

Biochar modification to enhance sorption of inorganics from water

Article

Accepted Version

Creative Commons: Attribution-Noncommercial-No Derivative Works 4.0

Sizmur, T. ORCID: https://orcid.org/0000-0001-9835-7195, Fresno, T., Akgül, G., Frost, H. and Moreno-Jiménez, E. (2017) Biochar modification to enhance sorption of inorganics from water. Bioresource Technology, 246. pp. 34-47. ISSN 0960-8524 doi: 10.1016/j.biortech.2017.07.082 Available at https://centaur.reading.ac.uk/71915/

It is advisable to refer to the publisher's version if you intend to cite from the work. See <u>Guidance on citing</u>. Published version at: https://doi.org/10.1016/j.biortech.2017.07.082 To link to this article DOI: http://dx.doi.org/10.1016/j.biortech.2017.07.082

Publisher: Elsevier

All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the <u>End User Agreement</u>.

www.reading.ac.uk/centaur

CentAUR

Central Archive at the University of Reading

Reading's research outputs online

Biochar modification to enhance sorption of inorganics from water

Tom Sizmur¹, Teresa Fresno², Gökçen Akgül³, Harrison Frost¹, Eduardo Moreno Jiménez^{2*}

¹Department of Geography and Environmental Science, University of Reading, Reading, RG6 6DW, UK ²Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autonoma de Madrid, 28049, Madrid, Spain

³Recep Tayyip Erdogan University, Engineering Faculty, Department of Energy Systems Engineering, 53100, Rize, Turkey

*Corresponding author: Eduardo Moreno Jiménez, Department of Agricultural and Food Chemistry, Faculty of Sciences, Universidad Autonoma de Madrid, 28049, Madrid, Spain. Phone: +34914978470; email: eduardo.moreno@uam.es

Abstract

Biochar can be used as a sorbent to remove inorganic pollutants from water but the efficiency of sorption can be improved by activation or modification. This review evaluates various methods to increase the sorption efficiency of biochar including activation with steam, acids and bases and the production of biochar-based composites with metal oxides, carbonaceous materials, clays, organic compounds, and biofilms. We describe the approaches, and explain how each modification alters the sorption capacity. Physical and chemical activation enhances the surface area or functionality of biochar, whereas modification to produce biochar-based composites uses the biochar as a scaffold to embed new materials to create surfaces with novel surface properties upon which inorganic pollutants can sorb. Many of these approaches enhanced the retention of a wide range of inorganic pollutants in waters, but here we provide a comparative assessment for Cd^{2+} , Cu^{2+} , Hg^{2+} , Pb^{2+} , Zn^{2+} , NH_4^+ , NO_3^- , PO_4^{3-} , CrO_4^{2-} and AsO_4^{3-} .

Keywords: Modification, sorption, inorganic, pollution, activation

1. Introduction

Biochar is produced by heating organic materials in the partial or total absence of oxygen (pyrolysis). The objective of biochar production is usually to generate energy or to reduce the mass or volume of waste materials. However, considerable interest has been paid to optimising the pyrolysis conditions to improve the yield (Tripathi et al., 2016) and properties (Mukherjee et al., 2011) of the resulting biochar. Biochar is resistant to degradation, has a high surface area and a considerable negative charge (Sizmur et al., 2016). It has therefore been proposed as a sustainable means to remove positively charged ions (e.g. Cd²⁺, Cu²⁺, Pb²⁺, Zn²⁺) and polar organic molecules (e.g. phenolics, halogenated compounds, solvents) from water by ion exchange, electrostatic attraction, physical sorption and precipitation (Tan et al., 2015).

There are several methodologies by which the properties of biochar can be chemically, physically or biologically modified by treating the feedstock or, more commonly, the resulting biochar (Rajapaksha et al., 2016). These methodologies include treatments with steam, acids, bases, metal oxides, carbonaceous materials, clay minerals, organic compounds, and biofilms. The objectives of these treatments are broadly to either, (i) increase the surface area of the biochar, (ii) modify or enhance the surface properties of the biochar, or (iii) use the surface as a platform to embed another material (or organism) with beneficial surface properties. The tools available to modify biochars increase the breadth of chemical pollutants which can be removed from water using biochar.

This review will provide an introduction to common inorganic pollutants, describe the surface properties of unmodified biochar, introduce the various modification approaches, explain how the pyrolysis process and the modifications alter the surface properties of biochar, and demonstrate how these modifications enhance the removal of inorganic contaminants from aqueous solutions.

2. Common inorganic pollutants in water

The prevention and remediation of freshwater pollution is one of the greatest global challenges facing humanity in the 21st century (Dudgeon et al., 2006). Anthropogenic disruption of biogeochemical cycling of elements has increased the concentrations, or changed the chemical form, of several elements in terrestrial ground and surface waters. The inorganic contaminants of primary concern are classified by their chemical behavior and discussed below. Efficient, sustainable, and cost-effective remediation strategies for these elements are urgently required.

Potentially toxic elements, such as As, Cd, Cr, Cu, Hg, Pb and Zn are often present discharges from mining and smelting, sewage treatment, road runoff and the manufacture of batteries, pigments and dyes, electronics and alloys (Moore & Ramamoorthy, 2012). In sufficient concentrations, these elements can cause ecotoxicological effects to freshwater ecology and can bioaccumulate through food webs resulting in chronic toxicity to higher tropic levels, including humans. Most of these elements (Cd, Cu, Hg, Pb, and Zn) occur primarily in the environment as divalent cations. Cd and Zn have a larger radius and thus a lower charge-to-radius ratio and lower ionic potential than Cu, Hg and Pb. For this reason, Cu, Hg and Pb more readily form bonds with functional groups on surfaces and are thus less mobile than Cd and Zn.

Concentrations of nutrients (NH_4^+ , NO_3^- and PO_4^{3-}) are elevated in surface and ground waters globally, largely due to sewage effluent and inefficient application of agricultural fertilizers, (Mueller & Helsel, 1996). The elevated nutrient status of freshwater discharges to oceans causes ecological damage in estuaries and coastal zones by promoting harmful algal blooms, and reducing dissolved oxygen concentrations, resulting hypoxic 'dead zones' (Conley et al., 2009).

While NH_4^+ is positively charged and is attracted to the negatively charged surfaces, it has a much lower charge-to-radius ratio than the metal cations discussed above. NH_4^+ thus behaves similarly to alkali metal cations (e.g. Na^+ , K^+) and so does not form as stable bonds with surfaces as the divalent metal cations. Unlike NH_4^+ , NO_3^- and PO_4^{3-} are oxyanions with contrasting behavior to each other. Both are negatively charged and therefore attracted to positively charged surfaces but NO_3^- is much more mobile than PO_4^{3-} , which readily binds to colloids in water.

As and Cr are redox sensitive elements that exhibit contrasting changes to mobility and toxicity in response to changes in redox conditions. Inorganic As can be found in the environment as pentavalent arsenate, As(V), or as trivalent arsenite, As(III). Arsenate (AsO₄³⁻) is found in aerobic environments, and arsenite (AsO₃³⁻), which is more toxic to humans, is more mobile, and occurs in anaerobic conditions, including groundwater (Moore & Ramamoorthy, 2012). The use of naturally occurring As contaminated groundwater as drinking water and to irrigate rice paddies has resulted in widespread poisoning of human populations, especially in Bangladesh. Cr can be found as trivalent Cr(III) and hexavalent Cr(VI). In contrast to As, the reduced species, Cr(III) is considered a beneficial element in humans as it enhances insulin production, whereas Cr(VI), usually present as chromate (CrO₄²⁻) or dichromate (Cr₂O₇²⁻) is a strong oxidising agent, is carcinogenic, and is more mobile and much more toxic than Cr(III) (Kotaś & Stasicka, 2000). Chromium most notoriously contaminates surface waters due to discharge of tannery effluent.

To reduce the concentrations of these inorganic contaminants of concern in aquatic ecosystems it is essential to treat point source discharges of agricultural, domestic and industrial wastewater before disposal into the freshwater environment. Current wastewater treatment technologies to remove inorganic contaminants are costly, energy intensive, and require disposal of resulting toxic waste (Shannon et al., 2008). These limitations of the

currently available technologies provide a demand for an efficient, selective, cost-effective adsorbent material. The modification of biochar could provide the versatile, low cost and sustainable solution to point source pollution of freshwater with inorganic pollutants.

3. How biochar properties influence the sorption of inorganic pollutants from aqueous solutions

Biochar can be used as a sorbent to remove pollutants from water and may be removed from solution when saturated, treated appropriately and replaced with new or recycled biochar. There are several mechanisms responsible for the high sorption capacity of biochar for specific pollutants.

Biochars have a high surface area due to a large distribution of micro or mesopores. The greater the number of micropores, the greater the surface area of the biochar and the more surface sites upon which pollutants can adsorb. Several authors have observed a relationship between pollutant adsorption capacities and biochar surface area (Kim et al., 2013; Tan et al., 2015).

Surface functionality also affects biochar sorption capacity (Fletcher et al., 2014; Niu et al., 2017). Sorption of inorganic pollutants by biochar is a result of (i) stoichiometric ionic exchange, (ii) electrostatic attraction, or (iii) surface precipitation (Beesley et al., 2015; Gomez-Eyles et al., 2013; Sizmur et al., 2016).

(i) Chemical sorption occurs due to ion exchange with the abundant functional groups on the carbonaceous surface of biochar, such as carboxylic, hydroxylic or phenolic groups (Lee et al., 2010; Liang et al., 2006). These groups confer cation exchange capacity (CEC) to biochar depending on feedstock and pyrolysis temperature, with a peak of CEC at around 350-400 °C (Gomez-Eyles et al., 2013), probably due to the loss of oxygenated functional groups above this temperature (Lee et al., 2010). Chemical sorption of cations relies on releases of protons and base cations (Na, K, Ca or Mg) from the biochar (Uchimiya et al., 2010). Since chemical

sorption is stoichiometric, sorption efficiency is pH dependent and thus dictated by the pH of the medium.

(ii) Physical (electrostatic) sorption occurs between positively charged ions in water and the delocalised cloud of electrons associated with aromatic groups on the surface of carbonaceous biochars, creating cation- π interactions with the C=C aromatic bonds (Harvey et al., 2011). Unlike chemical sorption, physical adsorption does not require stoichiometric release of cations or protons from the biochar.

(iii) Precipitation (or co-precipitation) of inorganic pollutants (particularly metal cations) with insoluble salts occurs on the surface of biochars with a high mineral ash content. For example, precipitation of Pb has been demonstrated on the surface of phosphate rich biochars derived from manures (Cao et al., 2009). Biochar may also raise the pH of the solution (depending on its starting pH), leading to the precipitation of metal (hydr)oxides, which are generally sparingly soluble.

Surface area and functionality can be manipulated by the modification of biochar to enhance sorption capacities for specific pollutants. Modifications often have the objective of increasing the anion sorption capacity while activation usually increases the metal cation sorption capacity of biochars. However, considerable differences in the surface area and functionality of biochars can result from altering the pyrolysis temperature.

4. Effect of pyrolysis temperature on biochar properties and sorption capacity

Although modifications of biochars (post-pyrolysis) or their feedstocks (pre-pyrolysis) can alter their physico-chemical properties, pyrolysis conditions can also affect the biochar structure and composition and thus its metal sorption capacity (Figure 1). Pyrolysis temperature influences the adsorption characteristics of biochar by changing the surface area, surface functionality, pore distribution and mineral concentration of biochar (Ahmad et al., 2012; Chen et al., 2014; Jung et al., 2016b; Kim et al., 2012). It is important to produce biochar at optimum pyrolysis temperatures to maximise inorganic contaminant adsorption.

The development of microstructure and an increase in the surface area of biochar upon increasing pyrolysis temperature has been widely observed, regardless of the feedstock used (Cantrell et al., 2012; Fletcher et al., 2014; Uchimiya et al., 2010). Fletcher et al. (2014) observed an opening of the internal structure when the pyrolysis temperature of willow biochar was \geq 450 °C. At higher temperature (\geq 550 °C), the width of mesopores increased and new micropores were created. However, Jung et al. (2016b) found a decrease in total pore volume, surface area and phosphate sorption capacity of a biochar produced from a marine macroalgae when pyrolysis temperature increased to 600 and 800 °C, likely due to blockage and collapse of the pore structures (Paethanom & Yoshikawa, 2012) by melting of the material during pyrolysis.

Biochars produced at higher temperatures often contain greater amounts of C fixed in the biochar structure (i.e. higher C content) as a result of greater loss of volatile matter at high pyrolysis temperatures (Cantrell et al., 2012; Kim et al., 2012). Increasing pyrolysis temperatures also increases the aromaticity and decreases the polarity of the biochar, so the biochar surface becomes less hydrophilic. Lower O and H contents have been reported when increasing pyrolysis temperature due to loss of surface functional groups. The decrease in oxygen-containing functional groups can affect the metals sorption capacity of biochars, as observed by Ding et al. (2014), who found higher Pb adsorption capacity of biochar when produced at lower temperature. The authors suggest that for lower temperature biochars, oxygen-containing functional groups were responsible for Pb sorption, whereas for high temperature biochars, Pb sorption was dominated by intraparticle diffusion and was thus affected by the abundant pores.

Figure 1. Conceptual model identifying the mechanisms of metal cation (e.g. Cd^{2+} , Cu^{2+} , Hg^{2+} , Pb^{2+} , Zn^{2+}) and oxyanion (e.g. PO_4^{3-} , AsO_4^{3-}) sorption to biochar pyrolysed at high temperature (>450°C) and low temperature (<450°C). High temperature biochar has a higher surface area, pores previously blocked by unpyrolysed organic matter are unblocked, and there are more aromatic groups and less oxygen containing functional groups on the biochar surface.

The yield of biochar production decreases as pyrolysis temperature increases, generally by about 10% for every temperature increase of 100 °C (Chen et al., 2014; Fletcher et al., 2014). As the pyrolysis temperature increases and the biochar yield decreases, the mineral ash content becomes more concentrated. Consequently, biochars produced at higher pyrolysis temperatures have more total, soluble and exchangeable base cations and carbonates, less

oxygenated functional groups and greater pH (Fletcher et al., 2014; Qian et al., 2013; Yuan et al., 2011). Thus, more alkaline biochar can be produced by increasing the pyrolysis temperature, which can lead to greater precipitation of metal cations (Kim et al., 2013). Chen et al. (2014) reported higher Cd removal from an aqueous solution by biochar produced with a mixture of sewage sludge and pine bark when biochar was produced at higher pyrolysis temperature. The authors suggested that Cd^{2+} sorption onto biochar was likely due to surface precipitation with Ca^{2+} and thus attributed the higher Cd removal to the enhanced cation exchange capacity in higher temperature-biochar due to concentrated alkaline-earth metals, such as Ca^{2+} , in the ash during pyrolysis.

5. Methods of modifying Biochar

Innovative methodologies for modifying biochar have been developed to enhance the adsorption of inorganic pollutants from water. Modifications are performed either pre-or postpyrolysis of the biochar (or both). Whilst pre-pyrolysis modifications involve the treatment of the biochar feedstock, post-pyrolysis modifications are more common and involve the treatment of biochar after it has already been produced. Figure 2 provides a classification system of the most common modification methods reported in the literature. The physical activation of biochar using steam and chemical activation using acidic and alkaline solutions is usually undertaken post-pyrolysis, although promising results have been reported also when chemical activation is conducted pre-pyrolysis. The production of biochar-based composites, the modification method that has received the most research attention for creating sorbents for remediation of polluted waters, is performed by embedding different materials into the biochar structure pre- or post-pyrolysis. The primary aim of all these modification methods is to enhance the efficacy by which the biochar removes pollutants from water, generally by changing its physical or chemical properties, such as surface area, or surface functionality.

Figure 2. Chart defining a classification system of biochar modification methods to physically and chemically activate biochars and produce biochar based composites

The properties of biochar can be altered by physical and chemical activation. While the acid and alkali treatments are the most common chemical activation methods, steam is the primary physical activation method. Biochar-based composites are prepared by impregnation or coating the surface of the biochar with metal oxides (Micháleková-Richveisová et al., 2017), clay minerals (Chen et al., 2017), carbonaceous structures such as graphene oxide (Shang et al., 2016) or carbon nanotubes (Inyang et al., 2015), complex organic compounds, such as chitosan (Zhou et al., 2013) or amino acids (Yang & Jiang, 2014), or inoculation with microorganisms (Frankel et al., 2016). These modification methods are explained in detail in the following sections and their impact on the sorption of selected inorganic pollutants in water are summarised in Table 1. Table 1. Effect of biochar modifications on common inorganic pollutants in water. The modifications were sorted as Physical activation with steam (Phy. A. – Steam); Chemical activation with acids or oxidants (Ch. A. - Acids/oxidants) or with bases (Ch. A. -Acids/oxidants); Biochar-based composites (Comp.) modified with metals (Metals), carbonaceous materials (C materials), electrical field (Electromodified), organic molecules (Organics) and Biofilms (microorganisms).

Target pollutant	Type of biochar modification	Treatment / Feedstock	Treatment stage	Effect on metal sorption capacity	References
Cd ²⁺	Phy. A Steam	Steam / Poultry manure)	Post-pyrolysis	+	Lima and Marshall (2005)
	Ch. A Bases	KOH / Ipomoea biomass	Post-pyrolysis	+	Goswami et al., (2016)
	Comp Metals	Fe / Several feedstocks	Post-pyrolysis	+	Mohan et al., (2014); Trakal et al., (2016)
	Comp Organics	Chitosan / Bamboo, hickory wood, sugarcane bagasse	Post-pyrolysis	+	Zhou et al., (2013)
	Comp Organics	Chitosan / Peanut hull	Post-pyrolysis	-	Zhou et al., (2013)
Zn ²⁺	Phy. A Steam	Steam / poultry manure	Post-pyrolysis	+	Lima and Marshall (2005)
Cu ²⁺	Phy. A Steam	Steam / Pine sawdust	Post-pyrolysis	=	Lou et al., (2016)
	Phy. A Steam	Steam / poultry manure	Post-pyrolysis	+	Lima and Marshall (2005)
	Ch. A Acids/oxidants	HNO ₃ / Cactus cladodes	Post-pyrolysis	+	Hadjitoffi et al., (2014)
	Ch. A Bases	KOH / Fruit peel	Post-pyrolysis	+	Hamid et al., (2014)
	Comp Metals	Mn / Corn straw	Post-pyrolysis	+	Song et al., (2014)
	Comp Organics	Amino-modification by nitrification and reduction / Commercial sawdust	Post-pyrolysis	+	Yang and Jiang, (2014)
	Comp Organics	Chitosan / Bamboo, hickory wood, sugarcane bagasse, peanut hull	Post-pyrolysis	-	Zhou et al., (2013)
Hg ²⁺	Comp C materials	Graphene oxide / Wheat straw	Pre-pyrolysis	+	Tang et al., (2015)
Pb ²⁺	Ch. A Acids/oxidants	H ₃ PO ₄ / Pine sawdust	Pre-pyrolysis	+	Zhao et al., (2017)
	Ch. A Acids/oxidants	H_2O_2 / Peanut hull hydrochar	Post-hydrothermal treatment	+	Xue et al., (2012)
	Comp Metals	Mn / Pine wood	Pre-pyrolysis	+	Wang et al., (2015a)
	Comp Metals	Mn / Pine wood	Post-pyrolysis	+	Wang et al., (2015a)
	Comp Metals	Fe / Several feedstocks	Post-pyrolysis	+	Mohan et al.,(2014); Trakal et al., (2016)

	Comp Metals	Mg / Cypress sawdust	Pre-pyrolysis	+	Jellali et al., (2016)
	Comp C materials	Carbon nanotubes / Sugarcane bagasse	Pre-pyrolysis	=	Inyang et al., (2015)
	Comp C materials	Carbon nanotubes / Hickory chips	Pre-pyrolysis	+	Inayng et al., (2015)
	Comp Organics	Chitosan / Bamboo, hickory wood	Post-pyrolysis	+	Zhou et al., (2013)
	Comp Organics	Chitosan / Sugarcane bagasse, peanut hull	Post-pyrolysis	-	Zhou et al., (2013)
	Comp Organics	Chitosan + ZVI particles / Bamboo	Post-pyrolysis	+	Zhou et al., (2014)
NH4 ⁺	Ch. A Acids/oxidants	HNO ₃ + NaOH / Corncob waste	Post-pyrolysis	+	Vu et al., (2017)
	Comp Clays	Montmorillonite / Bamboo	Pre-pyrolysis	+	Chen et al., (2017)
	Comp Clays	Bentonite / Cassava peel	Pre-pyrolysis	+	Ismadji et al., (2016)
NO ₃	Comp Metals	Mg / Several feedstocks	Pre-pyrolysis	+	Zhang et al., (2012)
PO4 ³⁻	Comp Metals	Fe / Several feedstocks	Post-pyrolysis	+	Ren et al., (2015); Micháleková-Richveisová et. al (2017)
	Comp Metals	Fe / Several feedstocks	Pre-pyrolysis	+	Cai et al.,(2017); Chen et al., (2011)
	Comp Metals	Mg / Several feedstocks	Pre-pyrolysis	+	Yu et al.,(2016); Zhang et al., (2012)
	Comp Metals	Mg-enriched tomato	Pre-pyrolysis	+	Yao et al., (2013)
	Comp Metals	Ca / Ramie biomass	Pre-pyrolysis	+	Liu et al., (2016)
	Comp Electromodified	Al electrode / Laminaria japonica	Pre-pyrolysis	+	Jung et al.,(2015a; 2015b; 2016a)
	Comp Clays	Montmorillonite / Bamboo	Pre-pyrolysis	+	Chen et al., (2017)
	Comp Clays	Layered double hydroxides / Cotton wood	Post-pyrolysis	+	Zhang et al., (2013b)
	Comp Organics	Chitosan + ZVI particles / Bamboo	Post-pyrolysis	+	Zhou et al., (2014)
	Comp Microorganisms	Indigenous microbial community / Several feedstocks	Post-pyrolysis	+	Frankel et al., (2016)
As (V)	Ch. A Bases	KOH / Municipal solid wastes	Post-pyrolysis	+	Jin et al., (2014)
	Comp Metals	Fe / Several feedstocks	Pre-pyrolysis	+	Hu et al,(2015); Zhang et

					al.,(2016); Zhang et al., (2013a)
	Comp Metals	Fe / Several feedstocks	Post-pyrolysis	+	Agrafioti et al.,(2014); Fristak et al.,(2017); Wang et al.,(2015b); Wang et al., (2017b)
	Comp Metals	Magnetic gelatin / Chestnut shell	Post-pyrolysis	+	Zhou et al., (2017b)
	Comp Metals	Al / Several feedstocks	Pre-pyrolysis	+	Zhang and Gao, (2013)
	Comp Metals	Mn / Pine wood	Pre-pyrolysis	+	Wang et al.,(2015a);
	Comp Metals	Mn / Pine wood	Post-pyrolysis	+	Wang et al.,(2015a);
	Comp Metals	Mn + Ni / Pine wood	Pre- and post- pyrolysis	+	Wang et al., (2016)
	Comp Organics	Chitosan + ZVI particles / Bamboo	Post-pyrolysis	+	Zhou et al., (2014)
	Comp Microorganisms	Indigenous microbial community / Several feedstocks	Post-pyrolysis	+	Frankel et al., (2016)
	Comp Metals	Fe / Rice straw	Post-pyrolysis	+	Quian et al.,(2017); Wang et al., (2017a)
	Comp Metals	Fe / Eucalyptus	Post-pyrolysis	-	Wang et al., (2014)
Cr (VI)	Comp C materials	Graphene oxide / Hyancith	Pre-pyrolisis	+	Shang et al., (2016)
	Comp Organics	Ployethylenimine-methanol / Rice husk	Post-pyrolysis	+	Ma et al., (2014)
	Comp Organics	Chitosan / Fe-treated <i>Eichhornia crassipes</i>	Post-pyrolysis	+	Zhang et al., (2015)
	Comp Organics	Chitosan + ZVI particles / Bamboo	Post-pyrolysis	+	Zhou et al., (2014)

5.1. Activation

The activation of biochar involves the use of steam or acidic or alkaline solutions to create a network of interconnecting micropores that ultimately increases the surface area upon which metal cations can chemically or physically adsorb. Physical activation methods force high temperature steam through the pores of the biochar, which increases the surface area, while chemical activation methods expose the biochar to acidic or alkaline solutions which oxidise the surface and create oxygen-containing functional groups (Figure 3).

265 **5.1.1.** Physical activation

266 5.1.1.1.**Steam**

Steam activation is a common modification method used to increase the structural porosity of the biochar and remove impurities such as products of incomplete combustion. This treatment serves to increase the surface area upon which sorption can occur. Lima and Marchall (2005) produced activated biochars from poultry manure feedstocks by pyrolysing at 700 °C followed by steam activation at 800 °C with a range of water flow rates and durations. Higher flow rates and longer activation times increased the sorption of Cd, Cu and Zn on the surface of the biochar.

274 Although steam activation increases the surface area and porosity of biochar, Shim et al. (2015) found that the Cu²⁺ sorption capacity of biochar produced by slow pyrolysis of 275 276 Miscanthus at 500 °C was not significantly changed by activation with steam at 800°C. They 277 found that although steam activation of the biochar increased the surface area, the abundance 278 of functional groups decreased, alongside an increase in aromaticity. Similarly, Lou et al. 279 (2016) observed that steam activation of biochar prepared with pine sawdust increased the 280 surface area but had little effect on the characteristics of surface functional groups. The steam 281 treatment did not affect adsorption capacity for phosphate due to electrostatic repulsion by the 282 negatively charged surface of biochar. Therefore, in the context of inorganic pollutant sorption, steam activation seems to be more effective when applied prior to a secondactivation/modification step that creates functional groups, as the steam only increases the

Figure 3. Conceptual model identifying the mechanisms of metal cation (e.g. Cd^{2+} , 288 Cu^{2+} , Hg^{2+} , Pb^{2+} , Zn^{2+}) and oxyanion (e.g. PO_4^{3-} , AsO_4^{3-}) sorption to unactivated biochar 289 and biochar physically activated with steam or chemically activated with acids, 290 oxidising agents, or alkaline solutions

291 **5.1.2.** Chemical activation

292 5.1.2.1. Acids and oxidising agents

Biochar surfaces contain several functional groups (e.g. carboxyl, hydroxyl, phenol) that can chemically bond with metal cations and remove them from solution. Acid treatments provide more oxygenated functional groups on biochar surfaces and increase the potential for biochar to chemically bind positively charged pollutants through specific adsorption. The modification of biochar by exposing the surface to acidic solutions forms carboxylic groups on the biochar surface (Hadjittofi et al., 2014; Qian et al., 2013) and develops micropores that lead to an increase in the surface area (Iriarte-Velasco et al., 2016).

300 Hadjittofi et al. (2014) activated a biochar derived from cactus fibres with HNO₃ to increase the abundance of carboxylic groups on the surface since these groups act as strong Cu²⁺ 301 302 binding sites. Adsorption was shown to be pH dependent since the sorption capacity of the 303 resulting biochar was an order of magnitude greater at pH 6.5, compared to pH 3, indicating 304 chemical sorption on oxygen-containing functional groups on the biochar surface. Oxygen-305 containing functional groups were also shown to be incorporated into structure of a rice straw 306 biochar upon post-pyrolysis treatment with a mixture of H₂SO₄ and HNO₃, evidenced by 307 higher O/C ratios in the final product (Qian et al., 2013).

Acid-treatment increased the surface area, the total pore volume and volume of micropores after treatment of pine tree sawdust with diluted H_3PO_4 prior to pyrolysis (Zhao et al., 2017). The incorporation of P-O-P bonds into the C structure increased the Pb sorption capacity of the phosphoric acid-treated biochar by >20% compared to a non-treated sample due to phosphate precipitation and surface adsorption (Zhao et al., 2017).

313 Activation of biochar with strong acids can be expensive at large scale and present 314 environmental issues during the disposal of the activation media, so activation with H_2O_2 , a 315 less-expensive and cleaner product has been proposed as an alternative biochar activation 316 medium to increase sorption capacity. Huff et al. (2016) reported an increase in oxygen-317 containing functional groups in a pinewood biochar treated with H₂O₂. The cation exchange 318 capacity of the biochar treated with 30% H₂O₂ almost doubled that of an untreated biochar 319 since the oxygen-containing functional groups in the surface of biochar, which were more 320 abundant in the activated biochars, exchanged with cations in solution. Xue et al. (2012) 321 found that treating a hydrochar with a 10% H₂O₂ solution increased Pb sorption capacity 322 compared to the unmodified hydrochar and attributed the increase to a greater abundance of 323 carboxyl functional groups that can form complexes with Pb. Although Xue et al. (2012) 324 observed similar mineral compositions in activated and unactivated biochars, the introduction 325 of acid or oxidising agents dissolves mineral components from within the biochar structure 326 and removes them from the biochar matrix. These minerals (e.g. P, Ca, Mg, K, Na,) are 327 particularly important for the removal of metal cations from water by some biochars due to 328 precipitation (Xu et al., 2013), so some acid treatments may reduce sorption by precipitation.

329

5.1.2.2. Alkaline solutions

330 The most common alkali treatment of biochar is with Group I metal hydroxides (KOH or 331 NaOH). Activation of biochars with metal hydroxides increases adsorption by increasing 332 porosity and surface area and by creating of a greater number of oxygenated functional groups 333 on the surface of the biochar. These oxygenated functional groups provide proton donating exchange sites upon which metal cations such as Pb²⁺ chemically adsorb (Petrović et al., 334 335 2016). Goswami et al. (2016) demonstrated that activation of biochar with KOH, followed by 336 pyrolysing to 350-550 °C opened up the partially blocked pores and enlarged the diameters of 337 smaller ones. The KOH and pyrolysis increased the surface area and increased adsorption of 338 Cd from aqueous solution by surface complexation. Hamid et al. (2014) provided further 339 evidence that Cu sorption on KOH activated biochar was due to chemical adsorption, as the 340 kinetics of sorption fitted a pseudo second order model and thermodynamic studies indicated

341 a spontaneous endothermic process. The increase in surface area resulting from modification 342 of biochar with KOH also increases the adsorption of oxyanions from solution. Jin et al. 343 (2014) also reported that maximum adsorption capacity of As(V) by biochar produced from 344 municipal solid wastes was increased 1.3 times from 24 mg/g to 31 mg/g after activation with 345 2M KOH, due to an increase in surface area and the abundance of functional groups on the 346 biochar surface. Pietrzak et al. (2014) compared two activation methods using NaOH, which 347 comprised either pre- or post-pyrolysis activation of feedstock or biochar by physical mixing 348 or by impregnation with a NaOH solution. The authors reported greater surface area and a 349 higher iodine sorption capacity when activation was conducted by physical mixing of both the 350 feedstock and the biochar with solid NaOH.

351

5.2.Biochar-based composites

Biochar based composites are produced by impregnating biochar with metal oxides, clays, organic compounds or carbonaceous materials, such as graphene oxide or carbon nanotubes, or by inoculation with microorganisms, to alter the surface properties of the biochar (Figure 4). Here the biochar is essentially used as a high-surface-area scaffold to support the materials being deposited. Composites are distinguished from chemical activation because they involve the creation of completely new functional groups on surfaces that did not previously exist on the biochar or feedstock surface.

359 **5.2.1.** Metal oxides

Biochars generally have a high surface area but a negative surface charge and high pH. These properties make biochars excellent sorbents for metal cations due to specific adsorption on oxygenated functional groups, electrostatic attraction to aromatic groups and precipitation on the mineral ash components of the biochar (Beesley et al., 2015), but poor sorbents for oxyanion contaminants (e.g. NO_3^{-} , PO_4^{3-} and AsO_4^{3-}). By exploiting the high surface area of biochars as a platform to embed a metal oxide with contrasting chemical properties (and 366 usually a positive charge), biochar-based composites are capable of removing negatively 367 charged oxyanions from aqueous solutions. The objective of most methodologies to create 368 metal oxide biochar-based composites is to ensure a homogenous spread of the metal over the 369 biochar surface. The biochar is essentially used as a porous carbon scaffold upon which metal 370 oxides precipitated to increase the surface area of the metal oxide.

Figure 4. Conceptual model identifying the mechanisms of metal cation (e.g. Cd^{2+} , Cu²⁺, Hg²⁺, Pb²⁺, Zn²⁺), oxyanion (e.g. PO₄³⁻, AsO₄³⁻) and polyatomic cation (e.g. NH₄⁺) sorption to unmodified biochar and biochar modified with metal oxides, clay minerals, carbonaceous materials (graphene oxide and carbon nanotubes), microorganisms, and organic compounds.

Generally, impregnation of biochar with metal oxides is performed by soaking biochars or their feedstocks in solutions of metal nitrate or chloride salt solutions (Figure 5). The most frequently used impregnation agents in the literature are FeCl₃, Fe⁰, Fe(NO₃)₃ and MgCl₂. After soaking biochar with metal salt solutions, the biochar is heated under atmospheric conditions (i.e. not low-oxygen conditions) at temperatures 50-300 °C to allow nitrates or chlorides to be driven off as NO₂ and Cl₂ gases and convert the metal ions to metal oxides.

Agrafioti et al. (2014) demonstrated that soaking rice husk and municipal waste biomass biochars in CaO, iron powder and FeCl₃ prior to pyrolysis created Ca, Fe⁰ and Fe³⁺ modified biochars, respectively. These modifications increased the capability of the biochars to remove As(V), but not Cr(VI), from aqueous solution. This observation is supported by Fristak et al. (2017) who revealed a 20-fold increase in the sorption of As when corncob biochar was modified with Fe(NO₃)₃ after pyrolysis, but that the modification had negligible effect on sorption of the cationic lanthanide Eu.

390

Figure 5. Diagram outlining the pre-pyrolysis and post-pyrolysis procedures used to modify biochars with metal salts to create metal oxide biochar-based composites.

393

394 Most metal oxide modifications result in a reduction in the surface area of the biochar due to 395 clogging of pores with metal oxide precipitates (Rajapaksha et al., 2016; Zhou et al., 2017a). 396 Micháleková-Richveisová et al. (2017) used the same method as Fristak et al. (2017) to 397 modify biochars made from garden wood waste and wood chips as well as corncob, which resulted in a decrease in the surface area of the biochar due to the filling of micro- and 398 mesopores with Fe. However, despite the lower surface area, modification increased PO_4^{3-} 399 sorption capacity by a factor of 12 to 50 due to pH-dependent binding to positively charged 400 401 functional groups on the biochar surface.

402 Several attempts have been made to exploit the magnetic properties of Fe to create magnetic 403 biochars that are capable of removing both metal cation (Mohan et al., 2014) and oxyanion 404 pollutants (Zhou et al., 2014) from contaminated media. The magnetic property of modified 405 biochars enables the pollutant-loaded biochar to be removed from the media using a magnet. Wang et al. (2015b) created a magnetic biochar by pyrolysing pinewood biomass with 406 407 hematite, a natural iron-oxide mineral, resulting in an As sorption capacity almost double that 408 of the unmodified biochar. The modification of biochar to improve magnetic properties was 409 developed further by Zhou et al. (2017b) by coating with a magnetised gelatin. The authors 410 observed a 2.6 times increase in the maximum adsorption of As(V) from solution after 411 biochar modification, attributed to the high electrostatic affinity of As(V) to iron-oxide 412 particles and protonated oxygen-containing functional groups present on the biochar surface.

Biochar-based composites have also been produced by embedding oxides of Al, Mn and Mg on biochars and improving the sorption of both oxyanions (primarily As and P) and metal cations (particularly Pb). Zhang and Gao (2013) produced a biochar with high adsorption capacity for As and P from solution by modification with AlCl₃ to create a biochar-AlOOH nanocomposite, Wang et al. (2015a) modified biochar using MnCl₂ and found that, compared to the control, the manganese oxide-modified biochar displayed significantly improved

sorption capacitiy for As and Pb. Zhang et al. (2012) compared the modification of biochar 419 produced from 5 different feedstocks by soaking the biochar in MgCl₂ and applying further 420 421 thermal treatment at 600°C. The MgO content in the modified biochars ranged from 8.3% to 26.1%, and the increased adsorption capacity for PO_4^{3-} and NO_3^{--} was attributed to the positive 422 423 charge of the MgO that precipitated on the biochar surfaces. The potential of Mg-modification 424 to increase the adsorption potential of biochar for metal cations was further explored by Jellali et al. (2016), who compared the adsorption of lead from solution by a biochar treated with 425 426 MgCl₂ prior to pyrolysis to that of unpyrolysed cypress sawdust. The maximum adsorption 427 capacity of the Mg-modified biochar was approximately 7.4 times higher than that of the sawdust. 428

Generally the sorption of oxyanions (PO_4^{3-} and AsO_4^{3-}) on the surface of metal oxide biocharbased composites is due to chemical adsorption or electrostatic attraction to the positively charged metal oxide embedded on the surface (Ren et al., 2015; Zhou et al., 2014), whereas sorption of cationic metals is due to chemical adsorption on oxygenated functional groups on parts of the biochar that remain unmodified (Tan et al., 2015), or co-precipitation within the metal oxide lattice (Zhou et al., 2017a).

435 5.2.1.1.**Modification of living feedstock biomass**

436 Yao et al. (2013) demonstrated an innovative method of biochar modification by irrigating 437 tomato plants with Mg solution and subsequently pyrolysing the biomass to yield a Mg-rich 438 biochar with an improved adsorption capacity for PO_4^{3-} , compared to the control. The results 439 showed a strong correlation between the removal rate of P and the concentration of Mg in the 440 biochar. While interesting, this modification methodology is time consuming, and may be 441 prohibitively expensive.

442 5.2.1.2.**Electro-modification**

443 The efficiency and homogeneity of metal oxide deposition on the surface of biochar can be 444 improved by using an electric field to evenly deposit metal ions from the electrodes and the 445 electrolyte on the surface of the biochar. The application of an electrical field, using an Al 446 electrode to a solution containing a NaCl electrolyte deposited nano-sized aluminium crystals 447 of beochemite (AlOOH) on the surface of a marine macroalgae feedstock prior to pyrolysis 448 (Jung et al., 2015a). The resulting electro-modified biochar had a 45 times greater surface 449 area, and a well developed microporous structure, most likely due to the generation of strong oxidising agents (HOCl and OCl⁻) from the NaCl electrolyte. Maximum PO_4^{3-} sorption 450 451 capacity trebled, compared to the unmodified biochar. The optimum preparation parameters were later identified for this electro-modification method as a current density of 39 mA/cm², a 452 pyrolysis temperature of 584 C°, at a heating rate of 6.91 °C/min (Jung et al., 2016a). Electro-453 454 modification was further exploited by Jung et al. (2015b) to prepare Mg/Al-biochar based 455 nanocomposites by using an Al electrode and MgCl₂ as an electrolyte, which increased the PO_4^{3-} sorption capacity by a factor of ~28, compared to the previous paper. The use of electro-456 457 modification not only results in a more homogenous distribution of metal oxides over the 458 surface of the biochar, but also considerably decreases the time required to create metal oxide 459 biochar based composites from a few hours to a few minutes.

460

5.2.2. Clay minerals

Impregnation of biochars with clay minerals, such as kaolinite, montmorillonite or bentonite, can modify biochar composition and physical properties, resulting in enhanced sorption capacity for oxyanions (e.g. $PO_4^{3^-}$) and polyatomic cations (e.g. NH_4^+). To prepare clay mineral biochar-based composites, the feedstock is generally mixed with a suspension of the clay mineral prior to pyrolysis (Chen et al., 2017; Ismadji et al., 2016; Rawal et al., 2016; Yao et al., 2014). Pre-pyrolysis mixing of bamboo with clay minerals (bentonite and kaolinite)

23

467 mixed with iron sulphate resulted in the incorporation of mineral phases into the biochar 468 structure, revealed by high contents of Al, Fe and S in the modified biochar (Rawal et al., 469 2016). Similarly, Yao et al. (2014) reported increased contents of Al, Fe and Na in 470 montmorillonite and kaolinite biochar composites produced from plant biomass feedstocks 471 (bamboo, bagasse and hickory chips), indicating successful incorporation of both clay 472 minerals into the biochar structure. X-ray diffraction analysis of a bentonite biochar-based 473 composite produced by pyrolysis of cassava peel and bentonite revealed the typical basal 474 spacing of the crystalline structure of the bentonite along with the amorphous structure of the biochar, indicating that bentonite structure remained after pyrolysis (Ismadji et al., 2016). 475

476 Chen et al. (2017) observed that mixing bamboo powder with montmorillonite prior to pyrolysis increased the surface area and the pore volume and diameter, partly due to the 477 478 presence of layered montmorillonite. Layered surfaces have been observed by Scanning Electron Microscope imaging of clay modified biochar, resembling common clay structure 479 480 morphology (Yao et al., 2014). However, high pyrolysis temperatures can lead to loss of 481 structural water from the clay mineral, reducing the interlayer space of montmorillonite and ultimately reducing the pore diameter and volume of the modified biochar (Chen et al., 2017; 482 483 Ismadji et al., 2016; Rawal et al., 2016).

The increased surface area of a montmorillonite modified biochar resulted in a greater adsorption capacity for NH_4^+ and PO_4^{3-} , compared to an unmodified biochar, but showed a stronger affinity for PO_4^{3-} than for NH_4^+ (Chen et al., 2017). NH_4^+ was mainly controlled by Van der Waals forces and partially by cation exchange, whereas phosphate was adsorbed through electrostatic interaction and ionic bonding between PO_4^{3-} and cations present in the montmorillonite (Chen et al., 2017). The maximum adsorption capacity was 12.5 mg/g for NH_4^+ and 105 mg/g for PO_4^{3-} and slow-release behaviours were exhibited for both these 491 nutrients, indicating a potential market for the saturated biochar-composite as a slow-release492 fertiliser.

493 A bentonite-biochar composite produced from cassava peel and activated with CO_2 at the 494 final pyrolysis stage, presented ~150% greater sorption capacity for NH_4^+ than an unmodified 495 biochar (Ismadji et al., 2016). This increase is ascribed to enhanced physical adsorption of 496 NH_4^+ onto the surface of bentonite-biochar composite, together with its exchange with cations 497 present in the interlayer of bentonite and a more developed microporosity due to activation 498 with CO_2 .

Deposition of MgAl-layered double hydroxides (LDH), as anionic clay minerals, within the biochar matrix increased the PO_4^{3-} sorption capacity of the resulting biochar-based composite with respect to unmodified biochars and other LDHs used as adsorbents. The enhanced phosphate adsorption was due to successful deposition and separation of the LDH nanosized particles on the biochar surface and increased sorption capacity either through anion exchange or surface adsorption (Zhang et al., 2013b).

505 **5.2.3.** Coating with carbonaceous materials (graphene oxide and carbon nanotubes)

Graphene oxide is a widely used precursor for the production of graphene and has shown 506 great sorption capacity for metals, such as Cd^{2+} , Co^{2+} , Cu^{2+} , Pb^{2+} and Zn^{2+} , which chemically 507 508 bind with the oxygen-containing groups present on the graphene oxide surface (Ren et al., 509 2012; Sitko et al., 2013; Zhao et al., 2011). Graphene oxide-biochar composites have been 510 used to improve biochar sorption capacity (Shang et al., 2016; Tang et al., 2015). These 511 composites are prepared by impregnation of the feedstock in a graphene oxide suspension 512 before pyrolysis, which generally increases the surface area and creates more oxygencontaining functional groups than the unmodified biochar due to the incorporation of the 513 514 graphene structure in the composite after pyrolysis (Shang et al., 2016; Tang et al., 2015).

Shang et al. (2016) found that Cr(VI) removal efficiency from aqueous solution by graphene 515 516 oxide biochar-based composite prepared from hyacinth biomass was considerably higher than 517 that of an unmodified biochar. The authors suggested that Cr(VI) sorption onto the composite was likely via electrostatic attraction of Cr(VI) coupled with Cr(VI) reduction to Cr(III) and 518 519 Cr(III) complexation (Shang et al., 2016). Tang et al. (2015) mixed wheat straw with a 520 suspension of graphene oxide at different biomass: graphene oxide ratios (0.1%, 0.5% and 521 1%) prior to slow pyrolysis at 600 °C and studied the graphene oxide-biochar composite sorption characteristics for Hg^{2+} in aqueous solution. The Hg^{2+} removal efficiency increased 522 523 with increasing the proportions of graphene oxide in the composite, with the highest load of graphene oxide (1%) removing 8.7% more Hg^{2+} from solution than the unmodified biochar. 524 Fourier transform infrared spectroscopy indicated that mercury was primarily bound by 525 526 oxygen-containing functional groups on the graphene oxide-biochar composite.

527 Biochar coated with carbon nanotubes (CNT) has been also synthesized and evaluated for its 528 metal cation sorption capacity (Inyang et al., 2014; Inyang et al., 2015). For the CNT-biochar 529 composites preparation, the biomass feedstock (sugarcane bagasse or hickory chips) was 530 mixed with a CNT suspension, stirred, and oven-dried prior to pyrolysis. CNT were 531 successfully incorporated to the biochar structure, resulting in higher surface area and pore 532 volume and increasingly negatively charged surface with increasing CNT loading (Invang et al., 2014). Improvement of Pb^{2+} sorption capacity with the CNT coating treatment was only 533 534 observed when hickory was used as a feedstock, whereas no effect was found for the 535 sugarcane biochar (Inyang et al., 2015). However, mixing the CNT with a surfactant (sodium dodecyl benzene sulfonate) prior to biomass impregnation improved the Pb²⁺ removal 536 efficiency of both CNT-biochar composites (Invang et al., 2015). Pb²⁺ was likely adsorbed 537 through interaction (chemical binding or electrostatic attraction) with oxygen-containing 538 539 groups in CNT-biochar composite surface (Invang et al., 2015).

540 5.2.4. Microorganisms

541 Biochar provides a high surface area inert material to support the colonisation and growth of 542 biofilms with desirable properties. The inoculation of microorganisms onto the surface of 543 biochars has primarily been attempted to facilitate the biodegradation of organic 544 contaminants, which is beyond the scope of this review. However, alongside biodegradation 545 of naphthenic acids, Frankel et al. (2016) observed biosorption of metals from solution by 546 biofilms on biochars colonised by microorganisms isolated from oil sands process water. 547 Sorption of P and As was up to 6 and 7 times greater than uncolonised biochar, respectively, and up to 4 or 5 times greater than colonised and sterilised biochar. 548

5.2.5. Organic compounds

Biochars can be modified post-pyrolysis with organic compounds with functional groups that are capable of creating strong bonds with both the surface of the biochar and also pollutants from solution. Incorporation of amino groups onto the surface of biochar can enhance the pollutant sorption capacity by inducing strong complexation with the amino moieties. This modification can be achieved either by simple chemical reactions (Yang & Jiang, 2014) or by mixing biochars with polymers rich in amino groups, such as polyethylenimine or chitosan (Ma et al., 2014; Zhang et al., 2015; Zhou et al., 2014; Zhou et al., 2013).

557 Yang and Jiang (2014) prepared an amino-modified biochar with a commercial saw dust 558 biochar by nitrification through electrophilic substitution reaction, using HNO_3 and H_2SO_4 , 559 followed by reduction with Na₂S₂O₄. Although no significant differences in the physical 560 structure were found between the modified and unmodified biochar, the surface of the modified biochar had more functional groups, especially those associated to the amino 561 moieties. The amino-modification resulted in 5 times greater Cu²⁺sorption capacity which was 562 strongly complexed by the amino groups present on the modified biochar surface (Yang & 563 Jiang, 2014). 564

27

A rice-husk biochar, pre-treated with acid or alkali solutions, modified by mixing with polyethylenimine (PEI)/methanol solution, had a greater abundance of functional groups on its surface and was richer in N and O, confirming the incorporation of PEI to the structure (Ma et al., 2014). The presence of more amine functional groups enhanced the sorption capacity of the modified biochar for Cr(VI), which was partially reduced to Cr(III) during adsorption (Ma et al., 2014).

571 Zhou et al. (2013) prepared chitosan-biochar composites by mixing biochars produced from 572 bamboo, sugarcane bagasse, hickory wood and peanut hull feedstocks with an acid chitosan 573 solution. The composites had a smaller surface area than the unmodified biochars, probably 574 due to the pore blockage by the incorporation of chitosan in the biochar structure, which was 575 confirmed by higher N, H and O contents. Generally, modification with chitosan increased the 576 metal cation sorption capacity of biochars, although some exceptions were found probably 577 related to the lower surface area. Pb adsorption isotherms of chitosan modified bamboo 578 biochar and characterisation Pb-laden composites suggested that Pb was adsorbed primarily 579 due to an interaction with amine functional groups of chitosan (Zhou et al., 2013).

580 Chitosan has been also applied to improve the impregnation of biochars with metal oxides to 581 produce magnetic biochars (Zhang et al., 2015; Zhou et al., 2014). When mixed with a γ -582 Fe₂O₃-biochar composite, more functional groups were incorporated into the chitosan- y-583 Fe₂O₃-biochar composite, which showed promising results concerning Cr(VI) sorption from aqueous solution (Zhang et al., 2015). Similarly, a modified biochar produced using bamboo 584 585 biochar, chitosan and zero valent iron (ZVI) particles at various ratios, showed much higher removal efficiency for Pb⁺², Cr(VI), As(V) and P than the unmodified biochar (Zhou et al., 586 587 2014). Coating biochar with chitosan alone (with no ZVI addition) enhanced the removal efficiency of Pb⁺² and Cr(VI) due to the complexation capacity of the amine functional groups 588 589 of chitosan, but the presence of ZVI further improved the removal of these metals. Whereas the chitosan-only modified BC showed no sorption capacity for As(V) and P, the presence of
ZVI in the composite greatly increased the removal efficiency of As(V) and P, likely
adsorbed by electrostatic interactions with ZVI particles (Zhou et al., 2014).

593 **6.** Future work

594 Further development work will mainly optimise the choice of feedstock, pyrolysis 595 temperature, and conditions under which biochars are modified (e.g. temperature, rate, concentration and choice of chemical compound, solid:solution ratio, mixing) in order to 596 597 obtain a versatile suite of enhanced biochars with highly predictable properties that can be 598 applied to multiple remediation scenarios. New developments should seek to find 599 compromises between the biochar feedstock, modification method and sorption performance 600 that minimises costs and maximises the breadth of technical applicability, while maintaining 601 long-term performance.

602 Biochar modification will inevitably raise the production costs, thus the profitability of using 603 modified biochars compared to other materials, such as activated carbons, as adsorbents should be analysed for each specific case. The production and application costs of biochar as 604 605 adsorbent for pollutants in aqueous solutions depends on multiple factors that present some 606 uncertainties and can vary considerably. These include the origin and availability of the 607 feedstock; preparation of the raw material (cleaning, drying); costs of biochar production, 608 which will depend largely on pyrolysis conditions (slow vs fast, temperature); distribution 609 costs; the environmental impact and lifetime and regeneration after use (Alhashimi & Aktas, 610 2017). The economical assessment of using any adsorbent should also consider its efficiency 611 for a given contaminant or material. Physical activation of biochar would increase the energy 612 consumption costs, whereas chemical activation and production of biochar-based composites 613 would also include the price of reagents (Banerjee et al., 2016). In these cases, a particularly 614 challenging aspect of future optimisation is to decrease the quantity of chemicals required to

29

activate or modify the biochar produced to minimise costs of production while maintainingmaximum sorption capacity by optimising the biochar:modifying agent ratio .

There is a considerable opportunity to develop biochars that act as scaffolds for nanoadsorbents which have received increasing research attention recently (Kyzas & Matis, 2015). Creating biochar-based nano-adsorbents would offer a huge potential to develop adsorbent nano-materials with a high surface area and a specific surface functionality while using as little materials as possible.

The stability of biochar-based composite modifications over time should be monitored in future experiments as some of the materials imbibed in the biochar matrix (e.g. metal compounds, C nanotubes, organic compounds) can leach away from the biochar if they are not well fixed. To address this issue, leaching tests are required. One scenario worthy of investigation is the stability of metal-biochar composites in acidic solutions (pH 4-5), to determine whether metals are released from the biochar matrix.

628 Another gap is the ecotoxicology of these new biochar formulations. Biochar itself has been 629 shown to be good for environmental applications, but sometimes has been shown to contain 630 toxic compounds (Soudek et al., 2016). Modifying or activating the biochar leads to chemical 631 and physical changes that could potentially increase the toxicity (reactivity, presence of 632 nanoparticles, metals, etc). For example, Shim et al. (2015) pointed out that activated biochars 633 can induce toxicity to Daphnia magna. To ensure environmental protection, the toxicity of 634 modified biochars needs to be evaluated to avoid undesirable impacts to aquatic organisms 635 (Gonçalves et al., 2016).

Also important is the sustainability of modified biochars and how they may contribute to the
circular economy. A considerable challenge facing the designers of biochars and activated or
modified biochars is to enable the regeneration and re-use of the sorbent so that the 'pollutant'

can be desorbed from the biochar surface and recovered. The biochar may then be used to 639 640 adsorb more pollutants from water. This is particularly important when considering disposal 641 of biochar after it has been used to remediate water. If the saturated biochar is considered 642 hazardous waste then disposal may be costly and so a re-usable sorbent offers environmental 643 and economic advantages. If the inorganic pollutant loaded on the biochar cannot be 644 efficiently desorbed and recovered then the saturated biochar may still be used as a resource. 645 For example, P and N saturated modified biochars could be of potential use in agriculture 646 (cropping) or ecological restoration (revegetation) as a slow release fertiliser when applied to soils (Ismail & Hameed, 2016; Roy, 2016). Accordingly, biochars containing Cu or Zn may 647 648 be useful as micronutrient fertilisers.

649 **7.** Conclusions

650 The development of methods to modify biochars to enhance their inorganic pollutant sorption 651 capacity or to expand the breadth pollutants that they can be removed from aqueous solution 652 is in its infancy. Physical and chemical activation of biochar can increase the surface area and increase the abundance of oxygenated functional groups to increase cation adsorption. 653 654 Embedding materials on the surface of biochar can alter the properties of the surface by 655 creating biochar-based composites, enabling the adsorption of different pollutants. Research 656 into biochar-based composites have primarily been progressed by embedding iron or 657 manganese oxides to increase oxyanion sorption capacity.

The E-supplement contains a table which classifies the inorganic contaminants of primary concern classified by their chemical behavior and includes citations to peer reviewed articles that identify their sources in water.

31

661 8. Acknowledgements

662 This research did not receive any specific grant from funding agencies in the public,

- 663 commercial, or not-for-profit sectors. However, EMJ and GA are thankful to the Cooperation
- 664 Program UAM-Banco Santander, grant no. 2017/ASIA/07.

665

666 9. References

- Agrafioti, E., Kalderis, D., Diamadopoulos, E. 2014. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions. *Journal of Environmental Management*, 146, 444-450.
- Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.-K., Yang, J.E., Ok, Y.S. 2012.
 Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar
 properties and TCE adsorption in water. *Bioresource technology*, **118**, 536-544.
- Alhashimi, H.A., Aktas, C.B. 2017. Life cycle environmental and economic performance
 of biochar compared with activated carbon: A meta-analysis. *Resources, Conservation and Recycling*, 118, 13-26.
- 676 4. Banerjee, S., Mukherjee, S., LaminKa-ot, A., Joshi, S., Mandal, T., Halder, G. 2016.
 677 Biosorptive uptake of Fe 2+, Cu 2+ and As 5+ by activated biochar derived from
 678 Colocasia esculenta: Isotherm, kinetics, thermodynamics, and cost estimation. *Journal of*679 *advanced research*, 7(5), 597-610.
- Beesley, L., Moreno-Jimenez, E., Fellet, G., Carrijo, L., Sizmur, T. 2015. Biochar and heavy metals. in: *Biochar for Environmental Management: Science and Technology*,
 (Eds.) J. Lehmann, S. Joseph, Routledge. Abingdon, UK.
- 683 6. Cai, R., Wang, X., Ji, X., Peng, B., Tan, C., Huang, X. 2017. Phosphate reclaim from simulated and real eutrophic water by magnetic biochar derived from water hyacinth.
 685 *Journal of Environmental Management*, 187, 212-219.
- Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., Ro, K.S. 2012. Impact of
 pyrolysis temperature and manure source on physicochemical characteristics of biochar. *Bioresource technology*, 107, 419-428.
- 689 8. Cao, X., Ma, L., Gao, B., Harris, W. 2009. Dairy-manure derived biochar effectively
 690 sorbs lead and atrazine. *Environmental science & technology*, 43(9), 3285-3291.
- 691 9. Chen, B., Chen, Z., Lv, S. 2011. A novel magnetic biochar efficiently sorbs organic
 692 pollutants and phosphate. *Bioresource technology*, 102(2), 716-723.
- 693 10. Chen, L., Chen, X.L., Zhou, C.H., Yang, H.M., Ji, S.F., Tong, D.S., Zhong, Z.K., Yu,
 694 W.H., Chu, M.Q. 2017. Environmental-friendly Montmorillonite-Biochar Composites:
 695 Facile Production and Tunable Adsorption-Release of Ammonium and Phosphate.
 696 *Journal of Cleaner Production*.
- Chen, T., Zhang, Y., Wang, H., Lu, W., Zhou, Z., Zhang, Y., Ren, L. 2014. Influence of
 pyrolysis temperature on characteristics and heavy metal adsorptive performance of
 biochar derived from municipal sewage sludge. *Bioresource technology*, 164, 47-54.

700 12. Conley, D.J., Paerl, H.W., Howarth, R.W., Boesch, D.F., Seitzinger, S.P., Havens, K.E., 701 Lancelot, C., Likens, G.E. 2009. Controlling eutrophication: nitrogen and phosphorus. 702 Science, 323(5917), 1014-1015. 703 13. Ding, W., Dong, X., Ime, I.M., Gao, B., Ma, L.Q. 2014. Pyrolytic temperatures impact 704 lead sorption mechanisms by bagasse biochars. Chemosphere, 105, 68-74. 705 14. Dudgeon, D., Arthington, A.H., Gessner, M.O., Kawabata, Z.I., Knowler, D.J., Lévêque, 706 C., Naiman, R.J., Prieur-Richard, A.H., Soto, D., Stiassny, M.L. 2006. Freshwater 707 biodiversity: importance, threats, status and conservation challenges. *Biological reviews*, 708 **81**(2), 163-182. 709 15. Fletcher, A.J., Smith, M.A., Heinemeyer, A., Lord, R., Ennis, C.J., Hodgson, E.M., 710 Farrar, K. 2014. Production factors controlling the physical characteristics of biochar 711 derived from phytoremediation willow for agricultural applications. *BioEnergy Research*, 712 7(1), 371-380. 713 16. Frankel, M.L., Bhuiyan, T.I., Veksha, A., Demeter, M.A., Layzell, D.B., Helleur, R.J., 714 Hill, J.M., Turner, R.J. 2016. Removal and biodegradation of naphthenic acids by 715 biochar and attached environmental biofilms in the presence of co-contaminating metals. 716 Bioresource technology, 216, 352-361. 717 17. Frišták, V., Micháleková-Richveisová, B., Víglašová, E., Ďuriška, L., Galamboš, M., Moreno-Jimenéz, E., Pipíška, M., Soja, G. 2017. Sorption separation of Eu and As from 718 719 single-component systems by Fe-modified biochar: kinetic and equilibrium study. 720 Journal of the Iranian Chemical Society, 14(3), 521-530. 721 18. Gomez-Eyles, J.L., Beesley, L., Moreno-Jimenez, E., Ghosh, U., Sizmur, T. 2013. The 722 potential of biochar amendments to remediate contaminated soils. Biochar and Soil 723 Biota, 4, 100-133. 724 19. Gonçalves, S.P.C., Strauss, M., Delite, F.S., Clemente, Z., Castro, V.L., Martinez, D.S.T. 725 2016. Activated carbon from pyrolysed sugarcane bagasse: Silver nanoparticle modification and ecotoxicity assessment. Science of The Total Environment, 565, 833-726 727 840. 728 20. Goswami, R., Shim, J., Deka, S., Kumari, D., Kataki, R., Kumar, M. 2016. 729 Characterization of cadmium removal from aqueous solution by biochar produced from 730 Ipomoea fistulosa at different pyrolytic temperatures. Ecological Engineering, 97, 444-731 451. 732 21. Hadjittofi, L., Prodromou, M., Pashalidis, I. 2014. Activated biochar derived from cactus 733 fibres – Preparation, characterization and application on Cu(II) removal from aqueous 734 solutions. Bioresource technology, 159, 460-464. 735 22. Hamid, S.B.A., Chowdhury, Z.Z., Zain, S.M. 2014. Base catalytic approach: A promising technique for the activation of biochar for equilibrium sorption studies of 736 737 copper, Cu (II) ions in single solute system. *Materials*, 7(4), 2815-2832. 738 23. Harvey, O.R., Herbert, B.E., Rhue, R.D., Kuo, L.-J. 2011. Metal interactions at the 739 biochar-water interface: energetics and structure-sorption relationships elucidated by 740 flow adsorption microcalorimetry. Environmental science & technology, 45(13), 5550-741 5556.

- 742 24. Hu, X., Ding, Z., Zimmerman, A.R., Wang, S., Gao, B. 2015. Batch and column sorption
 743 of arsenic onto iron-impregnated biochar synthesized through hydrolysis. *water research*,
 744 68, 206-216.
- 745 25. Huff, M.D., Lee, J.W. 2016. Biochar-surface oxygenation with hydrogen peroxide.
 746 *Journal of Environmental Management*, 165, 17-21.
- 747 26. Inyang, M., Gao, B., Zimmerman, A., Zhang, M., Chen, H. 2014. Synthesis,
 748 characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites.
 749 *Chemical Engineering Journal*, 236, 39-46.
- 750 27. Inyang, M., Gao, B., Zimmerman, A., Zhou, Y., Cao, X. 2015. Sorption and cosorption
 751 of lead and sulfapyridine on carbon nanotube-modified biochars. *Environmental Science*752 *and Pollution Research*, 22(3), 1868-1876.
- 753 28. Iriarte-Velasco, U., Sierra, I., Zudaire, L., Ayastuy, J.L. 2016. Preparation of a porous biochar from the acid activation of pork bones. *Food and Bioproducts Processing*, 98, 341-353.
- 756 29. Ismadji, S., Tong, D.S., Soetaredjo, F.E., Ayucitra, A., Yu, W.H., Zhou, C.H. 2016.
 757 Bentonite hydrochar composite for removal of ammonium from Koi fish tank. *Applied*758 *Clay Science*, 119, 146-154.
- 759 30. Ismail, Z.Z., Hameed, B.B. 2016. Sustainable Application of Agro-industrial Biomass
 760 Waste for Water Treatment: Recycling of Sunflower Seeds Hulls for Ammonium
 761 Removal. *The Journal of Solid Waste Technology and Management*, 42(4), 251-259.
- Jellali, S., Diamantopoulos, E., Haddad, K., Anane, M., Durner, W., Mlayah, A. 2016.
 Lead removal from aqueous solutions by raw sawdust and magnesium pretreated biochar:
 Experimental investigations and numerical modelling. *Journal of Environmental Management*, 180, 439-449.
- Jin, H., Capareda, S., Chang, Z., Gao, J., Xu, Y., Zhang, J. 2014. Biochar pyrolytically
 produced from municipal solid wastes for aqueous As (V) removal: Adsorption property
 and its improvement with KOH activation. *Bioresource technology*, 169, 622-629.
- Jung, K.-W., Hwang, M.-J., Jeong, T.-U., Ahn, K.-H. 2015a. A novel approach for
 preparation of modified-biochar derived from marine macroalgae: Dual purpose electromodification for improvement of surface area and metal impregnation. *Bioresource technology*, 191, 342-345.
- Jung, K.-W., Jeong, T.-U., Hwang, M.-J., Kim, K., Ahn, K.-H. 2015b. Phosphate
 adsorption ability of biochar/Mg–Al assembled nanocomposites prepared by aluminumelectrode based electro-assisted modification method with MgCl2 as electrolyte. *Bioresource technology*, **198**, 603-610.
- Jung, K.-W., Jeong, T.-U., Kang, H.-J., Chang, J.-S., Ahn, K.-H. 2016a. Preparation of
 modified-biochar from Laminaria japonica: Simultaneous optimization of aluminum
 electrode-based electro-modification and pyrolysis processes and its application for
 phosphate removal. *Bioresource technology*, 214, 548-557.
- Jung, K.-W., Kim, K., Jeong, T.-U., Ahn, K.-H. 2016b. Influence of pyrolysis
 temperature on characteristics and phosphate adsorption capability of biochar derived
 from waste-marine macroalgae (Undaria pinnatifida roots). *Bioresource technology*, 200,
 1024-1028.

- 785 37. Kim, K.H., Kim, J.-Y., Cho, T.-S., Choi, J.W. 2012. Influence of pyrolysis temperature
 on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine
 (Pinus rigida). *Bioresource technology*, 118, 158-162.
- 788 38. Kim, W.-K., Shim, T., Kim, Y.-S., Hyun, S., Ryu, C., Park, Y.-K., Jung, J. 2013.
 789 Characterization of cadmium removal from aqueous solution by biochar produced from a giant Miscanthus at different pyrolytic temperatures. *Bioresource technology*, 138, 266791 270.
- 792 39. Kotaś, J., Stasicka, Z. 2000. Chromium occurrence in the environment and methods of its
 793 speciation. *Environmental Pollution*, 107(3), 263-283.
- 794 40. Kyzas, G.Z., Matis, K.A. 2015. Nanoadsorbents for pollutants removal: a review.
 795 *Journal of Molecular Liquids*, 203, 159-168.
- 41. Lee, J.W., Kidder, M., Evans, B.R., Paik, S., Buchanan Iii, A., Garten, C.T., Brown, R.C.
 2010. Characterization of biochars produced from cornstovers for soil amendment. *Environmental Science & Technology*, 44(20), 7970-7974.
- Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O'neill, B., Skjemstad,
 J., Thies, J., Luizao, F., Petersen, J. 2006. Black carbon increases cation exchange
 capacity in soils. *Soil Science Society of America Journal*, **70**(5), 1719-1730.
- 43. Lima, I.M., Marshall, W.E. 2005. Adsorption of selected environmentally important metals by poultry manure-based granular activated carbons. *Journal of Chemical Technology and Biotechnology*, 80(9), 1054-1061.
- Liu, S.-b., Tan, X.-f., Liu, Y.-g., Gu, Y.-l., Zeng, G.-m., Hu, X.-j., Wang, H., Zhou, L.,
 Jiang, L.-h., Zhao, B.-b. 2016. Production of biochars from Ca impregnated ramie
 biomass (Boehmeria nivea (L.) Gaud.) and their phosphate removal potential. *RSC Advances*, 6(7), 5871-5880.
- Lou, K., Rajapaksha, A.U., Ok, Y.S., Chang, S.X. 2016. Pyrolysis temperature and steam
 activation effects on sorption of phosphate on pine sawdust biochars in aqueous
 solutions. *Chemical Speciation & Bioavailability*, 28(1-4), 42-50.
- Ma, Y., Liu, W.-J., Zhang, N., Li, Y.-S., Jiang, H., Sheng, G.-P. 2014. Polyethylenimine
 modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. *Bioresource technology*, 169, 403-408.
- 815 47. Micháleková-Richveisová, B., Frišták, V., Pipíška, M., Ďuriška, L., Moreno-Jimenez, E.,
 816 Soja, G. 2017. Iron-impregnated biochars as effective phosphate sorption materials.
 817 *Environmental Science and Pollution Research*, 24(1), 463-475.
- 818 48. Mohan, D., Kumar, H., Sarswat, A., Alexandre-Franco, M., Pittman Jr, C.U. 2014.
 819 Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis
 820 bio-chars. *Chemical Engineering Journal*, 236, 513-528.
- 49. Moore, J.W., Ramamoorthy, S. 2012. *Heavy metals in natural waters: applied monitoring and impact assessment*. Springer Science & Business Media.
- 823 50. Mueller, D.K., Helsel, D.R. 1996. Nutrients in the nation's waters: too much of a good thing?
- 825 51. Mukherjee, A., Zimmerman, A.R., Harris, W. 2011. Surface chemistry variations among
 826 a series of laboratory-produced biochars. *Geoderma*, 163(3–4), 247-255.

- Niu, Q., Luo, J., Xia, Y., Sun, S., Chen, Q. 2017. Surface modification of bio-char by
 dielectric barrier discharge plasma for Hg 0 removal. *Fuel Processing Technology*, 156,
 310-316.
- 830 53. Paethanom, A., Yoshikawa, K. 2012. Influence of pyrolysis temperature on rice husk
 831 characteristics and its tar adsorption capability. *Energies*, 5(12), 4941-4951.
- 832 54. Petrović, J.T., Stojanović, M.D., Milojković, J.V., Petrović, M.S., Šoštarić, T.D.,
 833 Laušević, M.D., Mihajlović, M.L. 2016. Alkali modified hydrochar of grape pomace as a
 834 perspective adsorbent of Pb2+ from aqueous solution. *Journal of Environmental*835 *Management*, 182, 292-300.
- 836 55. Pietrzak, R., Nowicki, P., Kaźmierczak, J., Kuszyńska, I., Goscianska, J., Przepiórski, J.
 2014. Comparison of the effects of different chemical activation methods on properties of
 carbonaceous adsorbents obtained from cherry stones. *Chemical Engineering Research and Design*, 92(6), 1187-1191.
- 840 56. Qian, K., Kumar, A., Patil, K., Bellmer, D., Wang, D., Yuan, W., Huhnke, R.L. 2013.
 841 Effects of biomass feedstocks and gasification conditions on the physiochemical
 842 properties of char. *Energies*, 6(8), 3972-3986.
- 843 57. Qian, L., Zhang, W., Yan, J., Han, L., Chen, Y., Ouyang, D., Chen, M. 2017. Nanoscale
 844 zero-valent iron supported by biochars produced at different temperatures: Synthesis
 845 mechanism and effect on Cr(VI) removal. *Environmental Pollution*, 223, 153-160.
- 846 58. Rajapaksha, A.U., Chen, S.S., Tsang, D.C., Zhang, M., Vithanage, M., Mandal, S., Gao,
 847 B., Bolan, N.S., Ok, Y.S. 2016. Engineered/designer biochar for contaminant
 848 removal/immobilization from soil and water: potential and implication of biochar
 849 modification. *Chemosphere*, 148(27), 6e291.
- 850 59. Rawal, A., Joseph, S.D., Hook, J.M., Chia, C.H., Munroe, P.R., Donne, S., Lin, Y.,
 851 Phelan, D., Mitchell, D.R., Pace, B. 2016. Mineral–Biochar Composites: Molecular
 852 Structure and Porosity. *Environmental science & technology*, 50(14), 7706-7714.
- 853 60. Ren, J., Li, N., Li, L., An, J.-K., Zhao, L., Ren, N.-Q. 2015. Granulation and ferric oxides
 loading enable biochar derived from cotton stalk to remove phosphate from water. *Bioresource Technology*, 178, 119-125.
- 856 61. Ren, Y., Yan, N., Feng, J., Ma, J., Wen, Q., Li, N., Dong, Q. 2012. Adsorption
 857 mechanism of copper and lead ions onto graphene nanosheet/δ-MnO 2. *Materials*858 *Chemistry and Physics*, 136(2), 538-544.
- 859 62. Roy, E.D. 2016. Phosphorus recovery and recycling with ecological engineering: A review. *Ecological Engineering*, 98, 213-227.
- 861 63. Shang, M.-r., Liu, Y.-g., Liu, S.-b., Zeng, G.-m., Tan, X.-f., Jiang, L.-h., Huang, X.-x.,
 862 Ding, Y., Guo, Y.-m., Wang, S.-f. 2016. A novel graphene oxide coated biochar
 863 composite: synthesis, characterization and application for Cr (VI) removal. *RSC*864 *Advances*, 6(88), 85202-85212.
- 865 64. Shannon, M.A., Bohn, P.W., Elimelech, M., Georgiadis, J.G., Marinas, B.J., Mayes,
 866 A.M. 2008. Science and technology for water purification in the coming decades. *Nature*,
 867 452(7185), 301-310.

- 868 65. Shim, T., Yoo, J., Ryu, C., Park, Y.-K., Jung, J. 2015. Effect of steam activation of
 biochar produced from a giant Miscanthus on copper sorption and toxicity. *Bioresource*870 *technology*, 197, 85-90.
- 871 66. Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., Gagor, A., Feist,
 872 B., Wrzalik, R. 2013. Adsorption of divalent metal ions from aqueous solutions using
 873 graphene oxide. *Dalton Transactions*, 42(16), 5682-5689.
- 874 67. Sizmur, T., Quilliam, R., Puga, A.P., Moreno-Jiménez, E., Beesley, L., Gomez-Eyles,
 875 J.L. 2016. Application of biochar for soil remediation. *Agricultural and Environmental*876 *Applications of Biochar: Advances and Barriers*(sssaspecpub63), 295-324.
- 877 68. Song, Z., Lian, F., Yu, Z., Zhu, L., Xing, B., Qiu, W. 2014. Synthesis and
 878 characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+
 879 in aqueous solution. *Chemical Engineering Journal*, 242, 36-42.
- 880 69. Soudek, P., Valseca, I.R., Petrová, Š., Song, J., Vaněk, T. 2016. Characteristics of
 881 different types of biochar and effects on the toxicity of heavy metals to germinating
 882 sorghum seeds. *Journal of Geochemical Exploration*.
- Tan, X., Liu, Y., Zeng, G., Wang, X., Hu, X., Gu, Y., Yang, Z. 2015. Application of
 biochar for the removal of pollutants from aqueous solutions. *Chemosphere*, 125, 70-85.
- Tang, J., Lv, H., Gong, Y., Huang, Y. 2015. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal. *Bioresource technology*, **196**, 355-363.
- Trakal, L., Veselská, V., Šafařík, I., Vítková, M., Číhalová, S., Komárek, M. 2016. Lead
 and cadmium sorption mechanisms on magnetically modified biochars. *Bioresource technology*, 203, 318-324.
- 891 73. Tripathi, M., Sahu, J., Ganesan, P. 2016. Effect of process parameters on production of
 biochar from biomass waste through pyrolysis: A review. *Renewable and Sustainable*893 *Energy Reviews*, 55, 467-481.
- Uchimiya, M., Lima, I.M., Thomas Klasson, K., Chang, S., Wartelle, L.H., Rodgers, J.E.
 2010. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litterderived biochars in water and soil. *Journal of Agricultural and Food Chemistry*, 58(9),
 5538-5544.
- 898 75. Vu, T.M., Doan, D.P., Van, H.T., Nguyen, T.V., Vigneswaran, S., Ngo, H.H. 2017.
 899 Removing ammonium from water using modified corncob-biochar. *Science of The Total*900 *Environment*, 579, 612-619.
- 901 76. Wang, H., Tian, Z., Jiang, L., Luo, W., Wei, Z., Li, S., Cui, J., Wei, W. 2017a. Highly
 902 efficient adsorption of Cr (VI) from aqueous solution by Fe3+ impregnated biochar.
 903 *Journal of Dispersion Science and Technology*, 38(6), 815-825.
- Wang, S.-y., Tang, Y.-k., Li, K., Mo, Y.-y., Li, H.-f., Gu, Z.-q. 2014. Combined
 performance of biochar sorption and magnetic separation processes for treatment of
 chromium-contained electroplating wastewater. *Bioresource technology*, **174**, 67-73.
- 907 78. Wang, S., Gao, B., Li, Y. 2016. Enhanced arsenic removal by biochar modified with
 908 nickel (Ni) and manganese (Mn) oxyhydroxides. *Journal of Industrial and Engineering*909 *Chemistry*, 37, 361-365.

Wang, S., Gao, B., Li, Y., Creamer, A.E., He, F. 2017b. Adsorptive removal of arsenate 910 **79.** from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and 911 continuous flow tests. Journal of hazardous materials, 322, 172-181. 912 913 80. Wang, S., Gao, B., Li, Y., Mosa, A., Zimmerman, A.R., Ma, L.Q., Harris, W.G., Migliaccio, K.W. 2015a. Manganese oxide-modified biochars: Preparation, 914 915 characterization, and sorption of arsenate and lead. Bioresource technology, 181, 13-17. 916 **81**. Wang, S., Gao, B., Zimmerman, A.R., Li, Y., Ma, L., Harris, W.G., Migliaccio, K.W. 917 2015b. Removal of arsenic by magnetic biochar prepared from pinewood and natural 918 hematite. Bioresource technology, 175, 391-395. 919 82. Xu, X., Cao, X., Zhao, L. 2013. Comparison of rice husk- and dairy manure-derived 920 biochars for simultaneously removing heavy metals from aqueous solutions: Role of 921 mineral components in biochars. Chemosphere, 92(8), 955-961. 922 **83**. Xue, Y., Gao, B., Yao, Y., Inyang, M., Zhang, M., Zimmerman, A.R., Ro, K.S. 2012. 923 Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch 924 and column tests. Chemical Engineering Journal, 200-202, 673-680. 925 Yang, G.-X., Jiang, H. 2014. Amino modification of biochar for enhanced adsorption of 926 **84**. 927 copper ions from synthetic wastewater. water research, 48, 396-405. 928 85. Yao, Y., Gao, B., Chen, J., Zhang, M., Inyang, M., Li, Y., Alva, A., Yang, L. 2013. Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato 929 930 tissues: characterization and phosphate removal potential. *Bioresource technology*, 138, 931 8-13. 932 86. Yao, Y., Gao, B., Fang, J., Zhang, M., Chen, H., Zhou, Y., Creamer, A.E., Sun, Y., 933 Yang, L. 2014. Characterization and environmental applications of clay-biochar 934 composites. Chemical Engineering Journal, 242, 136-143. Yu, P., Xue, Y., Gao, F., Liu, Z., Cheng, X., Yang, K. 2016. Phosphorus Removal from 935 **87.** Aqueous Solution by Pre-or Post-Modified Biochars Derived from Agricultural 936 Residues. Water, Air, & Soil Pollution, 227(10), 370. 937 Yuan, J.-H., Xu, R.-K., Zhang, H. 2011. The forms of alkalis in the biochar produced 88. 938 from crop residues at different temperatures. *Bioresource technology*, **102**(3), 3488-3497. 939 **89.** Zhang, F., Wang, X., Xionghui, J., Ma, L. 2016. Efficient arsenate removal by magnetite-940 941 modified water hyacinth biochar. Environmental Pollution, 216, 575-583. 942 **90.** Zhang, M.-m., Liu, Y.-g., Li, T.-t., Xu, W.-h., Zheng, B.-h., Tan, X.-f., Wang, H., Guo, Y.-m., Guo, F.-y., Wang, S.-f. 2015. Chitosan modification of magnetic biochar 943 944 produced from Eichhornia crassipes for enhanced sorption of Cr (vi) from aqueous solution. RSC Advances, 5(58), 46955-46964. 945 946 **91**. Zhang, M., Gao, B. 2013. Removal of arsenic, methylene blue, and phosphate by 947 biochar/AlOOH nanocomposite. *Chemical Engineering Journal*, **226**, 286-292. Zhang, M., Gao, B., Varnoosfaderani, S., Hebard, A., Yao, Y., Invang, M. 2013a. 948 **92.** Preparation and characterization of a novel magnetic biochar for arsenic removal. 949 950 Bioresource technology, 130, 457-462.

- 951 93. Zhang, M., Gao, B., Yao, Y., Inyang, M. 2013b. Phosphate removal ability of biochar/MgAl-LDH ultra-fine composites prepared by liquid-phase deposition. *Chemosphere*, 92(8), 1042-1047.
- 954 94. Zhang, M., Gao, B., Yao, Y., Xue, Y., Inyang, M. 2012. Synthesis of porous MgO955 biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions.
 956 *Chemical Engineering Journal*, 210, 26-32.
- 957 95. Zhao, G., Li, J., Ren, X., Chen, C., Wang, X. 2011. Few-layered graphene oxide
 958 nanosheets as superior sorbents for heavy metal ion pollution management.
 959 *Environmental science & technology*, 45(24), 10454-10462.
- 960 96. Zhao, L., Zheng, W., Mašek, O., Chen, X., Gu, B., Sharma, B.K., Cao, X. 2017. Roles of
 961 Phosphoric Acid in Biochar Formation: Synchronously Improving Carbon Retention and
 962 Sorption Capacity. *Journal of Environmental Quality*, 46(2), 393-401.
- 963 97. Zhou, L., Huang, Y., Qiu, W., Sun, Z., Liu, Z., Song, Z. 2017a. Adsorption Properties of
 964 Nano-MnO2–Biochar Composites for Copper in Aqueous Solution. *Molecules*, 22(1),
 965 173.
- 966 98. Zhou, Y., Gao, B., Zimmerman, A.R., Chen, H., Zhang, M., Cao, X. 2014. Biochar967 supported zerovalent iron for removal of various contaminants from aqueous solutions.
 968 *Bioresource technology*, 152, 538-542.
- 969 99. Zhou, Y., Gao, B., Zimmerman, A.R., Fang, J., Sun, Y., Cao, X. 2013. Sorption of heavy
 970 metals on chitosan-modified biochars and its biological effects. *Chemical Engineering*971 *Journal*, 231, 512-518.
- P72 100. Zhou, Z., Liu, Y.-g., Liu, S.-b., Liu, H.-y., Zeng, G.-m., Tan, X.-f., Yang, C.-p., Ding, Y.,
 P73 Yan, Z.-l., Cai, X.-x. 2017b. Sorption performance and mechanisms of arsenic (V)
 P74 removal by magnetic gelatin-modified biochar. *Chemical Engineering Journal*, 314, 223P75 231.
- 976
- 977
- 978