair et al., 2013). This is 16 

typically determined with the use of a texture analyser. According to the dosage form, 17 

some techniques prove to be more suitable than others. Solid dosage forms require 18 

detachment force method and cannot be measured by rheological methods like liquid 19 

dosage forms, for example. On the other hand, there is flow-through method which can 20 

be used for solid dosage forms (Patel et al., 2012) and liquid dosage forms (Cook et al., 21 

2015; Irmukhametova et al., 2011). 22 

 23 

Generally, most methods use ex vivo tissues to assess mucoadhesion, a large amount of 24 

which is sourced from laboratory animals slaughtered for that tissue (Cook et al., 2015) 25 
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Moreover, when used animal sources, there is a lower reproducibility of the method, 1 

considering the greater variation between these tissues. Therefore, with the aim of to 2 

reduce the number of animals killed for this tissue, this work aims to demonstrate the 3 

efficacy of a synthetic alternative to animal tissue in mimicking mucosa for the testing 4 

of mucoadhesive semi-solids. This mucosa-mimetic material provides a testing 5 

substrate which is inexpensive and homogenous compared to animal tissue. A substrate 6 

containing 20 mol% N-acryloylglucosamine (AGA) and 80 mol% 2-7 

hydroxyethylmethacrylate (HEMA) was identified as being an effective mimic for pig 8 

buccal mucosa when testing the mucoadhesion of tablets and liquid dosage forms (Cook 9 

et al., 2015; Hall et al., 2011). This study investigates the efficacy of this “mucosa-10 

mimetic” material when testing for the mucoadhesion of semi-solid dosage forms using 11 

two different methodologies. This is the first reported use of a mucosa-mimetic material 12 

in studying the mucoadhesion of semi-solids, with previous research investigating solid 13 

(Eshel-Green et al., 2016; Hall et al., 2011; Khutoryanskaya et al., 2010) or liquid ( 14 

Cook et al., 2015; Eshel-Green et al., 2016) dosage forms. The mucoadhesion of semi-15 

solid dosage forms is driven by non-covalent interactions of macromolecules with 16 

mucins, as for liquid and solid dosage forms, but also by the rheology of the 17 

formulation and its ability to wet a surface (Smart, 2005). For validation of this mucosa-18 

mimetic material it is imperative that this class of materials be investigated. 19 

 20 

2. Materials and Methods 21 

2.1 Materials 22 

Carbopol® 971P, Carbopol® 974P and polycarbophil were purchased from Lubrizol 23 

(Brazil). Triethanolamine, 2-hydroxyethyl methacrylate (HEMA), N,N’-24 

methylenebisacrylamide (MBA), ammonium persulfate (APS), N,N,N’,N’-25 
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tetramethylethylenediamine (TMEDA), acetonitrile (ACN), fluorescein isothiocyanate-1 

dextran (FITC, 10 kDa), and phosphate buffered saline (PBS) tablets were all purchased 2 

from Sigma-Aldrich (U.K.). 2.5 mL polypropylene vials, fitted with screw-on septa, 3 

having 8 mm internal diameter, were also purchased from Sigma-Aldrich (U.K.). 4 

Acryloyl glucosamine (AGA) was synthesised using a previously published procedure 5 

(Cook et al., 2015). Unless specified, all reagents were used without further purification. 6 

Porcine buccal mucosa was sourced from Wetlab-MedMeat (U.K.) and kept frozen at -7 

80 °C. 8 

 9 

2.2 Hydrogel preparation 10 

2.2.1 Mucoadhesive polymeric systems 11 

Monopolymeric thermogelling systems were prepared by dispersing 20 % w/v 12 

poloxamer 407 in purified water at room temperature.  13 

To produce the binary polymeric systems, Carbopol® 971P, Carbopol® 974P or 14 

polycarbophil (0.25, 0.20 and 0.25 %, w/w, respectively) were dispersed in purified 15 

water with stirring. The required amount of poloxamer 407 (20 %, 15 % and 15 %, w/w, 16 

respectively) was then added to this preparation and the mixture was stored at 4 ºC for 17 

12 h, to ensure the complete polymer wetting. The polymeric systems were then stirred, 18 

to completely disperse the polymers. The preparations were then neutralized with q.s. 19 

triethanolamine, and kept at 4 ºC for at least 24 h before analysis (Bruschi et al., 2007; 20 

de Araújo Pereira et al., 2013; Fabri et al., 2011; Jones et al., 2009; Schmolka, 1972).  21 

 22 

2.2.2 Synthesis of mucosa-mimetic hydrogels 23 
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As previously described by Hall et al (2011), purified water, MBA, APS, TMEDA and 1 

HEMA and AGA monomer(s) were added to glass vials (Table 1). The mixtures were 2 

vortexed until complete dissolution of all ingredients. Ethanol was then added before 3 

being mixed again and the mixtures were bubbled for 5 minutes with nitrogen. 2.0 mL 4 

aliquots of reaction mixture were then transferred to 2.5 mL polypropylene vials fitted 5 

with septa, which had been purged with nitrogen. The vials were then placed in a 6 

preheated water bath at 60 ºC, and reaction allowed to proceed for 3 h. The 7 

polymerisation was terminated by cooling the vial with cold water. The hydrogels were 8 

then purified by immersing samples in deionised water, which was changed daily, for 9 

two weeks to remove any unreacted chemicals. 10 

 11 

Table 1. Composition of feed mixtures for synthesis of mucosa-mimetic hydrogels 12 

Sample 
HEMA:AGA 

ratio (mol %) 
HEMA (g) AGA (g) MBA (g) APS (g) TMEDA (g) 

HEMA 

hydrogel 
100:0 4.3337 - 0.0052 0.0380 0.0116 

20 mol% 

AGA 

hydrogel 

80:20 3.4711 1.5393 0.0052 0.0380 0.0116 

 13 

 14 

2.3 Equilibrium swelling degree measurements 15 

Post-purification, a section of HEMA and AGA mucosa-mimetic hydrogels were 16 

removed by scalpel and the swollen samples were weighed. These samples were placed 17 

in small vials previously weighed and, allowed to dry in an oven at 50 ºC for at least 48 18 

h, and reweighed. The equilibrium swelling degree (ESD) was then calculated 19 

according to equation 1: 20 

ESD = (Ws – Wd)/Wd                                                        (1) 21 
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where Ws and Wd are the weights of the swollen and dry sample, respectively. Each 1 

experiment was repeated at least 3 times for each hydrogel. 2 

 3 

2.4 Density studies 4 

The density of dry gels was calculated using the displaced volume of acetonitrile (ACN) 5 

in a 5 mL pycnometer (Sigma-Aldrich, U.K.). The empty pycnometer was weighed, 6 

filled with acetonitrile and reweighed, allowing for calculation of the pycnometer 7 

volume (VACN+d). After that, a known amount of dried hydrogel (Wd) was placed into a 8 

pycnometer, which was then filled with acetonitrile and weighed again (WACN+d). The 9 

density of the sample (ρx) may then be calculated using equations 2 and 3: 10 

VACN+d = (WACN+d – Wd)/ρACN                                        (2) 11 

ρx = Wd / (VACN+d – VACN)      (3) 12 

 13 

where ρACN is the density of ACN (0.786 g/mL) and VACN is the volume of ACN. 14 

 15 

2.5 Equilibrium swelling volume measurements 16 

First, the hydrogel swelling ratio (Qm) was calculated following the equation 4: 17 

Qm= Ws/Wd                                                        (4) 18 
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where Ws and Wd are the weights of the swollen and dry sample, respectively. Then, 1 

the equilibrium swelling volume (ESV) was calculated by equation 5:(Thomas et al., 2 

2016) 3 

ESV= ((1 + ρx)/ρW). (Qm-1)                                                      (5) 4 

where ρW is the density of water. 5 

2.6 Continuous shear (flow) rheometry 6 

The continuous shear analysis of all thermogelling semisolid formulations without 7 

FITC-dex marker was performed at 37  0.1 C. In flow mode, a controlled stress 8 

rheometer (MARS II, Haake Thermo Fisher Scientific Inc., Germany) with parallel steel 9 

cone-plate geometry (60 mm, separated by a fixed distance of 0.052 mm) was used. 10 

Samples were carefully placed to the inferior plate, and allowed to equilibrate for at 11 

least 1 min prior to start the analysis. Flow curves were evaluated over shear rates 12 

ranged from 0 to 2000 s-1. The flow properties of at least three replicates were 13 

measured, in each case.  14 

The rheological properties of these formulations have been investigated previously 15 

using the following procedure, and are reported herein to discuss differences in 16 

formulations (Bruschi et al., 2007; de Araújo Pereira et al., 2013; Jones et al., 2009). 17 

The rheology of the formulations is a major factor in determining the retention, ease of 18 

application of the product and mucoadhesion of dosage forms, so it is important that the 19 

rheological properties of the materials be discussed. The ascending flow curves were 20 

fitted using the Power Law equation (equation 6).  21 

=k.n      (6) 22 
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where σ is the shear stress (Pa), k is the consistency index [(Pa.s)n], γ is the rate of shear 1 

(s-1), and n is the flow behavior index (dimensionless). The yield stress of the 2 

formulations was investigated by the following rheological models: Casson (equation 7) 3 

and Herschel–Buckley (equation 8) (Hemphill et al., 1993). 4 

      (7) 5 

where τ is the shear stress (Pa), n is the flow behavior index (dimensionless), τ0 is yield 6 

stress (Pa), γ is the rate of shear (s-1) and np is Casson plastic viscosity. 7 

τ = τ0 + k.γn
                                                               (8) 8 

where τ is the shear stress (Pa), τ0 is yield stress (Pa), k is the consistency index [(Pa 9 

s)n], γ is the rate of shear (s-1) and n is the flow behaviour index (dimensionless). Then, 10 

the hysteresis area of each binary polymeric system was calculated using RheoWin 11 

4.10.0000 (Haakes) software. 12 

Moreover, the rheological analysis of formulations, with and without FITC-dex, was 13 

performed at 37 C using an AR 1500 ex controlled stress/controlled rate rheometer 14 

(T.A. Instruments, UK), in flow mode, in conjunction with parallel steel plate geometry 15 

(40 mm, separated by a fixed distance of 600 m). The samples were carefully applied 16 

to the lower plate of the rheometer, ensuring that formulation shearing was minimized, 17 

and allowed to equilibrate for at least 3 min prior to analysis. In continuous shear mode, 18 

upward flow curve for each formulation were measured over shear rates ranged from 0 19 

to 500 s-1. In each case, the continuous shear properties of at least three replicates were 20 

determined. 21 

2.7 Oscillatory rheometry  22 
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With the aim of determining the viscoelastic properties of the samples, firstly, 1 

oscillatory rheometry of all poloxamer-based thermogelling formulations was 2 

performed in oscillation mode, using the controlled stress rheometer described above 3 

(MARS II, Haake Thermo Fisher Scientific Inc., Germany) and, the same cone-plate 4 

(60 mm, separated by a fixed distance of 0.052 mm), at 37  0.1 C. The samples were 5 

carefully applied to the plate, as already described. After linear viscoelastic region 6 

determination of each formulation, the frequency sweep analysis was evaluated from 7 

0.1 to 10.0 Hz. Thus, the storage modulus (G’) was calculated using RheoWin 8 

4.10.0000 (Haakes) software. In each case, at least three replicates were evaluated (de 9 

Araújo Pereira et al., 2013; Jones et al., 2009). 10 

Then, the possible interaction between poloxamer and Carbopol® 971P, Carbopol® 974P 11 

or polycarbophil was investigated by the difference between the dynamic modulus of 12 

the polymeric blends and the theoretical value of the modulus obtained by summation of 13 

the individual parts (Hemphill et al., 1993; Jones et al., 2009). Calculation of the 14 

interaction parameter for the binary mixtures was determined using the storage modulus 15 

values at 10.0 Hz of oscillatory frequency following the equation 9. 16 

 17 

G’= G’ mixture – (G’poloxamer 407 + G’carbomer or polycarbophil))   (9) 18 

 19 

2.8. Determination of gelation temperature (Tsol/gel) 20 

Gelation temperatures of the thermogelling systems were determined as previously 21 

described (De Souza Ferreira et al., 2017). In oscillatory mode, with temperature ramp, 22 

using the same cone-plate previously described (60 mm). The determination of Tsol/gel of 23 
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each formulation were performed after determination of the linear viscoelastic region at 1 

5 C and 60 C. A temperature sweep analysis was performed over the temperature at 2 

5–60 C range with defined frequency (1.0 Hz), and rate of heating 10 C/min using a 3 

controlled stress (resident within the linear viscoelastic region). G’, G″, η’ and tan δ 4 

were calculated using RheoWin 4.10.0000 (Haakes) software. The temperature at which 5 

the elastic modulus was halfway between the values for the solution, and for the gel was 6 

called Tsol/gel. Tsol/gel was calculated for all binary system in which dynamic viscosity 7 

increased with increasing temperature and at least three replicate samples were 8 

evaluated in all cases (Andrews et al., 2009; Bruschi et al., 2007; de Araújo Pereira et 9 

al., 2013; Edsman et al., 1998). 10 

 11 

2.8 Adhesion testing  12 

2.8.1 Detachment test 13 

The adhesive properties of the hydrogels were assessed using a TA.XT Plus texture 14 

analyser (Stable Micro Systems, UK). The hydrated 20 mol% AGA and HEMA 15 

hydrogels were kept immersed in deionised water (water bath) and equilibrated at 37 ±1 16 

ºC for 0.5 h. Prior to measurements, the polypropylene vials containing hydrogels were 17 

cut away with a saw so that an 8 mm diameter cylinder of gel extended from the vial by 18 

approximately 2 mm. Poloxamer 407 20% (w/w) hydrogel and poloxamer 407/ 19 

Carbopol® 971P, Carbopol® 974P or polycarbophil thermogelling systems were kept 20 

immersed in a water bath at 37 ±1 ºC for 0.5 h and then, placed up to a hot plate which 21 

was equilibrated at 37 ±1 ºC on the texture analyser.  22 

The synthetic hydrogels or the animal mucosal tissue were attached to a mobile probe 23 

(cylindrical, P/6) using double sided adhesive tape. The probe was lowered at a speed of 24 
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1 mm/s until it reached the mucoadhesive hydrogel surface with a determinate contact 1 

force. The contact force of 0.03 N was applied to the poloxamer 407 20% (w/w) and 2 

poloxamer 407/Carbopol® 971P formulations, while to poloxamer 407/Carbopol® 974P 3 

and poloxamer 407/polycarbophil formulations a contact force of 0.002 N was applied 4 

with the aim of to keep the substrate just in contact with the hydrogel surface. A force 5 

larger than this drove the sample into the system so that contact was made on two faces. 6 

Substrate and formulation where kept in contact for 30 seconds, then the probe was 7 

withdrawn at a rate of 10.0 mm/s until complete detachment of the mucoadhesive 8 

hydrogels from the synthetic hydrogels or animal mucosal tissue was observed. The 9 

maximum force of detachment and the work of adhesion (the area under the 10 

force/distance curve) were determined using Texture Exponent 32 software (Stable 11 

Micro Systems, UK). All measurements were performed at least 6 times and the 12 

adhesion parameters calculated as mean values ± standard deviation.  13 

Adhesion of mucoadhesive hydrogels to animal mucosal tissues were studied using 14 

porcine buccal mucosa which were obtained from MedMeat (UK). These tissues were 15 

collected immediately after the slaughter of animals and were stored frozen at -20 ºC. 16 

Before testing, the mucosal tissues were defrosted in water at 35–37 ºC and the mucosa 17 

was excised from the cheek using a scalpel. In order to achieve the same surface area as 18 

the synthetic hydrogels during adhesion testing, mucosa was placed into a 19 

polypropylene sample vial and held in place with a screw-thread polypropylene cap 20 

with an 8mm diameter bore so that only an 8 mm diameter circle of mucosa came into 21 

contact with the thermogelling formulations. Detachment force and work adhesion was 22 

treated with two-way ANOVA (multiple comparisons), using Bonferroni post-hoc test. 23 

P < 0.05 was taken to be statistically significant. 24 

 25 
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2.8.2 Retention testing 1 

Retention was studied using a flow-through system developed in-house (Cave et al, 2 

2012). The system consists of a channel containing a testing substrate (either ex vivo 3 

mucosa, ‘mucosa-mimetic’ or PTFE), over which a syringe-pump washes PBS. This 4 

system is then maintained at 37 °C within an incubator.  FITC-dextran was added to 5 

thermogelling preparations at 1 mg/g to allow for fluorescence imaging. FITC-dextran-6 

labelled formulations (20 μL) were then pipetted onto the testing substrate and allowed 7 

to warm over 2 minutes. This time was sufficient to allow for gelation to occur, as 8 

tested by inversion of substrate. The testing substrate was then imaged using a Leica 9 

MZ10F fluorescence stereomicroscope, equipped with a GFP filter set and monochrome 10 

camera, using an exposure time of either 11, 40 or 211 μs for HEMA mucosa-mimetic 11 

hydrogel, mucosa tissue and AGA mucosa-mimetic hydrogel, respectively. The PBS 12 

buffer eluent was then flowed over the testing substrate (4 mL/min), and images were 13 

taken at 1, 5, 10, and 15 mL elution volume. The quantity of polymer remaining on the 14 

surface of the testing substrate was then assessed using ImageJ. Briefly, the region on 15 

which the fluorescent polymers were pipetted was selected, and the brightness of the 16 

pixels measured. This brightness was then measured at the remaining time points, and 17 

the % fluorescence calculated with respect to the starting brightness value. Retention 18 

data was treated with two-way ANOVA (multiple comparisons), using Bonferroni post-19 

hoc test. P < 0.05 was taken to be statistically significant. 20 

        21 

3. Results and Discussion 22 

3.1 Synthesis and characterization of mucosa-mimetic hydrogels 23 

Hydrogels of HEMA and 20 mol% AGA were produced in hydroalcoholic solution 24 

using free-radical polymerisation with a water-soluble cross-linker, MBA. ATR-FTIR 25 
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spectroscopy demonstrated that the HEMA hydrogel contained characteristic 1 

absorbances related to the HEMA monomer, such as the ester carbonyl stretch at 1700 2 

cm-1 and broad alcohol vibration at ~ 3420 cm-1, with no residual monomer, as 3 

evidenced by the absence of a C=C absorbance at ~1640 cm-1. In addition to the HEMA 4 

absorbances, AGA had peaks at 1650 and 1560 cm-1, related to the amine linking the 5 

sugar ring to the polymer backbone. These spectra are in accordance with those 6 

previously reported (Cook et al., 2015). In this study, 20 mol% AGA was produced as a 7 

reported “mucosa-mimetic” material, whilst HEMA will act as a control to indicate 8 

whether interactions with semi-solid dosage forms are identical for all hydrogels. 9 

 10 

[FIGURE 1 HERE] 11 

 12 

Figure 1. ATR-FTIR spectra of 100 % HEMA (green) and HEMA:AGA (80:20 mol%) 13 

(blue) hydrogels after drying. 14 

In addition to spectroscopic analysis, the swelling properties of the two hydrogels were 15 

measured. ESD values are an indicator of the magnitude by which the hydrogel’s 16 

weight increases upon contact with water, ESV values indicate volume changes 17 

associated with swelling until equilibrium. In order to calculate ESV values, dried 18 

samples of hydrogels were analysed by pycnometry, which gives values of density. 19 

ESD values presented in table 2 are comparable to previously published data (Hall et 20 

al., 2011), ESV values indicate that 20 mol% AGA hydrogel swelled to a greater extent 21 

than 100 mol % HEMA hydrogels. This is possibly a result of the large number of 22 

hydrogen-bonding groups on AGA, which may solvate to a greater extent than the 23 

HEMA pendant groups. The differences in equilibrium swelling volumes are likely to 24 

result in differences in entanglements and interaction between dosage form and gel due 25 
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to different mesh sizes and polymer volume fractions. Mesh size increase with ESV, 1 

whilst polymer volume fractions decrease (Thomas et al., 2016). 2 

 3 

Table 2. Swelling parameters and densities of 20 mol% AGA and HEMA hydrogels.  4 

Sample 

Parameters 

Equilibrium 

swelling degree 

Density, g/mLa 

Equilibrium swelling 

volume 

100 mol% HEMA 3.35  0.59 1.79  0.03 6.12  0.38 

20 mol% AGAb 3.80  0.02 1.64  0.16 7.25  0.02 

a of dried mass 5 

b Difference in values for 20 mol% AGA and 100 mol% HEMA are statistically significant using two-tailed T-testing 6 

(p < 0.01). 7 

 8 

 9 

3.2 Production of thermogelling formulations 10 

 11 

In order to determine whether 20 mol% AGA was capable of mimicking buccal mucosa 12 

in the mucoadhesion testing of semi-solids, four thermogelling formulations were 13 

prepared. These formulations were based on poloxamer P407, which undergoes a sol-14 

gel transition upon warming. Cross-linked poly(acrylic acid) derivatives were 15 

incorporated into poloxamer P407 with the intention of producing a range of 16 

formulations with different rheological and chemical properties. These formulations are 17 

based on previously reported thermogelling systems (De Souza Ferreira et al., 2015; 18 

Jones et al., 2009). The composition and rheological properties of the thermogelling 19 

formulations are shown in table 3. The first formulation is 20 % poloxamer P407, which 20 
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undergoes a sol-gel transition at 29.7 ± 0.6 °C, as determined by rheological method. 1 

Formulations F1, F2, and F3 include cross-linked poly(acrylic acids), giving a diverse 2 

range of rheological properties.  3 

 4 

The rheological properties of these formulations have been investigated previously, and 5 

are reported herein to discuss differences in formulations (Bruschi et al., 2007; de 6 

Araújo Pereira et al., 2013; Jones et al., 2009). At all formulations, a shear-thinning 7 

behaviour (pseudoplastic flow), with yield value and hysteresis area was observed. In 8 

the most of cases the hysteresis area was characteristic of rheopectic material, which 9 

have the down-curve coming back above the up-curve and, this profile is quite common 10 

in binary polymeric systems at 37 °C (De Souza Ferreira et al., 2015; Jones et al., 2009). 11 

The addition of poly(acrylic acid) derivative  decreased the consistency index of the 12 

systems when compared to the formulation containing just poloxamer (Table 3). The F2 13 

demonstrated higher consistency index, since this poly(acrylic acid) derived – 14 

Carbopol® 974P – has cross-link density larger than the others cross-linked poly(acrylic 15 

acid) type. On the other hand, the Carbopol® 971P has lower cross-linking density, 16 

therefore, it showed a low consistency index. Moreover, in flow rheology, greater yield 17 

values were detected for most of formulations, at 37 C, as expected. Commonly, the 18 

yield value of the carbomers, has indicated an improvement of retention time of the 19 

blends containing bioadhesive and thermoresponsive polymers in the application site 20 

(De Souza Ferreira et al., 2015). 21 

According to the magnitude of the elastic moduli, in the oscillatory rheometry, the 22 

interaction parameter was derived. The rheological synergy, between poloxamer and 23 

poly(acrylic acid)s derived, provides evidence of adhesive interactions between them. In 24 

this sense, F1, F2 and F3 formulations, demonstrated strong interaction between the two 25 
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polymers. Thus, evidencing, beyond secondary bonds, the hydrogen bonds between 1 

carboxyl groups, which are widely distributed in acrylic acid chain, and hydroxyl 2 

groups of poloxamer (Jones et al., 2009). As already observed, in these concentrations 3 

(20/0.20; 15/0.25 and 15/0.25 %) the formulations containing respectively Carbopol® 4 

971P, Carbopol® 974P and polycarbophil, have demonstrated better interaction 5 

parameter (at 37 °C). This is consistent with the greater amount of poloxamer in 6 

micellar form, which can be available to form hydrogen bonds with carboxylic groups 7 

of poly(acrylic acid) (De Souza Ferreira et al., 2015; Khutoryanskiy and Staikos, 2009). 8 

 9 

Moreover, using the increase of viscosity and elastic moduli (G’), in oscillatory 10 

rheology analysis, the gelation transition temperature was determined. As known, 11 

poloxamer P407 is a thermoresponsive polymer and monopolymeric systems exhibit 12 

gelation temperature (Tsol/gel) (Jones et al., 2009). Furthermore, when Carbopol® 974P 13 

(F2) and polycarbophil (F3) were used, the Tsol/gel increases, since the addition of other 14 

polymers can interfere in the micelles formation and change the gelation temperature. 15 

However, considering the suitable range of Tsol/gel from 25 C to 37 C, all formulations 16 

proved to be appropriate to mucosal application, becoming gel at body temperature 17 

(Bruschi et al., 2007; Gratieri et al., 2010; Yun Chang et al., 2002). These formulations 18 

also represent a diverse group of semi-solids with different viscosities, consistencies, 19 

flow behaviours and gelation temperatures. This diversity is important in validating the 20 

mucosa-mimetic material. 21 

 22 

Table 3. Composition and rheological properties of thermogelling formulations. 23 

 24 
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Sample ID 

Poloxamer 

P407 conc. 

(% w/w) 

PAA type, 

conc. (% w/w) 

Viscosity 

at 32 s-1 d 

(Pa.s) 

Consistency 

index (k)b,d 

(Pa.s) 

Flow 

behavior 

index 

(n)b,d 

Yield 

stressb,d 

(Pa) 

Hysteresis 

areab,d 

(Pa.s) 

Tsol/gel 

(°C) 

Interaction 

parameterb,c 

(Pa) 

Poloxamera 20 N/A 

12.530 ± 

0.062 

196.10 ± 

12.27 

0.14 ± 

0.01 

220.35 ± 

4.05 

-22991.67 

± 2464.22 

28.67 ± 

0.58 

N/A 

F1a 20 

Carbopol 

971P, 0.20 

26.277 ± 

2.908 

43.15 ± 0.50 

0.85 ± 

0.00 

836.77 ± 

5.25 

857500.00 

± 7424.62 

27.88 ± 

0.06 

1944.73 ± 

381.93 

F2 15 

Carbopol 974P 

, 0.25 

6.171 ± 

0.331 

139.40 ± 

6.01 

0.256 ± 

0.005 

120.61 ± 

0.12 

-17520.00 

± 8553.99 

36.04 ± 

0.06 

2509.33 ± 

215.85 

F3b 15 

Polycarbophil, 

0.25 

6.935 ± 

0.257  

60.963 ± 

3.307 

0.359 ± 

0.006 

230.067 

± 4.484 

-35990.00 

± 5507.62 

36.42 ± 

0.02 

1927.03 ± 

93.85 

a(De Souza Ferreira et al., 2015) 

b(De Souza Ferreira et al., 2017) 

cInteraction parameter between poloxamer and cross-linked poly(acrylic acid) by storage modulus (G’) at 10 Hz 

d at 37°C 

 1 

Flow rheograms for each formulation are shown in Figure 2. All formulations show 2 

responses to shear which are typical for pseudoplastic semi-solids. This is also reflected 3 

in their reported flow-behaviour indices (Table 3), which all had values lower than one, 4 

calculated to fitting to a power-law model. Marked differences in viscosities are 5 

apparent between the formulations (Figure S1, ESI).  6 

Formulations were also prepared with 1 mg/g FITC-dextran (10 kDa) incorporated, in 7 

order to conduct flow-through experiments (Figure 2, orange). With the aim of 8 

observing the structural changes or marker interactions with the binary systems, the 9 

flow rheology was studied. There were no apparent changes in flow rheology profile 10 

when FITC-dextran was incorporated into pluronic and F1 formulations, but there were 11 

observable increases in viscosity for formulations F2 and F3. This is consistent with 12 

increased physical cross-linking in these systems, which are more influenced by the 13 

presence of the marker. Despite an increase in the viscosity may modify the retention 14 
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time of the formulations during the flow-through experiments, the viscosity has not 1 

been greatly changed between formulations with and without FITC-dextran and, 2 

interferences were not observed in the results. 3 

 4 

[FIGURE 2 HERE] 5 

Figure 2. Flow rheograms for a) pluronic, b) F1, c) F2, and d) F3 formulations with 6 

(orange circles) and without (black circles) 1 mg/g FITC-dextran (10 kDa). Data 7 

presented as mean ± standard deviation (N = 3).  8 

 9 

3.3 Mucoadhesion testing 10 

The adhesion of thermogelling formulations was determined using two methods, texture 11 

analysis and a flow-through system. Texture analysis measures the force required, or 12 

work needed, to remove a dosage form from a substrate (e.g. mucosal membrane), and 13 

is the standard method of testing the mucoadhesion of solid dosage forms. In order to 14 

measure adhesion of semi-solid dosage forms by this method, modification had to be 15 

made to standard procedures. 100 mol% HEMA and 20 mol% AGA hydrogels were 16 

formed in polypropylene vials, which were then cut back so that the hydrogel extended 17 

by approximately 2 mm from the end of the vial. This gave a flat surface of hydrogel on 18 

which to measure adhesion. The vial was then attached to the probe of a texture 19 

analyser (Figure 3a). This allowed the thermogelling systems to be maintained on a hot-20 

plate at the base of the texture analyser whilst the adhesion of hydrogels to their surface 21 

was determined (Figure 3b). This gave a force-distance relationship from which either 22 

the maximum force required to remove the dosage form or the area under the force-time 23 

curve could be determined, giving the force and work of adhesion, respectively (figure 24 

2c).  25 
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[FIGURE 3 HERE] 1 

Figure 3. Modifications made to a texture analyser allow for testing substrates 2 

(hydrogels, mucosa, and polypropylene) to be pressed against thermogelling semisolid 3 

formulations (a). Removal of the testing substrate from the formulations (b) gives a 4 

force-time curve from which values of force and work of adhesion can be measured (c). 5 

 6 

The adhesion of thermogelling formulations to hydrogels, mucosa, and a control of 7 

polypropylene is shown in Figure 4. The mucosa-mimetic 20 mol% AGA hydrogel and 8 

buccal mucosa gave mean values of adhesion which were closest to buccal mucosa, 9 

giving values of adhesion which were not statistically significant in two out of four 10 

formulations, for work and force of adhesion, as determined by two-way ANOVA. 11 

Kruskal–Wallis testing gave no significant differences between 20 mol% AGA and 12 

mucosa, but experimental replicates were not sufficient to determine conclusively 13 

whether non-parametric statistics were required. Generally, values of adhesion were 14 

higher in the control hydrogel, 100 mol% HEMA, than the mucosa-mimetic 20 mol% 15 

AGA hydrogel and the buccal mucosa. Average % deviations from mean mucosa values 16 

across all formulations for buccal mucosa, 20 mol% AGA, 100 mol% HEMA, and 17 

polypropylene, were 5 %, 23 %, 79 %, and 52 %, respectively.  18 

  19 

[FIGURE 4 HERE] 20 

Figure 4. Force (a) and work (b) of adhesion of thermogelling formulations to 21 

hydrogels, buccal mucosa, and polypropylene, as determined by texture analysis. Data 22 

represented as mean ± standard deviation (N = 6). “ns” designates no statistical 23 

significance, * indicates p < 0.05, and *** indicates p < 0.001, using two-way ANOVA 24 

with Bonferroni post-hoc.  25 
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 1 

The metric by which adhesion is measured from force-displacement curves during 2 

texture analysis impacted on results. Whilst poloxamer samples gave comparable rank-3 

orders of adhesion using either work or force, F1-3 gave different rank orders 4 

depending on which value was used. The force of adhesion reflects the force required to 5 

overcome the adhesive forces between testing substrate and the thermogelling 6 

formulations, as fracture always occurred at the interface between the two materials. 7 

The work of adhesion is often the preferred metric for measuring mucoadhesion, as it is 8 

seen as being more relevant to the “bedside” application. When determining the work of 9 

adhesion, adhesive interactions are confounded by cohesive forces within testing 10 

substrate and formulation, and thus the elasticity and plasticity of the materials will be 11 

reflected in this value.  12 

 13 

Focusing on the values of force of adhesion allows for discussion of the adhesive forces 14 

alone. The adhesion of 100 mol% HEMA hydrogel to all formulations is higher than, or 15 

equal to, the adhesion of those formulations to the mucosa-mimetic 20 mol% AGA 16 

hydrogel. This can be rationalized by consideration of the physicochemical properties of 17 

the hydrogels. 100 mol% HEMA contains fewer functional groups capable of hydrogen 18 

bonding than the 20 mol% AGA hydrogel per monomer unit, and has lower degrees of 19 

swelling (Table 2). The mucoadhesion of poloxamer and PAA is often attributed to the 20 

formation of hydrogen bonds between polymer and secretory mucins on the surface of 21 

tissue. As adhesion to 100 mol% HEMA is higher than 20 mol% AGA it is not likely 22 

that adhesion can be simply attributed to hydrogen bonding; there may be additionally 23 

complementary chemical interactions, such as van der Waals forces or the so-called 24 

“hydrophobic effect”, wherein the poor solvation of hydrophobic moieties promotes 25 
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their interaction (Smart, 2005). An additional factor affecting adhesion to the hydrogels 1 

is the water content, reflected in equilibrium swelling values. Differences in swelling 2 

values likely reflect differences in hydrogel mesh sizes, which in turn will affect the 3 

interpenetration and entanglement of polymer across the formulation-hydrogel interface 4 

(Sahlin and Peppas, 1997). Additionally, the high water content of the hydrogels may 5 

have a lubricative effect, leading to a reduction in adhesion to the more swollen 20 6 

mol% AGA hydrogel. This would also effectively reduce the concentration of polymer 7 

in the hydrogel, lowering number of monomer units with which interaction can occur 8 

per unit area. It is believed that 20 mol% AGA is able to mimic buccal mucosa due to 9 

the chemical similarity of the AGA monomer with oligosaccharide side-chains adorning 10 

the mucin glycoproteins secreted on the mucosal tissue. It is likely that physical 11 

properties, such as swelling degrees, also play a role in this mimicry (Hall et al., 2011). 12 

 13 

Adhesion of formulations to polypropylene was generally equal to or greater than 14 

adhesion to 20 mol% AGA and buccal mucosa. Formulations cannot adhere to 15 

polypropylene via entanglement or by polar interactions, so it is believed that this 16 

adhesion is a result of the absence of water from the polypropylene. The formulations 17 

are able to wet the surface of polypropylene sufficiently to allow adhesion without the 18 

lubricative effect of water. Polypropylene has been used to evaluate the mucoadhesion 19 

of wetted polymer films, but was not found to be a good mimic of mucosa in this study 20 

(Choi et al., 1999). 21 

  22 

The retention of thermogelling semi-solids on HEMA, 20 mol% AGA, buccal mucosa, 23 

and PTFE, a “non-stick” control, was also determined using a flow-through method 24 

previously developed (Figure 5) (Cave et al., 2012; Cook et al., 2015; Irmukhametova et 25 
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al., 2011; Withers et al., 2013). There was no statistically significant difference in 1 

retention values between 20 mol% AGA and buccal mucosa for the poloxamer, F2, and 2 

F3 formulations at any washing volume (Figure 4a, 4c, and 4d, respectively). However, 3 

there were significant differences at 1 and 5 mL volumes, using formulation F1. All 4 

formulations were retained most poorly on PTFE, indicating that the retention is not 5 

simply the result of the rheology of the semi-solids, dissolution of the gel, or release of 6 

FITC-dextran from the formulation. 7 

[FIGURE 5 HERE] 8 

Figure 5. The retention of FITC-dextran labelled pluronic (a), F1 (b), F2 (c), and F3 (d) 9 

formulations on 100 mol% HEMA, 20 mol% AGA, buccal mucosa, and PTFE, using a 10 

flow-through method. Data presented as mean ± standard deviation (N = 3). “ns” 11 

designates no statistical significance, * indicates p < 0.05, and ** indicates p < 0.01, 12 

using two-way ANOVA with Bonferroni post-hoc.  13 

 14 

The adhesion of semi-solids to surfaces is a complex phenomenon, arising from several 15 

different interactions (Figure 6) (Smart, 2005). Polymer-solvent interactions dictate, in 16 

part, dissolution of the dosage form, as well as the favourability of interaction with the 17 

surface. Cohesive interactions within the dosage form affect its rheology, which in turn 18 

modulates retention. Polymer-substrate interactions allow for adhesive bonding between 19 

gel and surface, and stabilize polymer-polymer entanglements where polymer mobility 20 

is possible. In the flow-through model (figure 5), formulations have greater adhesion to 21 

hydrogel and mucosa than to PTFE. This is likely a result of polymer entanglement with 22 

the surfaces, and concomitant formation of non-covalent bonds. Both 20 mol% AGA 23 

and 100 mol% HEMA are good mimics of buccal tissue using this method, with 20 24 

mol% AGA performing marginally better. Adhesion to 20 mol% AGA is consistently 25 
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lower than to 100 mol% HEMA, which may be attributed to greater swelling degrees, or 1 

an increased hydrophilicity modulating formulation-hydrogel interactions. It is 2 

conceivable that the lower hydrophilicity of 100 mol% HEMA indicates that 3 

hydrophobic interactions improve mucoadhesion, but this is confounded by factors such 4 

as competition for hydrogen-bonding groups with water.  5 

 6 

[FIGURE 6 HERE] 7 

Figure 6. An overview of the factors dictating the mucoadhesion of semi-solids. 8 

 9 

4. Concluding remarks 10 

Reducing the use of animals in research is a key goal of many researchers worldwide. 11 

The development of mucoadhesive formulations typically requires the use of ex vivo 12 

animal tissue, which could be reduced were there a validated synthetic substrate capable 13 

of mimicking mucosa. The adhesion of thermogelling semi-solid formulations to 20 14 

mol% AGA, a potential mucosa-mimetic material, 100 mol% HEMA, buccal mucosa 15 

and controls has been studied with the aim of supporting the use of 20 mol% AGA 16 

hydrogels as mucosa-mimetic materials. A 20 mol% AGA hydrogel was shown to be a 17 

good surrogate for buccal mucosa using two methods of studying mucoadhesion. 18 

Controls also allow for study of mucoadhesive interactions, indicating that 19 

mucoadhesion occurs in these dosage forms largely as a result of polymer entanglement 20 

and polymer-surface interactions, and is not simply governed by the rheology of the 21 

dosage forms. 22 

 23 
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 1 
 2 
Figure 1. ATR-FTIR spectra of 100 % HEMA (green) and HEMA:AGA (80:20 mol%) 3 

(blue) hydrogels after drying. 4 

 5 

6 
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 1 
Figure 2. Flow rheograms for a) pluronic, b) F1, c) F2, and d) F3 formulations with 2 

(orange circles) and without (black circles) 1 mg/g FITC-dextran (10 kDa). Data 3 

presented as mean ± standard deviation (N = 3).  4 

 5 

6 
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 1 
Figure 3. Modifications made to a texture analyser allow for testing substrates 2 

(hydrogels, mucosa, and polypropylene) to be pressed against thermogelling semisolid 3 

formulations (a). Removal of the testing substrate from the formulations (b) gives a 4 

force-time curve from which values of force and work of adhesion can be measured (c). 5 
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Figure 4. Force (a) and work (b) of adhesion of thermogelling formulations to 2 

hydrogels, buccal mucosa, and polypropylene, as determined by texture analysis. Data 3 

represented as mean ± standard deviation (N = 6). “ns” designates no statistical 4 

significance, * indicates p < 0.05, and *** indicates p < 0.001, using two-way ANOVA 5 

with Bonferroni post-hoc. 6 
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Figure 5. The retention of FITC-dextran labelled pluronic (a), F1 (b), F2 (c), and F3 (d) 2 

formulations on 100 mol% HEMA, 20 mol% AGA, buccal mucosa, and PTFE, using a 3 

flow-through method. Data presented as mean ± standard deviation (N = 3). “ns” 4 

designates no statistical significance, * indicates p < 0.05, and ** indicates p < 0.01, 5 

using two-way ANOVA with Bonferroni post-hoc.  6 
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Figure 6. An overview of the factors dictating the mucoadhesion of semi-solids. 8 
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