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Abstract. Privacy protection may be defined as replacing the original content in an image region with a new (less
intrusive) content having modified target appearance information to make it less recognizable by applying a privacy
protection technique. Indeed the development of privacy protection techniques needs also to be complemented with an
established objective evaluation method to facilitate their assessment and comparison. Generally, existing evaluation
methods rely on the use of subjective judgements or assume a specific target type in image data and use target detection
and recognition accuracies to assess privacy protection. This paper proposes a new annotation-free evaluation method
that is neither subjective nor assumes a specific target type. It assesses two key aspects of privacy protection: protec-
tion and utility. Protection is quantified as an appearance similarity and utility is measured as a structural similarity
between original and privacy-protected image regions. We performed an extensive experimentation using six chal-
lenging datasets (having 12 video sequences) including a new dataset (having six sequences) that contains visible and
thermal imagery. The new dataset is made available online for community. We demonstrate effectiveness of proposed
method by evaluating six image-based privacy protection techniques, and also show comparisons of proposed method
over existing methods.

Keywords: Privacy protection, evaluation, visible imagery, thermal imagery.
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1 Introduction

Recently, countries around the world have seen a rapid growth in the use of surveillance appli-

cations in public places.1 According to an estimate, in 2014 there were 245 million operational

surveillance cameras in the world1. Indeed, this surge in surveillance applications has led to an

increasing need for the privacy protection of individuals.2, 3

1An estimate by IHS, a global information company. https://technology.ihs.com/532501/245-million-video-
surveillance-cameras-installed-globally-in-2014.
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Privacy protection refers, in this work, to replacing the original content of an image (or a region

thereof) with a new content having modified appearance information of target(s) so as to make

it(them) less recognizable. The new content may be a result of (i) transforming the original content,

or (ii) perturbing the original content, or (iii) using a different image capturing modality. The first

case may involve hiding image regions by applying image processing and filtering operations4–11

to provide different levels of privacy protection to targets under consideration.3 In the second case,

perturbations may be added to the original content12, 13 in the form of displacing the state of the

image patch thus obscuring target’s recognition by motion. The third case involves employing

a different imaging device that is assumed to be privacy protecting per se. In this work, we use

thermal infrared (TIR) camera that has been considered privacy preserving for years14, 15 due to low

resolution, high noise levels, and difficulty for a human to interpret thermal imagery and recognize

targets; see16, 17 for details on infrared imaging. It would therefore be interesting and desirable to

quantitatively evaluate the achieved privacy protection with the thermal modality that, to the best

of our knowledge, has not been attempted before. Other approaches also exist that analyze a scene

holistically (instead of considering explicit object models) for the sake of protecting individuals’

privacy;18–20 however they are out of the scope of this paper.

The development of privacy protection techniques need also to be complemented by an effec-

tive means to evaluate them in order to facilitate their fair comparison. Indeed the two key aspects

to consider for objectively2 evaluating a privacy protection technique are protection and utility.6, 21

Protection refers to a quantification of the extent of appearance information (that would make a

target recognizable) modified in an image region by a privacy protection method. Completely hid-

ing out image regions may however not be desirable as there may be a need to preserve structural

2Here the term ‘objective’ means non reliance of an evaluation method on subjective judgements.
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information for performing a higher-level behavioral analysis in a surveillance application. Utility

is therefore also computed as a quantification of the preservation of structural information in the

image region by a privacy protection technique. An ideal privacy protection technique may aim to

maximize both protection and utility.

1.1 Contributions

In this paper we present a new objective evaluation method for assessing protection and utility as-

pects of image-based privacy protection techniques. The evaluation method is target independent

(i.e. it does not assume presence of specific target type in image data) and annotation free. Pro-

tection is assessed in terms of measuring the appearance similarity between original and privacy-

protected image regions. Utility is measured by quantifying the structural similarity between the

original and privacy-protected image regions. A preliminary version of this work appeared ear-

lier.22 Unlike the work22 this paper provides an improved method (in terms of the normalization

to make the bounds of the protection score well defined) with more justifications. Moreover, this

paper presents an extensive experimentation with a detailed validation and analysis using more

privacy protection techniques and a much larger number of challenging sequences (including sev-

eral new ones) containing visible as well as thermal imagery with varying target types (face, full

person body, vehicle). We make available online3 the new dataset containing thermal and visual

sequences to facilitate community in the evaluation of privacy protection techniques in particu-

lar and other tasks (e.g. detection, tracking) in general. We demonstrate the effectiveness of the

proposed evaluation method by assessing and comparing six privacy protection techniques in the

context of video tracking. We also show comparisons of the proposed method over objective and

3http://www.cvl.isy.liu.se/research/datasets/TST-Priv/.
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subjective evaluation approaches.

This paper is organized as follows. Sec. 2 reviews the related work and highlights the novelty of

the proposed evaluation method with respect to the existing methods. Sec. 3 defines the problem

that is followed by a description of the proposed method in Sec. 4. A detailed experimental

validation and analysis is presented in Sec. 5. Sec. 6 concludes the paper.

2 Related work

Methods exist in the literature that were aimed at evaluating privacy protection techniques based

on the use of the judgements of a set of human subjects, subjective evaluation,21, 23–27 or using

objective measures that do not rely on subjective responses, objective evaluation,.28–30 Next, we

provide a review of the existing subjective evaluation (Sec. 2.1) and objective evaluation methods

(Sec. 2.2).

2.1 Subjective evaluation

Zhao and Stasko27 performed a study that evaluated privacy protection filters by showing the fil-

tered video streams to a set of human subjects. Boyle et al.25 presented a methodology that

involved applying global (full-frame) privacy protection on a set of video sequences and showing

them to subjects, and in turn assessing the privacy protection techniques based on the collected

subjects’ responses using questionnaires. Saini et al.21 and Korshunov et al.26 also used a similar

subjective methodology except that they applied privacy protection locally (only on sensitive im-

age regions) in video sequences. Some more examples of works that also used subjective criteria

for evaluating privacy protection include a study by Babaguchi et al.23 and a more recent one

by Birnstill and Ren et al.24 The above evaluation methods rely on subjective judgements thus
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Table 1 State-of-the-art evaluation methods for privacy protection. (Key. NTDR: Non reliance of a method on target
detection and recognition accuracies.)

Reference Objective/Subjective Target independence NTDR
21, 23–27 Subjective X X
28–30, 32 Objective

Proposed Objective X X

resulting in an inclusion of a possible bias in the assessment. Moreover, in a subjective evaluation

study the test data under consideration, the choice and number of subjects, and the setting-up of

questionnaire(s) may need to be analyzed and backed up by the statistical significance testing.31

2.2 Objective evaluation

An evaluation framework was proposed that did not rely on subjective judgement and used the face

detection and face recognition accuracies on the privacy-protected data as measures of privacy

protection.28, 32 Saini et al.29 computed privacy loss using a model that incorporated the face

detection and face recognition measures in addition to the scene contextual knowledge and some

implicit identity inference information. In another work30 privacy loss was modeled using only

the scene contextual knowledge and implicit identity inference information. While interesting

contributions, the above works are target dependent as they assume presence of a specific target

type (‘face’) in the image data and rely also on the performance of detection and recognition

algorithms used.

2.3 Discussion

Table 1 provides a summary of the existing privacy protection evaluation methods. Unlike existing

methods21, 23–27 the proposed method in this paper does not rely on subjective judgements. Addi-

tionally, unlike the methods28–30, 32 the proposed method is target independent as it does not require

application of privacy protection methods on image data with a particular target type. Moreover,
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the proposed method does not require target detection and recognition accuracies in the evaluation

procedure as in existing methods28–30, 32 and is therefore annotation free. Furthermore, while eval-

uation criteria exist for assessing methods in other computer vision areas including optical flow

estimation,33 stereo correspondence estimation34 and video tracking,35, 36 there is an absence of

an established method for the evaluation of different aspects of privacy protection methods. An

initiative was made in the form of a challenge for assessing privacy protection techniques under

the MediaEval workshops that however used an evaluation that mainly relied on subjective judge-

ments.37

3 Problem definition

Consider a video sequence V consisting of K frames:

V = ( fk)
K
k=1, (1)

where fk denotes the frame k. Let X be a set of trajectories (or tracks) estimated by a tracker in

V :

X = {X j}J
j=1, (2)

where J is the total number of estimated trajectories. X j is the estimated trajectory for target j:

X j = (Xk, j)
k j

end

k=k j
start

, (3)
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where k j
start and k j

end are the first and final frame numbers of X j, respectively.

Xk, j = (xk, j,yk, j,Ak, j, l j), (4)

where (xk, j,yk, j) and Ak, j denote the position and the occupied area information of target j on the

image plane and l j defines its ID. Here, Ak, j is considered in the form of a bounding box in which

case Xk, j can be re-written as:

Xk, j = (xk, j,yk, j,wk, j,hk, j, l j), (5)

where wk, j and hk, j denote width and height of the bounding box for target j at fk. The number

of estimated targets at fk is denoted as nk, which are defined as {Xk,1, . . . ,Xk, j, . . . ,Xk,nk}. Let

Bk, j denote the image region within the bounding box Xk, j containing the recognizable appearance

information for target j. Bk is the set of image regions within all the bounding boxes in fk:

Bk = {Bk,1, . . . ,Bk, j, . . . ,Bk,nk}. (6)

Note that in this work we consider the tracking problem to be already reliably solved.

Let B′k, j denote the privacy-protected image region obtained by applying a privacy protection

technique to hide or obscure the target recognizable appearance information in Bk, j. Therefore, B′k

is the set containing the privacy-protected image regions within all the bounding boxes in fk:

B′k = {B′k,1, . . . ,B′k, j, . . . ,B′k,nk
}. (7)
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Fig 1 Proposed method for objectively evaluating a privacy protection technique in the context of video tracking by
quantifying the protection and utility aspects.

The evaluation procedure compares B′k with respect to Bk, the original unprotected region that acts

as a reference, to assess the candidate privacy protection technique in the form of a score, Sk, at fk

without the need of any annotated ground-truth information.

4 Evaluation method for privacy protection

Given Bk and B′k the proposed evaluation method is aimed to assess the two key aspects of privacy

protection: protection and utility (Fig. 1). Next we describe the computation of the protection both

at frame level (Pk) and sequence level (P) in Sec. 4.1 followed by a description of the quantification

of the utility both at frame level (Uk) and sequence level (U) in Sec. 4.2 for a privacy protection

technique. Sec. 4.3 highlights the advantages of the proposed method as compared to an existing

method.

4.1 Protection

Protection is assessed in terms of the appearance similarity between Bk and B′k. A smaller ap-

pearance similarity between Bk and B′k alludes to a greater impact of the applied privacy pro-

tection. Some well-known similarity measures include Bhattacharyya distance, Kullback-Leibler

8



divergence, Mahalanobis distance, Chi-squared similarity and Earth Mover’s distance. We use the

Bhattacharyya distance as it has the following advantages: it is a metric unlike the Kullback-Leibler

divergence that is non-symmetric and hence not a metric; unlike the Mahalanobis distance it does

not assume the same variance for Bk, j and B′k, j; it avoids the singularity problems of Chi-squared

similarity;38 compared to the Earth Mover’s distance39 it is computationally more efficient.40 In-

deed, Bhattacharyya distance has been very widely used in the community for decades.40–42

At frame k we therefore compute the amount of achieved protection, Pk, in B′k as follows:

Pk =
1
nk

nk

∑
j=1

D(qBk, j ,qB′k, j), (8)

where D(qBk, j ,qB′k, j) is the Bhattacharyya distance that provides a similarity at a frame k between

the probability density functions (PDFs) of Bk, j, qBk, j , and B′k, j, qB′k, j :

D(qBk, j ,qB′k, j) =

√
1−BC(qBk, j ,qB′k, j), (9)

which is also termed as Hellinger distance. A PDF is computed as a normalized histogram that is

calculated by counting the occurences of each intensity level (bin) divided by the sum of the counts

of all bins. In Eq. 9, BC(qBk, j ,qB′k, j) is the Bhattacharyya coefficient and is given as follows:43

BC(qBk, j ,qB′k, j) =
Z

∑
z=0

√
qBk, j(z)qB′k, j(z). (10)

Z = 255 as we use 256 bins (which is equal to the number of intensity levels) in computing the
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normalized histograms for Bk, j and B′k, j. In the case of a RGB image

D(·) =

√
D2

red(·)+D2
green(·)+D2

blue(·)√
3

, (11)

where Dred(·), Dgreen(·) and Dblue(·) are respectively the Bhattacharyya distances between the cor-

responding PDFs of the red, green and blue channels of Bk, j and B′k, j. Likewise, BCred(qBk, j ,qB′k, j),

BCgreen(qBk, j ,qB′k, j) and BCblue(qBk, j ,qB′k, j) are respectively the Bhattacharyya coefficients for the

corresponding PDFs of the red, green and blue channels of Bk, j and B′k, j. The denominator in (11),

√
3, is a normalization factor in order to numerically bound D(·) ∈ [0,1] as defined below.

Lower bound (D(·) = 0): When Bk, j and B′k, j are completely similar (i.e. Bk, j = B′k, j), from (10)

BCred(·) = BCgreen(·) = BCblue(·) = 1. Thus, using (9), Dred(·) = Dgreen(·) = Dblue(·) = 0, which

implies D(·) = 0 using (11).

Upper bound (D(·) = 1): When Bk, j and B′k, j are completely dissimilar, their corresponding PDFs

(qBk, j ,qB′k, j) do not overlap, in which case BCred(·) = BCgreen(·) = BCblue(·) = 0 using (10). Thus,

using (9), Dred(·) = Dgreen(·) = Dblue(·) = 1, which implies D(·) = 1 using (11); hence the need

for normalization by
√

3 in (11).

Note that for the case of grey-scale data D(·) can simply be computed using (9) that is anyway

numerically bounded i.e. D(·) ∈ [0,1]. Therefore, Pk ∈ [0,1]: the higher Pk the greater the amount

of achieved protection.

While the computation of Pk enables analyzing the achieved protection at each frame, to fa-

cilitate the performance comparison between different privacy protection methods we provide the

following two statistics to compute the overall achieved protection, P, across a sequence in the
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form of a single score:

P =
1
K

K

∑
k=1

Pk; (12)

or,

P = min{Pk}K
k=1. (13)

(12) provides P by computing mean of Pk across the frames of a sequence, which might be biased

towards outliers, if any. (13) presents an alternative solution that provides P as the minimum

protection across all the frames of a sequence. We would experimentally analyze the effect of

these two statistics on the outcome of evaluation in Sec. 4.3.

4.2 Utility

Utility is quantified in terms of the structural similarity between Bk and B′k. A smaller structural

similarity refers to a lower preservation of structural information. For computing the structural

similarity we use the well-known Structural Similarity Index (SSIM),44 which was employed in

earlier related works.6, 45–47 SSIM has advantages of being a general-purpose measure and offers

an assessment that was shown to be perceptually closer to the human visual system.44 It provides

a similarity assessment between Bk, j and B′k, j by encapsulating their structural comparison (local

intensity patterns of pixels) together also with luminance and contrast comparisons. Unlike the

existing works,6, 45–47 the proposed SSIM-based formulation quantifies utility for local (region-

based) privacy protection across a sequence that is directly applicable to (single-target as well as

multi-target) tracking applications.
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At frame k the utility, Uk, is therefore computed as follows:

Uk =
1
nk

nk

∑
j=1

MSSIM(Bk, j,B′k, j), (14)

where MSSIM(Bk, j,B′k, j) is the mean SSIM value between Bk, j and B′k, j for a variation of local

windows.44

MSSIM(Bk, j,B′k, j) =
1
M

M

∑
m=1

SSIMm(Bk, j,B′k, j), (15)

where SSIMm(Bk, j,B′k, j) is the SSIM value for mth window and is given as follows:44

SSIMm(Bk, j,B′k, j) =
(2 mµBk, j

mµB′k, j
+C1)(2 mσBk, jB′k, j

+C2)

(mµ2
Bk, j

+mµ2
B′k, j

+C1)(mσ2
Bk, j

+mσ2
B′k, j

+C1)
. (16)

SSIM is computed on grey-scale data44 such that mµBk, j
and mµB′k, j

are the mean intensity values,

and mσBk, j and mσB′k, j
are the standard deviations in Bk, j and B′k, j, respectively, for the local window

m; mσBk, jB′k, j
is the correlation coefficient; and C1 and C2 are constants. Uk ∈ [0,1]: the higher Uk

the larger the utility retained. As done for the case of P (Sec. 4.1) we provide the following two

statistics to compute the overall retained utility, U, in the form of a single score:

U =
1
K

K

∑
k=1

Uk; (17)

or,

U = min{Uk}K
k=1. (18)

We would experimentally analyze the effect of these two statistics on the outcome of evaluation in

Sec. 4.3.
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protection 

Fig 2 Trade off between protection and utility. Completely masking out the object information in an image would
provide a maximum protection but at the expense of a zero utility. Likewise, leaving the object information unaffected
would provide a maximum utility but at the expense of a total loss of protection.

Indeed, it boils down to the determining an appropriate trade off between protection and utility

to choose a privacy protection technique for a specific application. A total masking out of object

information in an image could result in the achievement of a large protection score but at the

expense of a total loss of utility. Similarly, leaving the image region unaffected could result in

obtaining a maximum utility but at the expense of a zero achieved protection (Fig. 2). Ideally, a

privacy protection technique would be expected to maximize both protection and utility. Fig. 3

provides numercial examples of the computed protection and utility scores for different privacy

protection techniques on sample tracked object patches, which is further discussed in Sec. 5.

4.3 Advantages and comparisons

We show advantages and comparisons of the proposed evaluation method with an existing objec-

tive evaluation method (which is widely used including the MediaEval workshops6, 28, 32, 48) that

employs face recognition accuracy as a measure of protection and face detection accuracy as a

13



Fig 3 Sample qualitative results for different privacy protection techniques applied on tracked patches with an increas-
ing filter intensity (i = 20,30, . . . ,70). The corresponding protection (Pr.) and utility (Ut.) scores are also listed under
each patch. Key. MP: motion perturbation; TIR: thermal infrared.
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Fig 4 Average protection score (a,c) and average utility score (b,d) obtained by blurring, pixelating and cartooning on
all sequences of PEViD dataset for a variation of filter intensity. (a,b) P and U are computed using ‘mean’ statistics
(i.e. Eq. 12, 17); (c,d) P and U are computed using ‘minimum’ statistics (i.e. Eq. 13, 18).

measure of utility, as well as with respect to a web-based subjective assessment approach. In this

regard we use the well-known PEViD dataset49 as it provides face annotations that are needed

for computing face detection and recognition accuracies. PEViD dataset has a total of 21 video

sequences each containing 400 frames.

We first plot in Fig. 4 the average protection (P) and average utility (U) scores on all the PEViD

sequences using the proposed method separately based on ‘mean’ statistics (Eq. 12, 17) as well as
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‘minimum’ statistics (Eq. 13, 18) for privacy protection techniques (blurring, pixelating, cartoon-

ing) over a variation of filter intensity; see Sec. 5.2 for details on privacy protection techniques.

It is interesting to note that the evaluation outcomes produced by mean statistics (Fig. 4(a,b)) as

well as minimum statistics (Fig. 4(c,d)) are the same in terms of the trends of rankings of privacy

protection techniques both with protection (P) and utility (U) scores. Additionally, unlike the min-

imum statistics that use only the minimum protection/utility value to provide an estimate, the mean

statistics could provide a more representative estimate by incorporating contributions from the pro-

tection/utility values of all the frames in a sequence. Moreover, the potential bias towards outliers

in mean statistics is expected to be minimized because filter strength is kept constant across all the

frames of a sequence. Furthermore, mean statistics is often employed in literature for computing

the overall protection/utility across a sequence.6, 28, 45–47 We therefore employ mean statistics (Eq.

12, 17) for quantifying the overall protection (P) and utility (U) scores in the rest of this paper.

We now compare and show advantages of the proposed P and U scores (Fig. 4(a,b)) with the

reported average face recognition and average detection accuracies on blurring, pixelating and car-

tooning for a variation of filter intensity in the existing work6 on the PEViD dataset. The authors

in the work6 used PCA-based, LDA-based and LBP-based face recognition methods, and a Viola-

Jones face detection method. The following observations and points could therefore be highlighted

here. First, the average P scores obtained using the proposed method show that pixelating is con-

sistently the best followed by blurring and cartooning (Fig. 4(a)), which is interestingly similar to

the trends of the results of average face recognition accuracies reported in the work6 (the higher

the face recognition accuracy, the lower the protection). Likewise, the average U scores obtained

using the proposed method show cartooning to be the best followed by blurring and pixelating

(Fig. 4(b)), which are also in line with the trends of the results of average face detection accuracy
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reported in the work6 (the higher the face detection accuracy, the higher the utility). Therefore, the

results show a strong correlation between the rankings obtained using the proposed P/U scores and

the rankings obtained using face recognition/face detection accuracies with the computed “Spear-

man’s rank correlation coefficient = 1”. Second, the proposed method has an advantage that it

does not require any annotation for the computation of protection and utility scores as compared

to the evaluation based on face detection and recognition accuracies that rely on annotation. Third,

another advantage of the proposed method is that it is target independent and could be applied

irrespective of the target type present in the image. Indeed, in Sec. 5.3 and Sec. 5.4 that describe

the detailed experimental results and analysis, we show the results of evaluation of privacy pro-

tection techniques using the proposed method with varying target types (face, full body, vehicle).

The evaluation based on face detection and recognition accuracies has a limitation that it could

obviously be used with the face targets only. For other target types, one would need to use the ded-

icated detection and recognition methods. Last, unlike the evaluation based on face detection and

recognition accuracies that depends on the performance of the detection and recognition methods

used, the proposed evaluation method does not have any such constraints.

For an enhanced validation of the proposed method, we also adopted a subjective approach

that involves an assessment of privacy protection techniques based on the judgements of humans.

In the subjective assessment, we use all of the 21 sequences of the PEViD dataset with the above

mentioned privacy-protection techniques (blurring, pixelating, cartooning). The assessment has

been conducted using a website that, before the start of assessment, provides a uniform set of

written instructions to a participating human subject. We use a representative sample of 11 human

subjects including people that are skilled, semi-skilled and unskilled in privacy protection in videos.

The written instructions then follows showing 21 video clips, one by one, to subjects. Each clip
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contains four sub videos (all played simultaneously) that are embedded in the top-left, top-right,

bottom-left and bottom-right quadrants of the video screen. The top-left video contains the original

video data of a sequence, whereas the other three videos contain the corresponding processed

results generated by applying three privacy-protection techniques (blurring, pixelating, cartooning)

with uniform filter strengths (see Fig. 5). As per ITU recommendation we choose a gray color

(red=green=blue=130) for the background that gives a relaxing effect to human eyes.50 For each

clip, the subjects are asked to perform assessment by rating the three processed videos based on the

level of achieved privacy protection by assigning a score between 0 to 5 into a questionnaire form:

’0’ corresponds to no (zero) privacy protection achieved; and ’5’ corresponds to the maximum

privacy protection achieved. The subjects can watch each clip multiple times, if needed, to reach

decision. The results show that, across all of the clips, pixelating is consistently ranked the best

in terms of privacy protection followed by blurring and cartooning (Fig. 6), which is of course

similar to the rankings obtained using the proposed method for these techniques (Fig. 4(a)), thus

showing a strong correlation between the results two approaches: “Spearman’s rank correlation

coefficient= 1”.

5 Experimental results and analysis

This section provides in detail the experimental results and analysis. We first describe the datasets

(Sec. 5.1) and the privacy protection techniques (Sec. 5.2) used in the experimentation. The results

are described in Sec. 5.3 and Sec. 5.4, which are followed by a discussion in Sec. 5.5.
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Fig 5 A snap shot of the subjective assessment website showing the original and the three processed (privacy-protected)
videos; all played simultaneously in a synchronised manner.
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Fig 6 The results of the subjective assessment of privacy-protection techniques (blurring, pixelating, cartooning) in
terms of the mean of the ratings of all subjects on each clip.
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Table 2 Summary of the datasets. Key. K: number of frames; VIS: visual sequence; TH: thermal-infrared sequence;
Occ: occlusion; SC: scale changes; IC: illumination changes; Cr: crowdedness; PC: pose changes. Note that ‘(-)’
means that the corresponding thermal-infrared sequence is not available.

Sequence K Frame size Target type Challenges
VIS (TH) VIS (TH)

TST-Priv-F1 420 (341) 1080×1920 (480×640) Face Occ., SC, PC
TST-Priv-F2 497 (386) 1080×1920 (480×640) Face Occ., SC, PC
TST-Priv-P1 319 (261) 1080×1920 (480×640) Full body Occ., SC, PC
TST-Priv-P2 539 (450) 1080×1920 (480×640) Full body Occ., SC, PC
TST-Priv-V1 820 (685) 1080×1920 (480×640) Vehicle Occ., SC, PC
TST-Priv-V2 1090 (885) 1080×1920 (480×640) Vehicle Occ., SC
ETH Bahnhof 999 (-) 480 × 640 (-) Full body Occ, SC, IC, Cr
ETH Sunnyday 354 (-) 480 × 640 (-) Full body Occ, SC, IC, Cr
iLids Easy 5220 (-) 576 × 720 (-) Full body Occ, SC, IC
PETS 2000 160 (-) 576 × 768 (-) Vehicle SC, PC
PETS 2015 243 (-) 960 × 1280 (-) Vehicle SC, PC
P5-UK 150 (-) 960 × 1280 (-) Vehicle SC, PC

5.1 Datasets

We use 12 sequences belonging to six challenging datasets in experiments (Table 2). Among the

datasets, we introduce a new dataset, called TST-Priv, whereas the remaining are existing datasets.

TST-Priv contains six sequences (TST-Priv-F1, TST-Priv-F2, TST-Priv-P1, TST-Priv-P2, TST-

Priv-V1, TST-Priv-V2). The dataset provides synchronized visual as well as thermal sequences

recorded simultaneously from a visual camera (Canon PowerShot G16) and a thermal camera

(FLIR SC655). The choice of cameras is made so as to provide (what is currently regarded as)

a high resolution in their respective domains (1080×1920 and 480×640, respectively). In the

setup, both cameras are mounted very close to each other with a very small disparity in their

corresponding images. Additionally, the relative position and orientation of both cameras is the

same for all recordings. TST-Priv is made publicly available online for the community.

Among the existing datasets, four are well known and publicly available including ETH,51

iLids Easy,52 PETS 201553 and PETS 2000.54 The fifth one (P5-UK) is recorded in a UK site under

the EU project P5.55 We use two sequences from ETH dataset (ETH Bahnhof, ETH Sunnyday)
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and a sequence each from iLids Easy, PETS 2015, P5-UK and PETS 2000 datasets.

The datasets contain full-person bodies, faces, and vehicles as target types. TST-Priv sequences

contain both a single target (TST-Priv-V1) as well as multiple targets (TST-Priv-F1, TST-Priv-

F2, TST-Priv-P1, TST-Priv-P2, TST-Priv-V2). Tracking results on these sequences are generated

using a single target tracker56 on visual imagery. In the case of multiple targets, the tracker is

run separately for each target to obtain its track. To obtain the corresponding tracks on thermal

imagery for each scenario, a homography between the corresponding visual and thermal views is

estimated. We employ a well-known method that uses (six) point matches in a plane to compute

homography.57 The computed homography is used to map the corner points of the bounding boxes

from visual to thermal domain. Note that the estimated tracks on thermal imagery could contain

some discrepancies (data offsets) due to possible inaccuracies in the homography computation (see

sample TIR patches in Fig. 3). ETH Bahnhof, ETH Sunnyday and iLids Easy contain multiple

targets and we use tracking results from a multi-target tracker58 in these scenes. PETS 2015,

P5-UK and PETS 2000 contain a single target and we use tracking results from a single-target

tracker59 in these scenes. Note that this work does not focus on the choice of tracker per se and

is aimed at evaluating different privacy protection techniques on the tracked bounding boxes (of

targets) that, in principle, could be generated from any tracker (that uses the same target model).

5.2 Privacy protection techniques

We demonstrate the effectiveness of the proposed evaluation method by evaluating and comparing

six image-based privacy protection techniques including cartooning, blurring, pixelating, blank-

ing, motion perturbation (MP) and thermal infrared imaging (TIR). Cartooning involves applying

an initial blurring on the input image region followed by mean-shift filtering and edge recovery
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using the already generated gradient mask with sobel edge detector.6 The kernel size at the ini-

tial blurring stage (A) and the spatial radius (sp) and color radius (sr) at the mean-shift filtering

stage are given as follows:6 Ai = [i ·Aorig/50]; spi = [i · sporig/50]; sri = [i · srorig/50]; where i is

the filter intensity: i ∈ [1,100] and the parameters Aorig = 7, sporig = 20 and srorig = 40.6 Ad-

ditionally, as done in the work,6 for establishing some correspondence and a fair comparison the

kernel size used in the case of blurring and pixelating for a particular filter intensity, i, is equal

to spi as defined above for cartooning. We therefore apply cartooning, blurring and pixelating

on the tracking results in all datasets for a full variation of filter intensity, i. Blanking completely

masks out the privacy-sensitive information in an image region. MP involves perturbing the motion

state of a patch (Bk, j) thus obscuring the identification of an object by motion. For a given Bk, j,

a perturbation is added to its position (xk, j,yk, j) by displacing x and y coordinates. The amount

of perturbation is randomly chosen while ensuring that there still remains a reasonable amount

of overlap (set to be atleast 50%60) between Bk, j and the perturbed patch (B′k, j). TIR, of course,

achieves privacy protection through the use of thermal imagery and is included in the comparison

only on TST-Priv dataset because thermal imagery is available only for this dataset. Blanking, MP

and TIR obviously remain unaffected over a variation of i.

Therefore, on TST-Priv we provide the results of the comparison of cartooning, blurring, pix-

elating, blanking, MP and TIR using the proposed evaluation method (Sec. 5.3). Note that to

compute privacy score for TIR bounding boxes (that are used in 8-bit form), the corresponding

RGB bounding boxes are converted into grayscale (8-bit) format. On the remaining datasets, we

provide the results of the comparison of cartooning, blurring, pixelating, blanking and MP using

the proposed method (Sec. 5.4).
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Fig 7 Protection score (P) obtained by different privacy protection techniques for a variation of filter intensity on (a)
TST-Priv-F1, (b) TST-Priv-F2, (c) TST-Priv-P1, (d) TST-Priv-P2, (e) TST-Priv-V1 and (f) TST-Priv-V2.

5.3 Results on TST-Priv dataset

Fig. 7 and Fig. 8 plot the protection (P) and utility (U) scores, respectively, of the six privacy

protection techniques (blanking, blurring, pixelating, cartooning, MP, TIR) for a variation of i

on all TST-Priv sequences. Fig. 3 shows sample qualitative results for these techniques with an

increasing i.

Expectedly, on all sequences blanking provides the highest P (Fig. 7(a-f)) as it masks out the

entire information in the image data (Fig. 3). Among TIR, cartooning, blurring and MP, TIR

consistently obtains the highest P on all sequences for the entire variation of i as shown in Fig.

7(a-f). Between TIR and pixelating, the former obtains a higher P on TST-Priv-F2 (Fig. 7(b)). On

the remaining sequences TIR does not achieve a higher P than pixelating for an entire variation of

i: indeed the former outperforms the latter on TST-Priv-F1 for i≤ 66 (Fig. 7(a)), on TST-Priv-P1

for i≤ 81 (Fig. 7(c)), on TST-Priv-P2 for i≤ 26 (Fig. 7(d)), on TST-Priv-V1 for i≤ 78 (Fig. 7(e)),
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Fig 8 Utility score (U) obtained by different privacy protection techniques for a variation of filter intensity on (a)
TST-Priv-F1, (b) TST-Priv-F2, (c) TST-Priv-P1, (d) TST-Priv-P2, (e) TST-Priv-V1 and (f) TST-Priv-V2.

and on TST-Priv-V2 for i≤ 61 (Fig. 7(f)). Among pixelating, blurring and cartooning, pixelating

is consistently the best in terms of P followed by blurring and cartooning over a variation of i. Note

that for i ∈ [1,3], P = 0 for blurring and pixelating because according to the equation of spi their

kernel size is 1×1 thus leaving the image regions unaltered by these two techniques. Finally, MP

is generally found to achieve the lowest P for most of the variation of i (Fig. 7(a-f)), which is in

line with the conclusions of an earlier study61 that data perturbation may not always be an effective

means for protecting privacy.

The utility scores (U) obtained by six techniques over a variation of i across all TST-Priv

sequences are plotted in Fig. 8(a-f). Cartooning preserves the structural information better than

all methods (Fig. 3). Indeed, on all sequences cartooning shows the best U for the entire variation

of i with blurring and pixelating obtaining the second-best and third-best U. The fourth-best U is

either by MP (on TST-Priv-F1, TST-Priv-F2, TST-Priv-P2) or TIR (on TST-Priv-P1, TST-Priv-V1,
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Fig 9 Utility score (U) plotted vs. protection score (P) obtained by different privacy protection techniques for a
variation of filter intensity on (a) TST-Priv-F1, (b) TST-Priv-F2, (c) TST-Priv-P1, (d) TST-Priv-P2, (e) TST-Priv-V1
and (f) TST-Priv-V2.

TST-Priv-V2). Blanking, which consistently achieves the highest protection (P), provides the least

utility (smallest U) on all sequences due to a total loss of structural information.

Indeed, the aim for a privacy protection technique would be to provide an appropriate trade

off between U and P. To this end in Fig. 9 we also plot U (as computed in Fig. 8) vs. P (as

computed in Fig. 7) on all sequences. U vs. P plot would be desirable for choosing among

different privacy protection techniques for a specific scenario. For example, on TST-Priv-F1, TST-

Priv-F2, TST-Priv-P1, TST-Priv-P2, TST-Priv-V1 and TST-Priv-V2 (Fig. 9(a-f)), for a desired

P = 0.25 cartooning would be the best choice as it provides the highest U. Likewise, for a desired

P = 0.65 pixelating would be the best choice due to the highest U. Generally, cartooning appears

more desirable than the remaining techniques in terms of providing an appropriate U-P trade off

with all target types (face (Fig. 9(a-b)), full body (Fig. 9(c-d)), vehicle (Fig. 9(e-f))).
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Fig 10 Protection score (P) obtained by different privacy protection techniques for a variation of filter intensity on (a)
ETH Bahnhof, (b) ETH Sunnyday, (c) iLids Easy, (d) PETS 2015, (e) P5-UK and (f) PETS 2000.

5.4 Results on existing datasets

Fig. 10 and Fig. 11 plot the protection (P) and utility (U) scores, respectively, of the five privacy

protection techniques (blanking, blurring, pixelating, cartooning, MP) for a variation of i on ETH

Bahnhof, ETH Sunnyday, iLids Easy, PETS 2015, P5-UK and PETS 2000.

The trends of the protection scores (P) obtained by five techniques over a variation of i are

generally the same across all sequences (Fig. 10(a-f)) and similar to the results reported on TST-

Priv sequences (Sec. 5.3). As in the case of TST-Priv, on all sequences blanking achieves the

highest P (Fig. 10(a-f)). After blanking, pixelating consistently obtains the highest P followed

by blurring and cartooning on all sequences for the entire variation of i. MP has generally shown

the lowest P among all techniques for most of the variation of i on all sequences. Moreover, the

trends of the utility scores (U) obtained by the five methods over a variation of i are alike across all

sequences (Fig. 11(a-f)). The highest U is obtained by cartooning followed by blurring, pixelating,
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Fig 11 Utility score (U) obtained by different privacy protection techniques for a variation of filter intensity on (a)
ETH Bahnhof, (b) ETH Sunnyday, (c) iLids Easy, (d) PETS 2015, (e) P5-UK and (f) PETS 2000.

MP and blanking, which also corresponds to the results obtained on TST-Priv sequences (Sec. 5.3).

As done in the case of TST-Priv sequences, we also plot U vs. P for ETH Bahnhof, ETH

Sunnyday, iLids Easy, PETS 2015, P5-UK and PETS 2000 (Fig. 12(a-f)). In general pixelating is

found to provide a better trade off between U and P on datasets with full body target (Fig. 12(a-c)),

and cartooning provides a better trade off on datasets with vehicle target (Fig. 12(d-f)).

5.5 Discussion

We checked the statistical significance of the P and U scores obtained by the privacy protection

techniques on each of the 12 sequences using the Welch ANOVA test.62 Statistical significance is

achieved at the standard 5% significance level both for the case of P and U scores on each sequence.

Table 3 provides the overall performance of privacy protection techniques computed in the

form of mean P (Pµ ) and mean U (Uµ ) over the entire variation of filter intensity (i) on all TST-Priv
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Fig 12 Utility score (U) plotted vs. privacy score (P) obtained by different privacy protection techniques for a variation
of filter intensity on (a) ETH Bahnhof, (b) ETH Sunnyday, (c) iLids Easy, (d) PETS 2015, (e) P5-UK and (f) PETS
2000.

sequences. Blanking expectedly achieves the highest Pµ on all sequences. Among the remaining

techniques, TIR shows the best Pµ on every sequence except on TST-Priv-P2 where pixelating

is the best. However, based on visual judgement, TIR data seems to possess features (see Fig.

3, ‘TIR’ column) that might enable target recognition thus alluding it might not be as privacy-

protecting as reflected by it’s high protection scores. Additionally, cartooning is the best in terms

of Uµ on all sequences. Moreover, we also computed the cumulative protection and utility scores

that are the average scores over all sequences (Table 3). The results show that (except blanking)

TIR has the best cumulative protection score and cartooning has the best cumulative utility score.

Similarly, Table 4 lists the mean P (Pµ ) and mean U (Uµ ) over the variation of i on ETH

Bahnhof, ETH Sunnyday, iLids Easy, PETS 2015, P5-UK and PETS 2000. Except blanking that

again has the best Pµ , pixelating outperforms blurring, cartooning and MP in terms of Pµ on all
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Table 3 Overall performance of privacy protection techniques in terms of mean P (Pµ ) and mean U (Uµ ) over a
variation of filter intensity (i) on all TST-Priv sequences. Note that blanking, MP and TIR of course remain unaffected
over a variation of i. Cumulative (Cum.) protection and utility scores are also listed that are the average scores over all
sequences. On each sequence the best two techniques with the highest Pµ are highlighted in yellow and the best two
techniques with the highest Uµ are highlighted in gray; the darker the color the better the performance.

Sequence Blanking Blurring Pixelating Cartooning MP TIR
Pµ Uµ Pµ Uµ Pµ Uµ Pµ Uµ Pµ Uµ Pµ Uµ

TST-Priv-F1 0.99 0.03 0.21 0.73 0.58 0.62 0.21 0.85 0.16 0.43 0.72 0.28
TST-Priv-F2 1.00 0.00 0.17 0.88 0.48 0.79 0.17 0.93 0.16 0.64 0.84 0.50
TST-Priv-P1 0.99 0.01 0.22 0.49 0.55 0.40 0.18 0.73 0.12 0.17 0.76 0.22
TST-Priv-P2 0.98 0.02 0.31 0.51 0.66 0.42 0.26 0.77 0.16 0.23 0.54 0.16
TST-Priv-V1 1.00 0.00 0.32 0.40 0.61 0.34 0.25 0.66 0.13 0.16 0.79 0.21
TST-Priv-V2 1.00 0.00 0.34 0.55 0.65 0.47 0.28 0.74 0.15 0.25 0.80 0.35
Cum. score 0.99 0.01 0.26 0.59 0.59 0.51 0.22 0.78 0.15 0.31 0.74 0.29

sequences. As in the case of TST-Priv sequences, cartooning again shows the best Uµ on all

sequences. In terms of cumulative protection score blanking and pixelating are the best, and in

terms of cumulative utility score cartooning and blurring are the best (Table 4).

6 Conclusions

This paper presented a new annotation-free and target-independent objective evaluation method

for image-based privacy protection techniques. The proposed method evaluates protection by

quantifying the Bhattacharyya distance-based appearance similarity and utility by measuring the

Table 4 Overall performance of privacy protection techniques in terms of mean P (Pµ ) and mean U (Uµ ) over a
variation of filter intensity (i) on ETH Bahnhof, ETH Sunnyday, iLids Easy, PETS 2015, P5-UK and PETS 2000.
Note that blanking and MP of course remains unaffected over a variation of i. Cumulative (Cum.) protection and
utility scores are also listed that are the average scores over all sequences. On each sequence the best two techniques
with the highest Pµ are highlighted in yellow and the best two techniques with the highest Uµ are highlighted in gray;
the darker the color the better the performance.

Sequence Blanking Blurring Pixelating Cartooning MP
Pµ Uµ Pµ Uµ Pµ Uµ Pµ Uµ Pµ Uµ

ETH-Bahnhof 0.99 0.00 0.43 0.44 0.77 0.36 0.31 0.73 0.15 0.21
ETH Sunnyday 1.00 0.00 0.36 0.44 0.72 0.37 0.27 0.68 0.13 0.18
iLids Easy 0.99 0.00 0.32 0.56 0.67 0.47 0.24 0.77 0.14 0.30
PETS 2015 0.96 0.01 0.14 0.70 0.35 0.64 0.13 0.79 0.13 0.41
P5-UK 0.99 0.00 0.39 0.50 0.69 0.40 0.31 0.78 0.12 0.20
PETS 2000 0.99 0.00 0.20 0.69 0.54 0.60 0.17 0.80 0.11 0.40
Cum. score 0.99 0.01 0.31 0.56 0.62 0.47 0.24 0.76 0.13 0.28
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SSIM-based structural similarity between the original and the privacy-protected image regions.

We showed the effectiveness and advantages of the proposed method using the PEViD dataset

containing visible imagery over an existing objective evaluation method, which is widely used and

employs the face recognition accuracy as a measure of protection and the face detection accuracy as

a measure of utility. We highlighted that the proposed method interestingly offered similar results

(in terms of ranking of different privacy protection techniques) to those of that existing method,

thus showing a strong correlation: Spearman’s coefficient=1. We underlined the advantages of

the proposed method of being annotation free and target independent over that existing method.

Moreover, using the PEViD dataset we also adopted a web-based subjective assessment approach

to further validate the effectiveness of the proposed method. Again, in this case, a strong corre-

lation (Spearman’s coefficient=1) has been reported between the rankings of privacy-protection

techniques obtain using the proposed method and those obtained based on the judgements of a

set of human subjects that include people who are skilled, semi-skilled and unskilled in privacy

protection in videos.

We also conducted an extensive experimentation on six challenging datasets (including a new

one) containing 12 sequences with face, full person body and vehicle as target types. The new

dataset, called TST-Priv, contains six sequences with both visible and thermal imagery, and is

made available online for the community. We demonstrated a statistically-significant comparison

of a diverse set of six privacy protection techniques using the proposed evaluation method. While

some techniques (blurring, pixelating, cartooning) involve the use of filter intensity to provide

varying protection strengths, others (blanking, motion perturbation (MP), thermal infrared imag-

ing (TIR)) do not rely on the use of filter intensity. Blanking is expectedly the best in terms of

protection score. It, however, causes a total loss of the information that is likely to be not desir-
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able in general. Among the remaining techniques, TIR or pixelating showed the highest protection

score. It is, however, important to highlight that TIR visually seems not to preserve the privacy well

because of an apparent presence of recognizable target features in the imagery (see Fig. 3, ‘TIR’

column), which of course does not correspond to the conclusions drawn based on its quantitative

evaluation using the proposed method. Therefore, a need remains to subjectively assess the pro-

posed evaluation method for the case of TIR imagery as well. On the other hand, in terms of utility

score, cartooning is consistently the best and blurring is the second best. Although TIR visually

seems to preserve the structural information well, it has obtained a lower utility than expected in

the experiments. This is likely to be due to the offset caused in the estimated bounding box patches

on the thermal imagery as a result of possible inaccuracies in the homography computation. Fi-

nally, in terms of providing an appropriate trade off between protection and utility, cartooning and

pixelating are generally found to be desirable.

The proposed evaluation method also has some limitations. First, there exist works that are

aimed at identification of persons by analyzing body structure (e.g. anthropometric biometrics)63, 64

and gait.65, 66 Often these approaches rely on temporal measurements by analyzing recorded im-

agery over a period of time. In such a case, the problem of privacy protection and its evaluation

becomes different, and is expected to account for temporal information of targets. Our work in-

stead focuses on image-based measurements and the above-mentioned temporal aspects are out

of the scope and hence not considered. Second, the proposed evaluation method may not provide

completely plausible results for a privacy protection that involves showing only the target contours.

In such a case, the proposed evaluation method is expected to give a higher (plausible) protection

score but a lower (nonplausible) utility score. Third, the use of the proposed evaluation method

(and, potentially, some of the existing related methods) is limited mainly to the visible imaging
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modality and their application to other imaging modalities (e.g. TIR) needs to be further exper-

imentally analyzed and validated based on, for example, the subjective assessment. Future work

could focus in addressing the above limitations. Moreover, in this work, while the usefulness of

the proposed evaluation method is shown in the context of video tracking by applying privacy pro-

tection techniques locally on estimated (target) image regions by trackers, the method is actually

not constrained by tracking. In fact, the proposed method is generic and could be employed for

evaluating privacy protection techniques whether applied on image regions generated by a tracker

or otherwise, or even on full frames.
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14 E. Aspelin and B. Almebäck, Eds., Optisk och elektronisk övervakning (Optical and electronic

surveillance), Statens Offentliga Utredningar 1987:74, Ministry of Justice, Stockholm, Swe-

den (1987).

15 Y. Zhang, Y. Lu, H. Nagahara, et al., “Anonymous camera for privacy protection,” in Proc. of

IEEE ICPR, (Stockholm) (2014).

16 X. Maldague, Theory and Practice of Infrared Technology for Nondestructive Testing, Wiley-

Interscience (2001).

17 R. S. Ghiass, O. Arandjelovic, H. Bendada, et al., “Infrared face recognition: A literature

review,” in Proc. of IJCNN, (Dallas, TX) (2013).

18 A. B. Chan, Z.-S. J. Liang, and N. Vasconcelos, “Privacy preserving crowd monitoring: Count-

ing people without people models or tracking,” in Proc. of IEEE CVPR, (Anchorage, AK)

(2008).

19 D. Conte, P. Foggia, G. Percannella, et al., “A method for counting people in crowded scenes,”

in Proc. of IEEE AVSS, (Boston, MA) (2010).

20 H. Fradi, V. Eiselein, I. Keller, et al., “Crowd context-dependent privacy protection filters,” in

Proc. of ICDSP, (Fira) (2013).

21 M. Saini, P. Atrey, S. Mehrotra, et al., “Anonymous surveillance,” in Proc. of IEEE ICME,

(Barcelona) (2011).

22 T. Nawaz and J. Ferryman, “An annotation-free method for evaluating privacy protection tech-

niques in videos,” in Proc. of AVSS, (Karlsruhe) (2015).

34



23 N. Babaguchi, T. Koshimizu, I. Umata, et al., Protecting Privacy in Video Surveillance,

ch. Psychological Study for Designing Privacy Protected Video Surveillance System: PriSurv,

147–164. Springer London (2009).

24 P. Birnstill and D. Ren, “A user study on anonymization techniques for smart video surveil-

lance,” in Proc. of AVSS, (Karlsruhe) (2015).

25 M. Boyle, C. Edwards, and S. Greenberg, “The effects of filtered video on awareness and

privacy,” in Proc. of CSCW, (Philadelphia, PA) (2000).

26 P. Korshunov, C. Araimo, F. D. Simone, et al., “Subjective study of privacy filters in video

surveillance,” in Proc. of IEEE Work. MMSP, (BANFF) (2012).

27 Q. A. Zhao and J. T. Stasko, “Evaluating image filtering based techniques in media space

applications,” in Proc. of ACM CSCW, (Seattle, WA) (1998).

28 P. Korshunov, A. Melle, J.-L. Dugelay, et al., “Framework for objective evaluation of privacy

filters,” in Proc. of SPIE 8856, Applications of Digital Image Processing XXXVI, (San Diego,

California) (2013).

29 M. Saini., P. K. Atrey, S. Mehrotra, et al., “Privacy modeling for video data publication,” in

Proc. of IEEE ICME, (Suntec City) (2010).

30 M. Saini, P. K. Atrey, S. Mehrotra, et al., “W3-privacy: understanding what, when, and where

inference channels in multi-camera surveillance video,” MTAP 68(1), 135–158 (2014).

31 T. Nawaz, F. Poiesi, and A. Cavallaro, “Assessing tracking assessment measures,” in Proc. of

ICIP, (Paris) (2014).

32 F. Dufaux and T. Ebrahimi, “A framework for the validation of privacy protection solutions in

video surveillance,” in Proc. of IEEE ICME, (Singapore) (2010).

35



33 S. Baker, D. Scharstein, J. Lewis, et al., “A database and evaluation methodology for optical

flow,” IJCV 92(1), 1–31 (2011).

34 D. Scharstein and R. Szeliski, “A taxonomy and evaluation of dense two-frame stereo corre-

spondence algorithms,” IJCV 47(1/2/3), 7–42 (2002).

35 M. Kristan, R. Pflugfelder, A. Leonardis, et al., “The vot2013 challenge: overview and addi-

tional results,” in Proc. of CVWW, (Krtiny) (2014).

36 T. Nawaz, F. Poiesi, and A. Cavallaro, “Measures of effective video tracking,” IEEE Trans. IP

23(1), 376–388 (2014).

37 “http://www.multimediaeval.org/mediaeval2015/. Accessed September 2016.”

38 F. J. Aherne, N. A. Thacker, and P. I. Rockett, “The Bhattacharyya metric as an absolute

similarity measure for frequency coded data,” Kybernetika 34(4), 363–368 (1998).

39 Y. Rubner, C. Tomasi, and L. J. Guibas, “A metric for distributions with applications to image

databases,” in Proc. of ICCV, (Bombay) (1998).

40 B. Huet and E. R. Hancock, “Line pattern retrieval using relational histograms,” IEEE Trans.

PAMI 21(12), 1363–1370 (1999).

41 T. Kailath, “The divergence and Bhattacharyya distance measures in signal selection,” IEEE

Trans. on Commun. Technol. 15(1), 52–60 (1967).

42 I. B. Ayed, K. Punithakumar, and S. Li, “Distribution matching with the Bhattacharyya simi-

larity: A bound optimization framework,” IEEE Trans. PAMI 37(9), 1777–1791 (2015).

43 A. Bhattacharyya, “On a measure of divergence between two statistical populations defined

by their probability distributions,” Bulletin of the Calcutta Mathematical Society 35, 99–109

(1943).

36



44 Z. Wang, A. C. Bovik, H. R. Sheikh, et al., “Image quality assessment: From error visibility

to structural similarity,” IEEE Trans. IP 13(4), 600–612 (2004).

45 F. Dufaux, “Video scrambling for privacy protection in video surveillance: recent results and

validation framework,” in Proc. SPIE 8063, Mobile Multimedia/Image Processing, Security,

and Applications, (Orlando, Florida) (2011).

46 O. Sawar, B. Rinner, and A. Cavallaro, “Design space exploration for adaptive privacy protec-

tion in airborne images,” in Proc. of IEEE AVSS, (Colorado Springs, CO) (2016).

47 T. Nawaz, B. Rinner, and J. Ferryman, “User-centric, embedded vision-based human monitor-

ing: A concept and a healthcare use case,” in Proc. of ACM ICDSC, (Paris) (2016).

48 “http://multimediaeval.org/mediaeval2013/. Accessed September 2016.”

49 P. Korshunov and T. Ebrahimi, “Pevid: privacy evaluation video dataset,” in Proc. SPIE 8856,

Applications of Digital Image Processing XXXVI, (San Diego, California) (2013).

50 “Subjective video quality assessment methods for multimedia applications.

http://videoclarity.com/pdf/t-rec-p.910-199909-ipdf-e1.pdf,” (last accessed on May 2017).

51 “ETH Bahnhof and Sunnyday Datasets. http://www.vision.ee.ethz.ch/~aess/iccv2007/. Ac-

cessed March 2015.”

52 “http://www.eecs.qmul.ac.uk/~andrea/avss2007 d.html. Accessed March 2015.”

53 L. Li, T. Nawaz, and J. Ferryman, “PETS 2015: Datasets and challenge,” in Proc. of AVSS,

(Karlsruhe) (2015).

54 “PETS 2000 dataset. ftp://ftp.cs.rdg.ac.uk/pub/PETS2000/. Accessed March 2015.”

55 “EU project P5 (Privacy Preserving Perimeter Protection Project). http://www.p5-fp7.eu. Ac-

cessed June 2015.”

37



56 M. Felsberg, “The Thermal Infrared Visual Object Tracking VOT-TIR2015 Challenge Re-

sults,” in Proc. of ICCV Workshops, (Santiago) (2015).

57 R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge Uni-

versity Press, 2nd ed. (2004).

58 H. Pirsiavash, D. Ramanan, and C. C. Fowlkes, “Globally-optimal greedy algorithms for track-

ing a variable number of objects,” in Proc. of IEEE CVPR, (Colorado Springs, CO) (2011).

59 J. Ning, L. Zhang, D. Zhang, et al., “Robust mean-shift tracking with corrected background-

weighted histogram,” IET Computer Vision 6(1), 62–69 (2012).

60 T. Nawaz and A. Cavallaro, “A protocol for evaluating video trackers under real-world condi-

tions,” IEEE Trans. IP 22(4), 1354–1361 (2013).

61 H. Kargupta, S. Datta, Q. Wang, et al., “On the privacy preserving properties of random data

perturbation techniques,” in Proc. of IEEE ICDM, (Melbourne, Florida) (2003).

62 B. L. Welch, “On the comparison of several mean values: An alternative approach,” Biometrika

38(3-4), 330–336 (1951).

63 B. C. Munsell, A. Temlyakov, C. Qu, et al., “Person identification using full-body motion

and anthropometric biometrics from kinect videos,” in Proc. of ECCV Workshops, (Firenze)

(2012).

64 V. O. Andersson and R. M. Araujo, “Person identification using anthropometric and gait data

from kinect sensor,” in Proc. of AAAI, (Austin, Texas) (2015).

65 Z. Wu, Y. Huang, L. Wang, et al., “A comprehensive study on cross-view gait based human

identification with deep cnns,” IEEE Trans. PAMI 39(2), 209–226 (2017).

38



66 W. Kusakunniran, Q. Wu, J. Zhang, et al., “A new view-invariant feature for cross-view gait

recognition,” IEEE Trans. IFS 8(10), 1642–1653 (2013).

Tahir Nawaz received a PhD in 2014 jointly from Queen Mary University of London, UK, and

Alpen-Adria University of Klagenfurt, Austria, and an MSc in 2009 jointly from Heriot-Watt Uni-

versity, UK, University of Girona, Spain, and University of Burgundy, France. Since 2014, he is

working as a Post-Doctoral Research Assistant at University of Reading, UK. He has published

several journal and conference papers, is a reviewer of well-known journals, and was Co-organizer

of PETS 2015.

Amanda Berg received her M.Sc. degree in Applied Physics and Electrical Engineering in 2013
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