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Abstract

This thesis analyses a new source of observations, Mode-Select Enhanced Surveil-

lance (Mode-S EHS), obtained from reports exchanged between aircraft and air-traffic-

control. These reports contain the aircrafts speed, direction, altitude and Mach num-

ber. Observations of temperature and horizontal wind can be derived from the re-

ports. However, Mode-S EHS processing reduces the reporting precision from 16-bit

to 10-bit representation. We aim to understand the observation errors that are due to

the reduced precision of Mode-S EHS reports, how accurately these derived observa-

tions represent vertical profiles of wind and temperature and the benefit they bring to

convection-permitting NWP.

We derive new models to estimate the observation errors and validate them using

research grade instruments on board the Facility for Atmospheric Airborne Measure-

ments. For the cases studied, the temperature observation error increases from 1.25 K

to 2.5 K between an altitude of 10 km and the surface, due to its dependence on Mach

number and Mode-S EHS precision. The zonal wind error is around 0.50 ms−1 and the

meridional wind error is 0.25 ms−1. The horizontal wind is also subject to directionally

dependent systematic errors.

We aggregate Mode-S EHS reports from multiple aircraft to construct vertical pro-

files of temperature and demonstrate their ability to resolve temperature inversions.

However, there are large errors in the aggregated observations that are still dominated

by the effects of reduced precision.

We assess the benefits of Mode-S EHS for data assimilation in the Met Office

convection-permitting NWP model. We find that assimilation of Mode-S EHS has

a neutral impact. Using assimilation output statistics, we find that the observation

uncertainties for AMDAR and Mode-S EHS horizontal wind are similar in magnitude,

while for Mode-S EHS Mach temperature the diagnosed errors are similar to our new

error model.

Our new results may assist with utilising Mode-S EHS reports in operational fore-

casting.
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Chapter 1

Introduction.

1.1 Motivation

Weather impacts on airports are an important problem for society (Ball et al. 2007,

Markovic et al. 2008, Barnhart et al. 2012). Fog and low visibility conditions reduce

the capacity of airports as aircraft separations need to be increased to maintain safe

operations. This increases costs in terms of the extra fuel that must be used, loss of

revenue due to reduced capacity at airports, environmental impacts on local air quality

and noise emissions, and climate impacts due increased emissions of nitrogen oxides

and carbon dioxide (Mahashabde et al. 2011). Low level wind shear is a particular haz-

ard to an aircraft that is ascending or descending (de Villiers & White 2014, Theodore

& Caracena 1977). This may cause the pilot to lose control of an aircraft through

insufficient acceleration during ascent or to descend too quickly. Therefore, observa-

tion monitoring and accurate forecasting of these weather phenomena is important to

maintain safety of aircraft, minimise disruption to aviation operations and impacts on

the environment.

1.2 Novel Observations

Radiosondes (World Meteorological Organisation 2008, Section 12.1.3) and Aircraft

Meteorological Data Relay (AMDAR) (Stickland & Grooters 2005) are used to con-

struct vertical profiles of the horizontal wind and temperature. These observations

may provide relevant information but they are very infrequent. AMDAR reports are

made hourly or 3-hourly but depend on the participation of airlines, which operate

from specific airports. Radiosonde reports are made at 6-hourly or 12-hourly intervals.

Their launch sites are determined by the requirements of the National Weather Service.
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By contrast, observations derived from routine air-traffic communications (Boisvert &

Orlando 1993), e.g., Mode-S EHS, are available at a high temporal-frequency, every 4

to 12 seconds, and have a high spatial-density, especially within the vicinity of major

hub airports such as London Heathrow.

Mode-S EHS reports may be a useful source of wind and temperature observations

(de Haan 2011), but this is an open question and forms the basis of this thesis. Recent

studies by de Haan (2011) and Strajnar (2012) have shown that observations from

Mode-S EHS are of similar quality to those obtained from AMDAR, which are routinely

assimilated into numerical weather prediction (NWP) models. The advantage of Mode-

S EHS over AMDAR and radiosondes is its higher temporal reporting, higher spatial

density and lower operating costs. Furthermore Mode-S EHS reports may afford the

opportunity to observe and classify the evolution of the boundary layer, the region

of the atmosphere in which the adverse weather affecting airport operations tends to

occur.

1.3 Numerical Weather Prediction

Forecasting wind is difficult since this requires an accurate representation of orography,

surface characteristics, e.g., water, soil, grass, and the vertical temperature profile.

These affect the horizontal wind speed and direction, and if these vary with height,

can give rise to wind shear. A temperature inversion occurs where the temperature

increases with height rather than decreases. The altitude, time of occurrence and

its persistence may influence the formation and duration of low visibility conditions

(Jacobs et al. 2005, 2008).

Weather forecasting uses a range of tools from routine observations to computer

models of atmospheric phenomena. NWP models represent the state of the atmosphere

in space and time. The NWP model is initialised using the best estimate of the atmo-

spheric state known as an analysis (Daley 1991). The analysis is constructed through

a process known as data assimilation which combines, in an optimal way, the last best

estimate of the atmospheric state with the latest available observations (Kalnay 2003).

NWP models represent atmospheric variables, such as temperature and wind, on a

discrete grid and use a set of equations that describe physical dynamics to determine

how these variables evolve over discrete intervals of time. However, a discrete system

cannot fully represent a continuous system. So errors in the predictions increase due to

uncertainties in the measured observations (Lorenz 1963) and the representativeness of

the NWP model’s state of the atmosphere (Daley 1991). Furthermore, mathematical

modelling of some atmospheric variables is either incomplete or impractical so these
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variables are parameterized which may result in systematic errors, e.g., the onset of

convective turbulence within the boundary layer (Lock et al. 2000).

1.4 Thesis Aims

This thesis aims to address the following scientific questions about using Mode-S EHS

derived observations:

1. How accurately do observations derived from routine messages exchanged between

an aircraft and air-traffic-control represent the state of the atmosphere in terms

of the horizontal wind and ambient temperature?

2. What atmospheric phenomena within the boundary layer can be observed using

high-frequency observations derived from these routine messages?

3. What benefit does assimilation of these high-frequency observations bring to the

Met Office’s convection-permitting numerical weather prediction model?

1.5 Principle Results

The principle new results of this thesis are:

1 (a) Mode-S EHS processing reduces the precision of the aircraft’s state vector from

16-bit to 10-bit binary representation. We derive novel error models and demon-

strate that the reduced precision of the Mode-S EHS is a significant contributor

to errors in the Mode-S EHS derived temperature.

1 (b) We use full precision data from research grade instruments, on board the Facility

for Atmospheric Airborne Measurements (FAAM), to emulate Mode-S EHS re-

ports and to compare derived observations with the research grade observations.

We demonstrate the applicability of the new error models. We show the tempera-

ture observation error increases from 1.25 K to 2.5 K between an altitude of 10 km

and the surface due to its dependency on Mach number and also Mode-S EHS

precision. For the cases studied, the zonal wind error is around 0.50 ms−1 and

the meridional wind error is 0.25 ms−1. The wind is also subject to systematic

errors that are directionally dependent.

2 (a) Constructing vertical profiles of temperature and horizontal wind using Mode-

S EHS reports from multiple aircraft can reveal meteorological features, e.g.,

temperature inversion, that may assist operational meteorologists to forecast the

onset and duration of hazardous weather that may affect aviation operations.
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2 (b) The observation error standard deviation of Mode-S EHS observations combined

from multiple sources has a similar structure as that shown for the observation

error for a single source Mode-S EHS observations, which we showed in our earlier

study using the FAAM research aircraft.

3 (a) The data assimilation of Mode-S EHS observations is shown to have a neutral im-

pact on the forecasts from the Met Office’s high-resolution convection-permitting

NWP model, UKV.

3 (b) The observation error standard deviation for Mode-S EHS derived temperature

and horizontal wind was estimated using the statistics of observation-minus-

background and observation-minus-analysis output from the UKV. It was found

that the observation error standard deviation for Mode-S EHS horizontal wind is

similar to that used for AMDAR in the current operational version of the UKV

but the observation error standard deviation for Mode-S EHS temperature is un-

derestimated. This is consistent with our earlier results, showing that the noise

from Mode-S EHS processing makes a significant contribution to the observation

error standard deviation.

1.6 Thesis Outline

The rest of this thesis is organised as described in this section.

In chapter 2 we provide background knowledge that will be used throughout this

thesis. We review how we observe and model meteorological features of interest: the

temperature inversion and the low-level jet (Roach et al. 1976, Brown & Roach 1976,

Stull 1988). We introduce the current method of receiving aircraft-based observations

(Stickland & Grooters 2005) and describe a new method for obtaining observations

based on the aircraft’s Mode-S EHS state vector (de Haan 2011). Using previous stud-

ies (Benjamin & Schwartz 1999, Drue et al. 2008, Ballish & Kumar 2008), we provide

an overview of the accuracy and precision of aircraft-based observations, assess the level

of agreement between them, and their limitations. We cover briefly the trend towards

high-resolution convection-permitting NWP models and describe the Met Office imple-

mentation of such an NWP model (Clark et al. 2016). We describe the process of data

assimilation (Daley 1991, Kalnay 2003) which primes the NWP model for forecasting,

and one implementation method: 3-D Variational (3-D Var) Data Assimilation. We

compare and contrast previous data assimilation studies that have used Mode-S EHS

reports (de Haan & Stoffelen 2012, Lange & Janjic 2016) and Mode-S MRAR reports

(Strajnar et al. 2015), and assess their results. We conclude that data assimilation
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processing relies upon an accurate representation of the observation and background

errors. Misspecified errors can lead to an incorrect analysis and this would affect the

subsequent NWP model forecasts. This chapter contains extracts from Mirza et al.

(2016, sections 1 and 2).

In chapter 3 we undertake an initial study for utilising Mode-S EHS Observations,

which addresses our second thesis question. We assess whether Mode-S EHS reports

can be used to identify meteorological features of interest: a temperature inversion

and a low-level jet. These features are associated with the formation of fog. The

Mode-S EHS reports used in chapter 3 were supplied by National Air Traffic Services

(NATS), which provide air navigation services for the United Kingdom. We show how

we derive meteorological observations using these Mode-S EHS reports. Using Mode-S

EHS reports from aircraft within the vicinity of London Heathrow and London Gatwick

airports we construct vertical profiles of temperature and horizontal wind for the period

13th to 15th October 2012. We conclude that these profiles do show the meteorological

features but are subject to noise. We show how quantisation error due to reduced

precision may account for the observed noise. This chapter contains extracts from

Mirza et al. (2016, sections 3.6 and 3.7).

In chapter 4, which addresses our first thesis question, we develop novel error models

to quantify the noise due to the reduced precision. We validate these models using

in situ observations made by a research aircraft. We conclude that the observation

error in the Mode-S EHS derived temperature can be modelled using the statistics of

quantisation error, which arises as a result of processing an analogue signal to a digital

signal. The work presented in chapter 4 is published in Mirza et al. (2016, sections 3

to 7).

In chapter 5, we describe the synoptic meteorology for the period 2nd to 8th January

2015 used as a case study in later chapters. This period enjoyed calm weather conditions

at the start which broke down at the end of the period as cold fronts swept in from

the west bringing unsettled weather conditions. We use radiosonde observations and

NWP data to show that meteorological features of interest were present: temperature

inversions and low-level jets. We also describe the Met Office Mode-S EHS receiver

network (Stone & Pearce 2016) and show how these reports are distributed spatially

within the vicinity of London Heathrow and London Gatwick airports. The reports

collected by this network are used to address our thesis questions which are the subject

of chapters 6 and 7.

In chapter 6, which addresses our second and third thesis question, we revisit us-

ing Mode-S EHS reports to identify a meteorological feature of interest. The Mode-S

EHS reports used in chapter 6 were collected and disseminated using the Met Office
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network of ADS-B/Mode-S EHS receivers (Stone & Pearce 2016). We derive meteo-

rological observations using Mode-S EHS reports from aircraft within the vicinity of

London Heathrow and London Gatwick airports for the period 3rd January 2015 to

5th January 2015. This period was chosen because fog was a persistent meteorological

feature. We construct vertical profiles of aggregated observations for horizontal wind

and temperature. We compare these profiles with those obtained from AMDAR and

radiosonde. We show that the observation standard deviation of aggregated Mode-

S EHS derived temperature is similar to the statistics of quantisation error that we

identified in chapter 4.

In chapter 7, which addresses our third thesis question, we evaluate whether assimi-

lation of Mode-S EHS Mach Temperature and horizontal wind can improve the forecasts

of a convection-permitting NWP model. For this we use the Met Office Unified Model

at its 1.5 km configuration (Tang et al. 2013, Clark et al. 2016), with three dimensional

variational data assimilation (Lorenc et al. 2000) using first guess at appropriate time

(FGAT) (Lorenc & Rawlins 2005). We use the Desroziers et al. (2005) diagnostic to

estimate the observation standard deviation error of AMDAR and Mode-S EHS re-

ports for temperature and horizontal wind. We conclude that Desroziers et al. (2005)

diagnosed observation standard deviation error may be characterised by the statistics

of quantisation error that we identified in chapters 4 and 6.

In chapter 8 we summarise the work in this thesis. We draw conclusions from the

new results seen throughout the thesis and suggest future work that may be carried

out.

Appendix A contains the list of abbreviations, definition of terms and mathematical

symbols used in this thesis.

1.7 Data sets used in this study

The Mode-S EHS data used in this thesis are obtained from two sources. The first

source of data was provided by National Air Traffic Services for October 2012. This

data was used to develop the software processing routines and quality control processes.

However, this data was not used for data assimilation experiments. This was due to

an upgrade of the Met Office numerical weather prediction suite control system. The

upgraded suite control system was not backwards compatible to previous versions of

the suite. It was also necessary to use the new suite control system so that develop-

ment for data assimilation of Mode-S EHS reports for operational deployment could be

undertaken. The second source of data was provided by the Met Office Mode-S EHS

network. The nationwide network of Mode-S EHS receivers became operational in April
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2015. However, for this thesis only a sample of data was provided for January 2015

from two receivers located in the South of England. Radiosonde and AMDAR reports

were obtained from the Met Office Meteorological Observations Database (MetDB).

Finally, in situ observations were obtained from the research aircraft the Facility for

Atmospheric Airborne Measurements.
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Chapter 2

Review of Meteorological

Features, Aircraft-based

Observations and Numerical

Weather Prediction.

2.1 Introduction

To address the aims of our thesis outlined in section 1.4 (page 3) we need to have an

understanding of the weather phenomena we wish to observe (temperature inversions,

low-level jets), the current and new methods available to make aircraft based observa-

tions, and how the new observations may be used to predict the weather phenomena.

This chapter will review each of these areas, providing an introduction and context for

the new work in this thesis.

This chapter is organised as follows: in section 2.2 we describe the atmospheric

length scale; in sections 2.3 and 2.4 we describe two atmospheric phenomena that we

use in our case studies, the temperature inversion and low-level jet; in sections 2.5 to

2.8 we describe the sources for upper air observations and aircraft-based observations

used in this thesis; in sections 2.9 to 2.12 we describe the NWP model and the method

of data assimilation used in our studies; in section 2.13 we review previous studies

for assimilation of aircraft-based observations; we end this chapter with a summary of

prior work and the new work in this thesis. We acknowledge that sections 2.6, 2.7, 2.8

and 2.13 in this chapter are extracts from the paper published by Mirza et al. (2016).
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2.2 Length Scales of Atmospheric Phenomenon

To study the structure of atmospheric phenomenon, ξ, it is assumed that its rate of

change, dξ
dt , is less than the corresponding sampling time ts, i.e., the time it takes to

make measurements of the atmospheric phenomenon (Stull 1988, Section 1.4), so that

it appears ‘frozen’ with respect to the measuring system (Taylor 1938). Length scales

of ξ are classified according to their length or time scales (Orlanski 1975). Atmospheric

phenomena with length scales of the order of 1 m to 4 km have time scales of less than

30 mins, e.g, turbulent eddies, boundary layer convection, micro-bursts, thunderstorms,

low-level jets; while those with length scales of the order of 4 km to 40 km have time

scales of between 30 min and 24 hours, e.g., land-sea breezes, mountain valley breezes,

complex thunderstorms, gravity waves (Orlanski 1975, Fujita 1986).

2.3 Temperature Inversions

In this section we define temperature inversions and describe the atmospheric conditions

that give rise to them.

The ambient temperature at the surface is usually higher than the layer of air above

it. This is because the influx of solar energy is absorbed mostly at the surface. The

layer of air above the surface is heated through convection. Subsequent layers of air

are also heated as a result of convection. In addition, as warm air rises it expands and

cools (Barry & Chorley 2009, p.22). The effect of these processes cause the ambient

temperature, TA, to decrease as altitude, z, increases. The rate of decrease within

the troposphere, the layer of atmosphere between the surface and 11 km, is given by

Γ = −dTA
dz (Stull 2000, p. 46) and is called the environmental lapse rate.

The atmospheric conditions for a temperature inversion occur when the environ-

mental lapse rate Γ > 0. The layer of air above the surface may be warmer than

the surface itself or an intermediate layer of air may be warmer than the air above

or below. This may arise when there is little vertical mixing in the atmosphere, i.e.,

the atmosphere is stable. Stable conditions are associated with anticyclonic conditions

(high surface pressure), light winds and clear skies at night-time (Roach 1994). The

characteristics and lifetime of a temperature inversion depends on the mechanism that

gave rise to its formation, radiative cooling at the surface or compression as air descends

towards the surface (Roach 1995a).

Radiation Inversion. A surface level temperature inversion may arise when the

ground cools faster (that is the rate of radiant energy loss is greater) than the layer

of air above it. The mechanism behind this cooling leads to the temperature inversion
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being called a radiation inversion (Brown & Roach 1976). As the night-time progresses,

heat conduction from the surface can create weak convection currents near the surface

which may cause the height of the inversion layer to increase.

Subsidence Inversion. Stable conditions may also give rise to an elevated tem-

perature inversion. As air descends from above towards the surface it is compressed,

which causes an increase in the local ambient temperature. This results in a layer of air

which is warmer than the layers of air above and below it. The mechanism behind this

warming leads to such elevated temperature inversions being called subsidence inver-

sion (Barry & Chorley 2009, Ch 9). Near the point of inversion droplet formation may

arise leading to a layer of stratus cloud forming. The long-wave radiation emitted at

the cloud base warms the air below and as a result suppresses the onset of fog formation

at the surface.

Inversion by Advection. This occurs when either a warm (moist) mass of air

is advected over a cooler surface or cold mass of (dry) air is advected over a warmer

surface (Barry & Chorley 2009, Ch 9). The temperature inversion is present because of

the temperature difference between the surface and the air mass being advected over

it (Roach 1995b).
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Figure 2-1: Idealised depictions of the temperature profiles for radiation inversion
(blue), elevated inversion (green), isothermal region (black) and the expected lapse
rate (red).

Figure 2-1 (page 10) shows four idealised lapse rates. The normal lapse rate is shown

as the profile with a constant negative gradient. A radiation temperature inversion is
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Figure 2-2: Radiosonde temperature profiles for Herstmonceux showing that surface
level radiation inversion was present at 0000 UTC on 14th (blue) and 15th (red) October
2012.

characterised with a positive lapse rate from the surface, which continues for a short

distance above the surface before turning to a negative lapse rate. The lapse rate for

an elevated temperature inversion is similar to that of a radiation inversion except

the positive lapse rate originates at a higher altitude. An isothermal region occurs

when the lapse rate is undefined and the temperature remains constant for a change

in altitude. Figure 2-2 (page 11) shows radiosonde temperature profiles between 0 m

and 3000 m for Herstmonceux at 0000 UTC on 14th and 15th October 2012. It is clear

that radiation inversions were present at Herstmonceux at these times.

Our characterisation of a temperature inversion follows Kahl (1990) and Andreas

et al. (2000). The temperature inversion base, zb, is the height above the surface where

the environmental lapse rate stops decreasing (i.e. Γ > 0) and the height of the top,

zt, occurs where it begins to decrease (i.e. Γ <= 0), where 0 ≤ zb < zt. The inversion

depth is the vertical distance, zd = zt − zb and the inversion strength is Ts = Tt − Tb,
where Tt and Tb are the ambient temperatures at zt and zb respectively. Thin layers,

where Γ < 0 for a depth of ≤ 100 m which occur within the inversion depth, are ignored.

It is assumed that these thin layers are embedded within the stronger inversion.

Temperature inversions are most likely to occur during the early hours of the morn-

ing or late at night, and are often the precursor to low visibility conditions and the

formation of fog (Roach et al. 1976). The formation of fog has a significant impact

11



on aviation operations, in particular for the safe conduct of a flight and the rate of

arrivals and departures at airports, as low-visibility procedures require greater aircraft

separations. Therefore, forecasting the onset, dissipation and location of the conditions

that lead to low visibility and fog is important. However, forecasting the conditions

of fog depends on the availability of suitable observations (Jacobs et al. 2005, Fowler

et al. 2012).

2.4 Low-level Jets

A consequence of the formation of a temperature inversion is the formation of a low-

level jet (LLJ), which occurs above the temperature inversion, and is a zone of wind

shear (Blackader 1957, Thorpe & Guymer 1977, Stull 1988). Stull describes a low-level

jet as ‘a stream of fast moving air with speeds of 10 ms−1 to 20 ms−1 usually located

between 100 m and 300 m above the surface,’ (Stull 1988, p. 520) but can be found

with speeds of up to 30 ms−1 at altitudes of 900 m. Stull (1988, p. 521) defines a

low-level jet to occur whenever there is a relative maximum wind speed that is 2 ms−1

faster than the wind speed above, within the lowest 1500 m (approximately 850 hPa).

Figure 2-3 (page 13) (adapted from Malcher & Kraus 1983, Fig. 1a) shows the ideal

evolution of a low-level jet from the early evening (1800 hours), midnight (0000 hours),

early morning (0600 hours) and noon the following day (1200 hours). A low-level jet

has formed at an altitude of 390 m by midnight. It is still present at an altitude of

390 m by early morning and it has decayed by noon the following day.

Figure 2-4 (page 14) shows the wind speed profiles between the surface and 1500 m

for 0000 UTC on 14thand 15th October 2012 recorded by the radiosonde launched from

Herstmonceux. On 14th October, while there is a peak in wind speed at 700 m, this

is only 1 ms−1 faster than the wind speeds above, so by Stull’s definition this is not a

low-level jet. On the 15th October we suggest that there is a low-level jet at 900 hPa.

There is a local wind speed maximum of 11.5 ms−1 at this level and the wind speeds

above this level decrease to about 9.0 ms−1.

2.5 In situ Observations

The main source of vertical profiles of temperature and horizontal wind speed below

1500 m is from radiosonde launches. A radiosonde is a small package containing sensors.

It is launched using a helium filled balloon. As it rises through the atmosphere it

transmits data about the in situ atmospheric pressure, temperature, humidity, the

elapsed time since its launch and its location. On the ground the radiosonde data are
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Figure 2-3: Idealised evolution of the wind speed profiles for low-level jet (adapted
from Malcher & Kraus 1983, Fig 1a.) at early evening (blue), midnight (green), early
morning (black) and noon the following day (red). low-level jet occurs in the region of
the atmosphere where there is a local maximum of wind speed that is 2 ms−1 greater
than the wind speed higher up (Stull 1988, p. 521).

post-processed, the horizontal wind is derived from the tracking data of position and

time. Radiosondes are launched from fixed sites that are separated by long distances

(approximately 100 km) and at fixed times, usually 0000 UTC and 1200 UTC. Therefore

radiosonde observations may not provide sufficient spatial and temporal resolution to

capture the evolution of a temperature inversion (Fowler 2010, section 1.2).

In this thesis we will use a case study period for when low visibility conditions were

present in the South of England. In chapter 6 (page 109) we will look at the period

3rd January to 5th January 2015. During this period fog affected airport operations at

London Heathrow and London Gatwick. The foggy conditions imply that a temperature

inversion was present.

2.6 Introduction to Aircraft-based Observations

Aircraft-based observations are another source of in situ observations. The current

method of receiving aircraft-based observations commonly used in NWP is from the

Aircraft Meteorological Data Relay program (AMDAR) (Stickland & Grooters 2005).

AMDAR reports the horizontal wind and ambient temperature obtained from the air-

craft’s flight management systems (FMS) (Painting 2003). These reports are compiled
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Figure 2-4: Radiosonde windspeed profiles for Herstmonceux showing that at 0000
UTC on 14th October (blue) there is no indication for the presence of a low-level jet at
an altitude of 700 m. At 0000 UTC on 15th October (red), a low-level jet appears to
be present at altitude of 900 m since there is a local maximum which is 2 ms−1 greater
than wind speeds above.

on-board the aircraft and are transmitted to a ground station. The frequency of trans-

mission depends on the phase of flight and whether the aircraft is configured to send

a report. By default, during ascent reports are every 6 seconds for the first 90 sec-

onds then every 20 seconds until level flight; during level flight reports are every 3 to

10 minutes; during descent reports are every 60 seconds (Painting 2003, p.32). In

Europe this program is managed by E-AMDAR which provides to National Meteoro-

logical Services (NMS) only one vertical profile once every three hours from around 100

airports across Europe. The Met Office, the NMS provider for the United Kingdom,

obtains one vertical profile once every hour at major airports. In Europe and the UK

the reporting frequency of vertical profiles depends on the financial resources made

available by the NMSs. This contrasts with Air Traffic Management (ATM) which can

interrogate an aircraft’s transponder at much higher frequency from a ground station

using Secondary Surveillance Radar (SSR), a system which transmits coded messages

to an aircraft’s transponder and receives coded replies (Boisvert & Orlando 1993, ICAO

2010). Depending on the type of interrogation and transponder, the transponder sends

back an aircraft’s identification code (MODE-A), altitude information (MODE-C) and

more detailed information (Mode-S EHS).

14



2.7 Mode Selective Enhanced Surveillance

Mode Selective Enhanced Surveillance (Mode-S EHS) is used by Air Traffic Manage-

ment (ATM) to retrieve routine reports on an aircraft’s state vector at a high temporal

frequency (every 4 to 12 seconds). The aircraft’s state vector consists of true airspeed,

magnetic-heading, ground speed, ground heading, altitude and Mach number. Mode-

S EHS reports can be used to derive estimates of the ambient air temperature and

horizontal wind at the aircraft’s location (de Haan 2011). These derived observations

have the potential to give weather information on fine spatial and temporal scales.

For example high-frequency reporting of vertical profiles of temperature and wind may

provide extra information for use in numerical weather prediction (NWP) assimilation

and nowcasting (Dance 2004, Rennie et al. 2011, Sun et al. 2014, Simonin et al. 2014,

Ballard et al. 2016). Indeed, positive impacts assimilating Mode-S EHS data in re-

gional NWP models have already been seen by several authors (de Haan & Stoffelen

2012, de Haan 2013, Strajnar et al. 2015, Lange & Janjic 2016). These are reviewed

in section 2.13 (page 27). To maximize the potential of these data, it is important to

understand the error characteristics of the derived observations.

The contents of Mode-S reports depend on what is requested by ATM and this

varies from country to country (ICAO 2010). There are three types of reports from

which meteorological observations may be obtained:

(a) Mode-S EHS reports contain information on the aircraft’s state vector. This

vector can be used to derive estimates of the air temperature and horizontal wind at

the aircraft’s location (Collinson, 2011, Ch. 6; de Haan, 2011).

(b) Mode-S Meteorological Routine Aircraft Reports (MRAR) contain tempera-

ture and horizontal wind observations computed by the aircraft’s FMS (Strajnar 2012,

Strajnar & Trojáková 2015).

(c) Automatic Dependent Surveillance Broadcast (ADS-B) (a sub-system of Mode-

S EHS) contain aircraft position and altitude from which a horizontal wind vector

(de Leege et al. 2012) and a mean layer temperature (Stone & Kitchen 2015) may be

computed.

Whilst Mode-S MRAR provides direct reports of temperature and horizontal wind

observations, the regulatory environment does not require aircraft or ATM to make

such reports available. (In the United Kingdom, ATM does not poll for MRAR due

to the lack of capacity of the communication downlink.) The most common report is

the Mode-S EHS aircraft’s state vector from which temperature and horizontal wind

observations are derived.

To understand the error characteristics of aircraft-based observations previous stud-
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ies, reviewed in section 2.8 (page 16), have compared AMDAR reports with observations

made using radiosondes or other nearby aircraft (Schwartz & Benjamin 1995, Ben-

jamin & Schwartz 1999, Drue et al. 2008). Similar studies have compared Mode-S EHS

(de Haan 2011) and Mode-S MRAR (Strajnar 2012) also with radiosonde and nearby

AMDAR reporting aircraft. However, observations are not co-located in time and space.

Furthermore, studies by Ballish & Kumar (2008), Drue et al. (2008), de Haan (2011),

Jacobs et al. (2014) indicate that aircraft reports have additional error sources that

are aircraft-type specific and which affect the temperature and horizontal wind vector

reports. While these studies provide useful information about the quality of aircraft-

based observations, it is not clear how to partition the errors between the variability

due to the aircraft, its instruments, data processing algorithms and the atmosphere.

2.8 Accuracy of Aircraft-based Observations

In this section we review previous studies that assessed the accuracy and precision

of aircraft-based observations. We assess the level of agreement between them and

summarize their limitations.

A number of studies have been performed to obtain estimates of the accuracy of

aircraft-based meteorological reports. This has been done by comparing aircraft-based

reports to nearby reports made by radiosonde and other reporting aircraft (Schwartz &

Benjamin 1995, Benjamin & Schwartz 1999, Painting 2003, Drue et al. 2008, de Haan

2011, Strajnar 2012) or by comparison to NWP models (Cardinali et al. 2003, Ballish &

Kumar 2008, de Haan 2011, de Leege et al. 2012). De Haan (2015) uses a triple colloca-

tion method with Doppler radar, sonic detection and ranging (SODAR) and NWP data.

Tables 2.1 and 2.2 summarize the results of these studies for root-mean-square-error

(RMSE) and mean-bias (MB) respectively, and show fairly consistent results between

studies. In particular, De Haan (2011) concludes that the accuracy of Mode-S EHS de-

rived horizontal wind, after pre-processing the aircraft state-vector, is comparable with

similar reports from AMDAR but is less accurate when compared with radiosonde.

Mode-S EHS derived temperature is less accurate when compared with radiosonde and

AMDAR. In addition, the RMSE for temperature is twice as large as that for AM-

DAR. Strajnar (2012) concludes that the accuracy of Mode-S MRAR directly reported

horizontal wind is comparable with similar reports from AMDAR but is less accurate

when compared with radiosonde.

De Haan (2011) notes that for two successive Mode-S EHS reports, from a single

aircraft and with a time difference of 4 s, the derived observations can exhibit large

fluctuations. These fluctuations arise due to the precision of the reported Mach number
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and true airspeed of 0.004 and 2 knots respectively. Using these precisions de Haan

(2011, p.5) estimates the observation errors between two successive reports for the

derived temperature to range between 2 K and 5 K, and for the horizontal wind,

estimates errors in the range 0.5 ms−1 to 1.5 ms−1. To reduce the effect of these

fluctuations a pre-processing method is used.

The de Haan (2011) pre-processing method uses a combination of linear regression

and a running average over a time window to smooth the time-series of an aircraft’s

reports of true airspeed and Mach number. The pre-processing uses a number of

consecutive reports and a time window for the linear regression and running average

which depends on the phase of flight: for ascents and descents 3 to 4 reports and 10 s

while for level flight 12 to 15 reports and 60 s were used. In addition, heading corrections

were applied to the aircraft’s reported magnetic heading using the ‘runway’ method

de Haan (2011). The runway method uses the 12-month mean difference between

the aircraft’s reported magnetic heading and the magnetic heading of the runway on

which the aircraft touched down. The effect of the pre-processing reduces the difference

between successive reports for derived temperature to an estimated 1 K to 2 K, and

for the horizontal wind to an estimated 0.25 ms−1 to 1.0 ms−1.

A number of other features of aircraft-based observation errors have also been iden-

tified. Temperature biases have been found to vary with altitude (Schwartz & Benjamin

1995, Benjamin & Schwartz 1999, Drue et al. 2008, Ballish & Kumar 2008), with errors

decreasing as height increases. The large errors near the surface are thought to be due

to extra mesoscale variability in the boundary layer and lower troposphere. Schwartz &

Benjamin (1995), Drue et al. (2010) also found differences between temperature reports

from ascending and descending aircraft, thought to be caused by changes in the air-

craft’s wing configuration. They may also be due to sensor response time or AMDAR

processing of temperature data aboard the aircraft or some combination of the two.

There is also evidence for temperature biases that are aircraft-type specific (Ballish &

Kumar 2008). Drue et al. (2008) found systematic errors in the wind reports which

appear dependent on the aircraft’s heading and aircraft type; there are similar findings

by de Haan (2011) and Jacobs et al. (2014). The horizontal wind errors are due to a

directionally dependent systematic error. De Haan (2013) considered a Mode-S EHS

error analysis with respect to NWP and found that heading corrections only affect

wind-components transversal to the aircraft’s direction of travel. De Haan (2011) in-

troduced a heading correction based on landing aircraft. These values are comparable

to the NWP-based corrections (de Haan 2013).

These previous studies have their limitations. For example, there are only one or

two radiosonde launches per day, typically at 0000 UTC and 1200 UTC, at limited
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locations. Therefore, comparisons with co-located radiosondes are very limited in time

and space providing only a short time window when aircraft might be close by (as shown

in tables 2.1 and 2.2). Direct comparison of Mode-S EHS with AMDAR is limited to

those reporting aircraft that participate in the AMDAR programme and which are

configured to send reports. In addition, at present, the mapping between Mode-S

EHS identifiers and AMDAR identifiers is not straightforward. Not all airlines make

aircraft tail numbers available. Thus some additional computational steps are required

to co-locate reports using a space-time box but this method of pairing is not robust.

This is particularly true in busy areas where Mode-S EHS and AMDAR reports at

similar locations and times will not necessarily originate from the same aircraft. The

limitations of NWP based studies include the need to take account of uncertainties

in the NWP model and observations used, including representativeness errors (Daley

1991, p.12; Waller et al. 2014), NWP forecast errors etc.

Using existing aircraft reports it is difficult to differentiate the contributions to

the observation error arising from the aircraft’s sensors, avionics processing and atmo-

spheric variability. The new work in chapter 4 provides an insight into the contribution

to the observation error arising from reduced precision in Mode-S EHS reports.

2.9 Numerical Weather Prediction Model Development

During the past two decades the spatial and temporal resolution of numerical models

have increased. For example, the Met Office Unified Model (UM) in its global config-

uration has increased its horizontal and vertical resolution from 90 km and 19 levels

in 1992 to 17 km and 70 levels in 2014. Similarly over the same period the limited

area model (LAM) configuration of the UM for the United Kingdom has increased

resolution from 17 km and 19 levels to 1.5 km and 70 levels in 2010. With the ad-

vancement of computational resources the physical representation of the atmosphere

has also changed from being hydrostatic to non-hydrostatic, and for the limited area

models from parametrized convection (Skamarock & Klemp 2008, Staniforth & Wood

2008) to convection permitting (Clark et al. 2016). Other limited area models have

followed similar development paths (table 2.3). Motivation for these higher-resolution

convection-permitting models is the need to increase forecast accuracy of severe weather

events such as severe thunderstorms and high rainfall rates (Golding et al. 2005, Gra-

hame et al. 2009, Golding et al. 2013) to aid flood forecasting and for the provision of

aviation forecasts of wind and temperature within the vicinity of airports.

The trend towards higher resolution limited-area models also requires a similar

increase in the number, accuracy and resolution of the observations (Montmerle 2016).
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Table 2.3: Horizontal and vertical resolution for a selection of convection permitting
numerical weather prediction models.

Model Configuration Horizontal Resolu-
tion (km)

Vertical Resolution
(levels)

Met Office Unified Model LAM (UKV)
(Lean et al. 2008)

1.5 70

Japan Meteorological Agency Local
Forecast Model (JPA-LFM) (Hirahara
& Ishimizu 2011, Saito et al. 2006)

2.0 58

Application of Research to Operations
at Mesoscale (AROME) (Seity et al.
2011)

2.5 60

Consortium for Small-Scale Modelling
(COSMO-DE) (Baldauf et al. 2011)

2.8 50

NOAA/Earth System Research Labo-
ratory High Resolution Rapid Refresh
(HRRR) (Benjamin et al. 2016)

3.0 51

Figure 2-5 illustrates this trend with respect to wind and temperature (Kitchen 2012a).

The red line shows that the spatial resolution of the surface synoptic network has

changed little for fifty years. The increase in costs of manned stations has driven the

development of automatic weather observing stations. The surface synoptic network

in the UK provides observations for use in NWP models with horizontal grid lengths

greater than 10 km. The green line shows the development of weather radar systems

but these are approaching a limiting resolution (dashed line). However, weather radar

only operates effectively when rainfall or other reflective material is present in the

atmosphere. For example, the Met Office weather radar network is currently configured

to provide observations of reflectivity and Doppler radial velocity of precipitation from

which rainfall rates and horizontal wind vectors are derived (Ballard et al. 2012). The

blue line shows the development of numerical weather prediction models, from the

resolutions of the order of tens of kilometres, to the present day one kilometre, and a

projection to sub-kilometre scales (Ballard et al. 2016, Boutle et al. 2016, Hagelin et al.

2014, Golding et al. 2013). However, although horizontal and vertical resolution of

the numerical models have increased there are limits to their ability to resolve weather

features on the same scale (Dance 2004). Kitchen (2012a) suggests that the effective

resolution to resolve weather features is of the order of four grid lengths (dashed blue

line in fig 2-5). A similar argument may also apply to the spatial distribution of

the observation network which is designed largely for synoptic scale weather features.

There is an increasing gap between the spatial representation that is supported by the
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observation network and the NWP spatial representation (Kitchen 2012b). For upper

air winds and temperatures it is suggested that observations made by civil aircraft may

go some way towards reducing this gap. The use of satellite-based observations may also

close this gap. Take for example the Aeolus Earth Explorer, due to be launched during

2017 (Reitebuch et al. 2009). This polar-orbiting satellite will be used to evaluate the

capability of a space borne Doppler wind LIDAR (Light Detection And Ranging) to

make globally-distributed measurements of vertical wind profiles in the troposphere and

lower stratosphere from the near surface to 30 km, with a vertical resolution of between

1 km near the surface and 2 km in the stratosphere. However, there is a long lead time

between commissioning satellite systems and use of their observation data in NWP

forecast production. Satellite-based observations of wind and temperature offer global

coverage but they lack spatial and temporal coverage when compared with aircraft-

based observations. For reviews on satellite derived winds see Hernandez-Carrascal &

Bormann (2014), Reitebuch (2012), Collard et al. (2011) and Reitebuch et al. (2009).

2.10 Limited Area NWP Model: UKV

The Met Office Unified ModelTM (UM) (Walters et al. 2016) is run routinely for a

number of applications. The Global version is run every six hours with a horizontal

grid length of 17 km with 70 levels in the vertical, and forecasts out to 7 days (T+168

hrs). A further run is performed three hours later which updates the forecasts out

to 2 days (T+48 hrs). The Global model provides the boundary conditions for the

limited area models, which have a higher horizontal grid length but shorter forecast

ranges. This study used the UKV, a mesoscale limited area version of the UM, as it

ran operationally during the period January 2015 - June 2016.

The Met Office limited area NWP model for the United Kingdom, UKV, (Tang

et al. 2013) is a configuration of the Unified Model (Davies et al. 2005). The UKV

model has a variable grid resolution. Figure 2-6 depicts the domain of the UKV. The

green rectangle represents the UKV inner domain at horizontal grid length 1.5 km.

The outer domain is represented between the red and grey rectangle at 4 km horizontal

grid spacing. The interval between red and green rectangles represents the zone where

the resolution is increased smoothly from 4 km to 1.5 km. This smooth transition

is to minimise the effect of moving from low-resolution to high-resolution which can

cause model errors in representativeness in numerical weather prediction (Tang et al.

2013). There are 70 levels in the vertical from the surface up to 40 km (Tang et al.

2013). The areal coverage of the inner domain is 1096 km in longitude by 1408 km

in latitude represented by a 1.5 km grid 744×928. The domain is represented using
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Figure 2-5: Illustration comparing development of spatial representation between the
observation network and NWP limited area model for the UK. The solid lines are past
and current developments while dashed lines are projected developments. The spatial
resolution of the surface network (red) has changed little in the course of time whereas
numerical models (blue) appear to have developed, mostly in line with computational
resources, (Kitchen 2012a). (Image Crown Copyright, 2012, reproduced under Open
Government License 3.0 for public sector information).
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spherical co-ordinates and a rotated pole, so that the north pole is placed at 37.5◦

latitude and 177.5◦ longitude relative to regular latitude-longitude grid. The effect of

this on the UKV domain is that the horizontal grid boxes are as square as possible,

i.e., roughly uniform areas. The horizontal grid uses Arakawa C staggering (Arakawa

& Lamb 1977) and a terrain-following hybrid-height vertical coordinate with Charney

Philips staggering (Lean et al. 2008).

Figure 2-6: Domain of the Met Office UKV Numerical Weather Prediction Model.
Image Crown Copyright, 2014, reproduced under Open Government License 3.0 for
public sector information.

The UKV is a convection permitting model (Clark et al. 2016, Tang et al. 2013, Lean

et al. 2008) with a latent heat nudging scheme (Jones & Macpherson 1997). The NWP

model is run eight times per day and generates short range weather forecasts up to 36

hours ahead. The NWP model boundary conditions for the UKV are provided by the

Global version of the Unified Model, which are reduced in horizontal scale from 17 km

to 4 km. The initial conditions of the NWP forecasting process are obtained from the

result of data assimilation (described in section 2.11), using an incremental variational

scheme (Renshaw & Francis 2011, Lorenc et al. 2000) to combine recent observations

with a previous forecast. The UKV assimilates routinely collected observations (table

2.5) (Ballard et al. 2016) and additional observations that are not assimilated in the

Global version of NWP (table 2.4). The data assimilation scheme also uses an adaptive

grid (Piccolo & Cullen 2011) in the vertical, which is used to represent boundary layer
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Table 2.4: Extra observations used in the data assimilation processing for the Met
Office limited area NWP model: 1.5 km UKV, which are not used in the Global NWP
model: 17 km Unified Model.

Observation Type Observation System Observation Frequency

Surface rain rate Doppler Radar 1-hourly, 5km resolution
Visibility Surface synoptic observa-

tions (SYNOP)
1-hourly

2 m Temperature and Rel-
ative Humidity

Roadside sensors 1-hourly

Radial winds Doppler radar 3-hourly
Radiances above low cloud Spinning Enhanced Visi-

ble and Infrared Imager
(SEVIRI) - channel 5

—

High-resolution Atmo-
spheric Motion Wind
Vectors

Meteosat Second Genera-
tion satellite.

—

Cloud fraction profiles for
cloud tops

GeoCloud satellite im-
agery

3-hourly, 5km resolution

Cloud fraction profiles for
cloud base

SYNOP reports. 3-hourly

features, such as temperature inversions.

2.11 Data Assimilation

Data assimilation is a process that uses sophisticated mathematical methods to com-

bine current knowledge of the atmospheric state obtained from a vector of observation

measurements, yo ∈ Rp, and from a modelled NWP state, xb ∈ Rn, e.g., a previous

forecast. The result of the process is the best representation of the modelled state of

the atmosphere, xa ∈ Rn, at some time t (Daley 1991, Talagrand 1997, Kalnay 2003,

Frehlich 2011). This process also takes into account errors in observations and in the

modelled NWP state. We note that the number of available observations is often less

than the number of available model state parameters, i.e., p < n.

We compare observations to the model by calculating, H(x), where H : Rn → Rp is

the observation operator that performs the necessary steps to interpolate and transform

the model’s state vector in NWP model space to be the equivalent observation vector

in observation space. Thus we can write,

yo = H(x) + εo. (2.1)
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The error in the observation, εo, arises from several sources: the instrument itself;

any processing steps done on the instrument’s measurement to obtain the required

observation; the formulation of the observation operator; and the mismatch in scale

(space and time) between what the instrument can measure and what the NWP model

can represent.

We assume that observation measurements are unbiased and uncorrelated (Kalnay

2003, pp.153-154) so that we can define the observation error covariance matrix, R, as

R = E[εoεo
T ], (2.2)

where E is the expectation operator and R ∈ Rp×p

Similarly we define the truth in the model space, xt, to be the exact representation

of the atmosphere which is unknown. We estimate the true NWP model state as,

xa = xt + εa (2.3)

and

xb = xt + εb (2.4)

where εa is the error in the analysis (after data assimilation) and εb is the error in

the the background (before data assimilation) of these NWP model states. We assume

that the estimated errors in the model states are unbiased so that we can define the

background error covariance matrix, B, as

B = E[εbεb
T ], (2.5)

where B ∈ Rn×n. The background state errors may be due to inaccurate representation

of physical processes, and errors in spatial representation and temporal evolution of the

NWP model (Bannister 2008).

Data assimilation may be expressed as a correction term added to the known model

state (Kalnay 2003, p. 15, eq. 1.4.1),

xa = xb + K (yo −H (xb)) , (2.6)

where the gain factor, K ∈ Rn×p, is used to weight the difference between the measured

and the modelled observations.
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2.12 3-D Variational Data Assimilation

One method of data assimilation processing is Three-dimensional Variational Data

Assimilation (3-D Var). This method defines a cost function, J , as the sum of the

squared errors between the observations and the model state, x, in observation space

Jo, and those between the background state and the model state, in the model’s space

Jb, (Lorenc 1986, Courtier et al. 1998),

J = Jo + Jb. (2.7)

The squared errors are given by the respective terms in the sum,

J(x) =
1

2
(y −H(x))TR−1(y −H(x)) +

1

2
(x− xb)TB−1(x− xb), (2.8)

and are scaled by the covariance of the observation errors, R, and the background

errors, B. The analysis state is the value, x = xa, that minimises the cost function,

eq (2.8). We assume initially that the background and observation errors are mutually

uncorrelated and the errors are randomly distributed so that they can be characterised

by using a Gaussian distribution (Kalnay 2003, ch 5.). With this assumption Lorenc

(1986) showed that eqs. (2.6) and (2.8) are equivalent if the gain factor, K, is expressed

in terms of the error covariances,

K = BHT
(
HBHT + R

)−1
, (2.9)

thus we can express eq. (2.6) in the conventional form (Kalnay 2003, ch 5.) as,

xa = xb + BHT
(
HBHT + R

)−1
(y −H (xb)) . (2.10)

To obtain the best estimate of the atmospheric state, xa, requires that the error char-

acteristics of the background state and observations to be well known.

2.13 Data Assimilation of Aircraft-based Observations

In this section we review the data assimilation studies using Mode-S EHS reports by

de Haan & Stoffelen (2010), Lange & Janjic (2016) and Mode-S MRAR reports by

Strajnar et al. (2015). These studies have shown that NWP model forecasts with lead

times of 3-hours to 6-hours ahead for horizontal wind and ambient temperature can

benefit from assimilating Mode-S EHS derived observations. However, assimilation of

AMDAR alone results in better forecasts for forecasts up to six hours. The direct
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comparison of the results of these studies is difficult.

Experiments conducted by Lange & Janjic (2016), Strajnar et al. (2015), de Haan

& Stoffelen (2010) all used different sets of observations, different NWP models are

used which affects the background forecast, and observation error standard deviations

used to characterise the aircraft-based observations differ. All these may affect the

quality of the resulting NWP analysis. The assimilated observations used in each of

these studies are listed in table (page 29). The main properties of the NWP models and

configuration of the data assimilation systems used in these studies are summarised in

table 2.6 (page 30). For easier comparison later, we also include the configuration of

our own experiments described in chapter 7.

Apart from the differences in NWP models used, de Haan & Stoffelen (2010) and

Lange & Janjic (2016) used Mode-S EHS observations that were pre-processed using

the method described by de Haan (2011) (section 2.8, page 16). In the corresponding

data assimilation experiments the Mode-S EHS observations were thinned spatially.

De Haan & Stoffelen (2010) thinned the Mode-S EHS reports to around 5% of the

total number 1.5 x 106 per day collected around Schipol airport, i.e., 75000 per day.

However, Lange & Janjic (2016) found that up to 50% of the average 184559 reports

per day, i.e., of the order 90,000 per day, could be used before there was no additional

benefit to the subsequent forecasts.

Strajnar et al. (2015) used Mode-S MRAR temperature and winds, which have

been shown to be of similar quality to AMDAR reports. Mode-S MRAR temperature

do not suffer from the precision errors that affect the Mach Temperature derived from

Mode-S EHS. The horizontal winds are not corrected for heading errors as described

by de Haan (2011) but the MRAR reports are smoothed using the same method as

de Haan & Stoffelen (2010). Strajnar et al. (2015) found it necessary to spatially thin

the MRAR reports horizontally to one report every 25 km. It is estimated that around

5000 MRAR reports per day were available for data assimilation (Strajnar et al. 2015,

Fig. 4).

In all these studies the observation error standard deviation for Mode-S EHS and

Mode-S MRAR horizontal wind was assumed to be the same as for AMDAR. The

observation error standard deviation for Mode-S MRAR temperature was also assumed

to be the same as for AMDAR (Strajnar et al. 2015). However, for Mode-S EHS

temperature the observation error standard deviation was assumed to be larger by a

factor of up to 1.5 times the AMDAR (de Haan 2011). This is discussed further in

section 7.3.3 (page 159).

We conclude from these studies that, for Mode-S EHS observations, some method

to smooth the reports is required and heading corrections should be applied. To use
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Table 2.5: Observations Assimilated in each NWP Model used to evaluate Mode-S EHS
observations. A ‘No’ indicates that the observation type is not used. A ‘Yes’ indicates
the observation type is used or, where information is available, H indicates the hourly
time frequency of the reports used.

HIRLAM-X11 ALADIN COSMO-KENDA UKV
Observations

Pressure (P) at surface 1 H Yes 1 H 1 H
Temperature (T) at 2 m No Yes No 1 H
Humidity (Q) at 2 m No Yes No 1 H
Surface Visibility (V) No No No 1 H
Wind Vector (W) at 10 m No Yes 1 H 1 H
Radiosonde (W, T, Q) 6 H Yes 12 H 12 H
AMDAR (W, T) 1 H Yes Yes 1 H
Air Reports (AIREP) (W, T) No No No Yes
SHIP No No No No
BUOY No No No No
Wind Profiler No Yes 0.5 H 1 H
Doppler Radial Wind No No No 3 H
Satellite Radiances No Yes No Yes
Atmospheric Motion Vectors No Yes No Yes

these observations in data assimilation consideration should be given to the observa-

tions density. For the assumed observation error standard deviation then we expect

this to be the same for Mode-S EHS and AMDAR horizontal winds. For Mode-S

EHS temperature we expect the observation error to be larger than that assumed for

AMDAR.

2.14 Summary

We have reviewed the atmospheric conditions that give rise to temperature inversions

and low-level jets, and how these meteorological features can be observed using vertical

profiles of temperature and horizontal wind. We have reviewed how we obtain obser-

vations of temperature and horizontal wind from aircraft and from routine messages,

Mode-S EHS, exchanged between an aircraft and air-traffic control. The accuracy of

these observations are found to vary depending on the source of the observation. Mea-

surements made by the aircraft being more accurate than those derived from routine

messages.

In summary, surface weather features such as fog and mist are most likely to form

when atmospheric conditions near the surface are: stable, possess high humidity, low

horizontal wind speed, there is little vertical mixing of the air and temperature inver-
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sions are present within the boundary layer (Roach et al. 1976, Brown & Roach 1976).

Surface level inversions are most likely to arise under clear skies as a result of greater

heat loss through radiation. A consequence of the formation of a temperature inversion

is the formation of a low-level jet, which would be above the temperature inversion,

and would be a zone of wind shear.

We have reviewed that the current NWP model development is in the realm of

kilometre-scale horizontal grid lengths, with a trend towards using convection-permitting

limited area models and sub-kilometre scales. We have suggested that these develop-

ments require observations at a higher spatial and temporal resolution than currently

used.

We have outlined the method of 3-D Var data assimilation, which provides the initial

NWP model state for weather forecasting. This method has been used to assimilate

aircraft-based observations obtained from AMDAR, Mode-S EHS and Mode-S MRAR.

These studies suggest that forecast errors of wind and temperature are reduced when

AMDAR and Mode-S EHS are assimilated but that this benefit persists for the first two

to three hour forecasts. These data assimilation experiments assume that the errors

in the observations are random and are uncorrelated. All these studies smoothed and

thinned the Mode-S EHS reports prior to their assimilation, since too many Mode-S

EHS reports can distort the NWP analysis. Thinning schemes differ, from random

selection to spatial separation of reports.

The analysis fields output by the data assimilation processing rely upon an accurate

representation of the observation and background errors. Misspecified errors can lead

to an incorrect analysis and this would affect the subsequent NWP forecasts. For

the studies by de Haan & Stoffelen (2012), Strajnar et al. (2015) and Lange & Janjic

(2016) the observation error standard deviation for Mode-S EHS and Mode-S MRAR

horizontal wind are the same as those used for AMDAR. But the observation error

standard deviation for Mode-S EHS temperature is at least 1.5 times greater than that

used for AMDAR.

The new work in this thesis overcomes some of the limitations of the study by

de Haan (2011). De Haan (2011) estimates the observation error for Mode-S EHS wind

and temperature by comparing the differences between two successive Mode-S EHS

derived observations. We develop novel error models to characterise the observation

error standard deviation for Mode-S EHS derived observations based on our knowledge

of Mode-S EHS processing (chapter 3). We validate our novel error models using

in situ observations obtained from a research aircraft (chapter 4), so meteorological

observations and Mode-S EHS reports are co-located in time and space. (No previous

study estimating Mode-S EHS errors have been able to use co-located observations.) In
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this new work, we also analyse the effects of the data processing by the aircrafts avionics

and the measured atmospheric variability for their contribution to the accuracy and

precision of the Mode-S EHS derived observations.

De Haan (2011) also observed that the Mode-S EHS derived temperature can ex-

hibit large fluctuations especially at low altitude, due to the precision of the Mach

number. He reports using only one method to reduce the fluctuations in Mode-S EHS

reports of Mach number and true airspeed. In our new work, we investigate the use of

four methods (chapter 6) to reduce these fluctuations. We compare their effect with

our error model for Mode-S EHS derived temperature (chapters 3 and 4). In our new

work, we also show that by smoothing and aggregating Mode-S EHS derived observa-

tions (chapter 6) within the vicinity of an airport’s terminal manoeuvring area then

meteorological features, such as temperature inversions (section 2.3, page 10 ), are

identifiable.

Previous studies by de Haan & Stoffelen (2012), Strajnar et al. (2015) and Lange &

Janjic (2016) have assimilated Mode-S observations into NWP models, with horizontal

grid lengths of 11 km, 4.4 km and 2.8 km respectively. In our new work, we use the

Met Office’s convection-permitting high-resolution limited area NWP model, the UKV

(chapter 7), which uses a horizontal grid of 1.5 km, the highest horizontal grid length so

far used to assimilate Mode-S EHS observations. Using the results of chapters 3, 4 and

6, we assess the benefit of using Mode-S EHS observations in the UKV at its 1.5 km

horizontal grid length configuration. We also provide a new validation of our results

from chapter 4 by diagnosing the observation error variance using the observation-

minus-background and observation-minus-analysis values output by the UKV NWP

model (Desroziers et al. 2005).
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Chapter 3

Initial Study on Utilising

Mode-S EHS Observations.

3.1 Introduction

In this chapter we introduce sources of Mode-S EHS data and the concepts that will be

used to process these data. We introduce these data sources and concepts by applying

them to an initial case study. We do this to develop our understanding of the processing

of the Mode-S EHS reports, and the characteristics and utility of Mode-S EHS derived

meteorological observations. From this initial case study we will show the effects of

Mode-S EHS processing in more detail in chapter 4, and the utility of the derived

meteorological observations for operational meteorology in chapter 6 and for numerical

weather prediction in chapter 7. Sections 3.4 and 3.5 in this chapter are extracts from

the paper published by Mirza et al. (2016).

We begin our initial study by exploring our first two thesis questions (section 1.4,

page 3) which we summarise as follows:

1. How accurately do observations derived from routine messages exchanged between

an aircraft and air-traffic-control represent the “state” of the atmosphere?

2. What atmospheric phenomena within the boundary layer can be observed from

using high-frequency observations derived from these routine messages?

To address these questions we, initially, use data obtained from National Air Traffic

Services (NATS) (which we describe later in section 3.2). However, during the course

of this initial study the Met Office developed and deployed its own capability to collect

Mode-S EHS reports (which we describe in section 5.5). The main benefit of using the

Met Office network is the reduced cost of collecting the data.
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We are interested in weather phenomena affecting operations in the vicinity of air-

ports of the London Terminal Manoeuvring Area (LTMA), namely London Heathrow

and London Gatwick. We will discuss one occurrence of a temperature inversion (sec-

tion 2.3, page 9) and an associated low-level jet (section 2.4, page 12). These weather

phenomena are identified from vertical profiles of the horizontal wind and ambient

temperature.

We construct these vertical profiles from the collected Mode-S EHS reports. In

section 3.3 we describe the domain used to collect and select Mode-S EHS reports.

We use the Mode-S EHS data provided by NATS to derive temperature and horizon-

tal wind observations. In section 3.6 we apply a box-average method to aggregate

these observations to form vertical profiles of the mean horizontal wind and ambient

temperature.

As will be shown, the results of the case study suggest that Mode-S EHS derived

observations may have utility for operational meteorology. We also show that the pro-

files exhibit fluctuations which may be related to the reduced precision of the aircraft’s

state vector. The reduced precision is a consequence of Mode-S EHS processing aboard

the aircraft. We believe that the reduced precision is a significant source of error for

Mode-S EHS derived observations. We show that this error can be described by the

statistics of quantisation error which arises when an analogue signal is converted to a

digital signal (section 3.9). Characterising this error is an important consideration for

data assimilation of Mode-S EHS derived observations.

3.2 National Air Traffic Services Secondary Surveillance

Radar Mode-Select

Tracking and range detection radar is a surveillance network operated by an air nav-

igation service provider. In the UK this service is provided by National Air Traffic

Services (NATS). There are two forms of surveillance: primary and secondary. Pri-

mary surveillance radar is operational within the terminal manoeuvring area of an

airfield or airport. It uses reflected radio signals which provide information on range,

azimuth and elevation of detected objects. Secondary surveillance radar (SSR), which

we described in section 2.7, is operational within a flight information region. NATS

currently operate around twenty secondary surveillance radars with coverage for the

flight information regions “Scottish” and “London” (figure 3-1a). In essence, when an

SSR detects a new object it sends a sequence of radio signals to obtain the object’s

state vector (section 2.7, page 15). It is from these responses that meteorological obser-

vations of temperature and horizontal wind can be derived (de Haan 2011). We show
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(a) (b)

Figure 3-1: (a) Location of NATS SSRs (blue circles) within the United Kingdom
( c©NATS 2009, reproduced by permission). (b) SSRs at Debdon (yellow circle, radius
= 270 km) and Peas Pottage (Green circle, radius = 330 km). The radius of each circle
indicates the approximate maximum detection range of the SSR at high altitude. The
detection range decreases with altitude. (Map data c©2017 GeoBasis-DE/BKG, c©2017
Google, c©2017 Inst Geogr. Nacional, reproduced under licence for non commercial
use.)

how these are derived in sections 3.4 and 3.5.

At the start of this research project NATS supplied the Met Office with a sample

of Mode-S EHS data from their archive. The NATS archive only contained data from

their secondary surveillance radars located at Peas Pottage and Debdon, shown in fig

3-1b. These radar sites provide coverage for the busiest air traffic routes and airports

in the United Kingdom. NATS use this archive for research and development of their

air navigation services. Moreover, there is no regulatory requirement for NATS to

retain air traffic management data after 30 days (Civil Aviation Authority 2014, Part

C, Section 3: SUR 10). Thus while SSR coverage within the United Kingdom is

nationwide, the extended archive of SSR coverage is mostly limited to the two SSRs.

3.3 Airport Domains

Mode-S EHS reports for the case studies discussed in section 3.7, and later in chap-

ter 6, are those which are received within two domains depicted in figure 3-2. The

domains are centred around London Heathrow and London Gatwick. Each domain is

a 3-D column, its height between 0 m and 3000 m above mean sea level, and hori-

zontal dimensions being 80 km East-West and 40 km North-South, with the airport

centred within the domain at the surface. These horizontal and vertical dimensions are
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Figure 3-2: Horizontal domains for London Heathrow (top) and London Gatwick (bot-
tom) with the airports at the centre of the domain. From the centre, the domain
extends approximately 20 km North, 20 km South, 40 km East and 40 km West. The
Heathrow domain is curtailed on its eastern edge so as to remove air traffic within
the approach to London City Airport. Green and yellow dots show the locations for
the NWP UKV one-dimensional vertical profiles. (Background map c©OpenStreetMap
contributors, reproduced under licence Creative Commons Attribution-ShareAlike 2.0.)

based on the orientation of the runway. For London Heathrow we use runway 09R/27L

and for London Gatwick we use runway 08R/26L so as to favour Mode-S EHS reports

from aircraft departing or arriving at these airports. In addition the vertical dimen-

sion is chosen so as to capture meteorological phenomena occurring within the lower

atmosphere, i.e., boundary layer.

London Heathrow Airport (EGLL) is situated approximately 21 km west of the

city of London. To the north and south it is surrounded by suburban housing, business

premises and mixed-use open land (Civil Aviation Authority 2015a). To the east there

are suburban housing and business premises and to the west three large reservoirs,

mixed-use open land, housing and business premises. The airport has two runways:

runway 09L/27R to the north, which is 3,901 m long, and runway 09R/27L to the

south, which is 3,660 m long. The rate of departures and arrivals at London Heathrow

tends to be uniform and more or less constant throughout its operating hours (0600-

2330). The two parallel runways provide a traffic flow rate of an average of 75 aircraft

arriving or departing per hour.

London Gatwick Airport (EGKK) is located approximately 45 km south of London

and about 3 km north of Crawley. It is situated in mostly lightly populated countryside

with nearby towns of Crawley and Horley (Civil Aviation Authority 2015b). The airport

has one main runway, designated runway 08R/26L, which is 3,316 m long. There is
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also one standby runway, runway 08L/26R, that can be used if the main runway is out

of operation. The airport operates over the same operating hours as Heathrow but has

only a single main runway, which provides a traffic flow rate on average of 55 aircraft

arriving and departing per hour. Furthermore, the traffic pattern differs from London

Heathrow, with two peak periods of high traffic density, the first mid-morning and the

second mid-afternoon. Therefore for routine airport operations we can expect a more

variable hourly rate of reports of Mode-S EHS reports from Gatwick compared with a

near constant hourly rate from Heathrow.

While traffic flow patterns are influenced by the prevailing meteorological conditions

on the day, in general, aircraft will take-off and land into a headwind to maximise

lift during take-off and maximise deceleration upon landing (Civil Aviation Authority

2015a). In the UK the prevailing winds are south-westerly, so at most airports aircraft

land from the east and depart to the west (westerly operations) about 70-80% of the

time.

3.4 Deriving the Ambient Air-temperature from Mode-S

EHS Reports of Mach Number and True Airspeed

Following the method of de Haan (2011) the ambient air-temperature is derived from

Mode-S EHS reports of Mach number and airspeed. The Mach number is defined as

the ratio of the aircraft’s airspeed VA, and the local speed-of-sound, A, (Houghton &

Carpenter 2003) so that

M =
VA
A
. (3.1)

The magnitude of the local speed-of-sound is related to the local ambient temperature

and is given by (Collinson 2011, pp. 390-392),

A =
√
γRaTA, (3.2)

where γ is the ratio of the specific heats for dry air at constant volume and constant

pressure; Ra is the characteristic gas constant for dry air; and TA is defined as the local

ambient temperature in Kelvin.

Using equation (3.2) we can relate the local ambient temperature to the Mach

number and airspeed as follows,

A = A0

√
TA
T0

=
VA
M
, (3.3)

where the speed-of-sound A0 = 340.294 ms−1 and the ambient temperature T0 =
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288.15 K. These are reference values defined at mean-sea-level pressure under interna-

tional standard atmosphere conditions ISA (ICAO 1993). So the ambient temperature

can be recovered from the Mode-S EHS reports as

TA =
T0

A2
0

[
VA
M

]2

. (3.4)

It is assumed that the recovered ambient temperature does not contain effects of

heating due to air compression within the housing of the temperature sensor or cool-

ing due to evaporation of moisture from the temperature sensing element (Lawson

& Cooper 1990, Woodfield & Hayne 1965). It is expected that the FMS processing

removes these effects.

3.5 Deriving the Horizontal Wind Vector from the

Mode-S EHS Message

In this section we show how the horizontal wind vector is derived from the Mode-S EHS

message. We define the aircraft’s air-vector, VA, as the speed of the aircraft relative to

the surrounding air, VA, and its horizontal orientation in space, θA. (In aviation terms

these are the aircraft’s ‘true airspeed’ and ‘true heading.’) We also define the aircraft’s

ground-vector, VG, as its ground speed, VG, and ground heading, θG. These are the

aircraft’s speed and track projected onto the Earth’s surface. (In aviation terms these

are the aircraft’s ‘ground speed’ and ‘true-track angle.’)

We now show how the wind vector is derived. The horizontal wind-vector, VW, is

the vector difference between the aircraft’s ground-vector and the aircraft’s air-vector,

i.e., VG −VA (Painting 2003, p. 11).

The horizontal wind-vector, VW, is resolved into orthogonal components: a zonal

component (West-East), U , and a meridional component (South-North), V . These

are obtained by resolving the corresponding components of the air-vector, VA, and

ground-vector, VG, along the South-North and West-East axes, so that,

U = VG cos(
π

2
− θG)− VA cos(

π

2
− θA), (3.5)

and

V = VG sin(
π

2
− θG)− VA sin(

π

2
− θA). (3.6)

For these equations, the unit of angular measure for θG and θA is radians, although the

Mode-S EHS reports use angular degrees. (The angle π/2 radians is equivalent to 90◦.)

Using these wind components the wind speed and wind direction are determined.
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It is assumed that the horizontal wind-vector lies within a 2-D horizontal plane

which is parallel to a tangent plane drawn at the Earth’s surface at the aircraft’s lati-

tude and longitude. Any vertical component to the wind-vector is assumed negligible

compared to the horizontal components.

3.6 Aggregated Observations

In this section we describe how we form aggregated observations to represent the mean

meteorological conditions. Mode-S EHS reports are frequent but, as shown by de Haan

(2011), they are noisy. De Haan (2011) reduces the effect of noise by smoothing the

time series of reports of individual aircraft. This involves identifying all reports for an

individual aircraft and its current phase of flight. This is a non-trivial problem since

the aircraft state vector provides no information as to whether the aircraft is ascending

or descending or when it has completed one journey (from take-off to touch-down).

Given the high density of Mode-S EHS we propose a simpler method, to obtain a

representative value by aggregating observations from multiple aircraft.

We distinguish our method of ‘aggregated observation’ from the ‘super-observation’

cell (Lorenc 1981, Berger et al. 2004). A Super-observation cell, Oso, is formed by the

linear combination of an NWP background model value, bo, representing the cell’s

observation, and the mean of the weighted difference between NWP background model

value at the location of the observation, bi, and the actual in situ observations, oi,

within the cell,

Oso = bo +
1

N

N∑
i=1

wi(oi − bi), (3.7)

where N is the number of observation-background pairs and wi is the weighting applied

to each pair.

The super-observation cell can be scaled to represent spatial scales that are larger

than the spatial scales of the in situ observations, e.g., the spatial scale of the NWP

model has a 1.5 km horizontal grid spacing while the in situ within the super-observation

cell may have spatial scales that are smaller. This method of super-observation has

been used to assimilate satellite-based observations (Berger et al. 2004) and Doppler

radar radial wind (Simonin et al. 2014). However, over a small area, an aggregated

observation and super-observation would be equivalent if the background model value

in eq. (3.7) does not vary across the small area cell such that bo − 1
N

∑N
i=1wibi ≈ 0.

Our method of ‘aggregated observation’ does not include the use of a background NWP

model. We choose to use our method of ‘aggregated observation’ so that we can inves-

tigate its observation error.
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An aggregated observation is formed to represent the mean meteorological condi-

tions for a horizontal layer of thickness, ∆h m, which is centred around an airport. The

horizontal layer has dimensions l km in the East-West direction and b km in the North-

South direction. The curvature of the Earth’s surface across this domain is considered

minimal1. A vertical column of height, H m, is made up of a sequence of horizontal

layers. The number of layers is given by,

N =
H

∆h
, (3.8)

and the altitude of the mid-point of the layer, L, is given by,

hL =

(
L+

1

2

)
×∆h, (3.9)

where L is the layer number, starting from zero and counting upward.

An aggregated-observation is the arithmetic mean of the derived observations in

layer L, received during the time period ∆T ,

〈OL〉 =
1

NL

NL∑
i=1

Oi,L, (3.10)

where Oi,L is the ith derived observation in layer L, and NL is the number of observa-

tions in layer L.

Observations are derived using reports from aircraft within layer L. For a single

aircraft it is assumed initially that errors in the reports of the aircraft’s state vector

follow a Gaussian distribution with a mean bias of zero and with standard deviations

of 0.6 K for temperature and 3.5 ms−1 for the horizontal wind components (as in

Painting (2003)). Errors in reports from different aircraft-types within a layer are

assumed uncorrelated (Drue et al. 2008). These initial assumptions seem reasonable

within the terminal area of an airport. Arrivals and departures occur on time-scales of

minutes; aircraft wake categories (small, medium, large and very large) and different

aircraft types (Airbus, Boeing, BAe, etc.) are managed so as to optimise traffic flow

rates through an airport. For arrivals and departures, aircraft are sequenced with

separations ranging from 6 km to 12 km depending on the aircraft wake category.

Aggregated reports use all available data to create a representative value, which

also reduces the volume of data to be processed at later stages. The method improves

1The horizontal distance, d, to the horizon is given by d ≈
√
2Reh, where Re is the radius of the

Earth, and h is the height above mean sea level. For a height of 300 m above mean sea level, Earth
radius of 6372 km, the horizontal distance to the horizon is 62 km.
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the representativeness of the observation by reducing unbiased random errors (Taylor

1982, Ch. 4 and 5) that may arise within reports from a single aircraft. However, this

technique will not identify any systematic correlated error, if this is present and can be

determined.

3.7 Derived Vertical Profiles for Horizontal Wind and

Temperature

In this section we address the second thesis question, what meteorological phenomena

can be detected using observations derived from Mode-S EHS reports. For example

the presence and duration of temperature inversions and low-level wind shear within

the vicinity of London Heathrow and London Gatwick airports can adversely affect the

operations of ATM. Timely identification of these weather phenomena can mitigate

their effects. These weather phenomena are identified from vertical profiles of wind

and temperature.

Using a sample of Mode-S EHS reports we derive vertical profiles of temperature

and horizontal wind. The reports were supplied by NATS from their archive for the

period 13th to 15th October 2012 and consist of the state vectors (defined in section

2.7) of all aircraft within the vicinity of the airport domains. The aggregated profiles

generated are for the London Heathrow and London Gatwick domains shown in figure

3-2.

3.7.1 Meteorological Conditions for the period 13th to 15th October

2012

The weather regime for October 2012 was mostly unsettled but there were some brief

periods of settled weather with mild and damp conditions (Eden 2012). On the 13th

October 2012, a low pressure system was just north of Scotland which brought rain,

which eased overnight as the low moved further north. In central and southern Eng-

land, clearing skies, falling temperatures and light winds allowed mist and fog to form.

The Met Office analysis charts for 0000 and 1200 UTC on the 14th October (Met Office

2012), figure 3-3, show for this period the low pressure regions moving from west to

east in Scotland and a ridge of high pressure over the southern regions of the United

Kingdom. Thus most parts of England and Wales had long clear spells overnight,

allowing temperatures to fall close to, or just below, freezing quite widely. As temper-

atures dropped, mist and fog formed again, mainly across southern parts of England

and Wales. Through the morning, the overnight fog was slow to clear in some parts of
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southern and south-western England. Most other places had a dry day with some sun-

shine. Through the evening, clear spells across central and southern parts of England

again allowed temperatures to fall. On the 15th October, it was a cooler night in those

parts of the country where it remained dry and clear, with an air frost forming in rural

parts of south-east England. Some mist and fog also developed overnight, but this

soon cleared once the sun had risen. Many places saw sunny spells during the day. The

weather regime changed from calm to unsettled conditions as a band of rain pushed

into Cornwall during the second half of the afternoon of the 15th October. It continued

northwards and eastwards across south-west England and Wales, into the Midlands

and Northern Ireland during the evening, and then into northern England and south-

ern Scotland overnight. This rain was fairly heavy in places (Met Office 2012). The

effect of this change in weather type reduced the occurrence of low visibility conditions

due to mist and fog.

(a) 0000 UTC 14 October 2012 (b) 1200 UTC 14 October 2012

Figure 3-3: Met Office Analysis Charts for NATS case study day 14th

October 2012 (Met Office 2012). Images are Crown Copyright and re-
produced under the Open Government Licence for public sector informa-
tion (https://www.nationalarchives.gov.uk/doc/open-government-licence, last ac-
cessed 29th August 2016.)
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(a) 0600 UTC 14th October 2012

(b) 0900 UTC 14th October 2012

Figure 3-4: Each panel in this figure shows (i) aggregated Mode-S EHS temperature
profiles for the London Heathrow domain. Reports used are ±30 minutes of the validity
time, with the mean profile centred at the validity time. (ii) The number of reports
used for each altitude bin shown on the adjacent plot. For plotting purposes each
aggregated report is plotted at the mean altitude of the reports within the altitude bin.
The error bars are for the standard deviation (grey) and the 95% confidence limits for
the mean (black), assuming a Student-t distribution based on the number of reports.
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(c) 0600 UTC 15 October 2012.

(d) 0900 UTC 15 October 2012

Figure 3-4: continued from page 43
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(a) 0600 UTC 15th October 2012

(b) 0700 UTC 15th October 2012

Figure 3-5: The legend is the same as for figure 3-4 except showing vertical profiles of
the aggregated reports for horizontal mean wind speed.
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(c) 0900 UTC 15th October 2012

(d) 1000 UTC 15th October 2012

Figure 3-5: continued from page 45
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3.7.2 Case Study: 14th and 15th October 2012, Aggregated Observa-

tions

Since fog was present in the south-east of England, we use the aggregated Mode-S EHS

reports to determine whether meteorological features such as the temperature inversion

and low-level jet can be discriminated.

Figure 3-4 shows four panels (a), (b), (c) and (d). In each panel there is shown

(i) a temperature profile constructed using aggregated Mode-S EHS reports and (ii)

the number of reports used at each altitude bin. The four panels represent four time

periods or snapshots of the vertical temperature profile at 0600 UTC and 0900 UTC

on 14th October 2012 and 15th October 2012 for the London Heathrow domain. There

are two error bars depicted for each aggregated observation. The first is the standard

deviation (grey) which represents the variability of the Mode-S reports used to compute

the aggregated observation. The second is the the 95% confidence limits for the mean

(black), assuming a Student-t distribution based on the number of reports. This rep-

resents the confidence in the aggregated observation, the fewer the reports the greater

the estimated uncertainty, e.g., the lowest report as shown in figure 3-4a.

As discussed in section 2.3, one of the conditions associated with the formation of

fog and mist is the presence of a temperature inversion. In the southeast of England and

conditions were clear and calm. The 0000 UTC Herstmonceux radiosonde report on

the 14th October indicates that there was a surface level temperature inversion present

between 50 m and 500 m (figure 2-2, page 11). For the Heathrow domain, figure 3-4a

indicates that for 0600 UTC there is an elevated temperature inversion between 500 m

and 1200 m, and figure 3-4b indicates that by 0900 UTC the meteorological conditions

persisted such that the elevated temperature inversion is still present. If the surface

level inversion seen in the radiosonde measurement (figure 2-2) was widespread then

it is likely it had become elevated by the early hours of the morning. The continuing

calm conditions may explain why the overnight mist and fog was slow to clear on 14th

October 2012 in some parts of southern and south-western England. The 0000 UTC

Herstmonceux radiosonde report on the 15th October (figure 2-2) also shows a surface

level temperature inversion present between 50 m and 300 m. Similarly, figure 3-4c

suggests that for 0600 UTC there is a low-level temperature inversion between 300 m

and 1200 m; again it is suggested that the inversion may have become elevated. By mid

morning, 0900 UTC, the vertical profile in figure 3-4d shows signs that the inversion

had started to dissipate as the weather regime become more unsettled.

Figure 3-5 shows the time series for the hourly mean vertical profile of wind speed

between 0600 UTC and 1000 UTC 15th October 2012. The mean profile is constructed

using the same method as for the temperature profile. This time series shows the
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possible evolution of a low-level jet, which is a phenomenon associated with the presence

of a temperature inversion (section 2.4, page 12.). We see at 0600 UTC (fig 3-5a) that

winds are light for the whole altitude range. At 0700 UTC (fig 3-5b) the wind speed

increases at levels above 750 m. The increased wind speed at low level is sustained at

0900 UTC (fig 3-5c) but by 1000 UTC (fig 3-5d) begins to break down. This appears

consistent with the breakdown of the temperature inversion around the same time.

We make the following observations about figures 3-4 and 3-5. The number of

reports decreases sharply below 900 m and there no aggregated observations below

300 m. This may be due to a decrease in polling by the SSR or that there is no direct line

of sight between the aircraft and the SSR operated by NATS. The standard deviation for

the aggregated temperature observation is large ≈ ±3 K, this indicates that there is a

high degree of variability in the data used. There appear to be fluctuations or discrete

step changes in the temperature profiles, which become larger when the number of

reports used to compute the aggregated observations is less than 200. Similar features

are evident in the aggregated observations for wind speed although to a lesser degree.

In the next section we consider whether the increased fluctuations may be due to the

Mode-S EHS processing.

3.8 Preliminary Analysis of Mode-S EHS Processing

In this section we take a closer look at the effect of Mode-S EHS processing on the true

airspeed and Mach number, and the subsequent effects on the derived temperature.

Figure 3-6 shows a time series plot of the Mode-S EHS reported true airspeed

and Mach number. The airspeed is shown in the unit of knots since this is the unit

for such reports. The aircraft was on a descent path to London Heathrow, hence

the airspeed shows a decrease for the time period. The figure also shows the derived

temperature, which shows an increase over the period which would be consistent with

the aircraft descent. However, it is clear that the temperature appears to vary by order

of 10 K, even over short periods of time (< 15 s). Such variability is unlikely to be

due to the variations in the ambient air temperature. Closer inspection shows that

the temperature variation is due to step changes in either the true airspeed or Mach

number. For example, between 06:36:30 and 06:37:00 UTC, the plots show that the

Mach number is constant but there is a step change in the true airspeed. This causes

a step change in the derived temperature. A similar effect on the derived temperature

may be seen for step changes in Mach number when the airspeed is constant.

Figure 3-7 show data that were obtained from a research aircraft used for atmo-

spheric studies, which we conducted and are described more fully in chapter 4. The
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Figure 3-6: Time series plot of aircraft with Mode-S address AB4FAE. Plots are for
(a) Mode-S EHS true airspeed, (b) Mode-S EHS Mach number and (c) Mode-S EHS
derived temperature. Data obtained from NATS for 14th October 2012, the horizontal
axis is for time of day from 06:36:15 to 06:38:45 UTC.

plots show a time series of (a) true airspeed, (b) Mach number and (c) temperature

respectively. The time series show two traces, the blue trace show the reference (REF)

data that could be available to the aircraft’s flight management system (FMS) and the

orange trace shows the corresponding Mode-S EHS report.

In figure 3-7a we see that there are periods where Mode-S EHS airspeed (orange)

remains constant while the REF airspeed (blue) is varying. The apparent constant

airspeed is the result of Mode-S EHS processing which rounds-up or rounds-down the

REF airspeed to a multiple of 2 knots. A similar effect is seen in figure 3-7b, where

the REF Mach number is rounded to some multiple of 0.004. We note also that the

changes in Mode-S EHS reports of airspeed and Mach number are not synchronised in

time.

Figure 3-7c shows the time series for the REF temperature (blue) and the corre-

sponding Mode-S EHS temperature (orange). The REF temperature is a measured

value. The Mode-S EHS temperature is computed using eq. (3.4) (page 38) and the

data shown in figures 3-7a and 3-7b. We see that over the time period shown the REF

temperature variation is of the order of 1 K, and for most of the time period it is

a little above 275 K. By contrast for the same time period the Mode-S EHS derived

temperature shows much greater variation both in time and magnitude.

When we compare the time series in Mode-S EHS temperature with the correspond-
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Figure 3-7: Plots of the time-varying continuous signal (blue) and its ADC signal (or-
ange) for (a) true airspeed and (b) Mach number. Plot (c) shows how the temperature
derived from the digitised values in (a) and (b) varies when compared with the in situ
measured temperature.
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ing variation in Mode-S true airspeed and Mach number we see that the asynchronous

variation in the latter two parameters gives rise to the variation in time in the for-

mer. For example, between 550 s and 570 s the Mode-S EHS Mach number is constant

but the Mode-S EHS airspeed changes which causes the Mode-S EHS temperature to

change also. For the first change at 556 s there has been no change in the REF tem-

perature while at 560 s the temperature changes by 1 K. Between 590 s and 620 s we

see that the Mode-S EHS airspeed is constant at 250 knots while the Mode-S EHS

Mach number varies between 0.384 and 0.388. It is this variation that gives rise to

the variation in the Mode-S EHS temperature. During this period of time the REF

temperature shows only a small variation around 275 K.

Figure 3-7 shows clearly that the variation in Mode-S EHS temperature is domi-

nated by the effects of Mode-S EHS processing, which involves rounding and truncating

the REF data used to generate its reports. The difference between Mode-S EHS and

REF data is known as quantisation error. If the observed Mode-S EHS variation is

dominated by this type of error then it may be possible to model the error using the

statistics of quantisation error. We suggest that fluctuations shown by de Haan (2011)

are also due to quantisation error.

3.9 Quantisation Error

In this section we describe how quantisation error, ∆Q, arises when a Mode-S EHS

transponder processes a time-varying analogue waveform, C (t), into a digital waveform,

Zm (t). This process is referred to as analogue-to-digital conversion (ADC), where the

waveform is an electrical voltage. We suggest that it is the effect of this processing that

gives rise to the oscillations observed in the Mode-S EHS observations shown in figures

3-6 (page 49) and 3-7 (page 50). A detailed discussion on ADC is beyond the scope

of this project (see Begueret et al. (2008) or Pelgrom (2017, Ch. 8) for a description).

However, a part of the process is described.

There are three steps for the Mode-S EHS processing:

(a) The first step is the conversion from an analogue waveform, C (t), to a sampled

waveform S (tk),

S (tk) = C (t) Ik for sample k = 1, 2, 3, ...., (3.11)

where ts is the time between samples. The term Ik is an indicator function given by,

Ik =

{
0 for t− kts 6= 0

1 for t− kts = 0.
(3.12)

(b) The sampled waveform is passed through to a flash ADC where it is converted
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to a binary number. The flash ADC is an electronic circuit composed of a series of

state comparators. The output of a state comparator is a binary value. For further

details on the ‘flash’ ADC and state comparators see Horowitz & Hill (2015, Ch. 13)

or Pelgrom (2017, Ch. 8) .

Mathematically, the ADC binary encoding of the sample S (tk) is in terms of the

ADCs quantisation step size, ε, which is given by (Pelgrom 2017, p. 92),

ε =
|Smax|

2n
, (3.13)

where |Smax| is the maximum amplitude of the continuous-time waveform, |C(t)|, and

n is the number of binary bits used by the ADC. The ADC process causes the sample

S(tk) to be rounded-up or rounded-down by up to ±0.5ε. (Note that if |Smax| <
|C(t)| then this results in distortion of the digital waveform called clipping, i.e., when

|C(t)| > |Smax| then S (tk) = |Smax|. However, ADCs are usually designed to avoid

this problem.) The ADC converts the sample S (tk) to binary form Zn (tk) (Pelgrom

2017, p. 92),

Zn (tk) =
n∑
p=0

bp2
pε, (3.14)

where bp is an indicator that represents the state of the ADC at the binary bit position

p,

bp =

{
1 ADC state ‘on’

0 ADC state ‘off.’
(3.15)

(c) The final step in the Mode-S EHS processing is truncation, which reduces the

number of bits from n to m. This step uses the first m higher-order terms from Zn (tk)

so the truncated value is,

Zm (tk) =
n∑

p=n−m
bp2

pε, (3.16)

where m < n.

The quantisation error is then the difference between the analogue input value and

the digitised output value (Widrow et al. 1996, Bennett 1948),

∆Q = C(t)− Zm(t), (3.17)

where Zm(t) = Zm (tk) for kts < t < (k + 1)ts,i.e., Zm(t) remains constant until the

next sample is taken (this step is called ‘sample and hold’).

The distribution of ∆Q is finite and can be represented as a continuous uniform
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distribution on the interval [a, b] (Widrow et al. 1996),

F (∆Q) =

{
1
b−a a < ∆Q < b

0 elsewhere
(3.18)

the mean and variance of its distribution are given by Walpole et al. (2011, Ch 6)

as,

E(∆Q) =
b+ a

2
(3.19)

and

V ar (∆Q) =
(b− a)2

12
(3.20)

respectively. When a = −1
2ε and b = 1

2ε then the mean E(∆Q) = 0 and the standard

deviation of quantisation error is given by,

σ =
√
V ar (∆Q) =

√(
ε2

12

)
=

ε√
12
. (3.21)

We hypothesize that it is the quantisation effect from ADC used by the Mode-S

EHS processor that causes the step changes observed in the Mach number and true

airspeed, as shown in figures 3-6 (page 49) and 3-7 (page 50). Furthermore, we suggest

that this variability can be expressed as a contribution to observation error using the

standard deviation of quantisation error.

3.10 Summary

In this chapter we have described how NATS use a network of SSRs to actively inter-

rogate individual aircraft to request Mode-S EHS reports of the aircraft’s state vector.

We have used a sample of Mode-S EHS data from the NATS archive to construct ver-

tical profiles of temperature and wind speed. We create these profiles by aggregating

the Mode-S EHS reports into altitude bins within a defined region around London

Heathrow airport. We have used these profiles to identify the occurrence of meteoro-

logical features, the temperature inversion and the low-level jet. We suggest that these

may provide information that may be useful for operational meteorological forecasting

and for numerical weather prediction. However, we note that quality of the obser-

vations requires further investigation. We suggest that quantisation error is a major

contributor to the estimation of error in the aggregated observations and which affects

the quality, and therefore, the utility of the resulting derived observations.

We use the knowledge and understanding gained from this initial study to motivate
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the studies in the rest of this thesis. In chapter 4 we address our first thesis question

about the accuracy of the measurements for horizontal wind and ambient temperature.

We use the standard deviation of quantisation error to develop and validate error models

for the Mode-S EHS observations. We use reports collected by the Met Office Mode-S

EHS receiver network described in chapter 5 to address our second thesis question in

chapter 6, what atmospheric phenomena within the boundary layer can be observed

from using observations derived from these routine messages. For this question we

construct vertical profiles for ambient temperature, and we show that quantisation is

still a dominant source of error. In chapter 7 we address the third thesis question on the

benefit that assimilation of these high frequency observations brings to the Met Office

UKV numerical weather predictions. We suggest that the quantisation error remains

a significant source for the observation error used in data assimilation.
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Chapter 4

Comparison of Aircraft Derived

Observations with in situ

Research Aircraft Measurements.

We acknowledge that sections 4.2 to 4.9 inclusive are extracts from the paper published

by Mirza et al. (2016).

4.1 Introduction

This chapter investigates the errors of Mode-S EHS derived observations resulting from

the limited precision of the transmitted aircraft state vector. We do this using in situ

recordings made with research-grade high precision instruments aboard the Facility

for Atmospheric Airborne Measurements (FAAM BAe-146) (Smith & Gratton 2004).

Unfortunately the FAAM aircraft does not have a Mode-S transponder so we emulate

the processing of the aircraft’s state vector, using the in situ research observations, so

as to generate Mode-S EHS type reports. We then derive the temperature and wind

and compare with the actual in situ observations. We also derive novel error models

based on a consideration of Mode-S EHS processing and validate these models using

the in situ observations.

This chapter is organized as follows: in section 4.2 we describe the FAAM aircraft,

the data parameters available from its avionics systems and how we emulate Mode-S

EHS reports using data recorded by the FAAM BAe-146. Section 4.3 describes the

instruments used to obtain the in situ observations and details the six case studies to

be examined. We evaluate one case study in detail and describe the methodology used

for the analysis. Section 4.4 defines our notation and metrics for our quality assessment
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of the derived temperature, section 4.5, and horizontal wind, sections 4.6 and 4.7. We

derive and apply our error models for the Mode-S EHS processing. Section 4.8 presents

the results for all of the cases studied, which suggest that the observation error standard

deviation for temperature increases from 2 K at 10,000 m to 4.5 K near the surface,

an order of magnitude greater than AMDAR’s 0.4 K (Painting 2003). For the cases

studied, the observation error standard deviation for horizontal wind is up to 0.5 ms−1

compared with AMDAR’s 2 to 3 ms−1 (Painting 2003). These results are shown to

be due to the reduced precision of the aircraft state vector that results from Mode-S

EHS processing. Section 4.9 summarizes the findings of this work and concludes that

horizontal wind derived from Mode-S EHS observations may have practical applications

for high-resolution NWP, while derived temperatures may be aggregated from multiple

aircraft to provide useful information. However, this requires further investigation to

assess how to minimize their errors. Finally, in light of the findings in this chapter, we

note that direct reports of higher precision data would be preferable.

4.2 Facility for Atmospheric Airborne Measurements (FAAM

BAe-146)

The Facility for Atmospheric Airborne Measurements (FAAM) BAe-146 (Smith &

Gratton 2004) is a research aircraft operated by the United Kingdom’s National Centre

for Atmospheric Science (NCAS). It is a modified BAe 146-301. This facility provides

an aircraft measurement platform for use by the UK atmospheric research community

on campaigns throughout the world. The aircraft carries research-grade instruments to

make measurements for a particular campaign. These data are recorded every second

while the aircraft is in flight and at 32-bit floating point precision. Note this is not

intended to indicate the precision of the actual research instrument. Two parameters,

pressure altitude and indicated airspeed, are recorded from the flight management

system via a network interface card that uses the Aeronautical Radio Incorporated

(ARINC) 429 Standard.

4.2.1 Aeronautical Radio Incorporated (ARINC) 429 Standard

A network protocol is used to transfer data between aircraft subsystems. The network

protocol used aboard the FAAM is the Aeronautical Radio Incorporated (ARINC) 429

standard ( AEEC 2004; Spitzer 2006, Ch. 2). The network protocol defines how data

are transferred in the form of data packets. An ARINC 429 data packet is a 32-bit

binary number, of which 20 bits are available for representing data; label information
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to indicate the content of the data packet uses 8 bits; the remaining bits are available

to indicate the validity and quality of the data in the packet. The actual number of

bits used to represent data is determined by consensus among the original equipment

manufacturers, then published as an aeronautical standard. If this number is less than

20 bits then the unused bits may be re-purposed, for example to store data to a higher

level of binary precision during computation. From the ARINC-429 standard, the data

range, number of bits, and the data increment that are relevant for meteorological

reporting are listed in table 4.1. (The network protocol will be aircraft-type specific,

for example, newer aircraft may use the later edition of the standard, ARINC 629. An

ARINC 629 data packet has 16 bits available for representing data.)

The data used for the aircraft state-vector are represented using an n-bit binary

counter, where n is the maximum number of bits. The data increment or quantisation

step, ε, is the decimal value of the least significant bit (LSB). This is defined using eq.

(3.13),

ε = d/2n,

where d is the numerical range of the reported parameter and 2n is the range of the

counter expressed as a decimal integer. The precision of the data is taken to be ±0.5×ε.
For example, the ARINC-429 label 205 is for Mach number, M , and its numerical range

is defined as 0 ≤ M < 4.096. The binary counter used to represent this range is of

length 16 bits, which provides a decimal integer range from 0 to 216. The value of the

LSB is then ε = 4.096/216 = 0.00006250. Thus the ARINC-429 Mach number precision

is taken to be ±0.00003125. For examples of how data can be represented using an

n-bit binary counter see Begueret et al. (2008).

4.2.2 The Mode-S EHS Message Format

The Mode-S EHS message format (EUROCAE 2008) is used by the Mode-S EHS

transponder to transfer data between aircraft subsystems and ground-based subsystems

and is part of the secondary surveillance radar system (Boisvert & Orlando 1993). The

precision of the data contained in a Mode-S EHS message is lower than that of the

ARINC-429 data packet. Table 4.1 shows that most of the parameters relevant for

meteorological reporting are reduced from 16 bit to 10 bit representation. Using eq.

(3.13), the Mode-S EHS Mach number precision is taken to be ±0.002.

A Mode-S EHS transponder reports an aircraft’s state vector using the reduced

precision parameters listed in table 4.1. These reports are retrieved by a secondary

surveillance radar network operated by ATM. The maximum rate at which these reports

are requested is determined to some extent by the rotation rate of the secondary radar;
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typically every 4 to 12 seconds. However, other factors may reduce the number of

reports received, e.g., distance from the radar, air-traffic density and radio interference.

Nevertheless, the number of reports received is (usually) sufficient to enable ATM to

perform their function of maintaining safe separation between aircraft. The parameters

for the aircraft’s state vector are stored within the Mode-S EHS transponder on the

aircraft and updated, typically, every 1.3 seconds (ICAO 2012).

4.2.3 Emulation of Mode-S EHS messages

The FAAM aircraft is not equipped with a Mode-S EHS transponder. Thus for this

study Mode-S EHS reports for the aircraft’s state vector were instead emulated using

data recorded by the FAAM aircraft, although the actual transmission of the Mode-S

EHS message was not emulated.

The parameters for the aircraft’s state vector are drawn from the FAAM’s recorded

data. The Mode-S EHS ground-direction, ground speed, magnetic-heading, latitude,

longitude and time-of-report are obtained from the FAAM’s global positioning system

(GPS) and inertial navigation system (INS) (Woolley 2008a, Applanix 2006). The

pressure altitude was obtained from the aircraft’s FMS. The Mach number, M , is

calculated post-flight using the equation (Collinson 2011, pp. 392-395),

Q

PS
=
(
1 + 0.2M2

) 7
2 − 1, (4.1)

where Q (hPa) is the pitot-static pressure difference and PS (hPa) the static pressure,

obtained from the FAAM’s turbulence probe (Woolley 2014a). The true airspeed was

obtained by the following method: A pitot-static pressure difference was measured by

the turbulence probe, from which a Mach number was obtained. This, along with

the de-iced temperature measurement, was used to compute the true airspeed. Full

precision data are used in these computations. More details about these sensors are

given in section 4.3.

Before being passed to a process that generates the Mode-S EHS message for-

mat, each parameter is converted from 32 bits floating point representation to 16 bits

unsigned integer. This requires the Mach number to be expressed in the unit of milli-

Machs. The directional parameters are recast as follows:

(i) The data range of the ground heading, θG, is changed to 0◦ ≤ F (θG) < 360◦ ,

where

F (θG) =

{
θG : 0◦ ≤ θG < 180◦

θG + 360◦ : −180◦ ≤ θG < 0◦.
(4.2)
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Table 4.2: Algorithm for Mode-S EHS processing. The middle column of the table
contains the general algorithm for Mode-S EHS processing. The right-hand column
illustrates the Mode-S EHS processing for an input value representing the ARINC
Mach number, using the appropriate parameters given in table 4.1.

Step Number Algorithm Example calculation for Mach num-
ber

0 The input values are the data, I32, the data in-
crement, ε and the data range d.

The input values, expressed in the
unit of milliMachs, are the Mach
number, I32 = 541, the data in-
crement is ε = 4, the data range,
d = 4096

1 Compute the decimal value of the least signifi-
cant bit, LSB = d/216.

LSB = 4096/216 = 0.0625

2 Express the input data as a 16 bit unsigned bi-
nary value, I16 = I32/LSB.

0010000111010000

3 Express the precision as a 16 bit unsigned binary
value, P16 = 0.5× ε/LSB.

0000000000100000

4 Round-up the input data by computing the sum,
I16 + P16.

0010000111110000

5 Truncate the result to the first ten bits, where
∧ is the logical “AND” operator, I10 = (I16 +
P16) ∧ (1111111111000000)

0010000111000000

6 Convert I10 to a decimal value I10 = 8640
7 Compute the result, R = I10 × LSB. R = 8640× 0.0625
8 Return the result, R = 540 milliMachs

(ii) The input true heading, θA, is converted to magnetic-heading, θmag, using the

2010 World Magnetic Model (Maus et al. 2010), so that its data range is 0◦ ≤
F (θmag) < 360◦, where

F (θmag) =

{
θmag : 0◦ ≤ θmag < 180◦

θmag + 360◦ : −180◦ ≤ θmag < 0◦.
(4.3)

(The conversion between true heading and magnetic-heading is discussed further

in subsection 4.2.4.)

The algorithm used to convert the aircraft state parameters to the corresponding

Mode-S EHS bit-level precision is given in table 4.2. The algorithm is illustrated

using an example computation for the Mode-S EHS Mach number. The effect of the

algorithm is to round-up or round-down the input value by an amount such that the

result is a multiple of the LSB for Mode-S EHS. (A similar algorithm is used for

converting FAAM’s core data to the corresponding ARINC-429 bit level precision.)

4.2.4 Aircraft True Heading

In order to compute the horizontal wind-vector, the aircraft’s true heading, θA, is re-

quired. This is the direction of the aircraft’s longitudinal axis measured clockwise from
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Geographic North. However, the Mode-S EHS report contains the aircraft’s magnetic-

heading, θmag, which is the angle measured clockwise from Magnetic North. Geographic

North and Magnetic North are not coincident and their separation varies over time and

by location. In addition, the aircraft’s true heading may be subject to instrument error

that depends on the type of heading-reference system being used for navigation (Mu-

lally & Anderson 2011, Jacobs et al. 2014). Thus, the aircraft’s true heading, θA, is

the sum of these components:

θA = θmag + θvar + θdev, (4.4)

where θvar, called the magnetic variation, takes account of the angular difference be-

tween Geographic and Magnetic North; and θdev, called the magnetic deviation (or the

compass error), takes account of the remaining sources of error which include instru-

ment errors in the heading reference system.

An aircraft’s FMS applies the corrections for θvar and θdev. The magnetic variation,

θvar, is obtained from a look-up table based on the World Magnetic Model (WMM)

(Maus et al. 2010). The WMM models the estimated variations in the Earth’s magnetic

field and is updated every five years. The aircraft’s magnetic deviation, θdev, is obtained

from calibration of the heading reference system against a reliable reference source,

usually a high-precision gyroscope (Civil Aviation Authority 2013), and programmed

into the FMS as a look-up table. (It should be noted that a FMS may be using outdated

versions of the WMM (Nakamura 2013, Weinstein 2009) and compass calibrations are

only required to be performed once every two to three years (Civil Aviation Authority

2013).)

The FAAM INS reports true heading, θA. We assume that the INS is calibrated so

that the magnetic deviation, θdev, is approximately zero. This is because the tables for

magnetic deviation were unavailable. So for the purpose of this study the magnetic-

heading is emulated as, θmag = θA − θvar.

4.3 Meteorological Research Measurements

The observation and reference data used in this study were recorded during the COn-

vective Precipitation Experiment (COPE) which took place during the summer of 2013

(Leon et al. 2015). The project’s goal was to study the evolution of convective condi-

tions within regions of the United Kingdom. In addition to data obtained during the

COPE campaign, aircraft data were also obtained during scheduled flights for main-

tenance and instrument tests; including one flight for calibrating the International

Sub-Millimetre Airborne Radiometer (Moyna et al. 2010). Table 4.3 lists the six flights
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used for this study along with a short description of each flight. A total of 21.7 hours

of flight data were recorded for six flights of which 12.2 hours passed quality control

processing. The weather conditions for these flights are described by Eden (2013a,b).

Reference (REF) measurements of the horizontal components of the wind (UREF ,

VREF ) are obtained from the aircraft’s five-port pressure sensor located in the nose-

cone of the aircraft. The centre port measures the static pressure. The wind-vector

components are then determined by the pressure differential recorded by the remaining

four sensors. The methodology is described by Brown (2004a) and Nicholls (1980).

The method makes use of the aircraft’s ground vector, as measured by the inertial

navigation system. Corrections are made for the rotation of the aircraft around its

pitch axis, which is an imaginary line that runs from wing-tip to wing-tip; and its yaw-

axis, which is an imaginary line that runs vertically through the aircraft; both lines

have their origin at the aircraft’s centre of gravity.

Temperature is recorded by two Rosemount type 102B hot-wire thermometers lo-

cated at the front starboard side of the aircraft’s main body. One thermometer is

heated to prevent icing. These thermometers record the total-air-temperature (Wool-

ley 2009, Stickney et al. 1994), which is the sum of the ambient temperature and the

heating effect due to air being compressed in the sensor’s housing. The measurement

of the temperature is done by two sensors; one sensor has its housing heated to prevent

icing while the other’s housing is not heated. During post-flight processing two ambi-

ent temperatures are recovered which are referred to as the de-iced temperature, where

the effect of the heated housing is removed, and the non-de-iced temperature (Woolley

2008b). The de-iced temperature is used as the reference temperature. The aircraft’s

geographic position is recorded by an INS/GPS receiver. Reference time is taken from

the INS/GPS receiver and is measured as the elapsed number of UTC seconds since

the start of the day. In addition to these measured parameters, we use the aircraft’s

recorded pressure altitude and indicated airspeed which are obtained from the aircraft’s

FMS.

Once the aircraft has returned to its base of operations, the FAAM measurements

are post-processed to produce data at 1 Hz and are corrected for known instrument

biases. The indicated air speed and pressure altitude are used as first-guess values

for calibration when deriving the meteorological measurements for the horizontal and

vertical winds, and ambient temperature. The expected accuracies of aircraft state

parameters after post processing are shown in table 4.4. The expected accuracies for

the UREF and VREF obtained from the turbulence probe are assumed to be ±0.2 ms−1.

This assumption is based on the experiments carried out by Tjernstram & Friehe (1991)

that used a similar turbulence probe on a Sabreliner 40A.
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Table 4.4: Accuracy of FAAM Aircraft Parameters (Woolley 2014b)

Parameter Instrument accuracy
(for one standard deviation)

GPS/INS True heading ±0.02◦

Horizontal Position ±5 m
Altitude above mean sea level ±7 m
Ground speed ±0.07 ms−1

Total air temperature (non de-iced ) ±0.3 K
Total air temperature (de-iced) ±0.3 K
Static Pressure (Corrected) ±2 hPa
True airspeed (Corrected) ±0.4 ms−1

Table 4.5: Acceptance criteria used for filtering the FAAM aircraft data.

Parameter Threshold Comment

true airspeed 25 ms−1 < VA ≤ 300 ms−1 Gross error range check
magnetic-heading 0◦ < θmag ≤ 360◦ Aircraft heading with re-

spect to magnetic North
ground speed 25 ms−1 < VG ≤ 425 ms−1 Gross error range check
ground heading 0◦ < θG ≤ 360◦ ground heading with re-

spect to geographic North

(Ground - Magnetic)
Heading

|θG − θmag| <45◦ Gross error range check

Mach Number 0.000 < M ≤0.85 Gross error range check
Roll Angle ≤ ±1.5◦ threshold for stable level

flight

4.4 Notation and Metrics

For discussion of the results the notation listed in table 4.6 is used to maintain the

distinction between the derived and reference values. An estimate of the unbiased

sample standard deviation, σ, is obtained from the metrics of the mean bias (MB) and

root mean square error (RMSE) (Wilks 2011, Jolliffe & Stephenson 2012) using (Ross

2009, p.271),

RMSE2 = MB2 + σ2, (4.5)

where

MB =
1

Nf

Nf∑
i=1

(oi − ri) , (4.6)
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Table 4.6: Notation for observations and measurements.

Symbol Label Comment

TREF Reference Temperature The reference observations
are the FAAM’s measure-
ments of the static ambi-
ent temperature measured
by the de-iced sensor

UREF and VREF Reference Horizontal Wind
Components

The reference wind com-
ponents derived from the
FAAM’s turbulence probe.

UARINC and VARINC ARINC Horizontal Wind
Components

The winds calculated using
ARINC precision data and
using eqs. (3.5) and (3.6)
(page 38).

UMode−S and VMode−S Mode-S EHS Horizontal
Wind Components

The winds calculated using
Mode-S EHS precision data
and using eqs. (3.5) and
(3.6) (page 38).

TMACH Mach Temperature The static ambient temper-
ature derived from the em-
ulated Mode-S EHS report
using eq. (3.4)( page 38 )

and

RMSE =

√√√√ 1

Nf

Nf∑
i=1

(oi − ri)2. (4.7)

The term oi is the ith Mode-S EHS derived observation, i.e., TMACH , UMode−S or

VMode−S , and the term ri is the corresponding REF observation matched by position

and time, i.e., TREF , UREF or VREF . The term Nf is the number of observation

and reference pairs that passed the quality control criteria given in table 4.5. The

uncertainty in the standard deviation is estimated by (Taylor 1982, pp.294-298),

δσ =
σ√

2 (Nf − 1)
. (4.8)

For comparing results we define a box-average. The pressure-altitude is divided into

bins of height 0.3 km from the surface to 10 km. The Mode-S EHS reports, Mode-S

EHS derived observation and corresponding REF observation are sorted into the bins.

For each bin, σ, δσ, MB and RMSE are computed and each result assigned to the

centre of each bin. In addition, the mean values of Mode-S EHS reports are computed

and the result assigned to the centre of the bin. The results assigned to the centre of
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each bin are referred to as the box-average.

4.5 Quality of Derived Mach Temperature

In this section we analyse the vertical profile of the temperature difference TMACH −
TREF . An error model is derived to estimate the observed differences and we suggest

that the differences are dominated by the effect of Mode-S EHS processing. We also

use the error model to estimate the precision of the derived temperature, ∆T , for three

levels of Mode-S EHS data precision.

4.5.1 Differences in TMACH and TREF

Figure 4-1(a) is the vertical profile of TREF for the whole flight recorded by the FAAM

de-iced temperature sensor. At the start of the flight there was a low level temperature

inversion which had dissipated by the end of the flight. This can be seen as the two

intercepts at the surface. Figure 4-1(b) is the vertical profile of TMACH computed

using eq. (3.4) (page 38). This profile shows the effects of Mode-S EHS processing.

Firstly a distinct temperature inversion cannot be seen in the figure due to the spread

in the data. Restricting the data plotted to the early part of the flight indicates this

feature is still detectable in the derived measurements (not shown). Secondly, there

is an apparent double profile between 7 km and 9 km; it was found that the reduced

precision of the Mach number causes TMACH to oscillate between two values resulting

in the double profile. Figure 4-1(c) is the temperature difference profile TMACH -

TREF . The magnitude of the differences range from 6 K near the surface to 3 K at

high altitude. (The grey profile is discussed in section 4.5.2.) Figure 4-1(d) depicts the

distribution of these differences as a histogram, for the whole flight. The distribution

appears to be approximately symmetric and uni-modal in form, with a sample mean

0.029 K and a sample standard deviation 2.14 K.

4.5.2 Estimated Error in TMACH

We use the method of error propagation analysis (Taylor 1982) on eq. (3.4) (page 38)

which leads to the estimated Mach temperature error, ∆T , being given by,

∆T = ± T0

A2
0

2VA
M2

√(
∆V 2

A +
V 2
A

M2
∆M2

)
, (4.9)

where ∆VA is the true airspeed precision and ∆M is the Mach number precision. These

precisions may be represented as the instrument’s scale division, data increment or the
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Figure 4-1: Flight B787 (11th July 2013) (a) Vertical profile of reference temperature
TREF . (b) Vertical profile of derived Mach temperature, TMACH . The stripe effect is
the result of the reduced precision of the input data. (c) Vertical profile of temperature
difference TMACH − TREF (black). The estimated maximum error profile for Mach
temperature (grey) (see also figure 4-2(a)). (d) Histogram of temperature differences
using a centred bin width of 1 K.
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standard deviation obtained from a sequence of measurements (Taylor 1982). For

Mode-S EHS reports the data increment for true airspeed is 2 knots (1.03 ms−1) and

for Mach number it is 0.004 (ICAO 2012). We use in situ measurements of temperature

and an error model for Mode-S EHS processing to validate estimates of temperature

error given by eq. (4.9), and suggest the source of the observed error estimates.

The true airspeed and Mach number from FAAM flight B787 are used to generate

the corresponding emulated Mode-S EHS reports. In figure 4-2, profile (a) shows the

estimated ∆T when the precision of the Mode-S EHS reported true airspeed is taken

to be ∆VA = 0.5 × 2 knots and Mach number is taken to be ∆M = 0.5 × 0.004. It

is clear that the magnitude of the estimated error increases from 2.0 K to 4.5 K as

the aircraft’s altitude decreases. Profile (a) assumes a fixed error value (∆VA, ∆M)

for each report of true airspeed and Mach number so the estimated temperature error

(∆T ) represents a maximum value. However, due to the binary representation of the

data, there is a contribution to the error which arises from the process of rounding and

truncation called the quantisation error (Widrow et al. 1996). In section 3.9 (page 51)

we discussed the digitization of an analogue signal. We noted that the quantization

error may be uniformly distributed between ±0.5ε, where ε is the magnitude of the

data increment or quantisation step. The quantization error has a mean of zero and a

standard deviation given by (Widrow et al. 1996),

σ =
ε

2
√

3
.

If we use the standard deviation given by eq. (3.21) (page 53) as a measure of precision

due to quantisation (Taylor 1982, Chapter 5) then for the true airspeed, ∆VA = 2/
√

12

knots and for the Mach number, ∆M = 0.004/
√

12. Figure 4-2 profile (b) shows

that the magnitude of the estimated error due to quantisation is approximately half

that shown in profile (a), and increases from 1.25 K to 2.5 K as the aircraft’s altitude

decreases. A sensitivity analysis on the magnitude and standard deviation due to

quantisation error was performed to seek desirable values for data increments for Mach

number and true airspeed. This was done by increasing the number of bits for the

Mode-S EHS reports of Mach number and true airspeed.

The sensitivity analysis indicates that to achieve ∆T at around 1 K near the surface,

shown in figure 4-2 profile (c), then we require that the true airspeed precision to be

∆VA = 1/
√

12 knots and the Mach number precision to be ∆M = 0.001/
√

12. However,

it should be noted that the uncertainty profiles given in figure 4-2 are due to effects of

quantisation error and do not consider other sources of error (Painting 2003).

We use the quantisation error model for the precision (eq. (3.21)) to analyse and
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Figure 4-2: This plot shows the vertical profile of the estimated error in the Mach tem-
perature, ∆T , (using eq. (4.9)) derived from the emulated Mode-S EHS reports of true
airspeed and Mach number for flight B787 on 2013-07-11. Gaps in the vertical profile
indicate where data were removed as a result of quality control processing. The striped
effect, most visible in profile (a), is the result of numerical rounding and truncation
required for Mode-S EHS reporting precisions. Profile (a) shows the variation of ∆T
with pressure altitude assuming precisions of the reported true airspeed is ∆VA = 1
knot (0.51444 ms−1) and Mach number is ∆M = 0.002. Profile (b) is the variation of
∆T assuming precisions arise from the standard deviation of quantisation error (using
eq. (3.21)), ∆VA = 2/

√
12 knots and ∆M = 0.004/

√
12. Profile (c) is the result of a

sensitivity analysis to achieve an estimated temperature error of 1 K near the surface
assuming the precisions for standard deviation of quantisation error are ∆VA = 1/

√
12

knots and ∆M = 0.001/
√

12. The colour of the line and side-bar indicates the Mach
number range for when the BAe-146 is in flight. Number of reports = 9541.
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Figure 4-3: Flight B787 (11th July 2013). Box average statistics for temperature.
Results binned by altitude, with bin heights at 0.3 km intervals. Plot (a) is the number
of reports per altitude bin, Nb, expressed using a log10 scale. Plot (b) vertical profile of
temperature difference (TMACH−TREF ) mean bias (MB) (squares) and RMSE (circles).
Zero is marked by the vertical line. Plot (c) Vertical profile of the box-average observed
σ (triangles) (using eqs. (4.5) and (4.8) and the box-average ∆T (diamonds) due to
the quantisation error (using eqs. (4.9) and (3.21). Plot (d) depicts the results of plot
(c) against the box-average M reported by Mode-S EHS.

characterize the error in TMACH (given by eq. (4.9)) when compared with TREF .

Figure 4-3 depicts box-average statistics for temperature differences TMACH−TREF .

The data are binned into pressure altitude intervals of height 0.3 km. Figure 4-3 (a)

is the number of reports per altitude bin, Nb, expressed using a log10 scale. Figure

4-3 (b) depicts the vertical profile of the MB (squares) and RMSE (circles) for each

pressure altitude bin. The box-average MB ranges between -1 K and 1 K but is often

close to zero. This is expected since the difference TMACH−TREF should on average be

close to zero (compare with figure 4-1(c)). The box-average RMSE is greatest near the

surface and decreases with altitude, with a total range of 1.2 - 2.5 K. (For comparison,

for the whole flight the MB is 0.25 K and the RMSE is 2.06 K.) Figure 4-3 (c) depicts

the vertical profile of the box-average ∆T (diamonds), computed using eq. (4.9), with

precisions given by eq. (3.21) (page 53) for true airspeed ε = 2 knots and for Mach

number ε = 0.004. Also depicted is the vertical profile of the box-average standard
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deviation (triangles) computed using eq. (4.5), with the uncertainty estimated using

eq. (4.8). Apart from a few outliers, the trend of the box-average standard deviation

appears to correspond well with the box-average ∆T profile. These results suggest that

quantisation error in the Mach number and airspeed makes a stronger contribution to

the error in TMACH , and illustrates the effect of Mode-S EHS processing. Figure 4-3 (d)

depicts the results from (c) plotted against the box-average Mode-S EHS Mach number;

since for reasons of flight safety the control of the aircraft is often by reference to Mach

number rather than true airspeed if the aircraft is at high speed, high altitude or for

airborne separation. The reported Mach number is computed under the prevailing

atmospheric pressure conditions (eq. (4.1)) whereas the reported pressure altitude is

referenced to a static mean-sea-level pressure under ISA conditions. Thus this may

afford a more suitable representation for data assimilation of Mach Temperature. This

result still suggests that there is a significant contribution to the error in TMACH due

to quantisation error.

4.6 Quality of Derived Horizontal-Wind Vector

Figure 4-4 (page 72) depicts the vertical profile of the horizontal wind components: fig 4-

4(a) zonal UREF and fig 4-4(c) meridional VREF obtained from the FAAM’s turbulence

probe, while fig 4-4(b) zonal UMode−S and fig 4-4(d) meridional VMode−S are the wind

components obtained from applying the wind vector eqs. (4.10) and (4.11). The

vertical striping effect in figures 4-4(b) and (d) may be due to the reduced precision of

the Mode-S EHS reports of true airspeed, magnetic-heading, ground speed and ground

heading. The striping effect is more pronounced in the zonal wind component possibly

because the flight trajectory and wind direction are mostly in this direction. To assess

the effect of Mode-S EHS processing it is useful to compare the output Mode-S EHS

data with the input ARINC data. This affords insight into partitioning errors that can

be attributed to data processing and to other sources of error for the wind components.

In figure 4-5 (page 73), the zonal UARINC and meridional VARINC wind components

are obtained using data with ARINC precision and are compared with the reference

observations. To facilitate plotting and for ease of comparison, outliers greater than

3σ from µ, where µ is the mean value and σ is the standard deviation, were removed

from the plots but were not removed from the computation of the results, see table 4.7

for details.

Figure 4-5(a) depicts the vertical profile difference UARINC - UREF and figure 4-

5(d) depicts the vertical profile difference VARINC - VREF . The trajectory for this flight

was mostly East-West with a more North-South trajectory at the start of the flight.
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Figure 4-4: Flight B787 (11th July 2013) vertical profiles of the reference components
(a) zonal UREF and (c) meridional VREF . Vertical profile of derived components (b)
zonal UMode−S and (d) meridional VMode−S . The stripe effect visible in (b) and (d)
is due to the reduced precision of the input data to the wind vector eqs. (4.10) and
(4.11). This is more pronounced in the zonal component since the majority of the flight
was in this direction.
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Figure 4-5: Flight B787 (11th July 2013) Vertical difference profiles of the zonal (U) and
meridional (V ) wind components obtained using eqs. (4.10) and (4.11). The difference
between the input ARINC and REF observations are shown as the grey line in plots
(a) UARINC - UREF and (d) VARINC - VREF . These plots also depict the aircraft’s
true heading shown as the black lines referenced to the upper scale. The difference
between the input ARINC and output Mode-S EHS are shown in plots (b) UMode−S -
UARINC and (e) VMode−S - VARINC . The difference between the output Mode-S EHS
and REF observations are shown plots (c) UMode−S - UREF and (f) VMode−S - VREF .
The REF observations are derived from the FAAM’s turbulence probe. To facilitate
plotting, outliers greater than 3σ from µ are not displayed, see table 4.7 for details.
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Table 4.7: Outliers not displayed in plots for horizontal wind (ms−1), shown in figure
4-5, when the magnitude of the plotted value is greater than 3σ from µ.

Figure µ 3σ Min value Max value Number of outliers

4-5(a) -0.077 1.1518 -1.384 1.510 0
4-5(b) 0.077 1.213 -1.042 1.031 0
4-5(c) -0.068 1.932 -1.996 1.714 6
4-5(d) -0.100 2.164 -2.165 2.240 37
4-5(e) -0.001 0.599 -0.601 0.597 99
4-5(f) -0.095 2.247 -2.278 2.330 31

The differences appear to occupy four zones. In figure 4-5(a) between the altitude

ranges 0 m to 1 km and 3 km to 6 km the difference is positive while between 1 km

to 3 km and above 6 km the difference is negative. Similar differences are seen in

figure 4-5(d). In both plots the magnitude of the difference is of the order ±1 ms−1.

There appears also to be a directional bias which affects both wind components in the

same way. Recall that the reference winds and ARINC precision winds are computed

using different input data (except for the ground vector), and different calculation

methods (see sections 4.2.3 and 4.3). A key difference appears to be the aircraft’s

heading. Directional errors relating to an aircraft’s navigation are suggested by Drue

et al. (2008), de Haan (2011) and Jacobs et al. (2014).

Figure 4-5(b) depicts the difference UMode−S - UARINC and figure 4-5(e) depicts

the difference VMode−S - VARINC . Thus these figures show the effect of Mode-S EHS

processing. For the zonal wind the differences are typically within ±1 ms−1 and for

the meridional wind the differences are typically within ±0.5 ms−1. Possible causes

that may explain why the magnitude of the meridional wind differences are smaller

when compared to the zonal wind differences are: a strong zonal component to the

wind direction when compared with the meridional component (figures 4-4(a) and (c));

this particular flight was mostly in the zonal direction. The wind differences appear

evenly distributed when compared figures 4-5(a) and (d) respectively, this suggests

that there is no directional bias due to Mode-S EHS processing. This is expected since

the output Mode-S EHS data are just the input ARINC data rounded then truncated.

Figure 4-5(c) depicts the difference UMode−S - UREF . It is clear from this plot that

the magnitude of the differences is of the same order as that shown in figures 4-5(b).

Also, two effects can be separated, firstly the directional bias seen in figure 4-5(a) is

replicated and secondly the spread of the data seen in figure 4-5(b) is superimposed.

Similar results are seen for VMode−S - VREF in figure 4-5(f). However, these results do

not make it clear as to the source of the directional bias, that is whether this is solely

due to the heading reference system that provides the true heading, contamination
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affecting the turbulence probe’s pressure ports, e.g., ice particles, or some combination

of the two. There is no record in the post flight report regarding contamination of the

pressure ports.

These results indicate that error arising from Mode-S EHS processing makes a

stronger contribution to the total observational error. In the next section an error

model is used to account for some of the observed differences, and is also used to

characterize the differences due to Mode-S EHS processing.

4.7 Estimated Error in the Derived Horizontal-Wind

Vector

Following the method of analysis used for the Mach temperature error (section 4.5.2,

page 66), we apply the propagation-of-error method (Taylor 1982) to eqs. (3.5) and

(3.6) (page 38), and we obtain an error equation for the zonal and meridional wind

components,

∆U2 = (sin(θG)∆VG)2 + (VG cos(θG)∆θG)2 +

(− sin(θA)∆VA)2 + (−VA cos(θA)∆θA)2 (4.10)

and

∆V 2 = (cos(θG)∆VG)2 + (−VG sin(θG)∆θG)2 +

(− cos(θA)∆VA)2 + (VA sin(θA)∆θA)2 , (4.11)

where ∆VG and ∆VA are the precision errors in the ground speed and true airspeed in

ms−1; and ∆θG and ∆θA are the precision errors in the ground heading and true heading

respectively in radians. We have chosen to carry out the error analysis in the frame of

reference of the earth, since the zonal and meridional wind are the variables used in

the observation operator for aircraft winds in the UK Met Office assimilation system.

However, an alternative, complementary, approach would be to carry out the analysis

in the frame of the aircraft, and consider along-track and transverse components of the

wind errors (Drue et al. 2010, de Haan 2013, Jacobs et al. 2014). This approach would

result in a rotated form of eqs. (4.10) and (4.11).

We use the wind components error model (eqs. (4.10) and (4.11)) to characterize

the error in the zonal and meridional wind for the case study flight B787. For this

flight calm conditions prevailed such that for most of the flight the mean true airspeed

was 250 knots with the magnitude of the differences for speed and direction were (true
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airspeed - ground speed) ≤ 25 knots and (true heading - ground heading) ≤ 5◦. We

use the data increments of ε = 2 knots for the ground speed and for true airspeed and

a data increment of ε = 0.175◦ for the ground heading and true heading, respectively

(table 4.1, page 58). These data increments are used to compute precisions for the

quantisation error given by eq. (3.21) (page 53).

It can be seen from eqs. (4.10) and (4.11) that the component wind error depends

on three factors: the precision of the parameter, the directions and the speeds. For

this case study flight, we consider each of these factors in turn.

1. Dependency on precisions: The main contributors to the wind component

errors are the precisions of the true airspeed and ground speed. The magnitude

of the precision due to quantisation error for airspeeds is 0.297 ms−1 and for the

directions is 0.000882 radians (or equivalently 0.05◦). The contribution from the

precision in direction is airspeed dependent. In figure 4-6(a) the flight direction in

the region labelled (v) changes from North (0◦) to North-West (315◦). This has

the effect of increasing the zonal wind error as the contribution due to precision of

speeds is increased. At the same time, the meridional wind error decreases with

respect to the precision in speed, 4-6(b). The contribution due to the precision in

direction remains small, particularly at low altitudes where airspeeds are lower.

2. Dependency on directions: When the aircraft headings are near the cardinal

compass points 90◦ or 270◦ then the main contribution to the zonal wind error,

∆U , is mostly due to the precision in the speeds. In figure 4-6(a), the region

labelled (ii) the aircraft true heading is due West while for regions labelled (i)

and (iii) it is due East. For these flight directions, 4-6(a) depicts the magnitude of

the estimated error for the zonal wind component which is constant with altitude

(0.40 ms−1). By contrast the contribution to the meridional wind error, ∆V ,

is smaller, shown in figure 4-6(b). We expect to see periodic variations in the

magnitude of the wind component error. Thus when the aircraft headings are

near the cardinal compass points 0◦ and 180◦ we observe the reverse case. In

figure 4-6(b), when the the aircraft true heading is due North (region labelled

(iv)) the meridional wind component is constant with altitude (0.40 ms−1) and

the corresponding zonal wind component error is smaller, as shown in figure 4-

6(a) region (iv). These results are consistent with de Haan (2013) who found

airspeed corrections were most effective on the component of the wind parallel

to the air vector, and heading corrections most effective on the transversal wind

component.

3. Dependency on speeds: As noted earlier there is the contribution to the error
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Figure 4-6: Flight B787 (11th July 2013). Vertical profiles for the estimated error
for the zonal ,∆U (eq. (4.10)) and meridional, ∆V (eq. (4.11)), wind components.
The precision of the input data are given by the standard deviation for quantisation
error, headings ∆θG = ∆θA = 0.00305/

√
12 radians (which is equivalent to 0.05◦) and

speeds ∆VG = ∆VA = 1.0289/
√

12 ms−1. The sidebar indicates the general direction
of the aircraft, with true headings binned into 45◦ regions centred around the cardinal
compass points. Regions (i) to (v) in the plot indicate the general direction of the
aircraft’s true heading: (i) and (iii) East, (ii) West, (iv) North and (v) North-West.
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due to the precision in the headings which in general is small but in eqs. (4.10)

and (4.11) there are cross terms in speed and direction. We can see that the

contribution to the error due to the precision of the headings depends also on

the magnitude of the airspeed. When the speeds reach the order of 100 ms−1

or more then the error due to the precision in direction becomes significant (100

×0.000882), particularly at the cardinal compass points where the periodic terms

are at a maximum. The airspeed varies with altitude, with speeds of 50 ms−1

near the surface and 250 ms−1 at 10 km. Since airspeed increases with altitude so

does the contribution to the zonal and meridional wind errors due to the precision

in direction. An example of this error is shown in figure 4-6(b). For regions (i),

(ii) and (iii) we see the main contribution to the meridional error is from the

precision in direction which is airspeed dependent.

Under the calm conditions of this flight the magnitude of the estimated error in

zonal and meridional wind components, due to quantisation errors in the speeds and

directions, varies periodically between 0.15 ms−1 and 0.40 ms−1. However, we have no

data for these estimated errors in wind conditions with a higher range of wind speeds.

For the wind components in this case study we use the same analysis method as

used for the mean temperature profiles in section 4.5.1. The wind component profiles

are depicted in figures 4-7 and 4-8. The MB are depicted as squares, the RMSE as

circles, the diamonds are the box-average of the estimated wind component error due to

quantisation, and the triangles are the box-average standard deviation from applying

eq. (4.5). The uncertainty in the standard deviation is calculated using eq, (4.8). The

number of reports used to compute the box average is depicted as log plots adjacent

to each plot. We first consider the effect of Mode-S EHS processing, then compare the

Mode-S EHS processed results with in situ observations.

Figure 4-7 depicts the effect of Mode-S EHS processing on the box-average standard

deviation. Figures 4-7 (a) and (c) show that the MB is near zero for the zonal and

meridional wind direction. The deviations from zero MB are possibly due to sampling

not being representative leading to positive and negative biases. These data are at

one second intervals. The side bar in the figure shows the number of records available

for each altitude bin. There are two regions (7 km and 10 km) where the number

of data points is less than 30. For the remaining non-level-flight regions the number

of data points ranges between 45 and 111 data points; level flight regions contain

1000+ data points. Some of the occurrences of a non-zero bias also arise when the

Mode-S EHS rounding results in a greater difference in one or other of the input data

components. For example, when the differences between the input and output ground

speeds are greater than the corresponding input and output for the true airspeed. This
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Figure 4-7: Flight B787 (11th July 2013) Box-average statistics for the effect of Mode-
S EHS processing on the zonal (U) and meridional (V ) wind components. Results
binned by altitude, with bin heights at 0.3 km intervals. Plots (a) and (c) depict for
the zonal and meridional winds respectively, vertical profiles of the mean bias (squares)
and RMSE (circles). Zero is marked by the vertical line. Plots (b) and (d) depict for
the zonal and meridional winds respectively, the vertical profiles of the box-average
observed σ (triangles) using eq. (4.5) and box-average estimated component wind
speed error (diamonds) due to the quantisation error using eqs. (4.10) and (4.11).
Plots (e) depicts the number of reports per altitude bin, Nb, expressed using a log10

scale. This distribution is the same for each wind component.
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Figure 4-8: Flight B787 (11th July 2013) Box-average statistics comparing Mode-S
EHS processed with measured (REF) zonal (U) and meridional (V ) wind components.
Results binned by altitude, with bin heights at 0.3 km intervals. The REF observations
are from the FAAM’s turbulence probe, located at the nose of the aircraft. Plots (a)
and (c) depict for the zonal and meridional winds respectively, vertical profiles of the
mean bias (squares) and RMSE (circles). Zero is marked by the vertical line. Plots
(b) and (d) depict for the zonal and meridional winds respectively, the vertical profiles
of the box-average observed σ (triangles) using eq. (4.5) and box-average estimated
component wind speed error (diamonds) due to the quantisation error using eqs. (4.10)
and (4.11). Plots (e) depicts the number of reports per altitude bin, Nb, expressed using
a log10 scale. This distribution is the same for each wind component.
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occurs for the lowest data point in figure 4-7(a) at 150 m. These differences that

arise from the Mode-S EHS processing are reflected in the RMSE. Figures 4-7 (b) and

(d) depict the observed sample standard deviation (triangles) for each altitude bin

obtained by applying eq. (4.5). The uncertainty for the standard deviation is given by

eq. (4.8). The estimated wind component errors (diamonds) are given by eqs. (4.10)

and (4.11). These assume that the precision of the input data is represented entirely

by the standard deviation due to quantisation error given by eq. (3.21). There is good

correspondence between the box-averaged observed and expected standard deviations,

although there is a small amount of variability. In figures 4-7 (b) and (d) a single point

stands out at 5.7 km. For the zonal wind the standard deviation is 0.21 ms−1 whereas

for the meridional wind the standard deviation is 0.45 ms−1 these are consistent with

expected standard deviations (shown in figure 4-6). Examination of the time-series

data for these data points indicate that the aircraft was heading North. The apparent

rapid change in the magnitude of the standard deviation is artificial: it occurs due to

quality control procedures, removing an aircraft manoeuvre. Just below the 5.7 km level

the aircraft trajectory is West-East whilst just above the 5.7 km level the trajectory

is East-West. These points indicate that the quality control processing may require

further refinement. Figure 4-7 (e) depicts the number of reports per altitude bin, Nb,

expressed using a log10 scale. This distribution is the same for each wind component.

Figure 4-8 compares the Mode-S EHS processed derived zonal and meridional wind

components with corresponding in situ reference observations. In figures 4-8 (a) and

(c) the MB ranges between -1.00 ms−1 and +1.00 ms−1. It is notable that between the

altitudes 3 km to 6 km the bias is positive whilst the aircraft trajectory is West-East.

Above and below these altitudes the bias is negative whilst the aircraft trajectory is

East-West. We suggest that this change in the wind bias may be due to a bias in

the heading reference system, although a bias in the turbulence probe measurements

cannot be ruled out. This bias pattern does not appear to affect the Mode-S EHS

processing (figure 4-7). The RMSE varies between 0.50 ms−1 to 0.80 ms−1, with a

significant increase to 1.30 ms−1 above 6 km which appears to coincide with an increase

in the magnitude of the MB. Figures 4-8 (b) and (d) depicts the box-average standard

deviation (triangles) and the box-averaged expected error (diamonds). There is less

correspondence between the box-averaged observed and expected standard deviations.

We observe that some fraction of the quantisation error still persists. The periodic

behaviour of the standard deviation is illustrated by the two points at 5.7 km (as

mentioned above). There is more variation especially at the lower altitudes, which may

be related to a directional bias (discussed earlier in section 4.6 (page 71). It is difficult

to isolate the directional error since there are no reference data that can be used to
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quantify the directional error in the aircraft’s heading reference system. There may be

fine-scale variability being recorded by the turbulence probe, which is more sensitive

to such variations. Furthermore, the fine-scale variability would be too weak to affect

the aircraft’s inertia. Figure 4-8 (e) depicts the number of reports per altitude bin, Nb,

expressed using a log10 scale. This distribution is the same for each wind component.

These differences aside, the results depicted in figures 4-7 and 4-8 suggest that

quantisation error in the aircraft’s headings and speeds contributes to the total error

in the computed Mode-S EHS wind components.

4.8 Results Obtained for All Cases

In this section the error equations for temperature and horizontal wind components are

applied to all cases listed in table 4.3 (page 63) using the analysis steps described in sec-

tions 4.5 (page 66) and 4.6 (page 71). The precisions for the input data are taken to be

the standard deviations for quantisation error given by eq. (3.21) expressed in SI units.

So ∆M=(0.004/
√

12), ∆VA=∆VG=(1.03/
√

12) ms−1 and ∆θA=∆θG=(0.00305/
√

12)

radians (or equivalently 0.05◦). The vertical profiles of the box-averaged estimated

errors are compared with the box-averaged standard deviation obtained from the MB

and RMSE. We first present the results for the estimated temperature error then the

results for the estimated error in the horizontal wind components.

Figure 4-9 (page 83) depicts the vertical profile for the box-averages of the Mode-S

EHS derived temperatures. Figure 4-9 (a) is the number of reports per altitude bin,

Nb, expressed using a log10 scale. Figure 4-9 (b) shows that the overall MB is near

zero, there is less variability in these results when compared with figure 4-3 (page 70)

which may be directionally dependent. The RMSE varies from 2.5 K near the surface,

decreasing smoothly with altitude to 1.25 K at 10 km. Figure 4-9 (c) shows that

the observed standard deviation (triangles) correlates well with the estimated Mach

temperature error using the error model given by eq. (4.9) (similar to profile (b) in

figure 4-2). Figure 4-9 (d) expresses the standard deviation results against Mode-S

EHS Mach number, which may be a more useful representation for data assimilation,

and which also shows good agreement between standard deviations from the observed

and quantisation errors. We conclude from this analysis that the estimated error in

the derived Mode-S EHS temperature can be represented by standard deviation of

quantisation error for M and VA that results from Mode-S EHS processing. This

estimated error does not include other sources of error such as the instrument error.

For this result to be valid we require that the magnitude of the instrument error is

smaller than the standard deviation of quantisation error.
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Figure 4-9: For all case studies listed in table 4.3. Box-average statistics for temper-
ature. Results binned by altitude, with bin heights at 0.3 km intervals. Plot (a) is
the number of reports per altitude bin, Nb, expressed using a log10 scale. Plot (b)
vertical profile of temperature difference (TMACH − TREF ) mean bias (MB) (squares)
and RMSE (circles). Zero is marked by the vertical line. Plot (c) Vertical profile of
the box-average observed σ (triangles) (using eqs. (4.5) and (4.8)) and the box-average
estimated ∆T (diamonds) due to the quantisation error (using eqs (4.9) and (3.21)).
Plot (d) depicts the results of (c) against the box-average M reported by Mode-S EHS.
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Figure 4-10: For all case studies (table 4.3). Box-average statistics for the effect of
Mode-S EHS processing on the zonal (U) and meridional (V ) wind components. Results
binned by altitude, with bin heights at 0.3 km intervals. Plots (a) and (c) depict for
the zonal and meridional winds respectively, vertical profiles of the mean bias (squares)
and RMSE (circles). Zero is marked by the vertical line. Plots (b) and (d) depict for
the zonal and meridional winds respectively, the vertical profiles of the box-average
observed σ (triangles) using eq. (4.5) and box-average estimated component wind
speed error (diamonds) due to the quantisation error using eqs. (4.10) and (4.11).
Plots (e) depicts the number of reports per altitude bin, Nb, expressed using a log10

scale. This distribution is the same for each wind component.
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Figure 4-10 (page 84) depicts the effect of Mode-S EHS processing for the zonal

and meridional wind components. The vertical profiles are for the box-averaged MB

(squares) and RMSE (circles), figures 4-10 (a) and (c). For the Mode-S EHS processing

the MB is near zero for both the zonal and meridional wind below 4 km altitude.

Above 4 km the zonal wind bias varies between -0.18 ms−1 and 0.12 ms−1. This

variation may be due to the non-uniform sampling distribution above this level when

compared to those below this level. Examination of the distribution of differences

between the aircraft state vector at ARINC precision (before processing) and Mode-S

EHS precision (after processing) shows that these are mostly uniform below 4 km and

non-uniform above. The difference in variability between the zonal and meridional

components may be due to flight trajectories, being mostly East-West above 4 km,

indicating a directional bias. The increase in the RMSE for the zonal wind may also

be due to the non-uniform sampling distribution. Similar conclusions may be drawn

for the meridional wind. The MB and RMSE are used to compute the box-average σ,

depicted as the triangles in figures 4-10(b) and 4-10(d). The vertical profile of σ shows

good agreement with the estimated error (diamonds), given by eqs. (4.10) and (4.11)

(page 75), when precisions for speeds and directions are represented as the standard

deviation due to quantisation. The minima in the estimated zonal wind σ at 4 km and

6 km of 0.25 ms−1 and 0.30 ms−1, and the corresponding maxima in the meridional

wind of 0.35 ms−1 and 0.30 ms−1 are most likely to be due to the aircraft’s trajectory

changing direction. This behaviour is suggested by figure 4-6 (page 77), as discussed

in section 4.6 (page 71). Figure 4-10 (e) depicts the number of reports per altitude

bin, Nb, expressed using a log10 scale. This distribution is the same for each wind

component.

Figure 4-11 compares the Mode-S EHS processed derived zonal and meridional

wind components with corresponding in situ reference observations. In figures 4-11

(a) and (c) the MB below 4 km is near zero. Above this level, for the zonal wind

the MB ranges between -1.4 ms−1 to 2.0 ms−1 while for the meridional wind the MB

ranges from 0.25 ms−1 to -1.0 ms−1. This variability is thought to be related to a

directional bias discussed earlier in section 4.6 (page 71). Figures 4-11 (b) and (d)

depicts the box-average standard deviation (triangles) and the box-averaged expected

error (diamonds). It is clear that there is less correspondence between the observed

standard deviation with respect to the measured wind components and the expected

error due to Mode-S EHS processing. This suggests that there are additional sources of

error, such as instrument error, or fine-scale variability being recorded by the turbulence

probe (which is more sensitive to such variations) and which are too weak to affect the

aircraft’s inertia. Figure 4-11 (e) depicts the number of reports per altitude bin, Nb,
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Figure 4-11: For all case studies (table 4.3). Box-average statistics comparing Mode-S
EHS processed with measured (REF) zonal (U) and meridional (V ) wind components.
Results binned by altitude, with bin heights at 0.3 km intervals. The REF observations
are from the FAAM’s turbulence probe, located at the nose of the aircraft. Plots (a)
and (c) depict for the zonal and meridional winds respectively, vertical profiles of the
mean bias (squares) and RMSE (circles). Zero is marked by the vertical line. Plots
(b) and (d) depict for the zonal and meridional winds respectively, the vertical profiles
of the box-average observed σ (triangles) using eq. (4.5) and box-average estimated
component wind speed error (diamonds) due to the quantisation error using eqs. (4.10)
and (4.11) Plots (e) depicts the number of reports per altitude bin, Nb, expressed using
a log10 scale. This distribution is the same for each wind component.
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expressed using a log10 scale. This distribution is the same for each wind component.

We conclude from this analysis that the estimated error in the derived Mode-S EHS

horizontal wind includes a component that can be represented by the standard deviation

of quantisation error that results from Mode-S EHS processing. The majority of the

case studies involved trajectories that were mainly East-West in direction. Therefore

the case studies do not provide a uniform distribution of headings and wind-vector.

Figure 4-12(a) depicts the distribution of differences for the zonal (UMode−S − UREF )

and figure 4-12(b) meridional (VMode−S − VREF ) wind components. The range of

differences are shown in grey while the MB is shown by the black circles. The MB

is computed over bin-widths of 5◦ intervals. Figure 4-12 (c) depicts the distribution of

the number of records used to compute the MB expressed as a log plot. This shows that

the sampling is not uniform in direction. For uniform distribution we would expect the

MB for the wind component difference to be near zero. However, figures 4-12 (a) and

(b) show that there is a directionally-based bias. It is not clear where the systematic

error arises, whether it is due to the heading reference system (Drue et al. 2008, de Haan

2011, Jacobs et al. 2014), or to an instrument sensor error, or a combination of the

two. It is known that the turbulence probe can become contaminated with aerosols

and ice particles during the flight but there are no reports of such contamination for

these case-study flights. Quantifying the directionally dependent error remains an area

of active investigation.

4.9 Summary and Conclusions

This chapter studies uncertainty in the derived observations obtained from Mode-S

EHS, with a focus on errors due to reduced precision. The source of the research data

is a research aircraft, BAe-146 FAAM, which has an atypical mode of operation when

compared with commercial aircraft. For example, the flight trajectories tend to be

short and within a limited area; the ascents and descents are steeper and may occur at

any time during the flight; and the research aircraft often sets out to operate in atmo-

spheric conditions that commercial aircraft would ordinarily avoid or not encounter.

Furthermore, the BAe-146 FAAM is not equipped with a Mode-S EHS transponder.

Mode-S EHS data used for reporting the aircraft’s state vector were emulated using

avionics data recorded aboard the aircraft. The emulated Mode-S EHS reports were

used to derive meteorological observations for temperature and horizontal wind com-

ponents. The derived observations were compared with reference observations made in

situ using research grade instruments. The effect of the Mode-S EHS processing is to

reduce the precision of the aircraft’s state vector from 16 binary-bits to 10 binary-bits.

87



0 30 60 90 120 150 180 210 240 270 300 330 360
(a)

4

3

2

1

0

1

2

3

4

U
-W

in
d
 C

o
m

p
o
n
e
n
t 

(m
s−

1
)

0 30 60 90 120 150 180 210 240 270 300 330 360
(b)

4

3

2

1

0

1

2

3

4

V
-W

in
d
 C

o
m

p
o
n
e
n
t 

(m
s−

1
)

0 30 60 90 120 150 180 210 240 270 300 330 360
(c)

Reference True Heading (degrees)

100
101
102
103
104

Lo
g

10
(N

f
)

Figure 4-12: For all case studies. These plots suggest that there is a systematic error
related to the aircraft’s heading. Plot (a) depicts the zonal wind difference (UMode−S−
UREF ) (grey). Plot (b) depicts the meridional wind difference (VMode−S − VREF )
(grey). The black circles depict the mean bias binned at 5◦ intervals. The number of
reports per bin-intervals is depicted in plot (c) as log10(Nf ). Outliers are not shown
where these are greater than three times the standard deviation, σ, from the mean µ.
Maximum and minimum values stated but not shown. Indicated also are number of
outliers removed and the total number of records. Outliers are retained for statistical
results. For all records, nrecs=42792, for plot (a) µ=-0.028, 3σ=2.71, min=-15.72,
max=14.64, outliers=289, and for plot (b) µ=-0.118, 3σ=2.36, min=-8.50, max=4.66,
outliers=77
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Error models were used to quantify the estimated error in the derived observations

arising from Mode-S EHS processing. However, no account was taken of processing

either by the flight management system or the transponder itself since these details

were unavailable.

An error model was used to estimate the Mach temperature error, ∆T . It was

found that ∆T varies according to the magnitude of the precisions for true airspeed

and Mach number. When the precisions were represented using the standard deviation

for quantisation error then ∆T varied from 2.5 K to 1.25 K for the pressure altitude

range 0 km to 10 km, with a near linear trend between the two points. However,

this result excludes other sources of error, e.g., instrument error due to calibration

drift, noise and response times, which are expected to be small when compared to

the quantisation error. We note that there are likely to be temporal correlations in

our data for observation errors. However, this is also the case for actual Mode-S

EHS data sampled by secondary surveillance radar. Quantization errors are not white

noise because of the rounding processes involved in reducing the precision. Heading

errors also result in systematic errors. It is important to bear this in mind for data

assimilation. Further work is required to quantify the effects of error correlations.

An error model was also used to estimate the error in the horizontal wind compo-

nents. The precisions of the speeds and directions were represented using the standard

deviation for quantisation error. It was found that the magnitude of the estimated

error for zonal wind varied from 0.25 ms−1 to 0.40 ms−1, while the estimated error of

the meridional wind was almost constant by altitude with a magnitude near 0.25 ms−1.

However, these results are not fully representative for all aircraft flight directions. It

was also suggested that the differences in the wind components may be affected by

a systematic error that is directionally dependent. The magnitude of the errors are

smaller when compared with previous studies discussed in section 2.8 (page 16) since

we were investigating the precision error and not looking for a true estimate of the

actual observation error inherent in the FAAM data itself.

When suitable correction schemes are used, the derived horizontal wind and tem-

peratures (above a certain height) have already been shown to be useful in data assim-

ilation for regional numerical weather prediction (de Haan & Stoffelen 2012, Strajnar

et al. 2015, Lange & Janjic 2016). Similarly, Mach temperature reports may offer fur-

ther useful information in the boundary layer when aggregated from multiple aircraft.

However, these previous studies assume an observation error standard deviation that

is based on that used for AMDAR. We use aggregated Mode-S EHS reports in chapter

6. It is expected that any uncorrelated random error would be reduced; however, we

show that the results of this study indicate that quantisation error remains a dominant
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source of error.

The results of this study will be used in chapter 7 where we perform data assimila-

tion experiments using Mode-S EHS derived observations. Quantifying the statistical

error due to Mode-S EHS processing may assist with data-assimilation of the derived

observations. For example, the total observational error may be partitioned between

the variability due to the aircraft’s trajectory, its instruments, processing algorithms

and the representative error for the measurement due to temporal and spatial sampling

(Daley 1991).
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Chapter 5

Synoptic Meteorology and

Distribution of Aircraft

Observations for Case Studies.

5.1 Introduction

In chapter 4 we addressed our first thesis question on the accuracy of the observations

derived from Mode-S EHS reports. We found that the observation error for Mach

temperature and horizontal wind may be modelled by assuming that the dominant

error is from the Mode-S EHS processing.

In chapter 3, for our initial investigation on using Mode-S EHS reports, we used

archived data supplied by NATS. During the course of our research the Met Office

installed its own network of Mode-S EHS receivers. The main difference between the

NATS network and Met Office network is that the latter is passive. The Met Office

network cannot actively request Mode-S EHS reports. It is dependent on the configu-

ration of the NATS network for requesting Mode-S EHS reports. We use data collected

by the Met Office network to answer our second and third thesis questions (section

1.4).

2 What atmospheric phenomena within the boundary layer can be observed from

using high-frequency observations derived from these routine messages?

3 What benefit does assimilation of these high frequency observations bring to the

Met Office UKV numerical weather predictions?

In this chapter we describe the synoptic meteorology, the source of our Mode-S EHS

reports and the distribution of aircraft observations that will be used to address these
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thesis questions, which we cover in chapters 6 and 7 respectively.

In section 5.2 we describe the synoptic meteorology for the case study period 2nd to

8th January 2015 using surface based reports and surface pressure analysis charts. We

describe the atmospheric state using available radiosonde reports in section 5.3 and in

section 5.4 we use forecasts from the Met Office 1.5 km NWP model. In section 5.5

we describe the Met Office Mode-S EHS receiver network. In sections 5.6 and 5.7 we

describe the distribution of aircraft and the observations collected using the Met Office

network for the airport domains London Heathrow and London Gatwick. Section 5.8

summarises this chapter.

5.2 Summary of Meteorological Conditions

2nd to 8th January 2015

In this section we describe the meteorological conditions for the case study period

between 2nd January and 8th January 2015. We do this using a combination of analysis

and significant weather charts. The analysis charts, figure 5-1 (page 94), show the

surface pressure pattern using isobars (lines of equal pressure) and indicate areas of

high (H) and low pressure (L) along with their central pressure value. Isobars are

represented by solid lines. High pressure is usually associated with settled weather while

low pressure is normally associated with unsettled weather. Weather fronts are also

shown and are determined from surface based observations of the 1.5 m temperature,

humidity and the 10 m horizontal wind. Significant weather charts, figure 5-2 (page 96),

are a record of weather types observed near a synoptic reporting weather station, e.g.,

heavy rain, thunderstorms, snow, fog, ice. Symbols are used to indicate the weather

type and its observed intensity. These charts are produced four times daily (Met Office

2011).

Figure 5-1a shows the Met Office analysis chart for 3rd January 2015 valid at 1200

UTC. There is a low pressure system to the south of England, and several frontal

systems are present over England: occluded fronts (solid triangles and semi-circles)

where warm-air is being lifted above cool-air and a layer of subsiding-air above the

surface (open semi-circles) (Barry & Chorley 2009, Ch 9). The analysis chart shows

that a ridge of high pressure is developing to the west of the United Kingdom. Figure

5-2a shows that the significant weather in the Southeast for this period (symbols shown

in table 5.1) was mostly precipitation, full cloud cover and light surface winds from the

south to southeast.

Figure 5-1b shows the analysis chart for 3rd January 2015 valid at 1800 UTC. The

low pressure system has moved off to the East and is being replaced with the developing
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high pressure region. The significant weather chart (fig 5-2b) for this time indicates

that for the Southeast, surface winds were light and variable in direction, regions of

mist had formed whilst some areas had intermittent light rain. Overall, as the high

pressure developed, cloud cover dissipated to leave clear sky conditions.

Figure 5-1c shows the analysis chart for 4th January 2015 valid at 0000 UTC. Here

we observe that the high pressure region is well established over the United Kingdom.

The significant weather chart (fig 5-2c) for this time indicates that for the Southeast

significant regions were affected by fog and mist.

Figure 5-1d shows the analysis chart for 4th January 2015 valid at 1200 UTC. The

high pressure remains and stable conditions persist. The significant weather chart (fig

5-2d) for this time indicates that for the Southeast, mist and fog remain as the main

weather features.

The period 4th to 5th January 2015, fog and mist persisted for much of the Southeast

of England. The analysis charts from 1800 UTC 6th to 1200 UTC 8th January 2015

(Prichard 2015) show that a low pressure system located near Iceland brought strong

south westerly winds and unsettled conditions to the North-East of England, Wales and

Scotland, while calmer conditions persisted in eastern and southern England - where

the Mode-S EHS reports are mostly concentrated, for this period.

5.3 Meteorological Observations: Radiosondes

In this section we show the meteorological features that are present using upper air

observations that are closest to the airport domains.

Upper air observations are obtained from Herstmonceux radiosonde station which

is the nearest station to Heathrow and Gatwick airports. The data were retrieved

from the Met Office meteorological database. A radiosonde is launched twice a day

to correspond with the synoptic reporting times 0000 UTC and 1200 UTC. During

adverse weather conditions such as low visibility and fog, additional radiosondes may

be launched on demand by weather forecasters. The radiosonde’s sensor is the Vaisala

RS92 which reports the following observations with their precision stated within the

brackets: ambient temperature (±0.5 K), horizontal wind-speed (±0.15 ms−1) and

horizontal wind-direction (±2◦).

Figure 5-3 (page 97) shows the vertical profiles available for the 3rd and 4th January

2015. There was an additional radiosonde ascent for 0600 UTC on 4th January 2015.

Figure 5-3a depicts the temperature profiles for 0000 UTC (red) and 1200 UTC

(black) on 3rd January 2015. The 0000 UTC profile shows that there is a surface (low)

level temperature inversion between 0 m and 250 m and by 1200 UTC is still present
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Table 5.1: World Meteorological Organisation present weather symbols re-
ported from weather stations which may be manned or automatic. (Images
at https://github.com/OGCMetOceanDWG/WorldWeatherSymbols, last accessed
9/12/2015, licensed under Creative Commons License 3.)

Symbol Description

Haze

Mist

Precipitation, reaching the ground or the surface of the sea, but distant >
5 km from the station

Drizzle (not freezing) or snow grains not falling as shower(s)

Rain (not freezing) not falling as shower(s)

Shower(s) of rain

Shower(s) of snow, or of rain and snow

Fog or ice fog

Fog or ice fog, sky visible, has become thinner during the last hour

Fog or ice fog, sky invisible, no appreciable change during the last hour

Fog or ice fog, sky invisible, has become thicker during the last hour

Drizzle, not freezing, continuous, moderate at time of observation

Drizzle and rain, slight

drizzle and rain, moderate or heavy

Rain, not freezing, intermittent, slight at time of observation

Rain, not freezing, continuous, slight at time of observation

Rain, not freezing, continuous, moderate at time of observation

Rain, not freezing, continuous, heavy at time of observation

Rain shower(s), slight

Rain shower(s), moderate or heavy

Haze or,smoke, or dust in suspension in the air, visibility ≥1 km

Precipitation, slight or moderate

Intermittent precipitation
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(a) 1200 UTC 3rd January 2015, mostly drizzle
and rain.

(b) 1800 UTC 3rd January 2015, misty condi-
tions developing.

(c) 0000 UTC 4th January 2015, fog and mist
present in the southeast.

(d) 1200 UTC 4th January 2015, fog and mist
well established in the southeast.

Figure 5-2: This sequence of significant weather charts shows the change in weather
type resulting from a high pressure that is advected from north-west to the south-east
of the United Kingdom during this period (Met Office 2015a). Symbols are listed in
table 5.1. Crown Copyright public sector information reproduced under the Open Gov-
ernment Licence (https://www.nationalarchives.gov.uk/doc/open-government-licence,
last accessed 29/08/2016).

but it is not a significant feature. This is due to the passage of weather fronts with

warm air and precipitation.

Figure 5-3b depicts the temperature profiles for 0000 UTC (red), 0600 UTC (blue)

and 1200 UTC (black) on 4th January 2015. By 0000 UTC (red) on 4th January

2015 the temperature inversion is re-established at 250 m. At 0600 UTC (blue) the

temperature inversion appears to have risen to between 500 m and 1000 m and is a

weak inversion. Sunrise on this day was around 8.00 am so it is unlikely that this

weakening is due to daytime heating but may instead be due to weak convection at

the surface. The elevated temperature inversion present at 2000 m is likely due to

warming that results from subsidence of the upper air. At 1200 UTC (black) the low-

level temperature inversion is re-established, with the subsidence inversion appearing
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Figure 5-3: Radiosonde Herstmonceux, vertical profiles for 2015-01-03 (a) temperature
(c) wind speed (e) wind direction and for 2015-01-04 (b) temperature (d) wind speed
(f) wind direction. Validity times are for 0000 UTC (red), 0600 UTC (blue) and 1200
UTC (black) (Met Office 2015b).
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lower down at 1750 m.

Figure 5-3c depicts the wind speed profiles for 0000 UTC (red) and 1200 UTC

(black) on 3rd January 2015. The 0000 UTC profile shows that there is a low-level jet

(see section 2.4, page 12) between 750 m and 1500 m, which is still present by 1200 UTC

with increased magnitude. Figure 5-3d depicts the wind speed profiles for 0000 UTC

(red), 0600 UTC (blue) and 1200 UTC (black) on 4th January 2015. By 0000 UTC the

magnitude of the low level wind shear has reduced and thereafter calmer conditions

begin to prevail at levels below 1000 m. At 0600 UTC and 1200 UTC calm conditions

prevail near the surface (0 m to 500 m) with a steady increase in wind speed above this

level.) Figure 5-3f shows that by 0600 UTC and 1200 UTC below 500 m wind direction

is highly variable. This variability may be due to oscillations of the radiosonde sensor

package since the magnitudes of the windspeeds are low for this period.

Figure 5-4 shows the track of Herstmonceux 0600 UTC radiosonde, launched at

0530Z on 4th January 2015. Figure 5-4a shows that the radiosonde headed in a southerly

direction. It indicates that the prevailing wind direction is from the North. Figure 5-4b

shows the direction of travel of the radiosonde for the altitude range 0 m to 3000 m

and that airmass sampled is south of London Heathrow and London Gatwick.

5.4 Numerical Weather Prediction Data: UKV

In this section we show meteorological features using NWP data that are used to

represent the atmospheric state for the airport domains.

Figure 5-5 (page 100) shows temperature profiles valid at 0600 UTC from the Met

Office’s NWP limited area model the UKV (which is described in section 2.10 (page

22) based on analysis at 0300 UTC on 4th January 2015 for (a) London Heathrow

(EGLL) and (b) London Gatwick (EGKK) domains (these are defined in section 3.3

(page 35). The UKV NWP data have been bi-linearly interpolated in the horizontal

to 1-D columns at 9 locations within the airport domain. These profiles are chosen to

sample the mesocale temperature variability of the model within the airport domain.

Using these 1-D temperature profiles, a mean temperature profile can be computed

for the centre of the airport, with the mesoscale variability being represented by the

standard deviation of the sample.

In figure 5-5a the NWP vertical profiles show that low-level temperature inversions

are forecast to be present within the London Heathrow domain. The bases of the

inversions are at or near the surface in the north-west to just above the surface in the

south-east of the domain. The tops of the inversions appear to be between 500 m to

1000 m. Similarly, figure 5-5b shows for the sample of locations in the EGKK domain

98



(a) (b)

Figure 5-4: (a) The track of Herstmonceux 0600 UTC radiosonde, launched at 0530Z
on 4th January 2015. Track shows the radiosonde was heading southwards (bearing
152◦ N), away from the airport domains, total distance travelled 120 km. (b) Track of
radiosonde for altitude range 0 m to 3000 m, distance travelled 5 km. Each report is
colour coded by pressure altitude (colour bar), grey indicates altitude is ≥ 3000 m.

that low-level temperature inversions are also forecast to be present. The bases of the

inversions are all above the surface at around 200 m. The tops of the inversions appear

to be between 400 m to 500 m. The depth of the inversion at EGLL is greater than that

at EGKK. Above 1000 m at EGLL and 500 m at EGKK the temperature lapse rate

follows the expected rate of change ∆T
∆z < 0 (see discussion on temperature inversion

in section 2.3, page 9).

5.5 Met Office Mode-S EHS Receiver Network

In this section we describe the new source of Mode-S EHS reports which are used for

the case studies in chapters 6 and 7.

The Met Office Mode-S EHS receiver network consists of five receivers. Table 5.2

(page 103) lists the five locations (Stone & Pearce 2016, Table 1). Four of the five

receivers are co-located with Met Office operational Doppler radar sites. The network

as a whole has been operating since March 2015. However, for the case study period

only the receiver at Thurnham was available.
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Figure 5-5: 1-D column temperature profiles valid at 0600 UTC from the Met Office
NWP UKV analysis at 0300 UTC 4th January 2015 for (a) London Heathrow (EGLL)
and (b) London Gatwick (EGKK) domains. The profile with large squares is centred
at the airport, the circles are the profiles at the domain’s cardinal compass points
North (N) (light green), East (E) (pink), South (S) (blue), West (W) (purple) and the
small diamonds are at Northwest (NW) (light green), Northeast (NE) (pink), Southeast
(SE) (blue), Southwest (SW) (purple). To show the detail in each profile a constant
is added to the temperature reports at the cardinal compass points (N+1, E+2, S+3,
W+4, NW+5, NE+6, SE+7, SW+8).
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The Mode-S EHS receiver consists of a 1090 MHz tuned antenna mounted atop

the radar tower and connected to an in-line amplifier. The receiver intercepts down-

linked Mode-S EHS encoded messages (ICAO 2012, Table A-2-83) which are decoded

on-site before being transmitted to the Met Office in Exeter. The Met Office Mode-

S EHS receivers are passive so are not capable of requesting Mode-S EHS encoded

messages. The down-linked messages are mostly polled for by secondary surveillance

radars operated by NATS (described in section 3.2) but smaller regional airports may

also operate such radars independently. Therefore only reports that have been actively

polled for by air traffic services are collected and processed by the Met Office receiver

network.

Figure 5-6 (page 102) depicts the coverage of the Met Office network for the receipt

of Mode-S EHS reports received between 21st May 2015 to 31st June 2015 inclusive

(Stone & Pearce 2016, fig 2(a)). The figure shows that low-level reports are received

for airports located in the Southeast and the Northwest of England, and the east coast

of Ireland. The lowest altitude for which Mode-S EHS reports are received depends on

the line-of-sight between the aircraft and the Mode-S receiver. The current network

may not be optimal since the receivers are located at sites chosen for meteorological

monitoring rather than for collection of aircraft reports. Thus coverage at the lower

altitudes may be incomplete around some commercial airports. The Mode-S EHS

reports are collated on-site then transmitted in batches every 10 minutes to a central

processing facility located at the Met Office, Exeter, where the data are then passed

through a quality control process.

Quality control consists of two stages (Stone & Pearce 2016). The first is a gross

error check which removes reports considered erroneous. This is followed by checks to

remove duplicate reports received by different receivers (see table 5.3). The second stage

is an aircraft specific true heading correction similar to the NWP methods suggested

by de Haan (2011) and Mulally & Anderson (2011). The NWP model used is the Met

Office limited area model the UKV (Tang et al. 2013). The UKV wind vector, the

aircraft’s reported ground vector and true airspeed are used to compute an estimate

of the aircraft’s true heading. The true heading correction for each aircraft is defined

to be the mean difference between the reported heading and the estimated heading,

where differences are computed from the previous seven days of UKV NWP forecasts.

Using the aircraft’s derived heading correction, a wind vector and Mach temperature

are computed using eqs. (3.5), (3.6) and (3.4) (page 38). (The methods for these

computations are discussed in sections 3.4 and 3.5.)

The results along with the original Mode-S EHS reports and additional meta data,

such as the aircraft’s Mode-S address and receiver location, are stored in the Met
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Figure 5-6: Spatial coverage of the Met Office Mode-S EHS receiver network. Colours
indicate the lowest observation altitude within a 0.0125 longitude/latitude box (as
determined from the Global Navigation Satellite System (GNSS)). Reports received
between 21st May 2015 to 31st June 2015 inclusive. Image c©Met Office, 2015, repro-
duced under Open Government Licence (Stone & Pearce 2016, Fig 2).

Office’s Meteorological Database (MetDB).

5.6 Geographic Distribution of Aircraft

In this section we show an example of the horizontal and vertical distribution of aircraft

within the airport domains, which are defined in section 3.3 (page 35). The distribution

is for a one hour period. This is used in chapter 6 for constructing vertical profiles of

the mean temperature and mean horizontal wind for the airport domain.

Figures 5-7a and 5-7b (page 104) show the spatial distribution of aircraft within the

London Heathrow and London Gatwick domains on 4th January 2015 between 1200 to

1300 UTC. Each coloured dot represents a Mode-S EHS report and the colour of the

dot indicates the pressure altitude. The colour bar provides the scale for the reported

pressure altitude, the scale increment is 10 metres. The reported positions show that

there were few Mode-S EHS reports below 300 m at London Heathrow during this

period. By contrast, for the same period at London Gatwick there are more aircraft

reporting Mode-S EHS below 300 m, especially for aircraft arriving. The difference may

be due to the line-of-sight between the airport’s runway and the Mode-S EHS receiver.

Such is the precision of modern aircraft navigation systems that aircraft tracks are
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(a)

(b)

Figure 5-7: Spatial distribution of aircraft 4th January 2015, 1200 to 1300 UTC. (a)
London Heathrow domain (b) London Gatwick domain. Aircraft departures are head-
ing west and arrivals are from the east. The coloured dots indicates Mode-S EHS
reports and the pressure altitude of the report. Colour bar is for the pressure altitude
in the range 0 m to 3000 m in increments of 10 m (Background map c©OpenStreetMap
contributors, reproduced under licence Creative Commons Attribution-ShareAlike 2.0.)

104



Table 5.3: Quality control parameters used by the Met Office Mode-S EHS gross error
check. The asterisk (*) indicates the conditions used to remove manoeuvring aircraft.
(Stone & Pearce 2016, Table 3)

Parameter Quality Control Thresholds

True airspeed (knots) 75 < VA < 550
Indicated airspeed (knots) 100 < VI < 550
Difference between the calculated and reported
ground track angle

< 5◦

Difference between the calculated and reported
ground speed

< 5◦

Maximum time between the four required Mode-
S reports

< 10 s

Roll angle* < 2◦

Difference between the last and current reported
heading*

< 20◦

Difference between the aircraft heading and re-
ported ground track angle*

< 20◦

overlaid giving the appearance of only a few tracks.

London Heathrow has two parallel runways which allows simultaneous arrivals and

departures. Aircraft departures are on the left-side of the figure and arrivals are on the

right-side of the figure. There were 43 aircraft arrivals, at approximately 90 s intervals,

and 32 aircraft departures, at approximately 120 s intervals.

London Gatwick differs from London Heathrow. It has only one runway; conse-

quently the traffic mix differs. The runway usage alternates, with aircraft arriving

from the East followed by aircraft departures take-off towards the west. There were 24

departures and 22 arrivals. The average time separation between aircraft is 78 s.

The arrival and departure rate at this time of day, along with the precision of

the navigation suggests that aircraft derived observations may be able to capture the

mesoscale variability in temperature and horizontal wind within the vicinity of each

airport. The spatial distribution of the reports suggest that the shape of the sampling

domain could be described using an inverted cone or pyramid, with its apex centred at

the airport and its base covering the approach and departure routes at 3000 m.

5.7 Aircraft-based Observations

In this section we describe the aircraft-based observations that are available for the

case studies discussed in chapter 7. All aircraft based observation reports are retrieved

from the Met Office meteorological database.
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Figure 5-8 shows the time-series of the available AMDAR and Mode-S EHS reports

for the period 2nd to 8th January 2015. There is a diurnal variation in the number

of available observations which is consistent with the regulated operating hours of UK

airports. The plot also shows that the number of Mode-S EHS reports is at least 100-

times the number of AMDAR reports. This time-series profile is a typical distribution

of these type of reports.

Figure 5-8: Typical number of AMDAR and Mode-S EHS reports available for the
period 0300 UTC 2nd to 0600 UTC 8th January 2015. Data shown is for temperature,
the number of reports for wind is of the same order.

.

The geographic distribution of the reports for AMDAR and Mode-S EHS is shown in

figure 5-9. In figure 5-9a the AMDAR reports are distributed unevenly across the whole

of the UKV domain, they are mostly concentrated along the main air traffic routes.

They appear to emanate from three centres: the South-east and North-west England,

and Central Scotland. The greatest concentration is in the South-east. The rate of

AMDAR reporting is configured at the time of flight (see section 3.1). In contrast,

the distribution of Mode-S reports shown in fig. 5-9b are concentrated in the South

of England. This is expected as the reports are collected using the Met Office receiver

network (see section 5.5) which had only two receivers in operation (Thurnham and

Exeter) at the time of data assimilation trial. The lower density of AMDAR reports

is due to the number of suitable equipped aircraft in the participating airline fleet and

the cost constraints for aircraft communication charges.
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(a) (b)

Figure 5-9: Geographic distribution of observations (a) AMDAR (b) MODES for the
period 0300 UTC 2nd January 2015 to 0600 UTC 8th January 2015. Each blue dot
represents a single report. Total number of reports for AMDAR is 18,384 and for
Mode-S EHS is 589,120.

5.8 Summary

In this chapter we have described the synoptic meteorology for the 2nd to 8th January

2015. Briefly, this period enjoyed calm weather conditions at the start which broke

down at the end of the period as cold fronts swept in from the west bring unsettled

weather conditions. The calm period was notable for the presence of fog which per-

sisted for two days. Using observations from Herstmonceux radiosonde, we have shown

that meteorological features of interest were present: temperature inversions and low-

level jet. Similarly, using NWP data for the airport domains, London Heathrow and

London Gatwick we have shown that temperature inversions were forecast. We have

described the Met Office Mode-S EHS receiver network and shown how these reports

are distributed spatially for the airport domains. The reports collected by this network

will be used to address our two thesis questions which are the subject of chapters 6

and 7.

With the knowledge gained in this chapter, in chapter 6 we aim to determine
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whether meteorological features shown to be present using radiosonde observation data

and NWP data can be shown to be present using Mode-S EHS reports.
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Chapter 6

Meteorological Information

Contained in Mode-S EHS

Derived Observations.

6.1 Introduction

In this chapter we address our second thesis question: what atmospheric phenomena

within the boundary layer can be observed from using high-frequency observations

derived from Mode-S EHS messages. For our preliminary study in section 3.7.2 (page

47) we used Mode-S EHS reports supplied by NATS. Using these reports we constructed

vertical profiles of derived temperature and horizontal wind. With the results from

this preliminary study we suggested that meteorological features such as temperature

inversions could be identified.

In chapter 4 we investigated the first thesis question on the accuracy of the ob-

servations derived from Mode-S EHS reports. We concluded that the precision of the

reported air vector and Mach number leads to a significant source of error in the de-

rived meteorological observations. The source of the error is due to the increase in

quantisation error that results from the reduced precision.

In this chapter we investigate further the second thesis question by using the high-

frequency observations derived from the routine collection of Mode-S EHS reports from

multiple aircraft. However, in this investigation we use Mode-S EHS reports collected

using the Met Office Mode-S EHS receiver network (described in section 5.5, page

99). Moreover, we also investigate the effect of quantisation error on the spatial and

temporal averaging of these reports. We conclude that the effects of quantisation

remains a significant source of error. Furthermore, this becomes the dominant source
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of error below 1000 m as the density of reports decreases and because the temperature

calculation is more sensitive at lower Mach numbers.

Air traffic density in the UK is greatest within the vicinity of London Heathrow and

London Gatwick. The use of two SSRs (fig 3-1b, page 35) to monitor air traffic also

provide higher frequency of reporting Mode-S EHS. Using these reports, it is possible to

construct vertical profiles of temperature at more frequent intervals in space and time

than is currently available from radiosonde and AMDAR. We validate these profiles

qualitatively against available AMDAR and radiosonde reports. The benefit of Mode-S

EHS is its low cost and more frequent reporting. This may provide additional weather

information at airport locations, e.g., temporal evolution of temperature inversions that

may provide an indication for the onset and duration of conditions leading to adverse

weather, e.g., fog and low visibility, that would affect airport operations.

In this chapter we use a case study period to evaluate the use of aggregated Mode-S

EHS reports for locating temperature inversions within the boundary layer. In section

2.3 (page 9) we described the meteorological conditions that give rise to temperature

inversions. In section 5.2 (page 92) we described the meteorological conditions for our

case study period 3rd to 5th January 2015, during which low visibility occurred.

In section 6.2 we review our method of constructing temperature profiles to find the

most practical horizontal layer depth to use for our method aggregation, which we used

in section 3.7.2 (page 47) to construct vertical temperature profiles within the vicinity

of an airport. In section 6.4 we make qualitative comparisons between our constructed

vertical profiles of temperature and the nearest available temperature observations

from AMDAR and radiosonde and with NWP forecast temperature profiles. We note

from the previous section that there large fluctuations in the aggregated temperature,

especially at altitudes below 1000 m. Therefore in section 6.5 we describe four methods

to smooth the fluctuations in Mode-S EHS reports for Mach number and true airspeed.

Before we apply the low-pass-filters, we need to construct the aircraft’s trajectory

which we discuss in section 6.6. These trajectories show that the Mach number and

airspeed change asynchronously, so in sections 6.7 and 6.8 we investigate the effect of

the asynchronous changes using the low precision the Mach number and true airspeed

on the Mach temperature. Then in section 6.9 we apply and evaluate the use of the

low-pass-filters for smoothing the asynchronous changes in the Mode-S EHS reports

of Mach number and True Airspeed for individual aircraft. We then re-construct the

vertical profiles of Mach Temperature. In section 6.10 we use the error model for

Mach Temperature, developed in section 4.5 (page 66), to estimate the uncertainty

in the smoothed aggregated Mach Temperature. We conclude this chapter in section

6.11 with our finding that quantisation error remains a strong source of error for the
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smoothed aggregated observations.

6.2 Constructing Temperature Profiles using Mode-S EHS

Reports

We wish to estimate the depth of a horizontal layer in which to form aggregated obser-

vations (section 3.6, page 39). The aggregated observations should provide sufficient

vertical resolution so as to identify the depth of a temperature inversion (section 2.3,

page 9) or the peak wind speed of a low-level jet (section 2.4, page 12), and contain

a sufficient number of reports from different aircraft to minimise uncorrelated random

errors. We will call this depth the altitude bin width.

In figures 6-1 and 6-2 we show temperature profiles constructed from aggregated

Mode-S EHS reports for the London Heathrow domain on 4th January 2015 with a

validity time of 0600 UTC. The aggregation of observations is described in section 3.6

(page 39). There are other profiles shown which will be discussed in section 6.4 (page

118. We also show for Mode-S EHS temperature profiles the effect of changing the

width of the altitude bin used to aggregate the observations: 150 m (fig 6-1), 300 m

(fig 6-2a), and 75 m (fig 6-2b). The Mode-S EHS observation for each altitude bin is

the aggregate of the derived temperature reports that are ±30 minutes of the validity

time. The constructed mean profile is centred at the validity time. We choose the

time period ±30 minutes of the validity time to correspond with ascent time for the

radiosonde temperature profile. For plotting purposes each aggregated Mode-S EHS

observation is plotted at the mean altitude of the reports within the altitude bin. The

error bars for the Mode-S EHS observation are for the standard deviation (grey) and

the 95% confidence limits for the mean (black) of the derived temperature reports used

within the altitude bin. In computing the 95% confidence limits we use the Student-t

distribution (Hoel 1984, Chapters 5 and 11) with the degrees of freedom (N−1) whereN

is the number of reports in the altitude bin. We use the Student-t distribution because

the uni-modal distribution of reports within each altitude bin becomes less certain at

levels below 1000 m, due to the drop in the number of reports, and the observation

mean and standard deviation is estimated. Furthermore, we assume that the errors in

the Mach number and true airspeed, used to derive the temperature, follow a uniform

distribution. However, the distribution of resulting Mach temperature error appears to

be uni-modal. This is evident when inspecting the distribution of temperature reports

at altitudes above 600 m, for example see figure 6-3.

In figure 6-3 we show the corresponding distribution of temperatures within each

altitude bin for the first eight bins: 75 m (fig 6-3a), 150 m (fig 6-3b) and 300 m (fig
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(a) Altitude bin width 300 m.

(b) Altitude bin width 75 m.

Figure 6-2: This plot shows aggregated Mode-S EHS Mach temperature profiles (tri-
angles) for London Heathrow domain using different altitude bin widths (a) 300 m and
(b) 75 m. Plot legend is the same as in figure 6-1.
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6-3c). (Table 6.1, page 116, tabulates for each altitude bin width the number of reports,

the mean Mach Temperature, TMach, the standard deviation, σ, standard error of the

mean σe and the mean of the estimated Mach Temperature Error.) As can be seen

from these distributions the narrower the altitude bin the fewer Mode-S EHS reports

it contains. This results in a spread of temperature reports across a finite range. So for

the smaller altitude bin there is no apparent central tendency for a single temperature

report that can be considered as representative of the prevailing ambient temperature.

A balance needs to be struck between the width of the altitude bin, the number of

reports it contains and the subsequent confidence in the result. Figure 6-2a shows the

aggregated Mode-S EHS temperature profile for the altitude bin width 300 m. This has

the advantage of containing a large number of Mode-S EHS reports, of the order 500

reports in altitude bins above 600 m. A large number of reports provides a more uni-

modal distribution such as shown in figure 6-3c and higher confidence in the computed

mean. However, the disadvantage of this altitude bin width is that it is not suitable

for resolving sharp or rapid changes in temperature such as those near the surface.

Figure 6-2b shows the aggregated Mode-S EHS temperature profile for the altitude

bin width 75 m. The effect of reducing the altitude-bin width is to reduce the number

of Mode-S EHS reports that can be used to compute the aggregated observation. A

lower number of reports provides distributions which appear bi-modal, non-uniform or

skewed such as shown in figure 6-3a and it is less clear what the mean of the distribution

should be. We note that some of the distributions appear to have two peaks. This may

be due to the derived temperature oscillating between two values such as seen in the

FAAM temperature profile shown in figure 4-1b (page 67). We have suggested that

this oscillation may be an artefact arising from the low precision of the Mach number.

The advantage of the smaller altitude bin width is to increase the vertical resolution of

the temperature profile. This affords the facility to resolve sharp or rapid changes in

the temperature gradients. However, this does cause an increase in the uncertainty in

the mean value, especially at low levels where the number of available reports tail off

toward zero.

Figure 6-1 shows the aggregated Mode-S EHS temperature profile for the altitude

bin width 150 m. This appears to be a suitable compromise between the number of

reports available to compute a reliable mean value; the distribution of the reports is

mostly uni-modal above 500 m, and there is less variation in the means along the profile.

This altitude bin width affords the facility to resolve reasonably rapid changes in the

temperature gradient above 500 m. Thus we choose to use an altitude bin width of

150 m. We acknowledge that this altitude bin width may not be suitable for identifying

temperature gradients below 500 m. This is because below 500 m the mean derived
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(a) Distribution when altitude bin is 75 m. Altitude range 0 m to 600 m.

(b) Distribution when altitude bin is 150 m. Altitude range 0 m to 1200 m.

Figure 6-3: Distribution of Mach Temperatures for different altitude bins. London
Heathrow Domain, 05:30 to 06:30 UTC, 4th January 2015. For each plot, y-axis is
Number of reports, x-axis is Mach Temperature (K) where bin-width = 1 K. In panel
(a) there are no reports below 75 m.

temperature becomes less certain, as shown by the histogram distributions in figure

6-3.
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Table 6.1: Statistics for histogram distributions shown in figure 6-3

Altitude Range (m) NR TMach σ σe MachT Error

Altitude Bin Width 75 m (see figure 6-3a)

0 74 0 - - - -
75 149 9 275.84 4.71 1.57 3.79
150 224 32 280.81 6.82 1.21 3.78
225 299 63 279.58 6.80 0.86 3.61
300 374 88 276.46 5.92 0.63 3.40
375 449 75 276.53 6.61 0.76 3.28
450 524 66 275.52 5.06 0.62 3.22
525 599 75 276.78 8.59 0.99 3.22

Altitude Bin Width 150 m (see figure 6-3b)

0 149 9 275.84 4.71 1.57 3.79
150 299 95 280.00 6.79 0.70 3.67
300 449 163 276.49 6.23 0.49 3.34
450 599 141 276.19 7.16 0.60 3.22
600 749 313 276.51 4.65 0.26 3.07
750 899 266 276.41 4.22 0.26 2.89
900 1049 249 276.64 3.22 0.20 2.80
1050 1199 202 275.67 3.95 0.28 2.80

Altitude Bin Width 300 m (see figure 6-3c)

0 299 104 279.64 6.72 0.66 3.68
300 599 304 276.35 6.67 0.38 3.29
600 899 579 276.46 4.46 0.19 2.99
900 1199 451 276.21 3.60 0.17 2.80
1200 1499 257 274.79 3.13 0.20 2.72
1500 1799 548 272.25 3.49 0.15 2.48
1800 2099 598 274.36 4.69 0.19 2.29
2100 2399 712 270.98 2.71 0.10 2.17
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(c) Distribution when altitude bin is 300 m. Altitude range 0 m to 2400 m.

Figure 6-3: Figure continued from page 115.

6.3 Time and Length Scales of Aircraft-based Observa-

tions

In section 2.2 we introduced the concept of a time and length scale that can be as-

sociated with an atmospheric phenomenon. The length scale of an atmospheric phe-

nomenon that can be studied using aircraft-based observations is determined by its

horizontal sampling length. This is defined as the distance travelled by the aircraft

during the sampling time. The distance travelled by the aircraft is a function of its

true airspeed and the sampling time of its reporting or its measuring instruments

(Lenschow & Stankov 1986; Sharman & Lane 2016, p. 99).

For single Mode-S EHS observations we can expect the horizontal sampling length

scale to be a function of the aircraft’s true airspeed and the average time between

Mode-S EHS reports, this is illustrated in figure 6-4. The aircraft’s true airspeed will

also be function of its altitude above the surface, so the horizontal sampling length will

also vary by altitude (not shown). The length scales shown in figure 6-4 correspond to

mesoscale atmospheric phenomena such as deep convection, short gravity waves and

clear air turbulence (Orlanski 1975, Fig 1).

For aggregated Mode-S EHS observations the horizontal sampling length is fixed

by the horizontal spatial extent and time period over which the observations are ag-

gregated and the vertical resolution is fixed by the altitude bin width. Aggregation
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Figure 6-4: Horizontal sampling length scale along the aircraft’s trajectory. The sam-
pling time is given in the legend.

of observations averages out smaller scale variations that may be detected by a time

series of single observations. For our case study our aggregated observations used a

horizontal spatial extent of 80 km, a time period of one hour and a vertical resolution of

150 m. The horizontal length scale is comparable to that of meteorological phenomena

such as the nocturnal low-level jet, mesoscale convective systems and weather fronts

(Orlanski 1975, Fig 1). We have shown in figure 6-1 that the vertical resolution is still

sufficient to resolve temperature inversions, even after the horizontal averaging.

6.4 Derived Mode-S EHS Temperature Profiles

We consider whether the density of observations available from Mode-S EHS is sufficient

to capture weather phenomena such as temperature inversions. We use Mode-S EHS

reports of Mach number and true airspeed to derive Mach Temperature using eq. (3.4)

(page 38). To use as much of the observational data as possible we aggregate the

Mode-S EHS observations to form mean profiles for temperature (section 3.7.2, page

47). We assume the averaged observations to have a smaller error than an individual

observation, which can be approximately 10 K. The standard error of the mean scales

by 1/
√
N , where N is the number of reports and if the random errors are uncorrelated

(Hoel 1984, Ch 5 and Ch 10). We assume further that the resulting mean profiles are

representative of the meteorological conditions for the airport’s domain. We compare

these profiles with corresponding UKV NWP mean 1-D profiles and observations from
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AMDAR or Radiosondes where these are available.

In Figure 6-1 (page 112) the left panel shows four vertical profiles for temperature

for the Heathrow domain:

1. the Mode-S EHS temperature profile (triangles) for the validity time 0600 UTC.

The profile was constructed using aggregated Mode-S EHS reports received ±30

minutes of the validity time using altitude bins of 150 m. The aggregated report

is centred at the mean altitude of the reports within the bin. The Mode-S EHS

temperature error bars are for the standard deviation (grey) of the reports in

the altitude bin and the 95% confidence limits for the mean (black). The right

panel shows the number of Mode-S EHS reports used to compute the aggregated

observation for each altitude bin.

2. the Herstmonceux 0600 UTC radiosonde temperature profile (black) with the ac-

curacy (±0.5 K) represented by the shaded region. The radiosonde was launched

at 0515 UTC, headed due south of its launch site at Herstmonceux (fig 5-4, page

99), and reached an altitude of 3000 m at 0524 UTC. Position and tempera-

ture reports were made every 2 s. The region of the atmosphere sampled by the

radiosonde is not contained within the Heathrow domain.

3. The mean forecast temperature profile for the Heathrow domain (magenta) with

the validity time 0600 UTC. This is from the Met Office UKV NWP model run on

4th January 2015 0300 UTC. The mean temperature profile is computed by using

1-D column profiles at the nine points indicated in figure 3-2 (page 36). The error

bars indicate the 95% confidence limits of the mean. The standard deviation (not

shown) at each point shows that at this time there is little variation (<0.5 K)

in the temperature across the domain between 300 m and 3000 m and below

300 m the standard deviation is around 1.5 K. A study by Ingleby & Edwards

(2015) estimated the average UKV NWP model error, when compared against

high-resolution radiosonde reports, to be 0.75 K for this altitude range.

4. For the validity period 0600 UTC ±30 minutes there is one AMDAR profile (air-

craft identifier AFZA63). The error bars are for the estimated accuracy AMDAR

temperature reports (± 0.5 K).

For the identification of useful meteorological information we use the radiosonde

temperature profile as our reference, even though it is outside of the Heathrow domain.

The 0600 UTC observations from the radiosonde and AMDAR would not have been

available for data assimilation for the UKV forecast, which was generated 3-hours

earlier.
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In figure 6-1 (page 112) the radiosonde report indicates the presence of two temper-

ature inversions: a low level temperature inversion between 500 m to 900 m, reported at

0516 UTC, and an elevated temperature inversion between 1800 m to 2000 m, reported

at 0520 UTC. The AMDAR reports, reported between 0557 UTC to 0612 UTC, are

broadly in agreement with the radiosonde. However, there is a clear difference between

the direct observations and the UKV NWP forecast.

The UKV NWP forecast places the low level inversion between the surface and

300 m and does not forecast the elevated inversion. The radiosonde and AMDAR re-

ports would be received after the UKV NWP data assimilation observations processing

time, 0130 to 0419 UTC, thus these observations were not included in the UKV NWP

assimilation. Therefore the UKV NWP forecast will not have taken into account the

existence and the location of the temperature inversions shown by the these observa-

tions since there are no other source of upper air temperature observations during the

observations processing time. The observed temperature inversions are not shown in

the UKV NWP forecasts at 0300, 0400 and 0500 UTC. We note that the absence of the

elevated temperature inversion at around 2000 m, that is recorded in the radiosonde

report, would be important for the subsequent forecasts. An upper level inversion in

effect caps vertical movement and dispersion of atmospheric aerosols, this may affect

the forecast conditions for solar insolation and the formation of fog and cloud (Fowler

et al. 2012).

The Mode-S EHS aggregated reports are largely in agreement with the radiosonde

and AMDAR between 700 m up to 1800 m and 2000 m to 3000 m. Between 1800 m

and 2000 m the reports indicate the presence of an elevated temperature inversion in a

similar region as that shown by the radiosonde and AMDAR reports, and which is not

represented by the UKV NWP forecast. However, the magnitude of the inversion sug-

gested by the Mode-S EHS aggregated report differs significantly from the radiosonde

and AMDAR reports. Below 700 m the Mode-S EHS aggregated report is in more

agreement with the UKV NWP forecast. However, the direct comparison is difficult

since time and spatial scales differ.

The radiosonde and AMDAR reports are essentially instantaneous values, reporting

on a time scale of seconds to minutes. The aggregated Mode-S EHS observation uses

all available Mode-S EHS reports over a large spatial domain (see figure 3-2, page 36)

with a mean time of 2 s between reports. The aggregated observation is an average

over the hour thus representing the mean conditions in time, so some variability will

be lost due to the averaging process. For the mean reporting time, the horizontal

spatial sampling scale is on average around 250 m (see figure 6-4, page 118). We

find some agreement between the aggregated Mode-S EHS observation and the UKV
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NWP because the latter also represents the mean conditions over the hour, although its

spatial sampling scale is 1500 m. However, we still find some differences. For example,

at 300 m the Mode-S EHS profile shows significant departure from the UKV NWP

mean profile. This departure is a persistent feature for all hourly aggregated Mode-S

EHS observations between 0600 and 1500 UTC when compared to the corresponding

hourly UKV NWP forecasts.

Examination of the hourly profiles from this data set for the period 0600 UTC to

1500 UTC show that the low level Mach Temperature varied between a minimum of

277.8 K (4.6◦C) ±2.2 K at 0900 UTC and a maximum of 281.7 K (8.7◦C) ±2.5 K at

0700 UTC. The low level UKV NWP mean temperature varied between a minimum of

271.76 K (-1.39◦C) ±0.33 K at 0900 UTC and maximum of 276.74 K (3.59◦C) ±0.15 K

at 1500 UTC. The surface observation reports from Heathrow airport show that at

0550 UTC the 2 m temperature was 272±1 K, and which varied from 272±1 K to

276±1 K for the same period. The surface observations from the Met Office synoptic

weather reporting stations within 25 km of Heathrow show that the 2 m temperature

was between 271±0.5 K and 273±0.5 K at 0600 UTC, and which varied from 271±0.5 K

to 276 ±0.5 K for the same period.

It is clear that the low level Mode S EHS Mach Temperature is reporting warmer

conditions than is indicated by the AMDAR reports and UKV NWP forecasts. The

temperature difference between them is of the order of 5 K . It is uncertain whether

this difference is due to atmospheric variability from low-level turbulence that affects

the aircraft sensors or an artefact that results from the Mode-S EHS processing.

It is clear that the Mode-S EHS aggregated reports show a degree of variability,

represented by the standard deviation, which is not seen in the other profiles, especially

at levels below 1000 m. As discussed earlier (section 6.7) we suggest that this variability

is dominated by the precision of the data used to derive the temperature, since the

atmospheric conditions do not appear to vary greatly over the hour, as indicated by

the radiosonde and AMDAR reports. Nonetheless the vertical profile formed from the

Mode-S EHS aggregated reports may provide additional information about the vertical

temperature profile that is not represented by the other observations from radiosonde

and AMDAR.

Figures 6-5 and 6-6 show plots for vertical temperature profiles at different times for

London Gatwick and London Heathrow domains. The processing and labelling for these

plots is the same as that used in figure 6-1 (page 112). Each plot shows the aggregated

Mode-S EHS Mach Temperature (triangles) with the number of Mode-S EHS reports

used for each altitude bin shown by the adjacent plot. Where available, other in situ

temperature observations are also shown: radiosonde (black) and AMDAR (coloured

121



(a) London Gatwick 2015-01-04

(b) London Gatwick 2015-01-05

Figure 6-5: London Gatwick at 0600 UTC for two days. (i) Mode-S EHS aggregated
Mach Temperature vertical profiles (triangles), radiosonde (black) and mean UKV
NWP (green) temperature profiles. (ii) The number of Mode-S EHS reports used for
each altitude bin. See fig 6-1 for further plot details.
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(a) London Gatwick

(b) London Heathrow

Figure 6-6: Mode-S EHS aggregated Mach Temperature vertical profiles (triangles) for
London Gatwick and London Heathrow domains at 0900 UTC 5th January 2015. See
fig 6-1 for further plot details.
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points). The mean NWP forecast temperature profile (magenta/green) is from the

UKV NWP model run at 0300 UTC on each day.

Figure 6-5a shows the 0600 UTC vertical temperature profile for London Gatwick

domain. As already shown in figure 6-1 (page 112) the radiosonde report indicates a

low level temperature inversion between 500 m and 1000 m. The UKV NWP tem-

perature profile indicates the presence of a low level temperature inversion between

200 m and 400 m. There being no radiosonde or AMDAR observations for this time

the Mach Temperature reports between 0 m and 450 m also suggest the presence of

the low level temperature inversion. The Mach Temperature profile between 900 m

and 2100 m indicates warmer temperatures when compared to the UKV profile, with

a possible isothermal region between 900 m and 1500 m but no indication of an ele-

vated temperature inversion between 1800 m and 2100 m, as shown by the radiosonde

report. The uncertainty in the Mach Temperature reports at levels above 900 m does

not rule out the presence of an elevated inversion. Below 900 m the uncertainty in

the Mach Temperature increases and this is consistent with the effect of the reduced

availability of the Mode-S EHS reports below 900 m, as shown in 6-5a panel (ii). So

while the Mach Temperature reports between 0 m and 450 m indicate the presence of

a low level temperature inversion it cannot be ruled out that the aggregated report

is being affected by noise, which originates from the reduced precision of the Mode-S

EHS reports for Mach number and true airspeed.

Figure 6-5b shows the vertical temperature profile for London Gatwick domain at

0600 UTC on 2015-01-05. Observations are from an 0600 UTC Herstmonceux ra-

diosonde report (black) and five reports from an aircraft reporting AMDAR (coloured

dots). (From the AMDAR time parameter it was not possible to determine whether

these reports were from an aircraft ascent or descent.) We use the 2015-01-05 0300

UTC UKV NWP forecast to generate the 1-D profile temperature profile (green). The

radiosonde and aircraft-based observations were not used to generate the UKV NWP

forecast since they were received after the cut-off time, 0419 UTC, for accepting obser-

vations. It is clear from the radiosonde report that there is a strong elevated tempera-

ture inversion (for magnitude of the inversion see section 2.3) present between 1300 m

and 1600 m and a low level temperature inversion between 0 m and 100 m. Similarly

the UKV NWP forecast with validity time 0600 UTC shows the low level temperature

inversion but forecasts the elevated temperature inversion between 900 m to 1300 m.

The strength of the inversion is shallower when compared with the radiosonde. The

AMDAR reports are largely in agreement with the UKV profile, except at 1600 m where

this report is in agreement with the top of the inversion as recorded by the radiosonde

report. The Mach Temperature profile is suggestive of the low level temperature inver-
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sion but there is a large uncertainty. The elevated inversion is shown to be stronger and

lower down in the atmosphere. (The uncertainty in the vertical position is small since

at low levels the precision of the reported pressure altitude is ±8 m, and the number

of reports is around 50, so the standard error in the mean pressure altitude is of the

order 1 m.) The number of reports available is significantly lower than that obtained

for Heathrow. This difference is likely to be due to the lower traffic density at London

Gatwick at this time of day.

Figure 6-6a shows the vertical temperature profile for London Gatwick domain three

hours later at 0900 UTC on 2015-01-05. There are ten observations available from an

ascending aircraft reporting AMDAR (coloured dots). The UKV NWP temperature

profile (green) is the forecast mean of the 1-D profiles for validity time 0900 UTC

obtained from the UKV NWP output at 0300 UTC. There is no radiosonde report

for this time period. The UKV NWP forecast shows that there are elevated and low

level temperature inversions. The AMDAR reports are mostly in agreement with UKV

profile, the difference is small. At this time the number of Mode-S EHS reports is an

order of magnitude greater than that for the same location at 0600 UTC. The resulting

Mach Temperature vertical profile above 1000 m appears much more well defined when

compared to the UKV profile. The increase in the number of Mode-S EHS reports

between the surface and 1000 m does not appear to have improved the accuracy of

the Mode-S EHS Mach Temperature profile. The magnitude of the difference between

the Mach Temperature profile and the UKV profile is of a similar order as that shown

three-hours earlier in figure 6-5b, where the magnitude of difference is around 2 K to

3 K. We suggest that changes of this order of magnitude are due to the Mode-S EHS

precision error. A similar conclusion is drawn when comparing the Mode-S EHS Mach

Temperature profile against the available AMDAR reports.

Figure 6-6b shows the vertical temperature profile for the London Heathrow domain

at 0900 UTC on 2015-01-05. There are no observations from radiosonde or AMDAR

at this time. There is no radiosonde report because these are normally available only

at 0000 UTC and 1200 UTC unless additional launches are requested by the National

Weather Service. The absence of AMDAR reports may be because there were either

no suitably equipped aircraft or that any AMDAR reporting aircraft had its reporting

managed by an optimisation reporting process (Carlberg 2012). The UKV NWP tem-

perature profile (green) is the forecast mean of the 1-D profiles for validity time 0900

UTC obtained from the UKV NWP output at 0300 UTC. The UKV NWP forecast

shows elevated and low level temperature inversions, so the atmospheric conditions are

similar at Heathrow and Gatwick. Above 1500 m the number of Mode-S EHS reports

available around Heathrow is greater than that available around Gatwick, this is likely
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due to the different traffic patterns between the two domains, as well the line of the

sight of the receiver unit. The Mach Temperature vertical profile above 1000 m appears

well defined when compared to the UKV profile, if marginally warmer. Again, we note

that above 1000 m the number of Mode-S EHS reports is of the order 400+. Despite

the larger number of reports used for computing the aggregated observation the stan-

dard deviation remains high. There is a sharp increase in the Mach Temperature below

300 m when compared against the UKV, again, we suggest the changes of this order of

magnitude are due to the Mode-S EHS precision error.

We conclude that qualitatively it appears that vertical temperature profiles con-

structed from aggregated Mode-S EHS reports could be used to identify temperature

inversions. When constructed over the hour during the course of the day these profiles

would provide additional information about the atmospheric state that may otherwise

not be observed. However, there are significant limitations to this method due to the

level of noise apparent in the data. We suggest in the first instance that Mode-S EHS

processing is a significant source of the resulting temperature differences, as is suggested

by the results from chapter 4 (page 55). In the remainder of this chapter we investigate

the use of low-pass filters to reduce the effect of the quantisation error introduced by

the Mode-S EHS processing. We note also that the higher range of Mach Temperatures

at low levels may include a bias which may be the result of the difference in the number

of aircraft ascents or descents used in computing the aggregated Mach Temperature.

6.5 Low-pass-filters

In this section we describe four low-pass-filters: block-window average (Flyvbjerg &

Petersen 1989, Schmelling 1995), moving centred average (Brockwell & Davis 2002,

Section 1.5), linear regression (Walpole et al. 2011, Ch 11) and exponential moving

average (Wright 1986). These low-pass-filters are designed to smooth out rapid changes,

i.e., high frequency components, in the Modes-S EHS reports for Mach number and

true airspeed which are used to compute the Mach Temperature. The low-pass-filter

replaces a group of adjacent reports, the validation window, by their filter value.

For each low-pass-filter we use the following notation: for one Modes-S EHS report

type, N is the total number of reports in the time-series of an aircraft track; tk is the

time assigned to an individual report, xk; where k is the time index, ranging between

1 and N ; 2m+ 1 is the number of reports used to compute the average which contains

the Mode-S EHS reports, where m is an integer value used to set the number of reports

used by the low-pass-filter; Xt is the computed value of the Mode-S EHS report after

applying the low-pass-filter, with validity time, t.
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A quality threshold is used. This is based on the time difference between two

successive Mode-S EHS reports, δt. Where δt is greater than a maximum time difference

δtmax then Xt is set to a missing data indicator. The value of δtmax ensures that the

data used in the low-pass-filter are closely related in time and space. To estimate a value

for δtmax, we compute the standard deviation of all time differences along all aircraft

tracks identified for the day. We then round the standard deviation to the nearest

integer value and assign this to δtmax. We do this because we expect fewer Mode-S

EHS reports along an aircraft trajectory than are actually available in principle. This

is due to quality control processing of Mode-S EHS reports (see table 5.3, page 105) .

6.5.1 Block-window average

The block-window average method creates a time-series of Mode-S EHS reports using

the average of a validation window. The time-series is split into a sequence of blocks

then the average of each block is computed. In computing the average no report is

used more than once. The new filtered time-series is given by,

Xt =
1

2m+ 1

+m∑
j=−m

xk+j for k = m+ 1, 3m+ 2, 5m+ 3, ...,

⌊
N

2m+ 1

⌋
(2m+ 1)−m,

(6.1)

and the validity time, t, is given by,

t =
1

2m+ 1

+m∑
j=−m

tk+j , (6.2)

where
⌊

N
2m+1

⌋
is the number of blocks of data of size 2m + 1 in the dataset. The

operator bxc, gives the greatest integer that is less than or equal to x (Oldham et al.

2010, p.68).

This method is simple to implement but is not robust. It is still susceptible to large

variations since all the reports within the validity window are equally weighted. Gaps

in the time-series may arise because the time-difference between the reports used fail

the quality control criteria.

6.5.2 Moving centred average

This is a straightforward method of computing a value over a short validity window.

The method weights each report equally, so reports at the start of the validity window

are treated to be of the same importance as those reports at the end of the validity
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window. The new time-series is given by,

Xt =
1

2m+ 1

+m∑
j=−m

xk+j for k = m+ 1,m+ 2,m+ 3, ..., N −m, (6.3)

with the validity time given by eq. (6.2).

However, this method is not robust since it can be affected by large outliers and

fluctuations in the new time-series may lag behind that seen in the original time-

series, although the magnitude of the variations is reduced. Outliers may be the result

of some random process or larger than expected values of Mach Temperature which

appear inconsistent with the prevailing atmospheric conditions. However, filtering out

these outliers is a subjective process without using corroborating observations, such

as similar reports from nearby aircraft. The size of the validity window may result in

the fluctuations of the output time-series lagging behind that observed in the input

time-series.

6.5.3 Linear regression

This uses the least squares regression method to compute a local rate of change, which

is assumed to be linear over the period for the reports 2m + 1 . This is a statistical

method that minimises the differences between a control variable and predicted values.

The new time-series is given by,

Xt = αt+ β, (6.4)

where the validity time is given by eq. (6.2) and the local constant, β, is given by

β = x− αt, (6.5)

where the mean value over the validity window is given by,

x =
1

2m+ 1

+m∑
j=−m

xk+j , (6.6)

and the local rate of change, α, (i.e., the gradient) is given by,

α =

∑+m
j=−m(xk+j − x)(tk+j − t)∑+m

j=−m(tk+j − t)2
, (6.7)

for k = m+ 1,m+ 2,m+ 3, ..., N −m.

Unlike the moving centred average this method is more responsive to variations

in the time-series. The mean values obtained from fitting a straight line to the data
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locally are used to create the new time-series.

6.5.4 Exponential Moving Average

The exponential smoothing method is similar to the moving centred average except

observations are weighted according to their position in time. The current observation

is weighted more than the observations made earlier in the time-window. The simple

exponential moving average (Brown 2004b, Ch. 7) assumes observations are available

at regular time intervals. However, since the Mode-S EHS reports used to construct

aircraft trajectories may be at irregular time intervals and there may be missing data,

the ((Wright 1986); (Kim & Huh 2011, Ch. 6)) method is used, which extends the

method to irregular time intervals. The new time-series is given by,

Xtk = (1− Vk)Xtk−1 + Vkxtk , (6.8)

where

Vk =
Vk−1

bk + Vk−1
(6.9)

and

bk = (1− a)(tk−tk−1), (6.10)

for k = 2, 3, 4, ...N, and 0 ≤ a < 1.

The value a is a smoothing parameter which determines the proportion of the new

information to be added to the running average. The initial value of weighting function,

V1, is equal to one. The larger the value of the smoothing factor, Vk, the less weight is

given to the running average. The smoothing factor is a function of the time separation

between the current report and the running average. This method is more sensitive to

the variations in the time-series whilst maintaining a link to the overall trend in the

time-series, so suppresses rapid changes (i.e., high frequency components).

6.6 Time-series of Mode-S EHS Derived Mach Tempera-

ture

In this section we describe our method to construct a time-series of Mach Temperature

reports for an aircraft. The time-series consists of Mode-S EHS reports that can be

assigned to an aircraft that was present in the airport domain for a chosen day. We do

this so that we can apply our low-pass-filter to each aircraft’s reports. We apply this

method to obtain time-series reports for all aircraft.

Aircraft tracks are constructed for each day using Mode-S EHS reports, collected
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by the Met Office receiver network (described in section 5.5, page 99), which were

retrieved from the Met Office Meteorological Database (MetDB). This is done using

the time-series of an aircraft’s identifier which is the ModeS EHS transponder’s six

character hexadecimal address, hereafter called the ‘ip’ address. To identify a track,

two conditions must be fulfilled for each ip address (1) three or more Mode-S EHS

responses are required and (2) the end of a track is marked by a gap in the time-series

of at least thirty minutes between two successive reports for each Mode-S EHS address.

(Thirty minutes is the expected turnaround time between arrival and departure of the

same aircraft operated by a low-cost airline.) Small gaps in the aircraft track can arise

when data is missing or was filtered out as part of the quality control processing applied

before the data were stored in the MetDB.

Each track is allocated an identifier as ‘ip trk no’ where ‘trk no’ is the track number

allocated to each of the aircraft’s time-series of reports identified on the chosen day.

Having established an identifiable track, the following aircraft reports which can be

attributed to the ip address are assigned to the track’s time-series: time of report,

geographic position, pressure altitude, Mach number, true airspeed and derived Mach

Temperature. Figure 6-7 (page 132) depicts the time-series of aircraft track attributes

that were present for the period 0530 to 0630 UTC in the London Heathrow domain

on 4th January 2015. This time period is selected as it corresponds to that of the

radiosonde launched at Herstmonceux.

In figure 6-7 the tracks of the pressure altitude report show that between 0530 and

0550 UTC only two aircraft were descending into Heathrow. From 0550 to 0630 UTC

nearly all the tracks are showing aircraft are descending. This is typical for London

Heathrow as the early morning flights are mostly transatlantic or transcontinental

arrivals. However, these time-series also include two tracks for ascending aircraft. At

0549 UTC the track 4C041 1 appears to show that the aircraft was descending then

starts to ascend. This is probably a missed approach, which indicates that the pilot

encountered a problem during the landing procedure and decided to abort the landing.

At 0618 UTC the track 4951CE 1 shows that the aircraft was ascending. At 0622 UTC

the track 89402A 1 shows the aircraft was in level flight at approximately 3000 m,

this is likely to be an aircraft just leaving the holding stack to start its descent into

the airport. The segments of aircraft tracks which are outside this time period are

not shown and their data are not used. A closer inspection of the time-series shows

that it is similar to that shown in figure 3-6(a) and 3-6(b) (page 49), which indicates

that the Mach number and true airspeed appear smooth and free from large deviations.

However, the time-series for the derived Mach Temperature shows significant variability

(figure 6-7), similar to that shown in figure 3-6(c). It is unlikely that this variability is
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due to the prevailing atmospheric ambient air temperature.

Figures 6-9 and 6-10 show the time-series of aircraft tracks as vertical profiles,

where time is replaced with pressure altitude. The vertical profiles are for the Mach

number, true airspeed and derived Mach Temperature. Figure 6-9c shows pressure

altitude against the elapsed time of the aircraft’s track, indicating whether an aircraft

is ascending or descending. The aggregated observations (described in section 3.6,

page 39) for Mach Number, true airspeed and Mach Temperature are shown as the

black points with error bars. The error bars are the standard deviations of the reports

within the altitude bin. The altitude bin height is 150 m. Each aggregated observation

is plotted at the mean pressure altitude of all reports within the altitude bin. These

profiles show which parts of an aircraft’s track would be available for computing the

aggregated observation.

In figures 6-9a and 6-9b there are three aircraft profiles which appear to depart sig-

nificantly from the profile formed from the aggregated observations (black points). Air-

craft 4C041 1 (green stars) performed a missed approach manoeuvre, i.e., it descended

but did not touch down on the runway it instead ascended. The profile 4951CE 1

(green dots) corresponds to an aircraft take-off from the runway. The profile 40688B 1

(grey squares) corresponds to an aircraft entering the domain at a lower altitude, with

upper part of its descent not being within the domain. All the other aircraft for this

time period are descending and so are decelerating. The rates of acceleration and de-

celeration differ due to speed controls imposed for reasons of air traffic management

and regulatory restrictions.

Aircraft arriving at an airport will be directed onto a standard arrival trajectory.

While on the approach to land aircraft would be expected to maintain target airspeeds

for each leg of the descent profile. The descent profile consists of three segments: the

outer leg, the base leg and the final approach. The outer leg altitude range is 3000 m

to 2000 m with target speed of 114 ms−1. The base leg altitude range is 2000 m to

1000 m with target speed of 92 ms−1. The final approach altitude range is 1000 m to

300 m with target speed of 82 ms−1. Between 300 m and the aircraft landing there

is no speed control beyond that required to maintain airborne safety (Civil Aviation

Authority 2016). There will be some variability around these target speeds depending

on aircraft type, prevailing weather conditions and air traffic density. Target airspeeds

are used to control aircraft airborne separation and to maintain a steady rate of arrivals

to the runway.

The use of target airspeeds suggests that descent profiles would all be similar in

character. This can be seen in profiles for Mach number (fig 6-9a) and true airspeed (fig

6-9b). Figure 6-10 shows the derived Mach Temperature profile for each aircraft track.
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There is a large amount of variability in the individual Mach Temperature profiles.

In the altitude range 1800 m to 2100 m the Mach temperature reports range between

260 K and 300 K, while below 900 m the reports vary between 240 K and 305 K. It is

unlikely that the ambient temperature would exhibit this degree of variability.

If the fluctuations in the Mach Temperatures for individual aircraft are due to

unbiased random processes then the expectation is that on computing the aggregated

observation then random noise will be diminished by being averaged out. However, we

note from our previous study in section 4.5.2 (page 66) that Mach Temperature error

does vary by altitude, with variability increasing at lower altitudes, as shown in figure

4-2 4-2. Figure 4-1 suggests that Mach Temperature variability from a single aircraft

could range ±6 K about the actual ambient temperature. While it is expected that

Mach Temperature would be increasing during a descent, since ambient temperature

increases, we suggest that this variability arises from an increase in the quantisation

error for descending aircraft at lower altitudes. This may be the result of pilot or FMS

use of controls to maintain target airspeeds.

6.7 Variation in Mode-S EHS Derived Mach Temperature

In this section we further examine the effects of quantisation error and air speed controls

used during ascents and descents on the variation of Mach Temperature. For the case

study day we estimate a plausible range of ambient temperatures based on the mean

1.5 m screen temperature at London Heathrow and the ISA Lapse rate. The range

of screen temperatures for period 0020 UTC to 2350 UTC at Heathrow Airport was

-1.2◦C to 2.9◦C, with the mean for the day being 1.4◦C. This was obtained from the

observations at the airport which are reported every thirty minutes. If we assume

the ISA Lapse rate is Γ = −6.49◦C km−1 then the temperature at 3000 m would

be -18.0◦C. Thus, within the London Heathrow domain, for the time of year, it seems

unlikely that ambient temperatures would exceed a range ±25◦C along a vertical profile

between the surface and 3000 m. We use a larger range of temperatures to take account

of any temperature inversions that may be present since the ISA Lapse rate assumes

temperature decreases linearly with altitude.

Figure 6-11 shows a scatter plot of the reports of True Airspeed v Mach number

for all aircraft ascents from the London Heathrow domain on 4th January 2015. The

histogram plots show the distribution of true airspeeds and Mach number. A colour is

assigned to the derived Mach Temperature. A temperature range of ±25◦C is used and

where temperatures are less than the minimum these are coloured grey and those that

exceed the maximum are coloured black. The scatter plot is used to identify whether
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Figure 6-11: This figure shows a scatter plot of True Airspeed v Mach number with the
histograms showing the corresponding distributions. This is for for all aircraft ascents
within the London Heathrow domain on 4th January 2015. Each point is coloured by
the magnitude of the derived Mach Temperature; outliers are coloured grey (<-25◦C)
and black (>-25◦C). For ease of interpretation we use the Celsius temperature scale.
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Figure 6-12: Scatter plot of True Airspeed v Mach number for all aircraft descents.
Keys to plots are the same as for figure 6-11.
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large variation in temperatures, as seen in the Mach Temperature profiles in figure

6-10, are due to outliers or random fluctuations in the range of True Airspeeds and

Mach Numbers. Figure 6-12 is for all aircraft descents with the key to the plots being

the same as in figure 6-11.

In figure 6-11 the histogram for true airspeeds shows a single peak at approximately

140 ms−1 (270 knots) which is consistent for aircraft ascents on standard departure

routes (Civil Aviation Authority 2016). The long tail to the left of the peak value is

where aircraft are accelerating for take-off, from a standing start. The shorter tail to

the right of the peak value is due to aircraft following their standard departure route,

where the range of aircraft speeds is directed by ATM. The decrease in the number of

reports occurs as these aircraft leave the London Heathrow domain. The scatter plot

shows one or two reports that exceed the minimum threshold for Mach Temperature but

on the whole there appear to be no extreme values of Mach number or true airspeed

which on their own would result in erroneous derived temperatures. However, it is

noticeable that there are a higher number of Mach Temperatures near the minimum

temperature threshold (coloured grey) for true airspeeds in the range 60 to 120 ms−1.

Figure 6-12 shows three peaks in the histogram of true airspeeds which correspond

to the target true airspeeds that aircraft need to maintain during the three phases

of descent. These may vary according to aircraft-type, prevailing weather conditions

and by instruction from ATC. The three peaks are also reflected in the Mach number.

The scatter plot shows there are outliers that exceed the minimum Mach Temperature

threshold (grey dots). But as noted for ascents, there appear to be no extreme values

of Mach number or true airspeed. It is noticeable that there are a higher number of

Mach Temperatures near the maximum threshold (coloured black) for true airspeeds

in the range 60 ms−1 to 120 ms−1. The variation in the Mach temperature may be

due to temperature variation in the atmosphere since aircraft spend more time on a

descent track when compared with an ascent track; however, this is unlikely on the day

in question.

These scatter plots do not suggest that random fluctuations in the range of true

airspeeds and Mach numbers are a significant source of the observed temperature vari-

ation. If this were so then we would expect to see much more scatter in the dataset.

Instead there may be a more systematic process leading to an apparent warm bias in

Mach Temperatures for descents and cool bias for ascents. Similar results were also

found for the 3rd January 2015 (not shown) and for the same period at London Gatwick

domain (not shown).
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6.8 Mach Temperature Differences

We have noted the wide variation in temperature reports especially at low levels. We

suggest that this wide variation is due to the quantisation effects arising from the re-

duced precision of the Mach number and true airspeed. We described the quantisation

effect in section 3.9 (page 51) and in section 4.5 (page 66) we have shown that this

may account for the variability of the derived Mach Temperature for a single aircraft.

To show the effect of the reduced precision of the reports we compute the Mach Tem-

perature using eq. (3.4) for a selected range of Mach numbers and true airspeed that

correspond approximately to an aircraft’s descent profile. We show the change in the

magnitude of the Mach Temperature that results from step changes in (a) the Mach

number for constant true airspeed and (b) the true airspeed for constant Mach number.

We use the target true airspeeds for each leg of a descent which are 114 ms−1,

92 ms−1 and 82 ms−1, and estimate the corresponding Mach numbers from figure 6-

12. For each of these true airspeeds we compute the change in Mach Temperature for

discrete changes in Mach number at constant true airspeed and for discrete changes in

true airspeed at constant Mach number. The change in Mach number is in increments

of 0.004 and changes in true airspeed is in increments of 1 ms−1 (2 knots), these being

their reported precisions (section 4.2.3, page 59).

Table 6.2 shows that for discrete single step changes in Mach number at constant

airspeed can give an apparent change in Mach temperature of between from 6.78 K to

8.99 K at constant true airspeed. For discrete changes in true airspeed at constant Mach

number, Mach Temperature changes range from 4.87 K to 6.31 K. Thus deviations in

Mach Temperature > 6 K are most likely due to step changes in the Mach number.

For the stable atmospheric conditions present on the case study day we would expect

air temperature to vary smoothly, i.e., no large rapid fluctuations (> 1K) over short

altitude ranges (> 150 m).

These step changes may arise during an aircraft’s descent as a result of small changes

made by either the FMS or Pilot which cause the aircraft to accelerate or decelerate

in order to maintain its target airspeed. These small changes are magnified as a result

of the reduced precision resulting from Mode-S EHS processing. We would expect to

see similar fluctuations in derived Mach Temperature for aircraft ascents, as they are

accelerating.
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6.9 Temporal smoothing using low-pass-filters

In this section we apply four methods that perform the function of a low-pass-filter

(described in section 6.5, page 126) to a sample of the data for the London Heathrow

domain. As demonstrated in section 6.8 (page 140) we suggest that the observed varia-

tion in the Mach Temperature is due largely to Mode-S EHS processing and the effects

of control adjustments of an aircraft along its trajectory rather than large variations

in the actual ambient temperature. The precision of the Mode-S EHS reports is such

that it is difficult to model the aircraft’s control movements. So employing methods

such as a Kalman Filter (Kalman 1960) (or its variants) may not be feasible since lack

of precision in the data makes it difficult to create a realistic predictive model. For

example, we cannot discount the possibility that the variation in Mach Temperature is

due to some atmospheric phenomenon such as wind-shear, disturbing the air around

the pitot static sensor, which is used to compute the true airspeed. So instead we

assume that a fraction of the control movement is due to random events effecting the

aircraft’s trajectory over a short time scale, for example, turbulence, which cause vari-

ations in true airspeed - this being equivalent to a high-frequency signal. The effect

of the Mode-S EHS processing is to amplify this high-frequency signal. It is suggested

that these high-frequency components can be smoothed by the use of a low-pass filter

based on averaging methods.

6.9.1 Applying low-pass-filters to time-series of Mode-S EHS Reports

The low-pass-filters are applied to the time-series of Mode-S EHS reports of each air-

craft trajectory and the result of the low-pass-filter is used to generate a new aircraft

report. The time-series of of new reports is used to create a low pass filtered aircraft

trajectory. The Mach Temperature report is recomputed using the Mach number and

True Airspeed from the low pass filtered trajectory. For all methods except the expo-

nential method, the time, position (latitude and longitude) and pressure altitude of the

low pass filtered trajectory is the mean of these quantities from the selected block of

reports. The low pass filtered trajectory may contain fewer reports than the original

trajectory, this is especially so for the block-average filter. For the exponential smooth-

ing a slightly different approach is used. Each report in the aircraft’s trajectory is

replaced by the exponentially weighted average of the running average and the current

report. The low pass filtered trajectory therefore contains the same number of reports.

For the block-average (eq. (6.1)), moving average (eq. (6.3)) and linear regression

filters (eq. (6.4), page 127) the size of the validity window is set for m = 2. This

provides five reports within the window, i.e., where each filtered report has two reports
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either side, which are used to compute the mean value, except at the start and end of

the time-series. For the exponential smoothing (eq. (6.8)), we use a smoothing factor

a = 0.2 as this weights the running average higher. A smoothing factor of a = 0.8

would weight the current observation higher than the running average thus reducing

the effect of smoothing out high frequency components. The weighting function is

initialised with the time difference tk − tk−1 = 1 s This weighting factor was selected

so that when the time separation between reports is 4 s, the expected rate of rotation

of the Secondary Surveillance Radar, then the exponential smoothing will weight the

running average and the current observation equally.

The quality threshold, δtmax, uses the standard deviation for the time difference

between successive Mode-S EHS reports along an aircraft track. For the selected day

all tracks are used to compute the standard deviation. The result is rounded to the

nearest whole second. For the London Heathrow domain this is 6 s.

6.9.2 The Effect of Applying low-pass-filters to time-series of

Mode-S EHS Reports

In this section we show the effects of applying the low-pass-filters discussed in section

6.5. The main effect of Centred Moving Average (CMA), Local Linear Regression (LIN)

and Exponential Smoothing at Irregular Times (IRR) filters is to reduce the variance

of the Mach Temperature distributions at each altitude bin. This is the desired effect

as it shows that the impact of the high-frequency components is being diminished. The

effect of applying the Block Average (BA) filter to Mach temperature is negligible for

the most part.

The low-pass-filters described in section 6.5 are applied to all aircraft tracks shown

in figure 6-7. To illustrate the effect of applying the low-pass-filters we use a short

time-series segment (one minute) from one aircraft track extracted from figure 6-7.

The Mode-S EHS reports for the aircraft track 4006C4 1 are shown in figure 6-13.

Each panel in figure 6-13 shows the original reports of (i) Mach number, (ii) true

airspeed and computed (iii) Mach Temperature (black circles). We note that the time-

series shows that there are short periods where the Mach number appears constant and

that there are step changes in its magnitude as the aircraft descends. Similar periods

of constant values and step changes are seen for true airspeed. It is clear that there

are times when the airspeed is constant whilst the Mach number undergoes small step

changes and vice-versa. All the low-pass-filters in effect smooth the transition between

the step changes in Mach number and true airspeed by interpolating these values in

time. However, this does not necessarily result in smooth synchronous changes in each

parameter, as is shown for the smoothed true airspeed. We suggest that it is the effect
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of the asynchronous change, due to the precision of the data, that gives rise to the

variability shown in the corresponding derived Mach Temperature.

Figure 6-14a(i) depicts the vertical temperature profiles before and after applying

the low-pass-filters. The red profile is constructed using the aggregated observation

before applying the low-pass-filter. The remaining profiles are constructed after ap-

plying the low-pass filters: CMA (blue), BA (black), LIN (green) and IRR (yellow).

Figure 6-14a(ii) shows the effects of the low-pass filters as the difference between the

non-smoothed (red) and smoothed Mach Temperature profiles. Above 1000 m the dif-

ferences range between ±0.5 K while below 1000 m all except the IRR profile show

increasing differences. These increases may be the result of the quality threshold filter-

ing that is applied.

For all low-pass filters except IRR, no smoothed-report is generated if it would

contain two successive reports with a time difference greater than δtmax, which was set

at 6 s. These reports are removed from the filtered time-series of the aircraft’s trajec-

tory. We do this so that the horizontal spatial and temporal resolutions (approximately

500 m for 6 s) of the time-series is reasonably consistent along the aircraft trajectory.

Time differences between 2 s and 6 s correspond to horizontal spatial scales between

300 m and 800 m. We assume that a break in time-series of reports >6 s arise as a

result of either (a) the aircraft exiting from a turning point on its approach to land, (b)

that it passed out of then re-entered the airport domain or (c) that the aircraft was not

within the line of sight reception to the Mode-S EHS receiver. The effect of applying

the quality control criterion on the number of reports is shown in figure 6-14b(ii). The

quality control criterion removes between 10% to 30% of reports for the CMA and LIN

when compared to the IRR. The number of reports for BA is expected to be lower

since no report is used more than once. The quality control criterion is not applied

to the IRR low-pass-filter, instead the time-difference is used in the weighting function

applied to the report, so all reports are used.

The effect of the low-pass-filters is to reduce the variability in the aggregated Mach

Temperature observation as shown by the corresponding profiles of the standard devi-

ation for each low-pass filter in figure 6-14b. For altitudes above 1000 m there appears

to be little difference between the four methods, all reduce the variability in the aggre-

gated reports when compared with unfiltered reports (red profile). Below 1000 m the

IRR method appears less successful at reducing the variability when compared with

CMA, LIN and BA methods. However, the IRR method utilises all the reports whereas

the other three methods do not do so because quality control criterion removes reports.

This might account for their better performance at reducing the variability in the stan-

dard deviation at low levels. We note that the vertical profile of the standard deviation
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increases from 2 K at 3000 m to 4 K at 300 m. This is similar to the quantisation error

profile that arises from Mode-S EHS processing, as shown in figure 4-9.

6.10 Estimating the Observation Error for Aggregated

Mach Temperature

In this section we use the error equation we derived in section 4.5.2 to characterise the

observation error standard deviation for the aggregated observations of Mach Temper-

ature.

We use aggregated Mode-S EHS reports for Mach number and aggregated true

airspeed for altitude bins at 150 m and equation 3.4 to estimate the standard deviation

of the aggregated Mach Temperature reports. We model three different precisions of

the Mach number and true airspeed first we assume the precision is half the magnitude

of the data increment, ∆M=1
2(0.004) and ∆V=1

2(1.2) ms−1; next we assume that the

precision of the input data is represented as the standard deviation of quantisation,

∆M=0.002/
√

12 and ∆V=1.0/
√

12 ms−1; finally we assume the precision of the input

data could be represented as twice the standard deviation of quantisation. Profiles

of the resulting standard deviations for these are shown in figure 6-14b(i) as the Full

Precision (FP) profile (grey squares), Quantisation Error (QE) profile (grey triangles)

and as twice the Quantisation Error (2QE) profile (grey circles). We compare the effect

of the low-pass-filter on the standard deviation with these estimated errors.

Figure 6-14 shows the non-smoothed profile (red) lies between the estimated error

profiles due to 1×QE and 2×QE. The effect of the low-pass filters (blue, black, green)

is to reduce the standard deviation, the magnitude of which now follows the estimated

error profile due to 1×QE. There are two regions, between 300 m and 600 m and between

1700 m and 2000 m, where the standard deviation departs from the 1×QE profile.

These departures are in regions where temperature inversions occur, as identified by

the radiosonde report in figure 6-1 (page 112). We suggest that the increased error

in the aggregated Mach Temperature is due to presence of low-level wind-shear, which

would affect the speed of the aircraft as it transits through it; by increasing or decreasing

the headwind causing the aircraft to decelerate or accelerate.

We found that there was some benefit to using a low-pass filter to reduce the effect

of the ‘high-frequency’ noise component. We found that the difference between the

aggregated Mach Temperature using the smoothed and non-smoothed results differed

only by ±0.5 K above 1000 m, with the difference below 1000 m ranging between 0.25 K

and -1.25 K. However, the low level difference may be the result of removing reports

from the time-series as a result of the quality control criterion that was applied. The
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greater benefit arises with the corresponding estimates of the observation error standard

deviation for the smoothed results. The magnitude of these were reduced by as much

as 30% when compared with the non-smoothed results: the magnitudes were reduced

at 3000 m from 2 K to 1.5 K and near the surface from 7 K to 5 K.

6.11 Summary and Conclusion

This chapter provides a systematic study for using Mode-S EHS Mach Temperature

to identify a meteorological feature, temperature inversion, which is important for

operational aviation weather forecasting and numerical weather prediction. We do this

with vertical temperature profiles constructed using aggregated Mode-S EHS Mach

Temperatures, derived from multiple aircraft. The Mode-S EHS reports used were

collected by Met Office Mode-S EHS receiver network (described in section 5.5, page

99).

We compared hourly aggregated Mach Temperature profiles with in situ observa-

tions of temperature reported by radiosonde and AMDAR, when available. We found

that the aggregated Mach Temperature profile between 1000 m and 3000 m show some

agreement with these in situ observations. However, we found that below 1000 m there

was less agreement. The magnitude of the difference between the in situ observations

and the aggregated Mach Temperature was as great as 6 K. However, comparison is

difficult against in situ observations since these are point based instantaneous values,

measured on time-scales of seconds to minutes, compared with the hourly mean of

the aggregated Mach Temperature. Moreover, the radiosonde observations are not

located within the airport domains. However, the temperature differences observed

below 1000 m are unlikely to be due to changes in the ambient temperature; nor the

prevailing meteorological conditions at the surface on the day (near freezing conditions,

low wind speed and fog).

We also compared the hourly aggregated Mach Temperature against the UKV NWP

model forecasts. (We note that the in situ observations that we used in our compar-

ison were not assimilated by the UKV NWP model since they were received after

the observation processing cut-off time.) We found similar results to our comparison

with in situ observations, that the hourly mean Mach Temperature profiles between

1000 m and 3000 m compared favourably with the hourly mean profiles forecast by the

UKV NWP. Below 1000 m there was less correspondence. Furthermore, we found that

the Mach Temperature profiles identified regions where temperature inversions may be

present but which were not present in the UKV NWP forecast, thus showing that Mach

Temperature profiles may provide additional information for use in NWP.
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(a) Mach Temperature Profiles.

(b) Mach Temperature Standard Deviation Profiles.

Figure 6-14: Effect of the low-pass-filter on (a) the aggregated Mach Temperature and
(b) the standard deviation.
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(a) low-pass-filter - Moving Centred Average, width = 7. Time Filter < 6s

(b) low-pass-filter - Boxcar Average, width = 7. Time Filter = 6s

Figure 6-15: The effect of different low-pass-filter schemes on the distribution of Mach
Temperature reports for the altitude range 0 m to 1200 m. Mach Temperature bin
width = 1 K, altitude bin width = 150 m. For (a), (b) and (c) there are no reports
below 150 m.
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(c) low-pass-filter - Linear regression, width = 7. Time Filter = 6s

(d) low-pass-filter - Exponential Weighted Average. Time Filter = Exponential Weighting.

Figure 6-15: Continuation of figure on page 150
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We also investigated further the observation error in the Mach Temperature. We

know from our results in chapter 4 that the precision of the Mach number and true

airspeed causes an increase in the measurement error of the Mach Temperature at low

altitudes. We found that the Mode-S EHS processing also results in step changes in

the reports of Mach number and true airspeed that are asynchronous in time. This

results in very large fluctuations in the corresponding Mach Temperature, ranging from

5 K to 9 K between adjacent reports. In effect, the asynchronous changes introduce a

‘high-frequency’ noise component. To reduce the effect of this ‘high-frequency’ noise

component we applied low-pass-filters to the time-series of reports of Mach number and

true airspeed for each aircraft.

We used four low-pass-filters: centred moving average (CMA), block average (BA),

linear regression (LR) and irregular exponential smoothing (IRR). The low-pass-filters

CMA, BA and LR are based on a moving window containing (2m+1) reports (see

section 6.5) which are used to compute the average Mach number and true airspeed.

The IRR low-pass-filter used a weighting function for the summation of the running

average of all previous reports and the current report of Mach number and true airspeed.

The weighting function was tuned to weight the running average of reports higher than

the current report and was a function of the time difference between between the

reports.

For smoothing the time-series of reports above 1000 m the performance of each of

the low-pass-filters was similar. Below 1000 m there was a small difference between

using the moving window methods and the IRR. The former methods reduce variance

more than the IRR. However, the advantage of the IRR method is that it uses all

the available reports whereas the moving window methods removed reports as a result

of the imposed quality control criterion. The IRR method differs because it contains

parameters that can be used to fine tune the performance of the low-pass-filter.

However, each of the methods used to minimise the fluctuations in the Mode-S

EHS derived observations, i.e., aggregation and low-pass filtering, effectively reduces the

space and time resolution of the data.This in turn affects the meteorological phenomena

that can be detected. If the Mode-S EHS reports could be used directly then small

scale features such as turbulence or short gravity waves may be detected (Orlanski

1975, Fig 1). But as we smooth the derived observations these features are averaged

out.

We conclude that applying a low-pass-filter to the time-series reports of Mach num-

ber and true airspeed could be beneficial as a pre-possessing step prior to NWP data

assimilation but further research would be needed in order to tune the filter parameters.

Moreover, the IRR method could be used as the basis for a Kalman filter.
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Chapter 7

Assimilation of Aircraft Derived

Observations using a

Convection-Permitting

Configuration of the Met Office

Unified Model.

7.1 Introduction

In chapter 3 (page 33) it was shown how meteorological observations can be derived

from routine messages exchanged between an aircraft and air traffic management. In

chapter 4 (page 55) we derived equations to estimate the errors for these derived obser-

vations and validated these estimates against in situ observations. In chapter 6 (page

109) we showed that by aggregating these derived observations potentially useful infor-

mation could be gained on the state of the atmosphere. We used nearby observations

from AMDAR and radiosonde to verify qualitatively that useful information was avail-

able. This was shown using a case study to identify the occurrence of temperature

inversions. We also showed that the vertical profile of the estimated error for aggre-

gated reports of Mach Temperature was between one- and two-times the quantisation

error obtained in chapter 4. In this chapter we examine the impact on NWP forecasts

when we assimilate Mode-S EHS derived observations in a convection-permitting NWP

model. We also use the observation-minus-background and observation-minus-analysis

residuals to estimate the observation error for Mach Temperature.

Previous studies by de Haan & Stoffelen (2012) and Lange & Janjic (2016) have
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shown that assimilation of Mode-S EHS observations have a positive impact on short-

range forecasts. However, the impact will be very dependent on the data assimilation

system used, the background error used and how many other sources of observations

are used (as shown in table 2.5, page 29). The previous studies that assimilated Mode-S

EHS were conducted using NWP models with horizontal grid spacings of 11 km and

2.2 km respectively, the latter being an ensemble-based convection-permitting model.

Lange & Janjic (2016) and de Haan & Stoffelen (2012) used Mode-S EHS observations

of wind and temperature that were derived from time-averaged Mode-S EHS reports -

60 s for aircraft in level flight and 12 s for aircraft ascents and descents. We note here

that the study by Strajnar et al. (2015) did not use Mode-S EHS rather it used Mode-S

MRAR. While the focus of our studies is based on Mode-S EHS we include Strajnar

et al. (2015) for the purpose of comparing the benefits of assimilation of Mode-S EHS

observations.

De Haan & Stoffelen (2012) found that for forecast lead times of one- and two-hours

ahead, the Mode-S EHS observation-minus-forecast error for Mach Temperature ranges

between 2.0 K near the surface, 1.5 K at 800 hPa and 1.0 K at 300 hPa (de Haan &

Stoffelen 2012, Fig 13). Lange & Janjic (2016, Fig 9) used the Desroziers et al. (2005)

diagnostic to estimate the observation error for Mach Temperature. They found that

the observation error ranges between 1.2 K near the surface, 1.0 K at 850 hPa, 0.8 K

at 700 hPa and 0.6 K at 400 hPa. Qualitatively these estimated observation errors

have a similar vertical structure to each other with errors increasing significantly in

the altitude range 700 hPa to 1000 hPa when compared with the altitude range above

700 hPa. Estimates of the Mach Temperature observation errors by Lange & Janjic

(2016) are much lower than those of de Haan & Stoffelen (2012) and those found using

in situ observations by Mirza et al. (2016) (chapter 4). The difference in the results

between Lange & Janjic (2016) and de Haan & Stoffelen (2012) may be due to the

difference in background error used in each NWP model.

Our experiments differ from these previous studies in the following ways:

• we use Mode-S EHS reports collected by the Met Office receiver network, de-

scribed in section 5.5 (page 99);

• we use a higher resolution convection-permitting NWP model with horizontal

grid spacing 1.5 km, described in section 2.10 (page 22);

• using a variational assimilation scheme we assimilate Mode-S EHS derived ob-

servations directly, i.e., without smoothing; and assimilate Mode-S EHS over

AMDAR;
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• we use the Desroziers et al. (2005) diagnostic to obtain estimates of observation

error for AMDAR and Mode-S EHS derived observations that results from their

assimilation in the NWP model UKV.

We choose this as our initial configuration for two reasons: (i) the technical limitations

of the current UKV NWP data assimilation processing and (ii) so that we can evaluate

the benefit of Mode-S EHS aircraft derived observations of wind and temperature on

UKV NWP forecasts.

This chapter is organised as follows: in section 7.2 we describe briefly how the

diagnostic proposed by Desroziers et al. (2005) can use the output of residuals from

the variational assimilation system to estimate the observation error. In section 7.3 we

describe our design for data assimilation experiments, in particular the configuration of

the pre-operational version of the UKV. In section 7.4 we present results of our exper-

iments with an assessment on the impact of assimilation of Mode-S EHS observations.

In section 7.5 we estimate the Desroziers et al. (2005) diagnosed error for Mode-S EHS

and AMDAR horizontal wind and temperature. We close this chapter with a summary

of findings in section 7.6.

7.2 Desroziers et al (2005) Diagnosis of Observation Er-

rors

In this section we describe the Desroziers et al. (2005) diagnosis method which is used to

estimate error covariances. This is done by using a combination of the statistical average

of the observation-minus-background, [o − b], called the innovation vector (Talagrand

1997), and the observation-minus-analysis, [o − a], called the residual vector. These

differences can be obtained from our variational data assimilation system. The term

o is the observation measurement, the background term b is the NWP value obtained

from a previous forecast, and the analysis term a is obtained from the current analysis

after the data assimilation processing is completed. This method was originally posed

to provide a consistency check for an analysis scheme, such as 3-D Var. The diagnostic

has been applied to estimate observation error statistics for a number of observation

sources, e.g., Doppler radial winds (Waller et al. 2016a) and satellite radiance channels

(Stewart 2010, Bormann & Bauer 2010, Bormann et al. 2010, Weston et al. 2014,

Bormann et al. 2016, Waller et al. 2016b). Lange & Janjic (2016) used this diagnostic

method to estimate the observation error standard deviation, σDD, for AMDAR and

Mode-S EHS using the innovation and residual statistics output from an ensemble

data assimilation system. They found that the observation error for Mode-S EHS

winds is comparable with AMDAR but the observation error for temperature is 50%
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greater than AMDAR at levels below 700 hPa. We will apply the diagnostic method

to the innovations and residuals for AMDAR and Mode-S EHS obtained from the Met

Office UKV 1.5 km NWP model, which is a deterministic model and variational data

assimilation system. The results will be discussed in section 7.5.

Using the notation defined in section 2.11 (page 25), Desroziers et al. (2005, sec. 2.)

showed that the definition of the innovation vector is given by,

do
b = yo −H (xb) = yo −H (xt) + H (xt)−H (xb) ' εo −Hεb. (7.1)

Using linear statistical expectation theory (Walpole et al. 2011, Ch. 4), it can be shown

that,

E[do
b(do

b)T )] = E[εo(εo)T ]− E[εo(εb)T ]HT −HE[εb(εo)T ] + HE[εb(εb)T ]HT , (7.2)

and assuming that εo and εb errors are mutually uncorrelated, i.e., the terms with the

products εoεb are zero, then

E[do
b(do

b
T )] = R + HBHT . (7.3)

Similarly, Desroziers et al. (2005) show that, by using the same methodology, the

expectation between the innovation vector do
b and the residual vector do

a, which is

given by,

do
a = y −H (xa) , (7.4)

is related to the covariance matrix of the observation errors as,

E[do
a(do

b
T )] = R, (7.5)

provided that the exact values of the observation error covariance and background

error covariance, are used to generate the innovations and residuals. However, if these

are not known exactly then Desroziers et al. (2005) suggest that their approximations

may be obtained by applying the diagnostic iteratively. In our initial study we do not

apply the iterative method because the observation error covariance for Mode-S EHS is

unknown with respect to the UKV NWP model. Waller et al. (2016) provide guidance

on interpreting the results of the diagnostic determined non-iteratively.
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7.3 Experiment Design

In this section we give an overview on how we configured the NWP model used for our

data assimilation experiments. We used a version of the UKV NWP model trial suite

that was undergoing pre-operational tests. This is the 1.5 km limited-area mesoscale

convection-permitting model used for routine weather forecasts for the United King-

dom. This model is described in section 2.10. However, this version of the model

required modification to assimilate Mode-S EHS derived observations. We describe the

modifications in section 7.3.1.

To determine a practicable configuration for the data assimilation process used

in the UKV we carried out five short experiments consisting of a control run and

four experiment runs. The control run used, unless thinned, all the available routine

observations (listed in table 2.4, page 25) for the routine weather forecasts but excluded

aircraft-based observations. The experimental runs used the configuration of the control

run and, in addition to the routine observations, included (i) AMDAR, (ii) AMDAR

and all Mode-S EHS derived observations, (iii) AMDAR and Mode-S EHS derived

horizontal wind and (iv) AMDAR and Mode-S EHS derived ambient temperature.

Once the UKV was configured then experiments were performed using extended runs.

For these extended runs the data assimilation used, unless thinned, all the available

derived observations from Mode-S EHS reports. These reports were collected using

the Met Office Mode-S EHS receiver network (section 5.5). The reports used were

collected between 03Z 2nd January to 06Z 8th January 2015 and which were retrieved

from the Met Office MetDB observations archive. This period includes the case study

dates used in chapter 6, where on the 4th January fog persisted for a longer period

than forecast by the UKV. In addition, we used the Desroziers et al. (2005) diagnosis

method (section 7.2, page 155) to estimate the observation error variance.

7.3.1 Configuration of the UKV

The basic configuration of the UKV used for these experiments was the same as the

pre-operational parallel suite version 37, hereafter referred to as UKV-ps37 (see section

2.10). All routine observations, from surface-, air- and space-based observing systems,

available to the operational forecast system were also available to the experimental

system (see tables 2.5 and 2.4) (Ballard et al. 2016). Observations received from up

to 90 minutes before, and those received no later than 75 minutes after, the analysis

time are assimilated. The horizontal resolution of the data assimilation grid is 3 km.

The data assimilation process used is the three dimensional variation (3D-Var) with

first guess at appropriate time (FGAT) (Lorenc & Rawlins 2005). (FGAT uses the full
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model state, saved at regular intervals, to obtain the NWP model background value,

using linear interpolation, that corresponds to the actual time and position of each

observation. The observation-minus-background fields are then treated as if they were

received at the analysis time.) Three hourly data assimilation with 36 hour forecasts

were run every six hours, starting at analysis times 0300, 0900, 1500 and 2100 UTC

and with only 6 hour forecasts at intermediate cycles.

7.3.2 Observation Operator

For aircraft-based observations, the atmospheric observations reported are the horizon-

tal wind speed and wind direction and the ambient temperature. These variables are

reported directly for AMDAR whereas for Mode-S EHS they are derived (as shown in

chapter 4).

The observation for the horizontal wind report from aircraft is expressed as its

latitudinal component in the direction from south to north, V , and its longitudinal

component in the direction from west to east, U ,

U = −Vwsin(αw), (7.6)

and

V = −Vwcos(αw), (7.7)

where Vw is the magnitude of the wind speed and αw is the angular wind direction,

measured clockwise from geographic North, from which the wind blows. The unit of

measurement for wind speed is metres per second and for wind direction it is radians.

Thus there may be additional steps to convert reports which use units of knots for wind

speed and angular degrees for wind direction.

In NWP model space the wind is represented by these latitudinal and longitudinal

components on a rotated grid and its vertical component in the direction from the

surface upwards, W . Hereafter, we do not consider further the vertical wind component

since it is not a state variable that is reported by aircraft.

Similarly, in model space the ambient temperature is represented by its potential

temperature, θpt, which is defined as the ambient temperature of a parcel of dry-air

when moved adiabatically to the surface (or a reference pressure) (Stull 2000, p. 47),

θpt = T

(
Pref
P

)Ra
Cp

, (7.8)

where T is the reported ambient temperature, P is the ambient pressure, Pref , is the
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reference pressure, normally taken to be 1000 hPa, Ra is the characteristic gas constant

for dry air, and Cp is the specific heat of dry air under constant pressure.

The observation operator does not correct for the effects of humidity on the potential

temperature, nor for the departure of the environmental atmospheric state from the

ISA (ICAO 1993), excepting that these differences are assumed to be within the model’s

errors of representation.

The observation operators for horizontal wind and potential temperature also con-

tain interpolation steps to transform the model state variable from the model grid

to the geographic position of the observation report. For the horizontal position the

transform uses bi-linear interpolation using the four nearest horizontal grid points sur-

rounding the position of the observation report. For the vertical position the transform

uses log-linear interpolation between the adjacent model pressure levels for the pressure

altitude of the observation report.

7.3.3 Observation Error Profiles

In equation 2.8, R represents the observation error covariance matrix. It is a square

matrix of dimension p × p, where p is the number of observations. It is assumed that

the observation errors are uncorrelated so that only non-zero elements of the matrix

are the observation variances, σ2
p (Kalnay 2003, Ch 5).

For most of the data assimilation trials in this study the initial assumption is that

the observation errors for AMDAR and Mode-S EHS are the same and they are un-

correlated. We make these assumptions because we aim firstly to obtain a practicable

configuration of the data assimilation system, using the existing Met Office operational

framework for the UKV NWP model. Secondly, that aircraft-based observations are

reported by aircraft that are independent of each other.

Assumed Observation Error Standard Deviation

Figure 7-1a shows the assumed vertical profile of observation error standard devi-

ations, σAOBS , for temperature as used in three NWP models: HIRLAM, COSMO-

KENDA and UKV (table 2.6, page 30) lists some of their properties. Similarly figure

7-1b shows the corresponding vertical profile of σAOBS for horizontal wind. For the

UKV the observation error for AMDAR used operationally had been determined from

comparisons between the Met Office Unified Model and Radiosondes (Bell et al. 1999).

For COSMO-KENDA the observation error for AMDAR was derived (Schraff et al.

2016, Lange & Janjic 2016, p1457, Table 1) using the Desroziers et al. (2005) diag-

nosis. For the de Haan & Stoffelen (2012) HIRLAM study the assumed profile for
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Mode-S EHS temperature (fig 7-1a green squares) is 1.5 × AMDAR. The HIRLAM

AMDAR observation errors are cited by de Haan & Stoffelen (2012, p.920 Table 1)

and Lindskog et al. (2001, p.452 Table 1). Both of these are identical to the profile

derived byCourtier et al. (1998, p.1803 Table B1). Clearly, as the σAOBS profiles for

each model differ so this will affect the interpretation of the results and the assessment

of the benefits of assimilating Mode-S EHS observations. Strajnar et al. (2015) uses

an AMDAR σAOBS profile for Mode-S MRAR since these observations are assumed to

be of the same quality as AMDAR (Strajnar 2012). Similarly, Strajnar (2012) uses the

same observation errors as stated by Courtier et al. (1998, p.1803 Table B1).

We also show in figure 7-1a a second larger σAOBS profile (T2) for Mode-S EHS tem-

perature for the UKV. This error profile was the ad-hoc profile estimated from routine

monitoring of the observation-minus-background statistics (Hall 1992, Hollingsworth

et al. 1986) using the operational version of the UKV, which does not assimilate Mode-

S EHS observations.

Observation-minus-Background Statistics

Figure 7-2 shows the Met Office’s routine monitoring of the observation-minus-

background error for Mode-S EHS temperature for the period 2nd to 8th January 2015.

The left panel shows the mean bias and mean standard deviation and the right panel

shows the total number of Mode-S EHS reports. The operational UKV NWP model

provides the background fields and, at the time of our research, did not assimilate Mode-

S EHS observations. We note that the bias is negative between the altitudes 4000 m

and 6000 m, and positive above. The positive bias steadily increases from 0.0 K to

1.0 K between 4000 m and 2000 m, and is approximately 1.5 K below 2000 m. The

bias below 4000 m may have contributions from background errors since the operational

UKV does not assimilate Mode-S EHS, and from Mode-S EHS errors, since we have

shown in chapter 6 that Mach Temperature becomes increasingly variable below 1000 m.

We suggest that observation bias is more likely to be result of Mode-S EHS processing

than due to the ambient temperature. This is because during this period weather

conditions were calm in the south east for England, as evident from the prevailing

foggy conditions.

We note that the root mean square error increases from 1.5 K at 9000 m to 2.0 K

at 5000 m, 2.5 K at 2000 m, with a sharp increase to 3.5 K at the surface. This vertical

profile appears to be similar to the quantisation error studied in chapter 4 (page 55).

We note the similarity between figure 7-2 and profiles (a) and (b) in figure 4-2 (page 69)

Between 9000 m to 2000 m the RMSE is similar to profile (b), which results from the
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(a) Temperature (K). UKV AMDAR (T1) (black circles), UKV AIREP (black triangles), UKV
Mode-S EHS (T2) (black squares).
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(b) Horizontal Wind Speed Component (ms−1). For NWP models, the Mode-S EHS observation
standard deviation is the same as that used for AMDAR.

Figure 7-1: Assumed observation error standard deviation, σAOBS , profiles for (a)
temperature and (b) horizontal wind components for data types AMDAR (circles),
AIREP (triangles) and Mode-S EHS (squares), as used in NWP models UKV (black),
HIRLAM (green) (de Haan & Stoffelen 2012, p.920 Table 1) and COSMO-KENDA
(red) (Schraff et al. 2016, p1457, Table 1) and ALADIN (yellow) (Strajnar et al. 2015)

.
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Figure 7-2: The mean observation-minus-background [o-b] for Mode-S EHS temper-
ature for the period 2nd to 8th January 2015. The left panel shows the mean bias
(green) and root mean square error (blue). The right panel shows the total number of
reports for altitude bin widths 150 m. The operational version of the UKV provides
the background.

standard deviation of quantisation error, and the increase in error between 2000 m and

0 m appears to be closer to profile (a) for the full precision error. We note that Ballard

et al. (2017) show the observation-minus-background mean bias profile for March 2016

is approximately 0.5 K for all altitudes but the RMSE profile is similar to that shown

in figure 7-2.

The Met Office’s routine observation monitoring shows that the Mode-S EHS tem-

perature error is greater than the assumed AMDAR observation error, and the error

increases significantly below 1000 m . The monitoring suggests that for Mode-S EHS

temperature in the altitude range 15,000 m (100 hPa) to 3000 m (700 hPa) σAOBS lies

somewhere between AMDAR and AIREP, between 3000 m and 100 m (1000 hPa) the

σAOBS is approximately the same as AIREP, and near the surface the σAOBS is at its

greatest. From this monitoring we construct an ad-hoc σAOBS profile, T2, which we

can use for Mode-S EHS σAOBS temperature.

The profile of this observation-minus-background error is similar to those shown in

figures 4-9 (page 83) and 6-14b (page 149), which suggests that quantisation error is

a significant contributor to the observation error for Mode-S EHS Mach Temperature.

The rationale for adapting the the AIREP σAOBS is that it is already used in the
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operational UKV NWP model. We assume that it is in reasonable balance with the

other observation types (Ballard et al. 2017) since we know that the operational data

assimilation accepts aircraft observations using the σAOBS for AMDAR and AIREP.

7.3.4 Mode-S EHS Observation Thinning

Previous studies have shown that the practical use of Mode-S EHS observations require

thinning prior to their data assimilation (de Haan & Stoffelen 2012, Lange & Janjic

2016). Therefore short-run trials were conducted to estimate the amount of data-

thinning required so that the data assimilation system would reach an acceptable level

of convergence prior to the NWP forecasting step. Thinning is a distinct process from

the temporal averaging used to minimise the variance of the Mode-S EHS observations

(as discussed in section 6.9, page 142).

In our experiments we used two methods available to thin the number of Mode-S

EHS observations available prior to data assimilation: temporal thinning and spatial

thinning. For temporal thinning, the time-window for accepting observations is T ±∆t

minutes, where T is the data assimilation time, i.e., 0000, 0300, 0600 UTC, and ∆t is

the time window for accepting observations. The default time window for accepting

observations is in the range 0 < ∆t < 90 minutes. The temporal thinning could be

applied separately to the different types of aircraft-based observations. For the trial

runs, only the time window for accepting Mode-S EHS observations was varied, between

15, 30, 60 and 90 minutes. The time window for AMDAR and AIREPS was left at its

default value, ∆t = 90 minutes.

For spatial thinning, we applied thinning down to the data assimilation horizontal

grid length, 3 km, and observation-type selection. If there was more than one aircraft-

based observation type available within a grid box then the Mode-S EHS observation

type was preferentially selected. Only the observation which is closest to the centre

of a grid box was selected. The spatial thinning is applied to all available aircraft-

based observations, i.e., AIREP, AMDAR and Mode-S EHS. For the trial runs, the

spatial thinning grid-box dimensions were: 40 hPa vertical depth between the surface

and 11 km and the horizontal dimensions at the surface being 3.0 km in longitude and

3.0 km in latitude. The vertical depth of 40 hPa corresponds approximately to the

vertical separation between aircraft flight levels (1000 feet or 330 m) near the surface

under ISA conditions. The time difference between reports within the grid box was

varied between 5 mins and 15 mins.

For these initial trials we aim to understand what effect the density of Mode-S EHS

reports has on the data assimilation process. Thus we do not aggregate the observa-

tions nor apply any temporal smoothing or a low-pass filter as discussed in chapter 6.
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Incorporating these methods was beyond the scope of the present study. In section

2.13 (page 27) we reviewed previous data assimilation studies. Essentially, de Haan &

Stoffelen (2012) and Lange & Janjic (2016) used hourly and three hourly assimilation

cycles, Mode-S EHS observations that were smoothed using a linear regression low-pass

filter and Mode-S EHS observations thinning.

7.3.5 Quality Control

Mode-S EHS observations undergo quality control at two stages. The first stage is

at the point of collection where erroneous or invalid reports are removed before being

submitted to the observations database, this is described in section 5.5 (page 99). The

second stage is applied by the Observation Processing System (OPS) prior to data

assimilation. The OPS performs several checks on the observation. Firstly, the obser-

vations are passed through a gross-error filter. Secondly, observations are compared to

nearby observations in a so-called ‘buddy check’. Finally, the probability of gross error

is computed.

The gross error filter is simply a threshold filter. The observation is marked for

rejection if it exceeds a pre-defined constant value. The buddy check computes the

difference between the current observation and nearby observations. The observation

is marked for rejection if the difference exceeds a pre-defined constant value. The

probability of gross error is based on Bayes Rule (Walpole et al. 2011, Ch. 2). The

framework for implementing this method in the Met Office 3-D Var scheme is described

more fully in Ingleby & Lorenc (1993). If the probability of gross error is computed to

be greater than 0.5 then the observation is rejected.

7.3.6 Trials of Data Assimilation Performance

In this section we aim to find a configuration for the UKV data assimilation that

processes Mode-S EHS derived observations with a similar performance to that achieved

without them. Our aim is to obtain a data assimilation performance that is similar in

terms of the computational time and to ensure that adding Mode-S EHS observations

does not negatively impact on the fit to other less numerous observations. We do this

by running short trials of the UKV. We assess the performance of the data assimilation

processing by checking the number of iterations, niter, required for the cost function (eq.

(2.8)) to reach a minimum value. This would be an important factor for operational

implementation. The assimilation is stopped when

• ‖∇J(xa)‖ ≤ Q or

• the change in the cost function |J(xn+1)−J(xn)|
J(xo) < threshold or

164



• niter > nmax, where niter is the actual number of iterations and nmax is the

threshold for stopping the data assimilation process; for the parallel suite UKV-

ps37, nmax = 100.

A large number of iterations implies slow convergence to the minimum value which

may not be suitable for operational implementation.

Table 7.1 lists the technical trials for assimilation of Mode-S EHS observations. The

notation for these trials is as follows:

1. CONT is the control experiment where no aircraft observations are assimilated.

2. A is for AMDAR, S is for Mode-S EHS aircraft observations

3. For all trials the time window of accepted observations for AMDAR is ±90 min-

utes. Assimilation of AMDAR includes AIREP.

4. The restricted time window for data assimilation of observations (d) for Mode-S

EHS observations is ±90 minutes of the analysis time unless otherwise stated.

The letter combination dyy indicates that a different data assimilation window

is used, where yy is the time in minutes.

5. The time window for the spatial-temporal thinning window (t), described in sec-

tion 7.3.4 is 300 seconds unless otherwise stated. The letter combination txxx

indicates the time window used, where xxx is the time in seconds.

6. Where thinning is applied it applies to all aircraft observations between the sur-

face and 11 km. This is a separate process that is applied after the data assimi-

lation time window.

These trials ran the data assimilation in a continuous cycle starting from 0300 UTC

and finishing at 0900 UTC 2nd January 2015. This would provide at least three data

assimilation cycles in which Mode-S EHS data would be assimilated. For these technical

trials we use the AMDAR winds σAOBS profile for both AMDAR and Mode-S EHS

winds; and the profile for AMDAR temperature σAOBS T1 for both AMDAR and

Mode-S EHS temperatures, these are shown in figure 7-1 (page 161). (In our longer

trials we use the revised σAOBS T2 profile for Mode-S EHS temperatures.)

The UKV-ps37 was configured to initialise its run from the operational analysis

obtained 3 hours earlier at 0000 UTC. This was to allow the NWP model a short spin-

up time before starting to assimilate Mode-S EHS observations. Moreover, the start

time of the trial was chosen to allow for the gradual increase in the number of available

Mode-S EHS observations. This is because there is minimal air traffic operating within
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UK airspace between the hours from 2300 to 0500 UTC. During this time any Mode-S

EHS observations are likely to be from air traffic transiting UK airspace at high altitude

(≈ 10 km).

Trial runs were conducted as follows: (a) without aircraft-based observations (CONT),

(b) with AMDAR only, (c) with AMDAR and Mode-S EHS winds and temperatures,

(d) with AMDAR plus Mode-S EHS winds and (e) with AMDAR plus Mode-S EHS

temperatures. AMDAR wind and temperature observations were used in all these tri-

als. The number of aircraft-based observations was controlled either by changing the

data assimilation window for the type of observation or applying temporal and spa-

tial thinning. In all trials where AMDAR reports were assimilated this also included

AIREPS. The number of available AIREPS is around 100 per day. The number of

AMDAR reports can be around 1000 per day.

The results of these trials are listed in table 7.2. The table shows the number

of iterations required at each data assimilation cycle (0300, 0600 and 0900 UTC) to

achieve minimisation of the cost function and the corresponding number of aircraft

reports assimilated for temperature (T) and wind (W) observations. We see that

for experiment CONT the number of iterations decreases over the three cycles, with

the average number of iterations being 20. Trial CONT has not assimilated aircraft

observations, so provides a metric for assessing the impact of assimilating aircraft

observations on the number of iterations.

Trial AO assimilated only AMDAR and AIREP reports which were available to the

operational version of the UKV. The number of observations increased from around

250 at 0300 UTC to around 900 at 0900 UTC. The average number of iterations to

minimise the cost function is 18, which is comparable to the trial CONT.

Trial AS was designed to assimilate all available aircraft-based observations, AM-

DAR, AIREP and Mode-S EHS. We can see that the number of assimilated aircraft-

based observations is 100 times greater than for trial AO. At the beginning of the

experiment the number of iterations is three-times that of AO. At subsequent cycles,

where the number Mode-S EHS observations increases by a factor of 10, the maximum

number of iterations, nmax, has been reached. Also the assimilated aircraft obser-

vations are dominated by the Mode-S EHS. From this trial, it is clear that for the

UKV-ps37 using 3-hourly 3-D Var, assimilating all available Mode-S EHS observations

is not practicable.

Trials AStxxxdyy (see table 7.1), were used to explore the options available to thin

the available aircraft-based observations. We begin with spatial thinning, indicated

with txxx then change the time range for the time-window for accepting observations,

indicated with dyy. The spatial thinning control was set to prioritise assimilation of
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Mode-S EHS reports. For spatial thinning alone we note that the number of iterations

to reach minimisation is two- to four-times that of AO. The cost of spatial thinning

is to reduce the number of assimilated observations by a factor of 10 when compared

with trial AS. However, whilst thinning has achieved the desired effect on the number

of iterations required to reach minimisation of the cost function it is still too high when

compared to the trial AO. The trial ASt300d30 uses a time window of ±30 minutes

around the analysis validity time to accept Mode-S EHS observations. We see that

the trial ASt300d30 does reduce the number of iterations to that comparable to the

operational version, AO. The number of iterations is halved when thinning of Mode-S

EHS observations is included.

Trials ASt300d30W and ASt300d30T were used to assess which of the Mode-S EHS

observation types causes the increase in the number of iterations. For these experiments

the impact on the data assimilation for assimilating only winds or only temperatures is

about the same. The last trial, AOsto, was performed due to a major technical change

that was made to the UKV-ps37 prior to its operational deployment. This involved a

change in the order in which the background error covariance transformation operations

were performed from vertical then horizontal to horizontal then vertical. The reasons

for this change are beyond the scope of this study. Suffice to say trial AOsto shows

that the effects of these changes appear to have had only a small effect on the number

of iterations when compared to the trial AO.

Based on the number of iterations required to achieve a minimisation we conclude

from these technical trials that spatial thinning and reducing the data assimilation

window would provide a UKV-ps37 suite that would be comparable to the operational

version of the UKV in terms of the number of iterations required for the cost function

to be minimised. The number of Mode-S EHS observations would be reduced to around

10% of those available, this is still around 20 times more than the available AMDAR.

This reduction is comparable to previous studies (2.13, page 27) which used Mode-S

EHS reports of 5% within SSR range of Schipol Airport (de Haan & Stoffelen 2012);

10% and 50% within German airspace (Lange & Janjic 2016), supplied by Maastrict

Upper Air Centre; and between 5% and 15% for Mode-S MRAR (Strajnar et al. 2015).

The limitations of these technical trials is that we used a version of the UKV suite

that mirrored closely the version to be used in operational weather forecasting, UKV-

ps37. There are technical limitations with using UKV-ps37. The data assimilation

system for UKV-ps37 does not distinguish between AMDAR and Mode-S EHS obser-

vations in its diagnostic output. So it is not possible to assess the impact of assimilating

Mode-S EHS observations separately from the assimilation of AMDAR observations.

Nonetheless useful information can still be obtained by performing an extended run
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using the configuration of the trial ASt300d30.

7.3.7 Desroziers et al. (2005) Diagnostic Calculation

We used the Desroziers et al. (2005) diagnosis method to derive an estimated obser-

vation error standard deviation vertical profile, σDD, for aircraft-based observations

within the UKV inner domain (fig 2-6). To do this we adapted the method developed

by Waller et al. (2016b).

Waller et al. (2016b) developed a method to obtain the Desroziers et al. (2005)

diagnosed observation error variance, R, and the horizontal covariance, for SEVERI

satellite observations at different radiance wavelengths. We adapted the Waller et al.

(2016b) method to obtain R for aircraft-based observations at different altitudes. In

Waller et al. (2016b) the method described in Stewart (2010, sec 4.2) was used to

compute the Desroziers et al. (2005) diagnostic for R, (section 7.2, page 155 and section

7.3.3, page 159)

R =
1

N

N∑
i=1

(doa)i (dob)i −

(
1

N

N∑
i=1

(doa)i

)(
1

N

N∑
i=1

(dob)i

)
, (7.9)

where dob and doa are the innovation and residual respectively, N is the total number of

observations in the altitude band. The mean residual and innovation are subtracted to

make the result unbiased.

We used the innovations and residuals from the longer trial run LT AST1 (table 7.3)

to compute R for a range of pressure altitudes. We computed R at pressure-altitude

intervals of 100 hPa between 1100 hPa (near the surface) and 100 hPa (top of the

troposphere), this represents the range of altitudes for aircraft flight trajectories.

The geographic distribution of the reports for AMDAR and Mode-S EHS is shown

in figure 5-9. We would expect to see the largest number of observations being reported

during the cruise phase of flight, which occurs mostly in the region between 300 hPa

and 200 hPa, because this is where most of the flight time is spent.

Only those observations that passed the initial quality control (section 7.3.5, page

164) were used in our analysis. For our initial investigation, the innovations and resid-

uals were computed using the assumption that AMDAR σAOBS profiles (fig 7-1, page

161) apply for AMDAR and Mode-S EHS reports of wind and temperature.

We use our adapted Waller et al. (2016b) method to construct σDD for the different

types of aircraft-based observations. We discuss the results of the Desroziers et al.

(2005) diagnostic calculation for AMDAR and Mode-S EHS in section 7.5 (page 179).
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7.4 Results of Data Assimilation Experiments

In this section we present the results of longer trial runs. These use the configuration

of trial ASt300d30 discussed in section 7.3.6 and, to ensure that trials were consis-

tent with the UKV-ps37, the technical change used in ASsto. The key parameters

used in ASt300d30 are that at the analysis time the assimilation window for accepting

observations is ±90 minutes except Mode-S EHS for which we use different thinning

strategies.

Table 7.3 lists the longer trials, where LT indicates this is a longer trial for the period

from 0300 UTC 2nd January 2015 to 0600 UTC 8th January 2015. Starting from 0300

UTC 2nd January there were 50 data assimilation cycles. The time between each data

assimilation cycle is three hours. The LT were conducted for AMDAR only (AO),

Mode-S EHS only (SO); AMDAR and Mode-S EHS (AST1) using the AMDAR σAOBS

T1 for Mode-S EHS temperature; and AMDAR and Mode-S EHS (AST2) using the

ad-hoc σAOBS T2 for Mode-S EHS temperature. (For trail AST2, the ad-hoc σAOBS T2

is based on the results obtained from the Met Office’s observation-minus-background

monitoring, as discussed in section 7.3.3.) For each LT the same type and number of

observations were available for assimilation.

7.4.1 Impact of Assimilated Mode-S EHS Observations on the Fit to

Aircraft Observations

Our technical trials had shown that for data assimilation in the UKV ps37 it was nec-

essary to reduce the number of Mode-S EHS observations. This was done in two ways:

(i) reducing the time window used for Mode-S EHS observation around the analysis va-

lidity time and (ii) applying spatial and temporal thinning for all aircraft observations.

The spatial and temporal thinning also prioritised Mode-S EHS observations over AM-

DAR. So where the density of Mode-S EHS observations is high the effect is to replace

AMDAR. Conversely in the absence of Mode-S EHS then AMDAR are used if available.

Figure 5-9 shows that for the period 03Z 2nd January to 06Z 8th January 2015 Mode-S

EHS observations are confined to the southern half of the United Kingdom whereas

AMDAR observations are distributed across the whole country. Thus replacement of

AMDAR by Mode-S EHS is mostly likely to occur in the southern region.

To estimate the impact of assimilating Mode-S EHS derived observations we con-

sider, in the first instance, the initial and final values of the total cost function, eq.

(2.8) (page 27). After each assimilation cycle, we would expect the final value to be

smaller than the initial value for each experiment. However, we can only meaningfully

compare results between experiments when they use the same set of observations. For
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each of the trials listed in table 7.3, figure 7-3 shows the assimilation time-series of the

total cost function (i) at the start and (ii) at the end of assimilation processing.

In all trials the final cost is lower than its start cost. This suggests that the as-

similation cycles are extracting useful information from the observations but it is not

clear from the total cost result how much this is due to the addition of Mode-S EHS

observations. The reduction in the cost function at the start and end of the AMDAR

& Mode-S EHS (T2), LT AST2, trial is due to the lower weight given to Mode-S EHS

observations as result of using the revised observation error profile. Nonetheless there

is an impact on the cost function between the start and end of the assimilation cycle.

The lack of difference in total penalties between LT SO and LT AST1 is mainly due to

the dominance of the number of Mode-S EHS observations compared to AMDAR, and

the small detectable difference is probably due to the Mode-S EHS thinning method.

The total penalty is dependant on the number of observations assimilated. This

is clearly indicated by the diurnal changes in the total penalty which appears to cor-

respond with the diurnal changes in the availability of aircraft-based observations (fig

5-8). We note also that in the period between 4th and 7th January calm conditions per-

sisted as a high-pressure system was present over the UK. The periods before and after

were subject to changing conditions resulting from the passage of low-pressure systems

with accompanying weather fronts. The passage of these weather fronts brought higher

wind speeds which may have increased the forecast error. This may explain the higher

values in the total penalty before and after the calm period.

7.4.2 Impact of Assimilated Mode-S EHS Observations on the Fit to

Non-aircraft Observations

In this section we consider the impact of assimilating the Mode-S EHS observations on

other observation systems that report temperature and horizontal wind namely surface

synoptic reporting, satellite and Doppler radar. We use the same observation set for

comparison with each experiment. Previous studies by de Haan & Stoffelen (2012) and

Lange & Janjic (2016) do not report the effect of Mode-S EHS assimilation on Doppler

and satellite derived wind. We choose to look at winds and temperature because these

are easily comparable. We also consider the impact on forecasts of weather types,

visibility and precipitation, but there is a less clear link between the input observations

and the forecast weather types.

Figure 7-4 (page 176) shows the assimilation time series of the innovations for

surface based observations 10 m horizontal wind component U (fig 7-4a) and 2 m screen

temperature (fig 7-4b). For all trials the overall impact appears to be neutral, there

being only small differences between the innovations and residuals of the trials. The
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Figure 7-3: Time series of the total penalty metric (i) at the start and (ii) at the end
of assimilation processing for the trials listed in table 7.3. LT CONT, No aircraft data
assimilated (blue circles); LT AO, AMDAR only (green squares); LT SO, Mode-S EHS
only (red narrow diamonds); AMDAR and Mode-S EHS LT AST1 (light blue triangles)
and LT AST2 (purple large diamonds). T1 indicates the use of AMDAR observation
error for temperature was used for Mode-S EHS. T2 indicates the revised observation
error temperature was used for Mode-S EHS.
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results for horizontal wind component V (not shown) are similar. Clearly the influence

of the aircraft-based observations has not extended to the near surface conditions. This

may be due to the lack of aircraft-based observations below the altitude of 300 m (see

section 6.4).

Figure 7-5 shows the assimilation time series of the innovations for remotely sensed

observations, satellite horizontal wind component U (fig 7-5a) and Doppler radial wind

component (fig 7-5b). As for the surface observations, for all trials the overall impact is

neutral. The results for satellite horizontal wind component V (not shown) are similar.

The assimilation of the Mode-S EHS has had little impact since the residuals of the

trials are of similar magnitude. However, there are some small differences resulting

from the revised observation error for Mach Temperatures.

In complex operational NWP systems, it not unusual for changes in the system to

produce a neutral impact on assimilation statistics such as these. In the next section

we consider the impact on short range forecasts.

7.4.3 Forecast Verification against Radiosonde

In this section we consider verification of the wind and temperature forecasts output

by the trial suites. The trial suites were configured for analysis every three hours

followed by a short run of forecasts, hourly forecasts for a lead time of up to six hours

ahead. The short run forecasts were chosen because previous studies by de Haan &

Stoffelen (2012) have shown that the benefit of assimilating AMDAR reports persists

up to lead times of six hours while for Mode-S EHS the benefit persists for up to three

hours. The forecasts were verified against radiosonde using the Met Office application

TRUI (TRials User Interface). This application provides a standardised framework for

evaluating trial suite forecasts and for comparing the verification between trials. TRUI

verification of wind and temperature forecasts uses available radiosonde and surface

based observations. Table 7.4 lists the trial comparisons and figures 7-6 and 7-7 (page

181) show the results of the comparisons for vertical profiles of temperature and wind

respectively.

Figure 7-6a shows the mean RMSE vertical profile of the forecast temperature

for the long trials with AMDAR only (LT AO) and AMDAR+Mode-S EHS using

observation profile T1 (figure 7-1, page 161) (LT AST1). The RMSE magnitudes for

each profile are similar. The differences are less than 0.1 K, as shown in fig. 7-6b. The

small differences suggest that assimilation of Mode-S EHS Mach temperatures has not

made a significant change in the forecast at lead times of six hours. Figure 7-6d shows

the difference when using using observation profile T2 (figure 7-1, page 161) (LT AST2)

for Mach temperature, the magnitude of the differences are again within 0.1 K. There
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(a)

(b)

Figure 7-4: Assimilation cycle time series of the (i) RMSE innovations at the start
and (ii) RMSE residuals at the end of assimilation for surface observations (a) 10 m
horizontal wind component U and (b) 2 m potential temperature. Legend is the same
as in figure 7-3.
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(a)

(b)

Figure 7-5: Assimilation cycle time series of the (i) RMSE innovations at the start
and (ii) RMSE residuals at the end of assimilation for remote sensed observations (a)
satellite horizontal wind component U and (b) Doppler radial wind. Legend is the same
as in figure 7-3.
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is an increase in RMSE difference between 300 hPa and 200 hPa otherwise there is

little to distinguish between LT AST1 and LT AST2, as shown in fig. 7-6c where the

magnitude of the difference is less than 0.02 K. Similar results are seen in the wind

vertical profiles (figure 7-7). Comparing figure 7-7b with 7-7d we note that the revised

observation error for temperature appears to have had greater effect on the horizontal

wind, particularly the distribution at levels below 300 hPa. However, the magnitude of

the RMSE differences are small being 0.1 ms−1, which could be due to computational

noise resulting from floating point binary representation.

In figure 7-7a (page 181) it is notable that the mean RMSE for AMDAR wind

appears to be larger than expected, ranging between 3 ms−1 to 5 ms−1 compared with

the more generally accepted range 2 ms−1 to 3 ms−1 (Painting 2003). This difference

may be due to NWP background model error.

The change in the observation error profile for Mach Temperature seems not to

have significantly affected the subsequent forecasts. The larger the observation error

standard deviation the lower the weighting of the observation in the data assimilation

processing, eq. (2.8) (page 27). It is unclear from these results whether the higher

observation error standard deviation for the Mode-S EHS Mach Temperature means

that they are not contributing much information to the analysis field when compared

with the AMDAR temperature. This may account for the neutral impact on the anal-

ysis discussed in section 7.4.2. Previous studies by de Haan & Stoffelen (2012) and

Lange & Janjic (2016) have shown better forecast accuracy for the first few hours with

the assimilation of Mode-S EHS than with AMDAR only when forecasts are verified

against radiosonde observations. Two main differences between these studies and this

present work are (i) we use a higher horizontal grid length and (ii) we do not apply

a low pass filter, e.g., linear regression, to smooth the Mach Temperature prior to its

assimilation (see section 6.9.2).

Furthermore, we specified two observation error standard deviation profiles for the

Mode-S EHS Mach Temperature, T1 and T2. The profile T1 is identical to the AMDAR

observation error standard deviation while the profile T2 is closer to our estimated error

due to quantisation error (figure 4-9, page 83). We found that in both cases the impact

on the UKV NWP forecasts was neutral.

We conclude from our studies that, using our UKV ps37 configuration, the assimi-

lation of Mode-S EHS has a neutral impact on the forecasts of wind and temperatures,

with no adverse impact on the observations from other sources. Therefore there appears

to be no additional benefit to the assimilation of Mode-S EHS observations, in terms

of improving forecast accuracy of horizontal wind and ambient temperature. Further

study is required to understand whether this is due to a saturation effect, as reported
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Table 7.4: Met Office TRUI verification and comparison of forecasts from UKV trials,
listed in table 7.3.

TRUI trials

LT AO v LT AST1
LT AO v LT AST2

LT AST2 v LT AST1

by Lange & Janjic (2016), or due to the assimilation of non-smoothed Mach temper-

ature, which gives a lower weighting to these observations in the assimilation process.

7.5 Diagnosed Observation Errors

We noted in section 2.14 (page 29) that the accurate representation of the observation

error standard deviation is important for the data assimilation process. In section

7.3.3 (page 159) we showed the σAOBS profile for winds and temperature that have

been used for data assimilation experiments using AMDAR and Mode-S EHS reports.

In this section we investigate the correctness of the σAOBS profile for AMDAR and

Mode-S EHS observations for wind and temperature. We compare the σDD profile,

using the Desroziers et al. (2005) diagnosed method (section 7.2), with the σAOBS

profiles shown in figure 7-1 (page 161).

Figures 7-8 and 7-9 show the Desroziers et al. (2005) diagnosis of the observation

error standard deviation profile,
√
R(i, i), for AMDAR and Mode-S EHS horizontal

wind components. The results are plotted at the centre of the pressure level interval.

The operational UKV assumed observation error standard deviation profile is shown for

comparison. The blue bars indicate the number of reports used for each pressure level

interval. For Mode-S EHS the number of reports decreases steadily between 250 hPa

and 950 hPa. This is expected since the shape of an SSR detection zone resembles an

inverted truncated cone centred at the SSR site. Furthermore, the higher number of

reports at 250 hPa is expected since this is the region where an aircraft trajectory is in

its en-route phase. Moreover, in this region the number of reports will include aircraft

transiting UK airspace. For AMDAR below 1000 hPa and above 200 hPa there are too

few reports to interpret meaningfully the diagnosed results, similarly for Mode-S EHS.

For AMDAR between 950 hPa and 550 hPa the assumed and diagnosed observation

error standard deviation are similar, above 550 hPa we see the diagnosed observation

error standard deviation is larger than the assumed, with greatest departure at 450 hPa.

In contrast, the Mode-S EHS diagnosed observation profile is less than the assumed
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(a) (b)

(c) (d)

Figure 7-6: Mean RMSE of forecast vertical temperature profile against radiosonde for
the trials, using the notation defined in table 7.3 (page 171), (a) LT AO (red), LT AST1
(blue). RMSE differences for (b) LT AST1 − LT AO, (c) LT AST1 − LT AST2 and
(d) RMSE difference for LT AST2 − LT AO. Error bars are the standard error of the
mean.
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(a) (b)

(c) (d)

Figure 7-7: Mean RMSE of forecast vertical wind profile against radiosonde for the
data assimilation trials, using the same notation given in figure 7-6.
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error. However, care must be taken when interpreting these results for three reasons.

Firstly, the spatial distribution of the reports differs. Mode-S EHS is concentrated in

the South of England while AMDAR is distributed more widely throughout the United

Kingdom. Secondly, for the trial period the weather regime in Northern England and

Scotland changed when compared to Southern England. The change in weather regime

in the north was due to the passage of weather fronts associated with a low pressure

system near Iceland (see section 5.2). In the south, the weather regime was under the

influence of a high pressure region and would have impacted on the AMDAR reports

in this region. Thirdly, these results are for a limited period of time and so may not be

fully representative. Furthermore the diagnosis method may under-represent the true

observation error value (Waller et al. 2016).

The Desroziers et al. (2005) diagnosed σDD profile for AMDAR and Mode-S EHS

temperature are shown in figure 7-10. The σAOBS profile used in the operational UKV

is shown for comparison. The blue bars and their distribution is as discussed for figure

7-8 above. The σDD profile for AMDAR (fig 7-10a) between 950 hPa and 250 hPa is

in good agreement with that used in the operational UKV NWP model. In contrast,

the diagnosed Mode-S EHS σDD profile for temperature (fig 7-10b) is clearly greater

than that used in the operational UKV NWP model, if we assume it is the same as the

AMDAR values. This result suggests that we greatly underestimate the σAOBS profile

for the Mode-S EHS temperature. Our result is qualitatively similar to those found

by Lange & Janjic (2016) and de Haan & Stoffelen (2012) in so far that the profile

of σAOBS profile increases towards the surface. But our result differs in magnitude

being almost twice that found by Lange & Janjic (2016) and one-and-half times that

found by de Haan & Stoffelen (2012). However, Lange & Janjic (2016) and de Haan &

Stoffelen (2012) used smoothed Mode-S EHS reports.

We suggest that the diagnosed σDD profile is due to quantisation error that arises

from the reduced precision of the Mode-S EHS reports used to derive Mach Tempera-

ture, we identified evidence for this effect in chapter 4 (page 55) and chapter 6 (page

147). Further research is needed to compute the Desroziers et al. (2005) diagnosis from

the innovations and residuals output from the data assimilation experiments that used

the ad-hoc σAOBS profile T2, for Mode-S EHS Mach temperature. However, we were

unable to do this analysis for this thesis due to lack of time. But we expect the σDD

profile T2 to be similar to our results for σDD profile T1. This is because while the

error for the background NWP model may change, the observation error due Mode-S

EHS processing appears to have the greater effect.
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7.6 Summary and Conclusions

In this chapter we have shown how we configured a version of the Met Office operational

limited area NWP model, the UKV, to assimilate Mode-S EHS derived observations.

This is the first study to evaluate the impact of using Mode-S EHS observations with

the highest horizontal grid length, 1.5 km, convection-permitting NWP model .

The UKV NWP model trials used 3-D variational data assimilation with first guess

at appropriate time (FGAT). The trials assimilated Mode-S EHS reports collected

using the Met Office receiver network rather than these being supplied directly by an

Air Traffic Management such as used by de Haan (2011). It was found that for a

practical application it is necessary to spatially and temporally thin the Mode-S EHS

observations. To evaluate the impact of assimilation of AMDAR observations and

Mode-S EHS derived observations four trials were conducted using the period 2nd to

8th January 2015.

The results of the trials showed that the impact of assimilation of AMDAR observa-

tions within the UKV domain was beneficial but only very marginally when compared

to not assimilating them. The assimilation of the thinned Mode-S EHS observations

did not adversely affect the assimilation of other observation types, suggesting that the

configuration of the data assimilation processing was acceptable. When wind and tem-

perature forecasts were verified against available observations the inclusion of Mode-S

EHS observations overall had a neutral impact. We note, however, that it was not pos-

sible to perform a passive assimilation of the aircraft-based observations by their type.

Therefore it is difficult to draw any firm conclusion about the impact of Mode-S EHS

observations. Our result differs from previous studies (Cardinali et al. 2003, de Haan

& Stoffelen 2012, Lange & Janjic 2016) which show that AMDAR and Mode-S EHS

observations have a positive impact on forecasts. Our results are not conclusive since

we ran our trials for five days whereas previous studies have used longer trials. More-

over, we found that because of a technical limitation of the UKV NWP model data

assimilation it was not possible to set-up the trials to use the same set of observations.

A key requirement for the data assimilation of the observations is an accurate repre-

sentation of the assumed observation error standard deviation profile, σAOBS . To assess

whether σAOBS for AMDAR, σAOBS−A, was representative we applied the Desroziers

et al. (2005) diagnosis using the innovations and residuals from trials LT AST1 and

LT AST2 for horizontal wind and temperature. We found that the diagnosed observa-

tion error standard deviation profile, σDD, for AMDAR, σDD−A, horizontal wind was of

the order 10% higher than σAOBS−A. By contrast we found the σDD for Mode-S EHS,

σDD−S , horizontal wind to be of the order 10% lower than σAOBS−A. The differences
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in the results for σAOBS and σDD may be affected by the limited period chosen, the

different spatial distributions of AMDAR and Mode-S EHS reports, and the different

wind regimes that were present across the United Kingdom for this period.

When considering the results for temperature using σAOBS−A, we found that the

Desroziers et al. (2005) σDD−A were in good agreement σAOBS−A. We found σDD−Sfor

temperature to be at least twice as large as σAOBS−A. The σDD−S for temperature

is similar to that seen in Mach Temperature standard deviation profiles discussed in

section 4.5 (page 66) and shown in figure 4-9 (page 83), and in section 6.9.2 (page 143)

and shown in figure 6-14 (page 149). Hence we suggest that σDD−S profile shows that

quantisation error, that arises from the reduced precision of the Mode-S EHS reports

used to derive Mach Temperature, makes the stronger contribution to the observation

error.

We found that it was not possible to use all of the available Mode-S EHS observa-

tions. This was because the density of Mode-S EHS observations was too great, which

may cause problems. There is a computational overhead to assimilate a large number

of observations, especially if these are in close proximity to each other and reporting

almost the same value, thus assimilating potentially redundant information. For exam-

ple, the horizontal length scales of atmospheric phenomena measured by aircraft could

be of the order 500 m at an altitude of 3000 m and 200 m near the surface. These

scales are less than the UKV NWP model data assimilation, which has a horizontal

grid length of 3.0 km, so the smallest length scale that it could represent is 12.0 km

(Inness & Dorling 2012, Ch. 5). Furthermore, the errors in high frequency observations

may be highly correlated in time and space. To minimise the effects of these problems

we could either thin or combine these observations.

Thinning is a method that removes observations. For example thinning could pro-

vide a representative sample of aircraft-based observations that is commensurate with

the NWP model’s data assimilation horizontal grid length, e.g., one observation ev-

ery 3 km for the UKV NWP data assimilation. However, thinning does not mean

the observations are wholly representative since selection criteria are applied in terms

of their position relative to the NWP model grid points and the time difference be-

tween observations and the NWP model integration time. Furthermore, while thinning

may reduce correlated error between observations it does not reduce the random error

associated with a single observation. Previous studies that have assimilated Mode-S

EHS have spatially thinned Mode-S EHS observations: de Haan & Stoffelen (2012)

used 6 km, half the horizontal grid length for the HIRLAM NWP model; Strajnar

et al. (2015) used 25 km, six-times the horizontal grid length for the ALADIN NWP

model; while Lange & Janjic (2016) used random thinning to either 10% or 50% of
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the original dataset. However, these studies used thinning to reduce the computational

load for data assimilation of Mode-S EHS observations rather than to account for their

observation error.

For our data assimilation trials we thinned our Mode-S EHS observations. This

was done in two stages. First we thinned by observation time, removing Mode-S EHS

observations that were older or later than ±30 minutes of the data assimilation analysis

time. Then the resulting subset of Mode-S EHS observations were spatially thinned to

one observation every 3 km and we thinned temporally to one observation every five

minutes. The effect of this method of thinning reduced the number of observations

to be processed by the data assimilation system to 10% of the available Mode-S EHS

observations. This reduced the computational overhead to a level that was comparable

to the current operational version of the UKV NWP model. However, this method

removes information and the selected observations may not be representative of the

atmospheric state, especially given the large observation error standard deviation for

Mode-S EHS temperature below 1000 m.

The alternative to thinning is to combine observations to form a representative

super-observation, such as discussed in section 3.6 (page 39). Before forming a repre-

sentative super-observation, this method could remove observations with large differ-

ences, which may be unrealistic, when compared with corresponding UKV NWP model

value. The method of super-observations is capable of averaging out random errors so

that the error of the super-observation may be less than the error on a single obser-

vation, where random error makes the stronger contribution to the total observation

error. However, any method that averages or combines observations in space and time,

while reducing the computational impact on the data assimilation, also changes the

scale of the meteorological phenomena that can be represented by the averaged obser-

vation, since by averaging, either in space or time or both, there is the loss of finer

scale structure. Furthermore, the error characteristics of the combined observation,

whether aggregated or super-observation, will differ from the error characteristics of

the individual observations, e.g., a reduction in random error.

However, we note that there are no previous studies that evaluate using super-

observation of aircraft-based observations. Furthermore, the assumption of uncorre-

lated observations errors may not apply, therefore further research would be required

to evaluate the suitability of using the super-observation method. For our data as-

similation trials, using the method of super-observations required non-trivial technical

changes to the UKV NWP data assimilation scheme which was beyond the scope of

our research.
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Chapter 8

Discussion and Further Work.

Accurate observations of the atmospheric state are needed for operational meteoro-

logical forecasting and for numerical weather prediction. The need for accuracy in

operational meteorology is to aid decision making especially during adverse weather

conditions such as fog and low-level wind shear. The uncertainty in numerical weather

predictions arises from the uncertainty in the initial conditions. The initial conditions

are calculated from observations and previous forecasts, which are weighted by their

respective error statistics. When the state of the atmosphere is represented by ob-

servations from measurement sensors they are subject errors. These errors may be

random, correlated or systematic. These errors may be expressed in terms of their

statistical properties, e.g., mean bias, standard deviation and root mean square error

(Wilks 2011, Jolliffe & Stephenson 2012). These statistical properties can be used to

represent the accuracy and precision of these measurements (Taylor 1982). During the

past two decades, a significant source of observations of the state of the atmosphere

are obtained from commercial air traffic.

In this thesis we expand on the existing body of knowledge for the utilisation of

aircraft-based observations for operational meteorology and numerical weather predic-

tion. In chapter 1 of this thesis we posed three questions which we have answered

through a series of experiments, case studies and their analysis:

1. How accurately do observations derived from routine messages exchanged between

an aircraft and air-traffic-control represent the state of the atmosphere in terms

of the horizontal wind and ambient temperature?

2. What atmospheric phenomena within the boundary layer can be observed using

high-frequency observations derived from these routine messages?

3. What benefit does assimilation of these high-frequency observations bring to the
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Met Office’s convection-permitting numerical weather prediction model?

In section 8.1 we summarise the results and conclusions of our research. In section

8.2 we discuss our results in more detail. To complete our thesis, in section 8.3 we make

recommendations for further areas of research investigating the utility of aircraft-based

observations, as more of this observation data type becomes available.

8.1 Summary of Results and Conclusion

In this section we summarise our results as follows:

• Mode-S EHS is a new source of aircraft-based observations which can provide high

frequency observations of temperature and horizontal wind, within the terminal

manoeuvring area of airports.

• We developed novel error models to characterise the observation error standard

deviation for Mode-S EHS horizontal wind and Mach temperature. We have

shown that the standard deviation of quantisation error, which is the result of

Mode-S EHS processing, makes a significant contribution to the observation error

standard deviation for Mach temperature and places a lower limit on the same

for horizontal wind.

• We have shown that by aggregating the high frequency observations of Mach tem-

perature useful meteorological information can be obtained above 1000 m, e.g.,

the presence of elevated temperature inversions. However, we also found that

below 1000 m there is greater uncertainty in the aggregated Mach temperature,

which fluctuates rapidly. We showed that these fluctuations are due to the asyn-

chronous changes in the reported Mach number and true airspeed. We showed

that by applying a low-pass filter to smooth out the fluctuations the observation

uncertainty can be reduced to the level of quantisation error.

• We performed trials to assimilate Mode-S EHS horizontal wind and Mach tem-

perature using the Met Office’s UKV, a high-resolution convection-permitting

NWP model. We found it was necessary to thin spatially and temporally the

number of Mode-S EHS observations so that we would obtain a UKV NWP anal-

ysis that would be acceptable for use in operational meteorology. We found for

our trials, 2nd to 8th January 2015, there was a neutral impact on the UKV NWP

model analysis and forecasts, with lead times of six-hours, when compared with

radiosonde observations. However, this result is not conclusive since we assumed
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that the observation error standard deviation for Mode-S EHS and AMDAR were

the same and we used non-smoothed non-aggregated observations.

• We performed a Desroziers et al. (2005) diagnosis using the observation-minus-

background and observation-minus-analysis output by the UKV NWP model.

We found that for AMDAR and Mode-S EHS horizontal wind the diagnosed ob-

servation error standard deviation was within 10% of the corresponding assumed

observation error standard deviation. We found that for AMDAR temperature

the assumed and diagnosed observation error standard deviation was in agree-

ment but for the Mode-S EHS Mach temperature the observation error standard

was greater the assumed; its magnitude similar to the magnitude obtained from

our novel error model.

We conclude that Mode-S EHS has the potential for providing useful meteorological

information at a frequency that is greater and for a lower cost than is currently avail-

able by AMDAR. With suitable pre-processing Mode-S EHS observations may provide

benefits to operational meteorological forecasting and numerical weather prediction,

particularly for rapid update forecasts with lead times of up to a few hours. How-

ever, further research is required. The results from such research may help inform the

development of new aviation standards for the automated reporting of meteorological

observations by commercial aircraft.

For example, to demonstrate to the aviation community that reporting meteoro-

logical observations to a higher precision would be beneficial to improving short-range

high-resolution numerical weather prediction. In particular, direct reports of the higher

precision temperature would be better than using the derived method of temperature

based on Mach number.

8.2 Discussion of Results

Aircraft-based observations are an important source of in situ measurements (Cardinali

et al. 2003, Petersen et al. 2004, Cardinali 2013, Petersen et al. 2016) of horizontal wind

and ambient temperature. Currently, AMDAR (Painting 2003) is the main source of

these observations. Their accuracy and precision have been subject to a number of

studies (section 2.8, page 16). A newer source of observations is Mode-S EHS (de Haan

2011, Stone & Pearce 2016, Mirza et al. 2016). The advantage of Mode-S EHS are that

observations can be 100-times more than AMDAR observations, and can be collected

more cheaply, when compared with the cost of AMDAR reports, due to the lower cost

of collection. However, the statistical properties of this observation type are poorly
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understood. For numerical weather prediction, it is important that the assumed ob-

servation error standard deviation, σAOBS , is specified correctly so that during data

assimilation the correct weighting of the observation can be applied.

Our thesis adds new knowledge that increases our understanding of (a) the observa-

tion error standard deviation of the horizontal wind and ambient temperature derived

from Mode-S EHS reports and (b) the usefulness of these observations for operational

meteorology and numerical weather prediction.

8.2.1 Quality of Mode-S EHS Reports

In our thesis we present new evidence that Mode-S EHS processing determines the

quality of the observations and, therefore, the Mode-S EHS. Previous work assimilat-

ing Mode-S EHS horizontal wind data has assumed a similar observation error stan-

dard deviation to AMDAR horizontal wind (de Haan & Stoffelen 2012, Lange & Janjic

2016). However, an inflated observation error standard deviation (compared to AM-

DAR) has been assumed for temperature (de Haan & Stoffelen 2012, Lange & Janjic

2016). De Haan (2011) identified that the reporting precision of the Mode-S EHS Mach

number and true airspeed may account for the lower quality but did not investigate

this further.

In chapters 3 and 4 we developed novel models for the observation error standard

deviation, which we use to answer our first thesis question on the accuracy of the

Mode-S EHS observations. In contrast we use section 3.9 (page 51) that Mode-S

EHS processing results in quantisation error, which arises from the rounding then

truncation of the binary representation of the data. We assume that the quantisation

error is uniformly distributed for each of the reports that comprise the aircraft’s state

vector (section 2.7, page 15). We use the statistics of the uniform distribution to

estimate the precision of the Mode-S EHS observations of horizontal wind and Mach

Temperature. Our assumption differs from that used by de Haan (2011) who estimated

the precision by comparing the differences between two successive Mode-S EHS derived

observations but makes no suggestion about how these might be distributed. However,

we suggest that the de Haan (2011) method may not robust because the Mode-S EHS

processing introduces asynchronous changes in the reported Mach number and true

airspeed (section 3.8, page 48). In contrast, we use in situ data recorded by the FAAM

research aircraft (Smith & Gratton 2004) to validate our novel error models for Mode-S

EHS observations. This is the first study to perform this type of validation for Mode-S

EHS.

In chapter 4 we showed that our novel error models can be used to estimate the

precision of the derived observations using the precision of the reports in the aircraft
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state vector. We used the FAAM in situ data to emulate the Mode-S EHS processing

(EUROCAE 2008) of the aircraft state vector prior to its broadcast. We compared

the Mode-S EHS derived observations with the in situ measurements of the horizontal

wind and temperature. We showed that their differences are not uniformly distributed

but have the character of a uni-modal distribution. We concluded that the derived

observation error standard deviation for Mode-S EHS Mach Temperature error can be

modelled if we assume the precision of the input Mach number and true airspeed are

represented by the standard deviation of quantisation error. Furthermore, the quan-

tisation error statistic places a lower limit on the estimate of the derived observation

error standard deviation for the Mode-S EHS horizontal wind error. The results of

this study provides a more robust characterisation of the observation error standard

deviation for the Mode-S EHS observations.

However, we note that we used an emulation of the Mode-S EHS processing. This

was because the FAAM research aircraft is not equipped with a Mode-S EHS transpon-

der. If a similar experiment were to be conducted using an installed Mode-S EHS

transponder then we might expect a refinement our result.

8.2.2 Identifying Atmospheric Phenomena using Mode-S EHS

Observations

In chapter 6 we used our knowledge and understanding gained from chapters 3 (page

33), 4 (page 55) and 5 (page 91) to answer our second thesis question, identifying

atmospheric phenomena within the boundary layer using the high-frequency Mode-

S EHS derived observations. We constructed vertical profiles of Mode-S EHS Mach

Temperature using our method to aggregate observations from Mode-S EHS reports

of Mach number and true airspeed from multiple aircraft (section 3.6, page 39). Our

method of aggregation uses only the reported observations, unlike the method of super-

observations (Lorenc 1981, Berger et al. 2004) which, in effect performs a local optimal

interpolation between an NWP model background value and observation innovations.

We use only the aggregated observations so that we can compare their meteorological

information with that available from other in situ observations and the UKV NWP

model forecasts.

We compared the vertical structure of the constructed profiles with observations

reported by nearby AMDAR reporting aircraft and radiosonde. We showed that there

is good agreement between the aggregated Mode-S EHS Mach temperature and these

observations above 1000 m. However, below 1000 m we found large fluctuations in

the aggregated Mode-S EHS Mach temperature. We believe that for our case study

such fluctuations could not be due to the prevailing state of the atmosphere: calm
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conditions, low wind speed and fog. We also compared the structure of the constructed

profiles with forecasts from the UKV NWP model. (We note that the AMDAR and

radiosonde reports used in our comparison were not assimilated by the UKV NWP

model.) We found similar results: agreement is good above 1000 m and poor below

1000 m. Moreover, we found the constructed profiles showed the presence of an elevated

temperature inversion not forecast by the UKV NWP model. We demonstrated that

aggregated Mode-S EHS reports contain useful information. We investigated further

the large fluctuations in Mach temperature below 1000 m.

We showed that the large fluctuations are due to the asynchronous change in the

Mach number and true airspeed, which is introduced by the Mode-S EHS processing.

These fluctuations are greater during ascents and descents because of the aircraft’s

airspeed changes. We also found an apparent bias in the derived temperatures, as

there was a tendency toward cooler temperatures for ascending aircraft and warmer

temperatures for descending aircraft when compared with the mean surface ambient

temperature. This finding differs to that found by Petersen & Moninger (2006) who re-

port that aircraft, equipped with an external sensor package, have a warm temperature

bias for ascents and cool temperature bias for descents when compared with the NOAA

Rapid Update Cycle NWP model analysis. Ballish & Kumar (2008) also suggest that

aircraft temperature reports, when compared to an NWP model analysis, are subject

to a mean bias which is aircraft-type specific. Clearly there remains some uncertainty

over the cause of this apparent bias which requires further investigation.

We used low-pass-filters to smooth the asynchronous changes in the Mode-S EHS

reports of Mach number and true airspeed. The low pass filters used were the centred-

moving average, block average, linear regression and the irregular exponential filter

(IRR). The first three filters use a moving window to compute a mean value. The IRR

filter differs as it is a weighted mean between the current observation and mean of the

of past observations. We found all these filters produced similar results for the resulting

mean Mach temperature and reduced its variance by at most 30%. The average time

difference between reports is 2 s and the maximum time difference is 6 s. The moving

window filters used five reports. Therefore the sampling times can range between 10 s

and 30 s respectively. These sampling times are comparable with AMDAR reports,

which uses a moving window of 10 s (Painting 2003) and the low pass filter used by

de Haan (2011), which used a moving window of 12 s for ascents and descents. The

horizontal sampling length scales of atmospheric processes which these sampling times

correspond to range from 0.5 km to 4.5 km. Thus the smoothed Mode-S EHS reports

provide observations that are comparable to the 3.0 km horizontal grid length for data

assimilation using the UKV NWP model. Useful meteorological information would be
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contained within at least four times this horizontal scale (Inness & Dorling 2012, p.

87). Moreover, we found the observation error standard deviation for the smoothed

aggregated observations of Mach temperature could be modelled using our novel error

model developed in chapter 4.

8.2.3 Assimilation Experiments using Mode-S EHS Observations

In chapter 7 we addressed our third thesis question, the benefit of using Mode-S EHS

observations in a convection-permitting numerical weather prediction model. We con-

figured a version of the Met Office’s operational limited area NWP model, the UKV,

to assimilate Mode-S EHS derived observations for the case study period 2nd to 8th

January 2015. This is the first study to evaluate the impact of using Mode-S EHS

observations with such a short horizontal grid length, 1.5 km, convection-permitting

NWP model. De Haan & Stoffelen (2012) performed their data assimilation trials

using the HIRLAM 11 km NWP model while Lange & Janjic (2016) trials used the

COSMO-KENDA 4.4 km ensemble prediction system. However, our data assimilation

trials were only for a period of six days therefore our initial results should be treated

with caution.

In order to achieve a practical configuration of the UKV NWP model it was nec-

essary to spatially and temporally thin the Mode-S EHS observations, otherwise the

data assimilation processing would not converge to an acceptable analysis for use in

operational weather forecasts. Thus we assimilated only Mode-S EHS observations re-

ported ±30 minutes of the analysis time and then spatially thinned these reports to

one observation every 3 km horizontally. This reduced the number of Mode-S EHS

observations at each assimilation cycle to around 10% of those available, e.g., at 1200

UTC there are up to 300,000. The number of observations we used is comparable to

that used by de Haan & Stoffelen (2012) and Lange & Janjic (2016).

Our data assimilation trials used Mode-S EHS horizontal wind and temperature

directly. For technical reasons we did not implement the low pass filters discussed in

section 6.5. The horizontal wind was corrected using the Jacobs et al. (2014) method,

which estimates the aircraft heading error using an NWP model, in our case the opera-

tional UKV. The results of our data assimilation showed that assimilating Mode-S EHS

has a neutral impact on the UKV NWP model analysis and forecasts with lead times

of up to six hours, when compared to radiosonde observations. This contrasts with the

results obtained by de Haan & Stoffelen (2012) and Lange & Janjic (2016). De Haan

& Stoffelen (2012) found improvement in the short range forecasts of horizontal wind

and temperature with lead times of up to three hours. Results were similar for Lange

& Janjic (2016), who showed improvements were mostly above 1000 m.
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However, our results are not conclusive since we only performed our experiments

over six days. In our configuration the assumed observation error standard deviation

for Mode-S EHS and AMDAR were the same; we did not use smoothed Mode-S EHS

reports; our experiments included the full range of observations types used for opera-

tional data assimilation in the UKV NWP model; and the meteorological conditions

were calm, i.e., changing slowly over the six days, for the region where Mode-S EHS

reports were collected. Using the non-smoothed Mode-S EHS and the assumed obser-

vation error standard deviation for AMDAR may have resulted in these observations

being given a lower weighting in the data assimilation processing, especially if the

observation-minus-background for Mach temperature is large.

We also investigated our assumption to use the same assumed observation error

standard deviation for Mode-S EHS and AMDAR. For the horizontal wind de Haan &

Stoffelen (2012) and Lange & Janjic (2016) used the same assumed observation error

standard deviation for Mode-S EHS and AMDAR. For Mode-S EHS Mach temperature

they used an inflated assumed observation error standard deviation for AMDAR tem-

perature. We used the observation-minus-background and observation-minus-analysis

output by the UKV NWP model to obtain the Desroziers et al. (2005) diagnosed ob-

servation error standard deviation for Mode-S EHS and AMDAR. Our analysis showed

that for AMDAR horizontal wind the diagnosed observation error standard deviation

was approximately 10% greater than the assumed observation error standard devia-

tion, while for Mode-S EHS it was approximately 10% less. This result suggests that

the quality of the observations for AMDAR and Mode-S EHS, after applying heading

corrections, are similar. For temperature, we found that for AMDAR assumed and di-

agnosed observation error standard deviation are in agreement. However, we found that

diagnosed observation error standard deviation for Mode-S EHS Mach temperature to

be greater than the assumed observation error standard deviation. The vertical profile

of diagnosed observation error standard deviation for Mach temperature was found to

have similar characteristics of our result from chapter 4. We conclude from this result

that the standard deviation of quantisation error makes a strong contribution to the

Mach temperature observation error. This result is in contrast with Lange & Janjic

(2016) who found diagnosed observation error standard deviation to be less than the

assumed observation error standard deviation used by de Haan & Stoffelen (2012).

8.3 Further work

The results from the data assimilation experiments conducted in chapter 7 are not

conclusive with respect to assessing the benefit of aircraft-based observations of tem-
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perature and horizontal wind for both Mode-S and AMDAR. We suggest that further

research is needed to:

• Investigate further the benefits of assimilating Mode-S EHS observa-

tions in the Met Office UKV NWP Model

To configure the UKV NWP Model to run longer data assimilation trials. These

trials should be representative of the climatology of the UKV, thus trials of at least

30 consecutive days covering a summer and winter period are suggested. These

trials should use Mode-S EHS reports collected by the entire Met Office receiver

network. Conducting longer trials also affords the opportunity to re-apply the

Desroziers et al. (2005) diagnostic method to affirm our results. An extension to

this work would be to test the sensitivity of the results of the diagnostic to the

choice of background error covariance matrix.

• Investigate the use of super-observations

The data assimilation configuration of the UKV, and other studies, suggest that

Mode-S EHS observations should be thinned to around 10%. The study by Lange

& Janjic (2016) also showed that too many Mode-S EHS observations may cause

saturation, i.e., where additional observations beyond a certain fraction of the

total do not improve the NWP analysis.

Further work to assess using aggregated observations or super-observations may

afford a way to utilise more of the available observations. In addition, implemen-

tation of a low-pass filter to smooth reports along aircraft trajectories requires

further investigation. This may reduce some of the uncertainty in the derived

observations for operational meteorological forecasting and numerical weather

prediction.

• Investigate further the observation error standard deviation for

Mode-S EHS derived observations using data from the FAAM research

aircraft

There may be a further opportunity to study the observation errors for Mode-

S EHS derived observations. From 2018 all aircraft operating within European

airspace will be required to be equipped with a Mode-S transponder. Thus the

FAAM aircraft will have a Mode-S transponder, which will receive its input from

the aircraft’s flight management system.

This investigation could also assess the space-time length scales that could be

represented by using smoothed and non-smoothed Mode-S EHS reports of Mach
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number and true airspeed. Such further work may investigate the origin of aircraft

temperature biases and their correction; derive more refined methods to correct

for aircraft heading errors; and investigate the effects of correlated error resulting

from the increased temporal resolution of the meteorological observations.

• Investigate correlated error in aircraft-based observations

It has been suggested by Carriére & Autonés (2001) that high frequency aircraft-

based observations may have correlated errors. Given that Mode-S EHS observa-

tions are reported with high frequency we can suppose that these may be subject

to correlated error in space and time. Methods used to account for correlated er-

ror range from spatial and temporal thinning, e.g., such as used by Lange & Janjic

(2016), aggregated-observations or super-observations performed over small areas

(Berger et al. 2004) or inflation of the assumed observation error standard devi-

ation (Stewart et al. 2013). The Desroziers et al. (2005) diagnostic could be be

used to estimate the spatial correlations and hence evaluate whether the chosen

thinning distance is appropriate (Waller et al. 2016a).
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Appendix A

Symbols and Abbreviations

Symbol Units Comment

ARINC Subscript used to indicate that the observation

was derived using the precision-level of ARINC

reports.

MODES Subscript used to indicate that the observation

was derived using the precision-level of Mode-S

reports.

REF Subscript used to indicate that the

measurement was obtained from the FAAM’s

measuring instruments

MB Mean bias of the sample.

RMSE Root Mean Square Error of the sample.

RMSV E Root Mean Square Vector Error of the sample.

ε Precision of measurement or quantisation step.

η general symbol used to represent atmospheric

phenomenon.

γ none Ratio of the constants for dry air at constant

volume and constant pressure under

International Standard Atmosphere conditions.

λ degrees Geographic longitude.

φ degrees Geographic latitude.

µ Mean value of the sample.

σ Standard deviation of the sample.

δσ Standard error of the standard deviation.

σe Standard error of the mean.
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Symbol Units Comment

σAOBS Assumed observation error standard deviation

for data assimilation.

σDD Desroziers diagnosed observation error

standard deviation.

dh m Altitude bin width for aggregated observations.

dz m Change in altitude.

dT K Change in ambient temperature.

dt K Change in time.

Γ Km−1 Environmental lapse rate.

θA radians True heading measured clockwise from

geographic North of the aircraft’s air vector.

θG radians Ground heading measured clockwise from

geographic North of the aircraft’s air vector.

θR radians Rotation of aircraft about its longitudinal axis,

clockwise is positive.

θmag radians Magnetic direction measured clockwise from

magnetic North.

θvar radians Magnetic variation which is the difference

between true heading and magnetic North,

θA − θmag .

θdev radians Magnetic deviation is the compass error and

represents the angular difference between the

true heading and compass-heading.

ξ - A general symbol used to represent a

meteorological phenomenon.

f - FAAM flight number.

k - positive integer counter

oi The ith derived observation from Mode-S.

ri The ith reference observation recorded by the

FAAM instruments.

m number of binary bits, where m < n.

n number of binary bits.

t seconds Unit of time.

ts seconds Sampling Period.

A ms−1 Local speed of sound in air.
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Symbol Units Comment

A0 ms−1 Local speed of sound in air at the Earth’s

surface under International Standard

Atmosphere conditions.

C(t) none Time varying continuous waveform.

Cmax Magnitude of the maximum of the time varying

continuous waveform.

D(t) none Time varying discrete waveform.

S(t) none Sample of the time varying continuous

waveform at time t.

Zn(t) digitised value of the varying waveform at time

t.

Zm(t) truncated value of the digitised value at time t.

M none Mach number.

Nf none The total number of observation and reference

pairs that passed quality control for FAAM

flight f .

P0 hPa Static pressure at the Earth’s surface under

International Standard Atmosphere

conditions..

PS hPa Static pressure.

PT hPa Total pressure.

Q hPa Dynamic pressure, i.e., the pitot-static pressure

difference, PT − PS .

Ra JKg−1K−1 Characteristic gas constant for dry air for the

International Standard Atmosphere.

Tb K Ambient temperature at the base of a

temperature inversion layer.

Tt K Ambient temperature at the top of a

temperature inversion layer.

Ts K Strength of a temperature inversion layer.

TA K Ambient temperature.

T0 K Ambient temperature at the Earth’s surface

under International Standard Atmosphere

conditions.

TMach K Mach temperature, ambient temperature

derived from Mode-S reports.
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Symbol Units Comment

TREF K Reference temperature, ambient temperature

measurements recorded by the FAAM’s de-iced

temperature sensor.

U ms−1 Zonal component of the horizontal wind vector.

V ms−1 Meridional component of the horizontal wind

vector.

VA Aircraft’s air vector.

VG Aircraft’s ground vector.

VW Horizontal wind vector from which the wind

blows, direction measured clockwise from

geographic North

VA ms−1 True airspeed relative to the surrounding air of

the aircraft’s air vector.

VG ms−1 Ground speed relative to the Earth’s surface of

the aircraft’s ground vector.

Vws ms−1 Wind speed, magnitude of the wind vector.

Vwd degrees Meteorological wind direction, direction of the

wind vector from which the wind blows and

measured clockwise from geographic North.

∆M none Mach number precision.

∆T none Estimated precision in the Mach Temperature.

∆U ms−1 Estimated precision in the zonal component of

the horizontal wind vector.

∆V ms−1 Estimated precision in the meridional

component of the horizontal wind vector.

∆VA ms−1 True airspeed precision.

∆VG ms−1 Ground speed precision.

∆θA radians True heading precision.

∆θG radians Ground heading precision.

z m Altitude above mean sea level.

zd m Depth of a temperature inversion layer.

zb m Altitude of the base of a temperature inversion

layer.

zt m Altitude of the top of a temperature inversion

layer.
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Acronyms Comment

3-D Var Three dimensional variational data assimilation.

ACARS Aircraft Communications Addressing and Reporting System. A digital

datalink system provided by ARINC and SITA, for transmission of

short messages between aircraft and ground stations via radio or

satellite. ACARS is also a message format transmitted to the ground

using ARINC 620 protocol

ADS-B Automatic Dependent Surveillance - Broadcast mode. Part of the

secondary surveillance radar system which broadcasts automatically a

limited set of aircraft state parameters among which are altitude,

latitude, longitude.

AIREP Pilot report of a meteorological observation or event, also called a

PIREP.

ALADIN a numerical weather prediction model.

AMDAR Aircraft Meteorological Data Relay program. A system for reporting

the state of the atmosphere which uses an aircraft’s existing

instrumentation.

ANSP Air Navigation Service Provider.

ARINC Aeronautical Radio Incorporated, a communications service provider.

Develops and maintains standards for the distribution of aircraft state

parameters between subsystems on the aircraft, between aircraft and

between aircraft and the ground.

ARINC-429 A standard used for the exchange of data between an aircraft’s

subsystems.

AROME a numerical weather prediction model.

ATM Air Traffic Management.

COPE Convective Precipitation Experiment. A series of flights conducted by

FAAM to investigate convective conditions.

COSMO Consortium for small scale modelling, a numerical weather prediction

model.

DA Data Assimilation is a statistical method used to combine observations

and NWP model data.

E−AMDAR EUMETNET−AMDAR (E−AMDAR) Programme serves EUCOS

requirements for upper air measurements of wind and temperature and

to maximize the efficiency/cost ratio of implementing AMDAR systems

for EUMETNET.

EGKK ICAO airport identifier used for the London Gatwick domain.
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Acronyms Comment

EGLL ICAO airport identifier used for the London Heathrow domain.

EUMETNET European Meteorological Network

ECMWF European Centre for Medium Range Weather forecasting.

EUCOS EUMETNET Composite Observing System

FMS Flight Management System, used to control the motion of the aircraft.

FGAT First Guess at Appropriate Time.

FAAM Facility for Atmospheric Airborne Measurements.

GPS Global Positioning System. Uses a constellation of low-earth orbit

satellites to provide an accurate position report at the Earth’s surface.

HARMONIE

HIRLAM High Resolution Limited Area Model, a numerical weather prediction

model.

HRRR High Resolution Rapid Refresh, a numerical weather prediction model

which updated at least once every hour.

WGS84 World Geodetic System 1984 (WGS84) which defines the reference

ellipsoid for the Earth’s surface for navigation co-ordinates, altitude

and mean sea level.

ICAO International Civil Aviation Authority, an executive agency of the

United Nations which encourages and co-ordinates co-operation

between air navigation service providers, airlines, airframe

manufacturers and aircraft equipment. Develops and maintains

standards for the measurement, collection, transmission and exchange

of aircraft state parameters for operational air navigation.

INS Inertial Navigation System. Uses the Earth’s rotation to fix a

geographic position at the surface.

ISA International Standard Atmosphere as defined by ICAO Technical

Report Document 7488

ISMAR International Sub-millimetre Airborne Radiometer calibration flight.

LIDAR Light detection and Ranging.

LLJ Low-level jet.

LAM Limited Area Model.

LTMA London Terminal Manoeuvring Area

MetDB Met Office Meteorological Observations Database.

MDCRS Meteorological Data Collection and Reporting System is the United

States AMDAR programme.
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Acronyms Comment

MODE-A The capability of the secondary surveillance radar to request an

aircraft’s identification code.

MODE-C The capability of the secondary surveillance radar to request aircraft’s

altitude altitude.

Mode-S Mode-Select. The capability of the secondary surveillance radar to

request aircraft state parameters from an aircraft.

Mode-S EHS Mode-Select Enhanced. The capability of the secondary surveillance

radar to request parameters for an aircraft’s state vector. A subset of

these parameters are true airspeed, magnetic heading, ground speed,

ground heading, Mach number and additional data such as MRAR.

This is sometimes referred to as Mode-S Extended Squitter or 1090

MHz Squitter.

Mode-S ELS Mode-Select Elementary. The capability of the secondary surveillance

radar to request parameters for an aircraft’s state vector. A subset of

these parameters are true airspeed, magnetic heading, ground speed,

ground heading, Mach number and additional data such as MRAR.

This is sometimes referred to as Mode-S Extended Squitter or 1090

MHz Squitter.

Mode-S MRAR Meteorological Routine Air Report which may be sent as part of

Enhanced Mode-Selective. The capability of the secondary surveillance

radar to request meteorological state parameters such as ambient

temperature and horizontal wind vector.

NATS National Air Traffic Services, the air navigation service provider for the

United Kingdom.

NCAS National Centre for Atmospheric Science, United Kingdom.

NCEP National Centre for Environmental Prediction, United States of

America.

NMS National Meteorological Service, the service provider for the national

or region’s weather service.

NOAA National Oceanic and Atmospheric Administration.

NWP Numerical Weather Prediction. A numerical model of the atmosphere

which when integrated forward in time generate forecasts of the

atmospheric state, for example, temperature, wind, cloud.

OPS Observation Processing System, Met Office application used to

pre-process observations prior to data assimilation.
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Acronyms Comment

PIREP Pilot report of a meteorological observation or event, also called an

AIREP.

RASS Radio acoustic sounding system.

RMSE Root mean square error.

SD Standard deviation.

SEVIRI Spinning Enhanced Visible and InfraRed Imager.

SODAR Sonic Detection and Ranging.

SSR Secondary Surveillance Radar.

SYNOP Surface Observations.

TAMDAR Tropospheric Airborne Meteorological Data Reporting, an integrated

sensor suite and satellite communications system (Iridium) package for

installation on regional aircraft which typically do not have

airtoground communications or highquality sensors.

TRUI TRials User Interface, Met Office software application used to quantify

the performance of NWP models.

UK United Kingdom.

UKV Met Office limited area NWP model for the United Kingdom.

UKV-ps37 Development version of the Met Office UKV - parallel suite (ps)

number 37.

UM Unified Model, a numerical weather prediction model.

UTC Universal Coordinated Time.

WMO World Meteorological Organisation, an executive agency of the United

Nations which encourages and co-ordinates co-operation between

national meteorological and hydrological organisations, in addition

develops and maintains standards for the measurement, collection,

transmission and exchange of meteorological observations for

operational meteorology and climate monitoring.

WTR Wind and temperature radar

WMO ABO Aircraft-Based Observations. An international effort within the World

Meteorological Organization (WMO) to coordinate the collection of

environmental observations from commercial aircraft.

206



Bibliography

AEEC (2004), Mark 33 Digital Information Transfer System (DITS) Part 1 Func-

tional Description, Electrical Interface, Label Assignments And Word Formats AR-

INC Specification 429 Part 1-17, Technical report, Airlines Electronic Engineering

Committee.

Andreas, E. L., Claffy, K. J. & Makshtas, A. P. (2000), ‘Low-Level Atmospheric

Jets And Inversions Over The Western Weddell Sea’, Boundary-Layer Meteorology

97(3), 459–486.

Applanix (2006), POS AV V5 Installation and Operation Guide, Technical report,

Applanix Corporation.

Arakawa, A. & Lamb, V. R. (1977), ‘Computational Design of the Basic Dynami-

cal Processes of the UCLA General Circulation Model’, Methods in Computational

Physics: Advances in Research and Applications 17, 173 – 265.

Baldauf, M., Seifert, A., Fãrstner, J., Majewski, D., Raschendorfer, M. & Rein-

hardt, T. (2011), ‘Operational Convective-Scale Numerical Weather Prediction

with the COSMO Model: Description and Sensitivities’, Monthly Weather Review

139(12), 3887–3905.

Ball, M., Barnhart, C., Nemhauser, G. & Odoni, A. (2007), Chapter 1 Air Transporta-

tion: Irregular Operations and Control , in C. Barnhart & G. Laporte, eds, ‘Trans-

portation’, Vol. 14 of Handbooks in Operations Research and Management Science,

Elsevier, pp. 1 – 67.

Ballard, S. P., L., Z., Simonin, D. & C., J.-F. (2016), ‘Performance of 4-D Var NWP-

based nowcasting of precipitation at the Met Office for summer 2012’, Quarterly

Journal of the Royal Meteorological Society 142(694), 472–487.

207



Ballard, S. P., Mirza, A. K., Maycock, A., Stone, E. K., Dance, S. L., Kelly, G., Dow,

G. & Rooney, G. G. (2017), Report on Extended Trial of Mode-S EHS data in UKV.,

Technical report, Met Office, Exeter, United Kingdom.

Ballard, S. P., Zhihong, L., Simonin, D., Buttery, H., Charlton-Perez, C., Gaussiat, N.

& Hawkness-Smith, L. (2012), ‘Use Of Radar Data In NWP-Based Nowcasting In

The Met Office’, IAHS-AISH Publication 351, 336–341.

Ballish, B. A. & Kumar, V. K. (2008), ‘Systematic Differences in Aircraft and Ra-

diosonde Temperatures Implications for NWP and Climate Studies’, Bulletin of the

American Meteorological Society pp. 1689–1707.

Bannister, R. N. (2008), ‘A review of forecast error covariance statistics in atmospheric

variational data assimilation. I: Characteristics and measurements of forecast error

covariances’, Quarterly Journal of the Royal Meteorological Society 134(637), 1951–

1970.

Barnhart, C., Fearing, D., Odoni, A. & Vaze, V. (2012), ‘Demand and capacity

management in air transportation’, EURO Journal on Transportation and Logistics

1(1), 135–155.

Barry, R. G. & Chorley, R. J. (2009), Atmosphere, Weather And Climate, Routledge.

Begueret, J. B., Mariano, A. & Dallet, D. (2008), High-Speed A/D; D/A conversion: A

survey, in ‘Bipolar/BiCMOS Circuits and Technology Meeting, 2008. BCTM 2008.

IEEE’, pp. 260–264.

Bell, R. S., Dalby, T. D., Li, D. & Saunders, F. W. (1999), The autumn 1999 global data

assimilation upgrade package forecasting research technical report no. 280, Technical

report, Met Office.

Benjamin, S. G. & Schwartz, B. E. (1999), ‘Accuracy Of ACARS Wind And Temper-

ature Observations Determined By Collocation’, Weather and Forecasting 14, 1032–

1038.

Benjamin, S. G., Weygandt, S. S., Brown, J. M., Hu, M., Alexander, C. R., Smirnova,

T. G., Olson, J. B., James, E. P., Dowell, D. C., Grell, G. A., Lin, H., Peckham,

S. E., Smith, T. L., Moninger, W. R., Kenyon, J. S. & Manikin, G. S. (2016), ‘A

North American Hourly Assimilation and Model Forecast Cycle: The Rapid Refresh’,

Monthly Weather Review 144(4), 1669–1694.

Bennett, W. R. (1948), ‘Spectra of quantized signals’, Bell System Technical Journal

27(3), 446–472.

208



Berger, H., Forsythe, M., Eyre, J. & Healy, S. (2004), A Superobbing scheme for Atmo-

spheric Motion Vectors, Technical report, Met Office Forecasting Research Technical

Report No. 451.

Blackader, A. K. (1957), ‘Boundary Layer Wind Maxima And Their Significance For

The Growth Of Nocturnal Inversions.’, Bulletin of the American Meteorological So-

ciety 38, 283–290.

Boisvert, R. & Orlando, V. (1993), ADS-Mode S system overview, in ‘Digital Avionics

Systems Conference, 1993. 12th DASC., AIAA/IEEE’, pp. 104–109.

Bormann, N. & Bauer, P. (2010), ‘Estimates of spatial and interchannel observation-

error characteristics for current sounder radiances for numerical weather prediction.

I: Methods and application to ATOVS data’, Quarterly Journal of the Royal Mete-

orological Society 136(649), 1036–1050.

Bormann, N., Bonavita, M., Dragani, R., Eresmaa, R., Matricardi, M. & McNally, A.

(2016), ‘Enhancing the impact of IASI observations through an updated observation-

error covariance matrix’, Quarterly Journal of the Royal Meteorological Society

142(697), 1767–1780.

Bormann, N., Collard, A. & Bauer, P. (2010), ‘Estimates of spatial and interchannel

observation-error characteristics for current sounder radiances for numerical weather

prediction. II: Application to AIRS and IASI data’, Quarterly Journal of the Royal

Meteorological Society 136(649), 1051–1063.

Boutle, I. A., Finnenkoetter, A., Lock, A. P. & Wells, H. (2016), ‘The London Model:

forecasting fog at 333 m resolution’, Quarterly Journal of the Royal Meteorological

Society 142(694), 360–371.

Brockwell, P. & Davis, R. (2002), Introduction to Time Series and Forecasting, Springer

Texts in Statistics, Springer New York.

Brown, P. R. A. (2004a), Turbulence Probe: Flow Angle and TAS Calibration, Tech-

nical report, Facility for Airborne Atmospheric Measurements.

Brown, R. (2004b), Smoothing, Forecasting and Prediction of Discrete Time Series

(Reprint), Dover Phoenix Editions, Dover Publications.

Brown, R. & Roach, W. T. (1976), ‘The physics of radiation fog: II – a numerical

study’, Quarterly Journal of the Royal Meteorological Society 102(432), 335–354.

209



Cardinali, C. (2013), Observation Influence Diagnostic of a Data Assimilation System,

Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 89–110.

Cardinali, C., Isaksen, L. & Andersson, E. (2003), ‘Use and Impact of Automated Air-

craft Data in a Global 4D-Var Data Assimilation System’, Monthly Weather Review

131, 1865–1877.

Carlberg, S. R. (2012), The EUMETNET AMDAR Optimization Program (E-ADOS)

- A Component of the E-AMDAR Programme, Technical report, WMO AMDAR

Panel Newsletter.
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