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Neutral and non-neutral collisionless plasma equilibria for twisted flux
tubes: The Gold-Hoyle model in a background field
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(Received 14 July 2016; accepted 18 August 2016; published online 15 September 2016)

We calculate exact one-dimensional collisionless plasma equilibria for a continuum of flux tube

models, for which the total magnetic field is made up of the “force-free” Gold-Hoyle magnetic flux

tube embedded in a uniform and anti-parallel background magnetic field. For a sufficiently weak

background magnetic field, the axial component of the total magnetic field reverses at some finite

radius. The presence of the background magnetic field means that the total system is not exactly

force-free, but by reducing its magnitude, the departure from force-free can be made as small as

desired. The distribution function for each species is a function of the three constants of motion;

namely, the Hamiltonian and the canonical momenta in the axial and azimuthal directions.

Poisson’s equation and Ampère’s law are solved exactly, and the solution allows either electrically

neutral or non-neutral configurations, depending on the values of the bulk ion and electron flows.

These equilibria have possible applications in various solar, space, and astrophysical contexts, as

well as in the laboratory. VC 2016 Author(s). All article content, except where otherwise noted, is
licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4962507]

I. INTRODUCTION

There has been significant recent work on Vlasov-

Maxwell (VM) equilibria that are consistent with nonlinear

force-free1–8 and “nearly force-free”9 magnetic fields in

Cartesian geometry. Therein, force-free refers to a magnetic

field for which the associated current density is exactly paral-

lel, which is the definition we shall also use

r� B ¼ l0j;

j� B ¼ 0:

These works consider one-dimensional (1D) collisionless

current sheets, with Refs. 1–8 specifically calculating VM

equilibrium distribution functions (DFs) that are self-

consistent with a given specific magnetic field configuration.

A natural question to consider is whether it is also possible

to find self-consistent force-free (or nearly force-free) VM

equilibria for other geometries, in particular, cylindrical

geometry. In this paper, we shall present particular VM equi-

libria for 1D magnetic fields which are nearly force-free in

cylindrical geometry, i.e., flux tubes/ropes.

Two of the archetypal field configurations in cylindrical

geometry are the z-Pinch (with axial current and azimuthal

magnetic field), the classical example of which is the

Bennett Pinch;10 and the h-Pinch (azimuthal current and

axial magnetic field). Consideration of “Vlasov-fluid” mod-

els of z-Pinch equilibria was given in Ref. 11, with Ref. 12

calculating z-Pinch equilibria and an extension with azi-

muthal ion-currents. Others have also constructed kinetic

models of the h-pinch, see Refs. 13 and 14 for examples. In

the same year as Pfirsch,15 cylindrical kinetic equilibria with

only azimuthal current were studied in Ref. 16. For examples

of treatments of the stability of fluid and kinetic linear

pinches, see Refs. 15, 17, and 18, respectively.

Recently, there have been studies on “tokamak-like” VM

equilibria with flows,19–21 starting from the VM equation in

cylindrical geometry and working towards Grad-Shafranov

equations for the vector potential. We also note two Vlasov

equilibrium DFs in the literature that are close in style to the

one that we shall present. The first is described in a brief

paper,22 with an equilibrium presented for a cylindrical pinch.

However, their distribution describes a different magnetic

field and the DF appears not to be positive over all phase

space. The second DF62 is a very recent paper that actually

describes a magnetic field much like the one that we discuss.

Their DF is designed to model ‘ion-scale’ flux tubes in the

Earth’s magnetosphere. Formally, their quasineutral model

approaches a nonlinear force-free configuration in the limit of

a vanishing electron to ion mass ratio. In their model, current

is carried exclusively by electrons and the non-negativity of

the DF depends on a suitable choice of microscopic parame-

ters. Finally, we mention that in beam physics, much work on

constructing cylindrical VM equilibria is done by looking for

mono-energetic distributions with conserved angular momen-

tum, see Refs. 23–26 for some examples.

Magnetic flux tubes and flux ropes are prevalent in the

study of plasmas, with a wide variety of observed forms in

nature and experiment, as well as uses and applications in

numerical experiments and theory. Some examples of the

environments and fields of study in which they feature

include solar,27,28 solar wind,29,30 planetary magneto-

spheres31,32 and magnetopauses,33 astrophysical plas-

mas,34,35 tokamak,36,37 laboratory pinch experiments,38 and

the basic study of energy release in magnetised plasmas,39 to

give a small selection of references.

One application of flux tubes is in the study of solar

active regions40 and the onset of solar flares and coronal massa)Electronic mail: oliver.allanson@st-andrews.ac.uk
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ejections.41–43 A classic magnetohydrodynamic (MHD)

model for magnetic flux tubes was first presented by Gold

and Hoyle (GH),44 initially intended for use in the study of

solar flares. The GH model is an infinite, straight, 1D and

nonlinear force-free magnetic flux tube with constant

“twist.”45 Mathematically, the GH magnetic field could be

regarded as the cylindrical analogue46 of the Force-Free

Harris sheet2 (a planar current sheet model), as the Bennett

Pinch10 might be to the “original” Harris Sheet.47

It is typical to consider solar, space, and astrophysical

flux tubes within the framework of MHD, e.g., see Ref. 48.

However, many of these plasmas can be weakly collisional

or collisionless, with values of the collisional free path large

against any fluid scale,49 making a description using colli-

sionless kinetic theory necessary. It is the intention of this

paper to study the GH flux tube model beyond the MHD

description, since - apart from the very recent work in Ref.

62, we see no other attempts in the literature of a micro-

scopic description of the GH field. Other than any interesting

theoretical advances, a possible application of the results of

this study could be to implement the obtained model in

kinetic (particle) numerical simulations.

In Cartesian geometry, the work in Refs. 1–8 used the

method proposed by Channell50 to tackle the VM inverse

problem, i.e., to determine self-consistent equilibrium DFs

for a given magnetic field configuration. Channell described

the extension of his work to cylindrical geometry as “not

possible in a straightforward manner.” As explained in Ref.

20 (in which cylindrical coordinates are used to model a

torus), this is due in part to the “toroidicity” of the problem,

i.e., the 1=r factor in the equations. As we shall see in this

paper, another potential complication is the need to allow—

at least in principle—a non-zero charge density. The work in

this paper does not present a generalised method for the VM

inverse problem in cylindrical geometry, but instead some

particular solutions for a specific given magnetic field.

The paper is structured as follows. In Section II, we first

review the theory of the equation of motion consistent with a

collisionless DF in cylindrical geometry and discuss the ques-

tion of the possibility of 1D force-free equilibria. Then we

introduce the magnetic field to be used. We note that whilst

the work in this paper is applied to a particular magnetic field

from Subsection II A onwards, the steps taken to calculate the

equilibrium DF seem as though they could be adaptable to

other cases. In Section III, we present the form of the DF that

gives the required macroscopic equilibrium and proceed to

“fix” the parameters of the DF by explicitly solving Ampère’s

law and Poisson’s equation. Note that whilst we choose to

consider a two-species plasma of ions and electrons, we see

no obvious reason preventing the work in this paper being

used to describe plasmas with a different composition. In

Section IV, we present a preliminary analysis of the physical

properties of the equilibrium. Particularly technical calcula-

tions are in the Appendixes. Appendix A contains the zeroth

and first order moment calculations, used to find the number

densities and bulk flows directly, and in turn the charge and

current densities. Appendix B contains the mathematical

details of the existence and location of multiple maxima of

the DF in velocity-space.

II. GENERAL THEORY

A. The Vlasov equation and the equation of motion

A collisionless equilibrium is characterised by the 1-

particle distribution function, fs, a solution of the steady-state

Vlasov equation (e.g., see Ref. 51). The Vlasov equation in

cylindrical coordinates is

@fs
@t
þ vi

@fs

@xi
þ qs

ms
Eiþ eijkvjBk

� � @fs

@vi
þ v2

h

r

@fs
@vr
� vrvh

r

@fs

@vh

� �
¼ 0;

(1)

see, for example, Refs. 16, 19, and 52. Here, i, j, and k are

used as “spatial” indices running over f1; 2; 3g, and s is used

as the particle species index. Individual particle positions and

velocities are given by ðx1; x2; x3Þ ¼ ðr; h; zÞ and ðv1; v2; v3Þ
¼ ðvr; vh; vzÞ, respectively, for r the horizontal distance from

the z axis, and h the azimuthal angle. The totally antisymmet-

ric unit tensor of rank 3 (the Levi-Civita tensor) is eijk, and

the Einstein summation convention is applied such that

repeated indices are summed over, with subscript and super-

script indices used to describe co- and contravariant compo-

nents, respectively. The mass and charge of particle species s
are ms and qs, respectively. The electric and magnetic fields

are defined as E ¼ �r/ and B ¼ r� A, for / the scalar

potential and vector potential A.

The “fluid” equation of motion of a particular species s
is found by taking first-order velocity moments of the Vlasov

equation. After a routine, but laborious moment-taking cal-

culation, we see that—in equilibrium (@=@t ¼ 0), assuming a

one-dimensional configuration with only radial dependence

(@=@h ¼ @=@z ¼ 0Þ, and letting fs be an even function of the

radial velocity vr—force balance for species s is maintained

according to

r � Psð Þr ¼ js � Bð Þr þ rsEþ
qs

r
u2

hs: (2)

The pressure tensor for species s is a rank-2 tensor and is

defined by

Pij;s ¼
ð

wis wjs fs d3v;

where vi ¼ uis þ wis, for uis the bulk velocity of species s
and vi the individual particle velocity. Note that the assump-

tion of fs to be an even function of vr automatically implies

that urs ¼ Prh ¼ Pzr ¼ 0. Equation (2) can be summed over

species to give

r � Pð Þr ¼ j� Bð Þr þ rEþ 1

r
F c; (3)

where

F c ¼ qiu
2
hi þ qeu2

he

is the force density associated with the rotating bulk flows of

the ions and electrons. Equation (3) is a cylindrical analogue

of the force balance equation in Cartesian geometry (e.g.,

see Ref. 53). There are “extra inertial terms” as compared to
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the case of Cartesian geometry. From the point of view of a

particular magnetic field B (which is the point we take by

specifying a particular macroscopic equilibrium), we see that

equilibrium is maintained by a combination of density/pres-

sure variations as in the case of Cartesian geometry, but with

additional contributions from centrifugal forces and as an

inevitable result of the resultant charge separation, an elec-

tric field. This clearly demonstrates that “sourcing” an

exactly force-free macroscopic equilibrium with an equilib-

rium DF in a 1D cylindrical geometry is inherently a more

difficult task than in the Cartesian case. The presence of

“extra” positive definite inertial forces and, almost inevita-

bly, forces associated with charge separation raises the ques-

tion of whether exactly force-free equilibria are possible at

all in this paradigm.

Before proceeding, we comment that given certain mac-

roscopic constraints on the electromagnetic fields or fluid

quantities—such as the force-free condition or a specific given

magnetic field (for example)—it is not a priori known how to

calculate a self-consistent Vlasov equilibrium, or if one even

exists within the framework of the assumptions made. Hence,

one has to proceed more or less on a case by case basis, with

the intention of achieving consistency with the required mac-

roscopic conditions, upon taking moments of the DF.

B. Methods for calculating an equilibrium DF

In Refs. 2 and 50, for example, a method used to calcu-

late a DF, given a prescribed 1D magnetic field was Inverse

Fourier Transforms (IFT). A distribution function of the form

fs / e�bsHs gsðpxs; pysÞ (4)

was used, with Hs, pxs, and pys being the conserved particle

Hamiltonian and canonical momenta in the x and y direc-

tions, and gs being an unknown function, to be determined.

Since our problem is one of a 1D equilibrium with variation

in the radial direction, the three constants of motion are the

Hamiltonian, and the canonical momenta in the h and z
directions

Hs ¼
ms

2
v2

r þ v2
h þ v2

z

� �
þ qs/;

phs ¼ r msvh þ qsAhð Þ; pzs ¼ msvz þ qsAz: (5)

A function of a subset of the constants of motion is automati-

cally a solution of the VM equation (e.g., see Ref. 51). One

can try to calculate an equilibrium distribution of the Gold-

Hoyle force-free flux tube without a background field by a

similar method, assuming a DF of the form

fs / e�bsHs gsðphs; pzsÞ: (6)

By exploiting the convolution in the definition of the current

density

j A; rð Þ ¼
X

s

qs

ð
v fs Hs; phs; pzsð Þ d3v;

¼ r
X

s

qs

m4
s

ð
ps � qsAÞ fs Hs; rphs; pzsÞ d3ps;

��

Ampère’s law can be solved by IFT, with the quantity ps

defined by

prs ¼ prs; phs ¼
phs

r
; pzs ¼ pzs:

Notice how when written in this integral form, j is not only a

function of A but—in contrast with the Cartesian case—also

of the relevant spatial co-ordinate, r. In the case of zero scalar

potential, the result of the calculation is to give a distribution

function that is not a solution of the Vlasov equation as it is

not a function of the constants of motion only. In essence, an

additional expð�r2Þ factor is required in the DF to counter

expðr2Þ terms that manifest by completing the square in the

integration. The physical cause here would appear to be the

inertial forces associated with the rotational bulk flow.

If one assumes a non-zero scalar potential, then it seems

impossible to satisfy Ampère’s law. The physical cause

seems to be that, in the case of force-free fields, one would

require a “different” electrostatic potential to balance the

inertial forces for the ions and electrons, which is of course

nonsensical. Thus, our investigation seems to suggest that it

is not possible to calculate a DF of the form of Equation (6)

for the exact GH field.

C. The magnetic field: A Gold-Hoyle flux tube plus a
background field

To make progress, we introduce a background field in

the negative z direction. The mathematical motivation for

this change is to balance the “expðr2Þ problem.” Physically,

it seems that the background field introduces an extra term

(whose sign depends on species) into the force-balance, to

allow for both the ion and electrons to be in force balance

simultaneously, given one unique expression for the scalar

potential.

The vector potential, magnetic field, and current density

used in this paper are as follows (GHþB):

A ~rð Þ ¼ B0

2s
0;

1

~r
ln 1þ ~r2ð Þ � 2k~r;�ln 1þ ~r2ð Þ

� �
;

¼ AGH � 0;B0ks�1~r; 0
� �

; (7)

B ~rð Þ ¼ B0 0;
~r

1þ ~r2
;

1

1þ ~r2
� 2k

� �
;

¼ BGH � 0; 0; 2kB0ð Þ; (8)

j ~rð Þ ¼ 2
sB0

l0

0;
~r

1þ ~r2ð Þ2
;

1

1þ ~r2ð Þ2

 !
;

¼ jGH: (9)

The magnetic permeability in vacuo is given by l0 and the

characteristic magnetic field strength by B0. The constant s
has units of inverse length, and we use 1=s to represent the

characteristic length scale of the system (~r ¼ sr) (see Table I

for a concise list of the dimensionless quantities used in this

paper, all denoted with a tilde, ~). The dimensionless constant

k> 0 controls the strength of the background field in the z
direction, and, as a result, there are now two different
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interpretations to be made. We could either consider the sys-

tem as a GH flux tube of uniform twist embedded in an

untwisted uniform background field or consider the whole

GHþB magnetic field as a non-uniformly twisted flux tube.

We note that flux tubes embedded in an axially directed back-

ground field have recently been observed during reconnection

events in the Earth’s magnetotail, by the Cluster spacecraft.63

In the first interpretation, s is a direct measure of the

“twist” of the embedded flux tube (see Ref. 45), with the

number of turns per unit length (in z) along a field line

given by s=ð2pÞ.44 In the second interpretation, we see

that the system is not uniformly twisted, with the z dis-

tance traversed when following a field line (e.g., Ref. 54)

given by ð
rBz

Bh
dh ¼ 1

s
1� 2k 1þ ~r2ð Þð Þ

ð
dh:

The fact that this depends on r demonstrates that the system

as a whole has non-uniform twist. The number of turns per

unit length in z of the GHþB field: the “twist” is given by

ðh¼2p

h¼0

rBz

Bh
dh

 !�1

¼ s
2p

1� 2k 1þ ~r2ð Þð Þð Þ�1
;

and is plotted in Figure 1 for three values of k. Since k< 1=2

corresponds to the field-reversal regime, we see a mixture of

positive and negative twists (Figure 1(a)). However, for k �
1=2 we see only negative values of the twist (Figures 1(b) and

1(c)), i.e., we travel in the negative z direction as we wind

round the GHþB flux tube in the anti-clockwise direction.

The magnetic field is plotted in Figures 2(a) and 2(b) for

two values of k. The k¼ 0.3 case contains a reversal of the

~Bz field direction and as such is akin to a Reversed Field

Pinch (e.g., see Ref. 55 for a laboratory interpretation): this

configuration may be of use in the study of astrophysical

jets, see Ref. 35, for example. The value k¼ 1/2 gives zero
~Bz at ~r ¼ 0, and as such is the value that distinguishes the

two different classes of field configuration, namely, unidirec-

tional (k � 1=2) or including field reversal (k< 1=2). The

value of ~r for which the ~Bz field reverses is plotted in Figure

2(c). The magnitude of the GHþB magnetic field is plotted

in Figure 3 for three values of k. For all values of k, j~Bj !
2k for large ~r , i.e., to a potential field.

The primary task of this paper is to calculate self-

consistent collisionless equilibrium distribution functions for

the GHþB field. This problem essentially reduces to solving

Ampère’s law such that Equation (1) is satisfied. We assume

nothing about the electric field however, and in fact use that

degree of freedom to solve Ampère’s law. The resultant

form of the scalar potential is then substituted into Poisson’s

equation, to establish the final relationships between the

microscopic and macroscopic parameters of the equilibrium.

III. THE EQUILIBRIUM DISTRIBUTION FUNCTION

Although the IFT method did not yield a self-consistent

equilibrium DF for the GH field without a background field,

the outcome of the calculation can still be used as an indica-

tion of possible forms for the DF for the GHþB field. Using

trial and error, we arrived at the distribution function

fs ¼
n0sffiffiffiffiffiffi

2p
p

vth;s

	 
3
� e�

~Hs�~xs ~phs� ~Uzs ~pzsð Þ þ Cse
� ~Hs� ~V zs ~pzsð Þ

h i
;

(10)

which is a superposition of two terms that are consistent

macroscopically with a “Rigid-Rotor,” see Ref. 18, for

example. A Rigid-Rotor is microscopically described by a

DF of the form FðH � xph � VpzÞ (with V¼ 0 in the second

term of the DF in Equation (10)). Each FðH � xph � VpzÞ
term corresponds to an average macroscopic motion of rigid

rotation with angular frequency x, and rectilinear motion

with velocity V.

The dimensionless constants ~xs; ~Uzs; ~Vzs, and Cs are

yet to be determined, with Cs > 0 for positivity of the distri-

bution. Note that the thermal beta is bs ¼ 1=ðkBTsÞ and vth;s

is the thermal velocity of species s. The ratio of the thermal

TABLE I. Dimensionless form of some important variables. The s subscript

refers to particles of species s.

Variable Dimensionless form

Particle Hamiltonian ~Hs ¼ bsHs

Particle angular momentum sphs ¼ msvth;s ~phs

Particle z-momentum pzs ¼ msvth;s ~pzs

Vector potential qsA ¼ msvth;s
~As

Scalar potential ~/s ¼ qsbs/
Bulk rectilinear flows vth;s

~Uzs ¼ Uzs; vth;s
~V zs ¼ Vzs

Bulk angular frequency svth;s ~xs ¼ xs

Particle velocity v ¼ vth;s~vs

FIG. 1. The twist (normalised by s=ð2pÞ) of the GHþB field for three values of k. (a) The twist for k< 1=2, and as such there are both negative and positive

twists, due to the field reversal. (b) and (c) both show negative twist, since there is no magnetic field reversal.
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Larmor radius, rL ¼ msvth;s=ðejBjÞ (for e ¼ jqsj) to the mac-

roscopic length scale of the system Lð¼ 1=sÞ, is given by

ds rð Þ ¼ rL

L
¼ msvth;ss

eB rð Þ ;

typically known as the “magnetisation parameter.”56 In our

system, the magnitude of the magnetic field and hence ds

itself is spatially variable. For the purposes of the calcula-

tions in this paper, however, we set

msvth;ss
eB0

¼ ds ¼ const:;

as a characteristic value (see Table II for a concise list of the

micro and macroscopic parameters of the equilibrium).

A. Maxwell’s equations: Fixing the parameters of the
DF

By insisting on a specific magnetic field configuration

(the GHþB field), we have made a statement on the macro-

scopic physics. In searching for the equilibrium DF, we are

trying to understand the microscopic physics. In this sense,

we are tackling an “inverse problem.” Once an assumption

on the form of the DF is made then—should the assumed

form be able to reproduce the correct moments—this inverse

problem reduces to establishing the relationships between

the microscopic and macroscopic parameters of the equilib-

rium. In this section, we “fix” the free parameters of the DF

in Equation (10), such that Maxwell’s equations are satisfied

r � E ¼ 1

e0

X
s

qs

ð
fsd

3v; (11)

r� B ¼ l0

X
s

qs

ð
vfsd

3v: (12)

Note that the solenoidal constraint and Faraday’s law are

automatically satisfied for the GHþB field in equilibrium,

since B ¼ r� A implies that r � B ¼ 0 and E ¼ �r/
implies that r� E ¼ 0 ¼ � @B

@t .

1. Ampère’s law

In Appendix A, we have calculated the jz current den-

sity, found by summing first order moments in vz of the DF.

FIG. 2. (a) and (b) The GHþB mag-

netic field in the xy plane, for two val-

ues of k. The curved arrows indicate

the direction of the ~Bh components,

whilst the blue-black-red shading

denotes the magnitude and direction of

the ~Bz component. The k¼ 0.3 case

contains a reversal of the ~Bz field

direction and as such is a reversed field

pinch whilst k¼ 0.5 gives zero ~Bz at
~r ¼ 0. (c) The radius at which ~Bz

changes its direction, for 0 < k < 1=2.
~Bz does not reverse for k � 1=2.

FIG. 3. (a)–(c) The magnitude of the GHþB magnetic field for k ¼ 0:1; 0:5 and k¼ 1, respectively, normalised by B0. For k< 0.5, j~Bj ! 2k from above,

whereas for k � 1=2; j~Bj ! 2k from below.

TABLE II. The fundamental parameters of the equilibrium. The s subscript refers to particles of species s.

Macroscopic Microscopic

Parameter Meaning Parameter Meaning

B0 Characteristic magnetic field strength ms Mass of particle

s Measure of the twist of flux tube qs, q Charge, magnitude of charge

k Strength of the background field bs ¼ 1=ðkBTsÞ Thermal beta

c1 6¼ 0; 1; 0 < c2 < 1 Gauge for scalar potential vth;s Thermal velocity

Uzs;Vzs Bulk rectilinear flows dsðrÞ; ds Magnetisation parameters

xs Bulk angular frequency n0s Normalisation of particle number
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We now substitute in the macroscopic expressions for

jzð~rÞ; Ahð~rÞ, and Azð~rÞ from (9) and (7) into the expression

for the jz current density of Equation (A4). After this substi-

tution, we can calculate a /ðrÞ that makes the system consis-

tent. The substitution of the known expressions for jz, Az, and

Ah gives

jz ~rð Þ ¼ 2sB0

l0

1

1þ ~r2ð Þ2
¼
X

s

n0sqsvth;se
�qsbs/

� ~Uzse
~U

2

zsþ~r2 ~x2
sð Þ=2�sgn qsð Þ~xs~r

2k=ds

	
� 1þ ~r2ð Þsgn qsð Þ ~xs� ~Uzsð Þ= 2dsð Þ

þ ~VzsCse
~V

2

zs=2 1þ ~r2ð Þ�sgn qsð Þ ~V zs= 2dsð Þ


: (13)

In order to satisfy the above equality, we can construct a

solution by introducing a “separation constant” c1 6¼ 0; 1.

We multiply the above equation by ð1þ ~r2Þ2 which makes

the left-hand side constant, whilst the right-hand side is a

sum of two terms, one depending on ion parameters and the

second depending on electron parameters. Then we can

define c1 by

2sB0

l0

¼ 2sB0

l0

1� c1ð Þ þ 2sB0

l0

c1; (14)

associating the “ion term” with the first term on the right-

hand side of (14), and the “electron term” with the second

term on the right-hand side of (14). After some algebra, we

can rearrange these two associations to give two expressions

for the scalar potential, one in terms of the ion parameters,

and one in terms of the electron parameters

/ rð Þ ¼ 1

qibi

ln
l0n0iqivth;i

2sB0 1� c1ð Þ
~Uzie

~Uzi
2þ~r2 ~x i

2ð Þ=2�~x i~r
2k=di

h�

� 1þ ~r2ð Þ2þ ~x i� ~Uzið Þ= 2dið Þ

þ ~VziCie
~V

2

zi=2 1þ ~r2ð Þ2� ~V zi= 2dið Þio
;

/ rð Þ ¼ 1

qebe

ln
l0n0eqevth;e

2sB0c1

~Uzee
~U

2

zeþ~r2 ~x2
eð Þ=2þ~xe~r2k=de

h�

� 1þ ~r2ð Þ2� ~xe� ~Uzeð Þ= 2deð Þ

þ ~VzeCee
~V

2

ze=2 1þ ~r2ð Þ2þ ~V ze= 2deð Þio
:

The two values of the scalar potential above must be made

identical by a suitable choice of relationships between the

ion and electron parameters. Given enough freedom in

parameter space, we could say, that the z component of

Ampère’s law is implicitly solved by the above equations, in

that one just needs to choose a consistent set of parameters.

However, we seek a solution in an explicit sense.

In order to make progress we non-dimensionalise the

above equations by multiplying both sides by ebr with

br ¼
bibe

be þ bi

:

Once this is done, we can write the scalar potential in the

form

ebr/ rð Þ ¼ ln ion terms½ �
ebr
qibi

n o
; (15)

ebr/ rð Þ ¼ ln electron terms½ �
ebr

qebe

n o
: (16)

Specifically, Equations (15) and (16) require the equality of

the arguments of the logarithm to hold in order for a mean-

ingful solution to be obtained for the scalar potential. A first

step towards this is made by requiring consistent powers of

the 1þ ~r2 “profile” in the right-hand side of the above

expression to allow factorisation. Hence

ð~xi � ~UziÞ=ð2diÞ ¼ � ~Vzi=ð2diÞ;
� ð~xe � ~UzeÞ=ð2deÞ ¼ ~Vze=ð2deÞ;
) ~xi ¼ ~Uzi � ~Vzi; ~xe ¼ ~Uze � ~Vze; (17)

and hence the rigid-rotation, ~xs, is fixed by the difference of

the rectilinear motion, ~Uzs � ~Vzs. On top of this, we require

that the power of the 1þ ~r2 “profile” on the right-hand side

is the same for both the ions and electrons, thus

ebr

qibi

2� ~Vzi= 2dið Þ
� �

¼ E ¼ ebr

qebe

2þ ~Vze= 2deð Þ
� �

: (18)

This condition seems to be a statement on an average poten-

tial energy associated with the particles. Once more to allow

factorisation of the 1þ ~r2 “profile,” we insist that net

expðr2Þ terms cancel, i.e.,

~xi

2
¼ k

di
> 0;

~xe

2
¼ � k

de
< 0: (19)

The physical meaning of this condition seems to be that the

frequencies of the rigid rotor for each species are matched

according to the relevant magnetisation, and the background

field magnitude. The remaining task is to ensure equality of

the “coefficients”

1

4di 1� c1ð Þ
n0imiv2

th;i

B2
0= 2l0ð Þ

~Uzie
~U

2

zi=2 þ ~VziCie
~V

2

zi=2

h i( ) ebr
qibi

¼ D

¼ � 1

4dec1

n0emev2
th;e

B2
0= 2l0ð Þ

~Uzee
~U

2

ze=2 þ ~VzeCee
~V

2

ze=2

h i( ) ebr
qebe

:

(20)

These seem to be conditions on the ratios of the energy den-

sities associated with the bulk rectilinear motion and the

magnetic field, respectively. Thus far, we have 8 constraints

and 12 unknowns ( ~Uzs; ~Vzs; ~xs;Cs; n0s; bs) given fixed char-

acteristic macroscopic parameters of the equilibrium B0, s,

and k. We can now write down an expression for / that

explicitly solves the z component of the Ampère’s law

/ ~rð Þ ¼ 1

ebr

E ln 1þ ~r2ð Þ þ / 0ð Þ; (21)

with

/ 0ð Þ ¼ 1

ebr

lnD:

092106-6 Allanson, Wilson, and Neukirch Phys. Plasmas 23, 092106 (2016)

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  217.39.60.195 On: Thu, 15 Sep

2016 14:13:02



Clearly, we require that D > 0 for the expression above to

make sense. It is clear that the sign of c1 could, in principle,

affect the sign of D. It is seen from (20) that positivity of D
implies that

1

1� c1

~Uzie
~U

2

zi=2 þ ~VziCie
~V

2

zi=2

h i
> 0; (22)

1

c1

~Uzee
~U

2

ze=2 þ ~VzeCee
~V

2

ze=2

h i
< 0: (23)

By rearranging the above inequalities to make Cs the subject,

it can be seen after some algebra that positivity of D and Cs

is guaranteed when

c1 > 1; sgnð ~UzsÞ ¼ �sgnð ~VzsÞ:

Note that these conditions are sufficient, but not necessary,

i.e., it is possible to have D > 0 and Cs > 0 for any value of

c1 6¼ 0; 1, and even for sgnð ~UzsÞ ¼ sgnð ~VzsÞ in the case of

c1 < 0.

Thus far, we have only considered the jz component, and

it is premature to consider all components of Ampère’s law

satisfied. Let us move on to consider the h component. In a

process similar to that above, we substitute in the macro-

scopic expressions for jhð~rÞ; Ahð~rÞ and Azð~rÞ for the GHþB

field into the expression for the jh current density of

Equation (A6) in Appendix A. After this substitution, we can

once more calculate the / that makes the system consistent.

The substitution gives

jh¼
2sB0

l0

¼
X

s

n0sqsvth;s ~xse
�qsbs/

�e
~U

2

zsþ~r2 ~x2
sð Þ=2�sgnðqsÞ ~xs~r

2k=ds 1þ~r2ð Þ2þsgn qsð Þ ~xs� ~Uzsð Þ= 2dsð Þ
:

(24)

Using the parameter relations as above, we determine that

the scalar potential is again given in the form of (21)

/ ~rð Þ ¼ 1

ebr

Eln 1þ ~r2ð Þ þ / 0ð Þ:

Hence, this form of the scalar potential is consistent

provided

1

1� c2

1

4di

n0imivth;ixi=s

B2
0= 2l0ð Þ

e
~U

2

zi=2

" # ebr
qibi

¼ D

¼ � 1

c2

1

4de

n0emevth;exe=s
B2

0= 2l0ð Þ
e

~U
2

ze=2

" # ebr
qebe

; (25)

for c2 6¼ 1 another separation constant. These seem to be

conditions on the ratios of the energy densities associated

with the bulk rotation and the magnetic field, respectively.

This has added two more constraints.

Once again, we must ensure that D > 0. Since xe < 0,

the right-hand side of the above equation implies that c2 > 0

to ensure that D > 0. Whilst the left-hand side implies that

c2 < 1 for positivity of D since xi > 0. Hence, we can say,

that for positivity

0 < c2 < 1:

We can now consider Ampère’s law satisfied, given a /
that solves Poisson’s equation. As a result, the problem of

consistency is now shifted to solving Poisson’s equation,

where the remaining degrees of freedom lie.

2. Poisson’s equation

The final step in “self-consistency” is to solve Poisson’s

equation. Frequently in such equilibrium studies, this step is

replaced by satisfying quasineutrality and in essence solving

a first order approximation of Poisson’s equation, see, for

example, Refs. 1, 20, and 51. Here, we solve Poisson’s

equation exactly, i.e., to all orders. Poisson’s equation in

cylindrical coordinates with only radial dependence gives

r � E ¼ � 1

r

@

@r
r
@/
@r

� �
¼ r

e0

: (26)

The electric field is calculated as E ¼ �r/, giving

Er ¼ �@r/ ¼ �
2sE
ebr

~r

1þ ~r2ð Þ :

We can now take the divergence of the electric field r � E
¼ s~r�1@~r ð~rErÞ and so

r � E ¼ � 4s2E
ebr

1

1þ ~r2ð Þ2
) r ¼ � 4e0s2E

ebr

1

1þ ~r2ð Þ2
: (27)

This gives a non-zero net charge per unit length (in z) of

Q ¼
ðh¼2p

h¼0

ðr¼1

r¼0

r r dr dh ¼ � 4pe0E
ebr

: (28)

The charge density derived in Equation (27) must equal the

charge density calculated by taking the zeroth moment of the

DF. The expression for the charge density calculated in (A2)

gives

r ¼
X

s

qsns ¼
X

s

n0sqse
�qsbs/ e

~U
2

zsþ~r 2 ~x2
sð Þ=2

	

� e
~Uzs

~Azs e~xs~r ~Ahs þ Cse
~Uzs�~xsð Þ2=2e

~U zs�~xsð Þ ~Azs



;

¼
X

s

n0sqse
�qsbs/ 1þ ~r2ð Þsgn qsð Þ ~xs� ~U zsð Þ= 2dsð Þ

� e
~U

2

zs=2 þ Cse
~Uzs�~xsð Þ2=2

	 

;

¼ 1

1þ ~r2ð Þ2
X

s

n0sqsD�
qsbs
ebr e

~U
2

zs=2 þ Cse
~Uzs�~xsð Þ2=2

	 

:

(29)

The second equality is found by substituting the form of the

vector potential from Equation (7), and the final equality is
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reached by using the conditions derived in Equations

(17)–(21).

We can now match Equations (27) and (29) to get

r ¼ � 4e0s2E
ebr

¼
X

s

n0sqsD�
qsbs
ebr e

~U
2

zs=2 þ Cse
~V

2

zs=2

	 

: (30)

We now have 12 physical parameters ( ~Uzs; ~Vzs; ~xs;
Cs; n0s; bs) with 11 constraints (17)–(20), (25), and (30). For

example, if one picks B0, s, k and one microscopic parame-

ter, say, bi, then the remaining parameters of the equilibrium,

( ~Uzs; ~Vzs; ~xs;Cs; n0s, be), are now determined. One could, of

course, choose the values of a different set of parameters and

determine those that remain by using the constraints derived.

Note that whilst the constants c1 6¼ 0; 1 and 0 < c2 < 1 are

system parameters, they are not physically meaningful as

they only represent a change in the gauge of the scalar

potential.

IV. ANALYSIS OF THE EQUILIBRIUM

A. Non-neutrality and the electric field

It is seen from Equations (27) and (28) that the basic

electrostatic properties of the equilibrium described by fs are

encoded in E. The equilibrium is electrically neutral only

when E ¼ 0, and non-neutral otherwise. Specifically, there is

net negative charge when E > 0, and net positive charge

when E < 0. This net charge is finite in the ðr; hÞ plane and

given by Q in Equation (28).

Physically, the sign of E seems to be related to the

respective magnitudes of the bulk rotation frequencies, ~xs.

From Equations (17) and (18), we see that E > 0 implies that

~xi > x?
i ¼ ~Uzi � 4di;

j~xej < x?
e ¼ � ~Uze � 4de;

and E < 0 implies that

~xi < x?
i ¼ ~Uzi � 4di;

j~xej > x?
e ¼ � ~Uze � 4de:

Hence, E > 0 is seen to occur for “sufficiently large” bulk

ion rotation frequencies, and “sufficiently small” (in magni-

tude) bulk electron rotation frequencies. A positive E corre-

sponds to an electric field directed radially “inwards.” This

seems to make sense physically, by the following argument.

A “larger” (~xi > x?
i ) bulk ion rotation frequency gives a

“larger” centrifugal force, and a “smaller” (j~xej < x?
e) bulk

electron rotation frequency gives a “smaller” centrifugal

force. For a dynamic interpretation, at a fixed r, the ions are

forced to a slightly larger radius than the electrons, i.e., a

charge separation manifests on small scales. This charge sep-

aration results in an inward electric field, Er < 0. An equally

valid interpretation is to say, that for an equilibrium to exist,

an electric field must exist to counteract the differences in

the centrifugal forces associated with the bulk ion and elec-

tron rotational flows.

In a similar manner, E < 0 is seen to occur for

“sufficiently small” (~xi < x?
i ) bulk ion rotation frequencies,

and “sufficiently large” (j~xej > x?
e) bulk electron rotation

frequencies. A negative E corresponds to an electric field

directed radially “outwards.” We can then interpret these

results physically, in a manner like that above.

Finally, we can interpret the neutral case, E ¼ 0, as the

intermediary between the two circumstances considered

above. That is to say, that the equilibrium is neutral when the

bulk rotation flows are just matched accordingly, such that

there is no charge separation and hence no electric field.

B. The equation of state and the plasma beta

For certain considerations, e.g., the solar corona, it

would be advantageous if the DF had the capacity to describe

plasmas with sub-unity values of the plasma beta: the ratio

of the thermal energy density to the magnetic energy density

bpl ~rð Þ ¼ 2l0kB

B2

X
s

nsTs: (31)

For our configuration, the number density is seen to be pro-

portional to the rr component of the pressure tensor,

Prr;s ¼ nskBTs. This is demonstrated by the following calcu-

lation. In order to calculate Prr, we must consider the

integral

Prr ¼
X

s

ms

ð1
�1

wrs wrs fs d3v: (32)

However, we do not have to consider a bulk velocity in the r
direction here ðurs ¼ 0Þ, since fs is an even function of vr.

Using the fact thatð1
�1

v2
r e�v2

r =ð2v2
th;sÞdvr ¼ v2

th;s

ð1
�1

e�v2
r =ð2v2

th;sÞdvr;

and by consideration of Equation (32) and the number den-

sity, we see that

Prr;s ¼ msv
2
th;sns; (33)

that is to say, that kBTs ¼ msv2
th;s. Note that if ni ¼ ne :¼ n

and hence E ¼ 0 (neutrality), then we have an equation of

state given by

Prr ¼
be þ bi

bebi

n:

This resembles expressions found in the Cartesian case, in

Refs. 3, 7, and 50, for example. Incidentally, we can use the

connection between ns and Prr to give an expression for the

bpl that is perhaps more typically seen

bpl ~rð Þ ¼ 2l0

B2

X
s

Prr;s:

The square magnitude of the magnetic field (Equation (8)) is

given by

B2 ¼ B2
0

1þ ~r2ð Þ 1� 4k þ 4k2 1þ ~r2ð Þð Þ:
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Using the number density from Equation (A1) in the defini-

tion of the plasma beta from Equation (31), as well as the

equilibrium conditions (17)–(21) gives

bpl ~rð Þ ¼ 2l0

B2
0 1þ ~r2ð Þ 1� 4k þ 4k2 1þ ~r2ð Þð Þ

�
X

s

n0s

bs

D�
qsbs
ebr e

~U
2

zs=2 þ Cse
~V

2

zs=2

	 

: (34)

It is not immediately obvious from the above equation

what values bpl can have. However, it is readily seen that as

~r !1 then bpl ! 0, essentially since the number density is

vanishing at large radii. On the central axis of the tube, we

see that

bpl 0ð Þ ¼ 2l0

B2
0 1� 4k þ 4k2ð Þ

�
X

s

n0s

bs

D�
qsbs
ebr e

~Uzs
2=2 þ Cse

~V zs
2=2

	 

; (35)

suggesting that for a suitable choice of parameters, it should

be possible to attain any value of bpl on the axis.

C. Plots of the DF

A characteristic that one immediately looks for in a new

DF is the existence of multiple maxima in velocity space,

which are a direct indication of non-thermalisation, relevant

for the existence of micro-instabilities (e.g., see Ref. 57).

Using an analysis very similar to that in Ref. 3, we can

derive—for a given value of ~xs—conditions on ~r and either

~vz or ~vh, for the existence of multiple maxima in the ~vh or ~vz

direction, respectively. We present these calculations in

Appendixes B1 and B2. The most readily understood results

are that multiple maxima in the ~vh direction can only occur

for ~r > 2=j~xsj, and in the ~vz direction for j~xsj > 2. Given

these necessary conditions, one can then calculate that

multiple maxima of fs will occur in the ~vh direction for ~vz

bounded above and below, and vice versa.

In Figures 4–7, we present plots of the DFs over a range

of parameter values. Figures 4 and 5 show the ion DFs for

k¼ 0.1 and k¼ 1, respectively, for all combinations of

~xi ¼ 1; 3; ~r ¼ 0:5; 2, and Cs ¼ 0:1; 1, and with the magnet-

isation parameter di ¼ 1. As a graphical confirmation of the

above discussion, we can only see multiple maxima in the ~vh

direction for ~r > 2=j~xsj, and in the ~vz direction for j~xsj > 2,

with the appropriate bounds marked by the horizontal/verti-

cal white lines.

Aside from multiple maxima in the orthogonal direc-

tions, the DF can also be “two-peaked.” That is, the DF can

have two isolated peaks in ð~vz;~vhÞ space. This is seen to

occur for Figures 5(d), 5(g), and 5(h). Hence, fi is seen to be

“two-peaked” when k¼ 1 for both ~r > 2=~xi and ~r < 2=~xi.

However, we do not see a two-peaked DF for k¼ 0.1. This

seems to suggest that the stronger guide field (k¼ 1) corre-

lates with multiple peaks. Physically, this may correspond to

the fact that a homogeneous guide field is consistent with a

Maxwellian DF centred on the origin in ð~vz;~vhÞ space, given

that a Maxwellian contributes zero current. Hence, if the

“main” part/peak of the DF is centred away from the origin,

then the Maxwellian contribution from the guide field could

contribute a secondary peak. These secondary peaks are seen

to be more pronounced when ~Ci is larger, i.e., the contribu-

tion from the second term from the DF is greater.

Figures 6 and 7 show the electron DFs for k¼ 0.1 and

k¼ 1, respectively, for all combinations of ~xe ¼ 1; 3;

~r ¼ 0:5; 2, and Ce ¼ 0:1; 1, and with the magnetisation

parameter de ¼ di

ffiffiffiffiffiffiffiffiffiffiffiffiffi
me=mi

p
� 1=

ffiffiffiffiffiffiffiffiffiffi
1836
p

. This choice of mag-

netisation corresponds to Ti¼ Te. In general, we see DFs

with fewer multiple maxima in velocity space than the ion

plots, which is physically consistent with the electrons being

more magnetised, i.e., more “fluid-like.” In particular, we

see no multiple maxima in Figure 7, the case with the stron-

ger background field.

FIG. 4. Contour plots of the fi in ð~vz;~vhÞ space for an equilibrium with field reversal (k ¼ 0:1 < 0:5), for a variety of parameters (~x i; ~r ;Ci) and di ¼ 1. The

white horizontal/vertical lines indicate the regions in which multiple maxima in either the ~vz or ~vz directions can occur, if at all. A single line indicates that the

“region” is a line.
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FIG. 5. Contour plots of fi in ð~vz;~vhÞ space for an equilibrium without field reversal (k ¼ 1 > 0:5), for a variety of parameters (~x i; ~r ;Ci) and di ¼ 1. The white

horizontal/vertical lines indicate the regions in which multiple maxima in either the ~vz or ~vz directions can occur, if at all. A single line indicates that the

“region” is a line.

FIG. 6. Contour plots of fe in ð~vz;~vhÞ space for an equilibrium with field reversal (k ¼ 0:1 < 0:5), for a variety of parameters (~xe; ~r ;Ce) and de � 1=
ffiffiffiffiffiffiffiffiffiffi
1836
p

.

The white horizontal/vertical lines indicate the regions in which multiple maxima in either the ~vz or ~vz directions can occur, if at all. A single line indicates

that the “region” is a line.

FIG. 7. Contour plots of fe in ð~vz;~vhÞ space for an equilibrium without field reversal (k ¼ 1 > 0:5), for a variety of parameters (~xe; ~r ;Ce) and de � 1=
ffiffiffiffiffiffiffiffiffiffi
1836
p

.

Note that there are not any multiple maxima in this case.
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Note that when the electrons to have the same magnetisa-

tion as the ions, i.e., de ¼ di ¼ 1, then these marked differ-

ences in the velocity-space plots disappear, and we observe a

qualitative symmetry fið~vh;~vz; rÞ / feð�~vh;�~vz; rÞ.

V. SUMMARY

In this paper, we have calculated one-dimensional colli-

sionless equilibria for a continuum of magnetic field models

based on the Gold-Hoyle flux tube, with an additional con-

stant background field in the axial direction. This study was

motivated by a desire to extend the existing methods for sol-

utions of the “inverse problem in Vlasov equilibria” in

Cartesian geometry, to cylindrical geometry. Initial efforts

focussed on solving for the exact force-free Gold-Hoyle

field, but this seems impossible due to the positive definite

centrifugal forces. The Gold-Hoyle field, in particular, was

chosen as it represents the “natural” analogue of the Force-

Free Harris Sheet in cylindrical geometry, a magnetic field

whose VM equilibria have been the subject of recent

study.2–4,6–8

A background field was introduced, and an equilibrium

distribution function was found that reproduces the required

magnetic field, i.e., solves Ampère’s law. It is the presence

of the background field that allows us to solve the Vlasov

equation and Ampère’s law, and it appears physically neces-

sary as it introduces an “asymmetry;” namely, an extra term

into the equation of motion whose sign depends explicitly on

species. In contrast to the “demands” of insisting on a partic-

ular magnetic field, no condition was made on the electric

field. The distribution function allows both electrically neu-

tral and non-neutral configurations, and in the case of non-

neutrality, we find an exact and explicit solution to Poisson’s

equation for an electric field that decays like 1=r far from the

axis. We note here that the type of solutions derived in this

paper could—after a Galilean transformation—be interpreted

as 1D BGK modes with finite magnetic field (see Refs.

58–61, for example, to provide some context).

An analysis of the physical properties of the DF was

given in Section IV, with some detailed calculations in

Appendix B. The dependence of the sign of the charge den-

sity (and hence the electric field) on the bulk ion and electron

rotational flows was analysed, with a physical interpretation

given. Essentially, the argument states that the electric field

exists in order to balance the difference in the centrifugal

forces between the two species. The DF was found to be able

to give sub-unity values of the plasma beta, should this be

required/desirable given the relevant physical system that it

is intended to model. The final part of the analysis focussed

on plotting the DF in velocity space, for certain parameter

values, and at different radii. Mathematical conditions were

found that determine whether or not the DF could have mul-

tiple maxima in the orthogonal directions in velocity space,

and these are corroborated by the plots of the distribution

functions. For certain parameter values, the DF was also

seen to have two separate, isolated peaks. This non-

thermalisation suggests the existence of microinstabilities,

for a certain choice of parameters.

Further work could involve a deeper analysis of the prop-

erties of the distribution functions and their stability. This

work has also raised a fundamental question: “is it possible to

describe a one-dimensional nonlinear force-free collisionless

equilibrium in cylindrical geometry?” Preliminary investiga-

tions seem to suggest that it is not possible.
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APPENDIX A: MOMENTS OF THE DF

In this Appendix, we calculate the zeroth and first order

velocity space moments of the DF, necessary for the charge

density and the current density, respectively. See Table I for

a clarification of all dimensionless quantities denoted by a

tilde,~.

The number density of species s is given by the zeroth

moment of the DF

ns ¼
ð

fsd
3vs ¼ n0se

�~/s

� ½eð ~U
2

zsþ~r2 ~x2
s Þ=2e

~U zs
~Azs e~xs~r ~Ahs þ Cse

~V
2

zs=2e
~V zs

~Azs �: (A1)

The following sum gives the charge density:

r ¼
X

s

qsns ¼
X

s

n0sqse
�~/s

� ½eð ~U
2

zsþ~r2 ~x2
s Þ=2e

~Uzs
~Azs e~xs~r ~Ahs þ Cse

~V
2

zs=2e
~V zs

~Azs �: (A2)

We take the vz moment of the DF to calculate the z�
component of the bulk velocity

uzs ¼
v4

th;s

ns

ð
~vzsfsd

3~vs;

¼ n0svth;s

ns
e�

~/s ~Uzse
~Uzs

~Azs e
~U

2

zsþ~r2 ~x2
sð Þ=2e~xs~r ~Ahs

h

þ ~VzsCse
~V

2

zs=2e
~V zs

~Azs

i
; (A3)

for ns the number density. The following sum gives the z�
component of the current density:

jz ¼
X

s

qsnsuzs ¼
X

s

n0sqsvth;se
�~/s

� ð ~Uzse
~Uzs

~Azs eð
~U

2

zsþ~r 2 ~x2
s Þ=2e~xs~r ~Ahs þ ~VzsCse

~V
2

zs=2e
~V zs

~AzsÞ:
(A4)

By taking the vh moment of the DF, we can calculate the

h� component of the bulk velocity
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uhs ¼
v4

th;s

ns

ð
~vhsfsd

3~vs;

¼ ~r ~xsn0svth;se
�~/s

ns
e

~U
2

zsþ~r2 ~x2
sð Þ=2e

~U zs
~Azs e~xs~r ~Ahs ; (A5)

for ns the number density. The following sum gives the h�
component of the current density:

jh ¼
X

s

qsnsuhs ¼
X

s

n0sqsvth;s~r ~xse
�~/s

� e
~Uzs

~Azs eð
~U

2

zsþ~r2 ~x2
s Þ=2e~xs~r ~Ahs : (A6)

APPENDIX B: LOOKING FOR MULTIPLE MAXIMA

1. Maxima of the DF in vh space

The ~prs dependence of the DF is irrelevant to our discus-

sion, and as such can be integrated out. We can also neglect

the scalar potential /. The reduced DF, ~Fs, in dimensionless

form is

~Fs ¼ ðð
ffiffiffiffiffiffi
2p
p

vth;sÞ2=n0sÞ e
~/s

ð1
�1

fs dvr;

which then reads

~Fs ¼ exp � 1

2

~phs

~r
� ~Ahs

� �2

þ ~pzs � ~Azs

� �2

" #( )

� exp ~xs~phs þ ~Uzs
~Pzs

� �
þ Cs exp ~Vzs

~Pzs

� �h i
: (B1)

We have written ~Fs in terms of the canonical momenta, and so

we search for stationary points given by @ ~Fs=@~phs ¼ 0, equiv-

alent to @ ~Fs=@~vhs ¼ 0. Setting @ ~Fs=@~phs ¼ 0 gives

~phs � ~r ~Ahs ¼
~xs~r

2

1þ Cse�~xs ~pzs e�~xs ~phs

¼ A

1þ Be�~xs ~phs
:¼ R ~phsð Þ: (B2)

To derive a necessary condition for multiple maxima, we

analyse the RHS of Equation (B2), Rð~phsÞ. This function is

bounded between 0 and A and is monotonically increasing.

Hence, using techniques similar to those in Ref. 3, a neces-

sary condition for multiple maxima in the DF is that

max
~phs

R0ð~phsÞ > 1: (B3)

This condition can be shown to be equivalent to A~xs=4 > 1

and so

~x2
s > 4~r�2 () ~r > 2=j~xsj: (B4)

This demonstrates that for sufficiently small ~r , there cannot

exist multiple maxima. Equivalently, this condition will

always be satisfied for some ~r , and as such is just a condition

on the domain, in ~r , for which multiple maxima can occur.

This condition is not sufficient, however, as it could still be

the case that there exists only one point of intersection (and

hence one maximum), depending on the value of B. It is seen

that R has unit slope at

~p6
hs ¼

1

~xs
� ln 2Bð Þ � ln A~xs � 26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A~xs A~xs � 4ð Þ

p	 
h i
:

(B5)

Clearly, R has unit slope for two values of ~phs. After some

graphical consideration of the problem, it becomes apparent

that B should be bounded above and below for multiple max-

ima. After elementary consideration of the functional form

of (B2), for example, with graph plotting software, we see

that multiple maxima in the ~vh direction can only occur, for

a given ~r , when B (and hence ~vz) satisfies these inequalities

for ions

~pþhi � Rð~pþhiÞ � ~r ~Ahi > 0;

~p�hi � Rð~p�hiÞ � ~r ~Ahi < 0; (B6)

and these for electrons

~pþhe � Rð~pþheÞ � ~r ~Ahe < 0;

~p�he � Rð~p�heÞ � ~r ~Ahe > 0: (B7)

2. Maxima of the DF in vz space

We shall once again use the reduced DF defined in

Equation (B1) in our analysis. Thus, we shall consider

@ ~Fs=@~pzs ¼ 0, which is equivalent to @ ~Fs=@~vzs ¼ 0. Setting

@ ~Fs=@~pzs ¼ 0 gives

~pzs � ~Azs ¼
~Uzs þ Cs

~Vzse
�~xs ~pzsþ~phsð Þ

1þ Cse�~xs ~pzsþ~phsð Þ

¼ A1

1þ B1e�D1 ~pzs
þ A2

1þ B2e�D2 ~pzs

:¼ R1 ~pzsð Þ þ R2 ~pzsð Þ ¼ R ~pzsð Þ;

such that

A1 ¼ ~Uzs; A2 ¼ ~Vzs;

B1 ¼ Cse
�~xs ~phs ¼ B�1

2 ; D1 ¼ ~xs ¼ �D2:

To derive a necessary condition for multiple maxima, we

analyse the RHS of Equation (B8). Each R function is

bounded and monotonic. Once again using techniques simi-

lar to those in Ref. 3, a necessary condition for multiple max-

ima in the DF is that

max
~pzs

ðR01ð~pzsÞ þ R02ð~pzsÞÞ > 1: (B8)

After some algebra, this condition can be shown to be equiv-

alent to ~x2
s=4 > 1 and so

j~xsj > 2: (B9)

This condition is not sufficient however, as it could still be

the case that there exists only one point of intersection,

depending on the value of B1ð¼ 1=B2Þ. The transition
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between 3 points of intersection and one occurs at the value

of B1 for which the straight line of slope unity through ~pzs ¼
0 just touches R1ð~pzsÞ þ R2ð~pzsÞ at the point where it also has

unit slope. It is readily seen that R1 þ R2 has unit slope at

~p6
zs ¼

1

~xs
� ln 2B1ð Þ � ln ~x2

s � 26

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~x2

s ~x2
s � 4

� �q� �� �
:

(B10)

We see again that R has unit slope for two values of ~pzs.

Once again, after some graphical consideration of the prob-

lem, it becomes apparent that B1 should be bounded above

and below for multiple maxima. After elementary consider-

ation of the functional form of (B8), for example, with graph

plotting software we see that multiple maxima in the ~vz

direction can only occur, for a given ~r , when B1 (and hence

~vh) satisfies these inequalities for ions

~pþzi � Rð~pþzi Þ � ~Azi > 0;

~p�zi � Rð~p�zi Þ � ~Azi < 0; (B11)

and these for electrons

~pþze � Rð~pþzeÞ � ~Aze < 0;

~p�ze � Rð~p�zeÞ � ~Aze > 0: (B12)
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