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There is good evidence that simple animals, such as
bees, use view-based strategies to return to a familiar
location, whereas humans might use a 3-D
reconstruction to achieve the same goal. Assuming some
noise in the storage and retrieval process, these two
types of strategy give rise to different patterns of
predicted errors in homing. We describe an experiment
that can help distinguish between these models.
Participants wore a head-mounted display to carry out a
homing task in immersive virtual reality. They viewed
three long, thin, vertical poles and had to remember
where they were in relation to the poles before being
transported (virtually) to a new location in the scene
from where they had to walk back to the original
location. The experiment was conducted in both a rich-
cue scene (a furnished room) and a sparse scene (no
background and no floor or ceiling). As one would
expect, in a rich-cue environment, the overall error was
smaller, and in this case, the ability to separate the
models was reduced. However, for the sparse-cue
environment, the view-based model outperforms the
reconstruction-based model. Specifically, the likelihood
of the experimental data is similar to the likelihood of
samples drawn from the view-based model (but
assessed under both models), and this is not true for
samples drawn from the reconstruction-based model.

Introduction

Theories about navigation and ‘‘homing’’ in animals
fall into two broad categories. On the one hand, the
individual could make a mental map, record the
‘‘home’’ location on the map, and then return to it. An

alternative is for the individual to remember the
sensory data at the home location (e.g., the views from
that point) and to try to return to a similar sensory
state. In this paper, we make quantitative models of
both types of strategy and compare their ability to
predict human performance on a homing task.

Both 3-D reconstruction and view-based homing
have been advocated as models to explain navigation
behavior in animals, including humans, and both have
been implemented in robots. The idea of a reconstruc-
tion or ‘‘cognitive map’’ has a long history (Tolman,
1948), and it has been argued that this is instantiated in
the hippocampus and surrounding cortex, including
‘‘place’’ and ‘‘grid’’ cells (Hafting, Fyhn, Molden,
Moser, & Moser, 2005; Jacobs et al., 2013; O’Keefe &
Nadel, 1978). The proposal is that sensory information
from a variety of different sensory modalities is
integrated in a common allocentric map. This requires
that information from a range of senses is transformed
into an allocentric frame despite starting in different
coordinate frames (e.g., proprioceptive, vestibular,
visual, or auditory; Andersen, Snyder, Bradley, & Xing,
1997; Burgess, 2006; Burgess, Jeffery, & O’Keefe, 1999;
McNaughton, Battaglia, Jensen, Moser, & Moser,
2006; Mou, McNamara, Rump, & Xiao, 2006; Snyder,
Grieve, Brotchie, & Andersen, 1998). Indeed, our
ability to integrate information from several senses has
often been cited as evidence of the brain’s ability to
build a multimodal cognitive map (Tcheang, Bülthoff,
& Burgess, 2011) as has people’s ability to take an
appropriate novel short cut between two points (path
integration; Schinazi, Nardi, Newcombe, Shipley, &
Epstein, 2013).
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On the other hand, there is an extensive literature
supporting the use of view-based strategies for naviga-
tion, certainly in simple animals, such as ants and bees,
but also in humans. A classic study by Cartwright and
Collett (1983) showed that bees returning to a feeding
site flew so that, when landmarks around the feeder
were altered, they matched the retinal image as closely
as possible to the image they had learned rather than
flying to the correct 3-D location. Similar evidence
exists for ants (Graham & Cheng, 2009; Graham &
Collett, 2002; Lent, Graham, & Collett, 2010; Wehner &
Räber, 1979). Mallot and colleagues (Franz, Schölkopf,
Mallot, & Bülthoff, 1998b; Gillner &Mallot, 1998) have
proposed that human navigation may be based on an
internal representation linking actions with the sensory
consequences of those actions. The representation was a
‘‘graph,’’ i.e., a set of nodes connected by edges (the
operations that connect the nodes). In this case, the
nodes were views of the scene, and the edges were
actions, such as rotation or translation, of the observer.
A representation of this sort is more tolerant to
inconsistencies in performance across tasks than an all-
purpose allocentric model, and this appears to be true of
humans, too. For example, adding junctions and turns
increases people’s estimate of the distance between two
points (Sadalla & Magel, 1980; Sadalla & Staplin,
1980), depth judgments can be intransitive (Svarverud,
Gilson, & Glennerster, 2012), judgments of the direc-
tions between visible points can be inconsistent with any
3-D interpretation (Koenderink, van Doorn, Kappers,
& Lappin, 2002). An allocentric 3-D map and a graph
of views may be two extreme cases on a spectrum.
Chrastil and Warren (2014) have argued for an
intermediate representation, a ‘‘labeled’’ graph, on
which some distance and angle information is included
to describe the separation of local features or locations,
but there is no globally consistent map.

Computer vision and robotics have implemented both
types of approach although the 3-D reconstruction
solution is far more common. In 3-D reconstruction
techniques, image features are tracked and their location
computed in a world-based coordinate system as the
camera moves. Modern systems do this for every pixel or
even finer and in real time (2d3 Ltd., 2003; Hartley &
Zisserman, 2004; Meilland & Comport, 2013; New-
combe & Davison, 2010; Whelan, Leutenegger, Salas-
moreno, Glocker, & Davison, 2015). This differs from
biological proposals in a number of ways, including the
lack of intermediate coordinate frames between an
image and the allocentric 3-D reconstruction, such as
head-centered or other egocentric frames. There have
also been robotic implementations of navigation that
have avoided 3-D representations altogether (Ni,
Kannan, Criminisi, & Winn, 2009; Zhu et al., 2016).

In this paper, we compare the ability of a view-based
model (Pickup, Fitzgibbon, Gilson, & Glennerster,

2011) and a 3-D reconstruction model (Pickup,
Fitzgibbon, & Glennerster, 2013) and predict human
performance in a ‘‘homing’’ task. With no noise, both
models predict that participants would return to the
location that they viewed at the start, but once noise is
introduced, the models predict different patterns of
errors and a different dependence of the errors on scene
structure. Throughout the paper, we refer to the true
‘‘home’’ location as the ‘‘goal’’ point and the position
they actually return to as the ‘‘end’’ point. For the
reconstruction-based model, errors are assumed to
arise from Gaussian noise in the image centered on the
true projection for any point. This results in errors in
the reconstructed location of the scene points and hence
errors in the homing task. For the view-based model,
the important noise is assumed to be quite different.
‘‘Features’’ are calculated from one or more images, for
example, the angle or disparity between two points. For
more detail about the ‘‘features’’ we use, see ‘‘The view-
based model’’ in Modeling details. In the modeling we
describe in this paper, we assume that different noise is
applied to each ‘‘feature.’’ This is quite different from
the type of noise we assume in the reconstruction-based
model, and so the pattern of homing errors predicted
by the models is also quite different.

In order to distinguish the models, we generated
simple environments in which the spatial distribution of
predicted errors would be different for the two models
(even when the most likely location predicted by both
models was the same, namely the true ‘‘goal’’ location).
To do this, we showed a simple scene comprised of
three vertical poles (see Figure 2) and varied the
position of one of the poles relative to the other two. As
Figure 1 shows, this can have a dramatic effect on the
distribution of estimates of the ‘‘goal’’ location. These
example trials were specifically collected to allow the
varying spatial distribution of errors to be displayed
easily and are not part of the main data set (see
Methods for details).

Overview

We describe the homing task (Methods) and how
some of the conditions were arranged to maximize
differences between the predictions of the two models.
In Experimental results, we show homing locations for
the participants, and in Modeling details, we introduce
the two models. We describe how the parameters are
estimated to optimize the reconstruction- and view-
based classes of models, respectively. In Model
comparison, we compare the two models using the
sparse-scene data. We argue that comparing the
likelihood of the data under the two models is not the
most robust way to distinguish between the models.
Therefore, in addition to comparing the likelihoods of

Journal of Vision (2017) 17(9):11, 1–19 Gootjes-Dreesbach, Pickup, Fitzgibbon, & Glennerster 2

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/936403/ on 08/29/2017



the two models, we sample from each and compare
properties of participants’ data to those of the samples
drawn from the two models. The rich-cue data is less
suitable for model comparison as it varies less with
scene structure (see section on Navigation in a rich-
cue environment).

Methods

Participants

Some of the data were gathered in the Department of
Physiology, Anatomy and Genetics in Oxford (four
participants, S1–S4) and some were collected in the
School of Psychology and Clinical Language Sciences
in Reading (four participants, S5–S8). All participants
had normal or corrected-to-normal vision (6/6 or
better) as well as normal stereopsis (60 arcsec or better
in the TNO). Participants were naı̈ve to the experi-
mental purpose and design with the exception of S6
who was an author (LGD). The study received
approval of the research ethics committees of both the
University of Oxford and the University of Reading.

Virtual reality display

For both parts of the experiment, an nVisor SX111
(NVIS, Reston, VA) head-mounted display was used.
This headset has a wide field of view (1028) and a large
binocular overlap (508), which means that, typically,
all three landmarks in the sparse environment could be
viewed simultaneously in stereo from the goal
location. The headset was fitted with retro-reflective
markers mounted on a rigid wire frame that could be
tracked by infrared Vicon cameras. The Vicon
tracking system (Tracker Version 2, Vicon, Oxford,
UK) reported the six degrees of freedom head position
and orientation to the graphics PC at 240 Hz. The
stimuli were rendered on a desktop PC running Linux
and proprietary OpenGL software. The system had a
total latency of less than 40 ms. Further details of the
setup and its calibration can be found in Gilson,
Fitzgibbon, and Glennerster (2011). The experimental
space (3.5 m by 3.5 m) was tracked using nine Vicon
cameras in the Oxford setup (MX3 and T20s) and in
Reading (3.1 m by 3.5 m) using 14 cameras (MX3s and
T20s).

Figure 1. Illustration of different distributions of errors. Raw data from four ‘‘demonstration’’ conditions (see Introduction; data taken
from Pickup et al., 2013). The colored dots (red, green, and blue; left side of each subplot) show the locations of the three vertical

poles. The magenta ‘‘þ’’ indicates the location to which participants were trying get (‘‘goal point’’). Crosses indicate the ‘‘end points,’’
i.e., the actual locations at which participants reported having reached the goal point.

Figure 2. An example trial of the homing task used for modeling. View of the three-pole stimuli in (a) sparse-cue and (b) rich-cue

environments. (c) Top-down view of the virtual room showing the three colored poles; the black ‘‘þ’’ shows the goal point.

Participants had to return to this location after being transported to a new location, marked by the red ‘‘þ.’’
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Stimuli

Two types of scenes were shown in virtual reality, a
sparse scene consisting of only three long poles and a
rich scene containing the same poles set in a virtual
room with furniture and familiar objects (see Figure 2).
The three thin, vertical poles were always one pixel
wide on the screens independent of viewing distance. In
the sparse condition, the relative positions of the poles
could not be determined by looking up or down as no
ground plane was shown. The background was black.
The red and blue poles always appeared in the same
position in the virtual room, and the green pole
changed position between trials (Pickup et al., 2011;
Pickup et al., 2013) and sometimes between intervals
(see ‘‘Optimisation for model comparison’’ in Meth-
ods). The full set of green pole positions are shown in
Figure 3. The stimuli were viewed from within three
possible 20 cm 3 80 cm viewing zones, in which
participants could freely move to gain motion parallax.
The angle between the red and blue poles as seen from
the center points of each of the viewing zones was
constant at 188.

The rich scene added a ground plane, walls, and
objects. The objects were a couch, picture, table, and
bookshelf positioned behind the poles and were visible
from all three possible viewing zones. The ground plane
had a repeated wooden texture; all other objects were
rendered without texture. The light source was a point
light attached to the participant’s head location. No
shadows were enabled, so movement of the light source
was undetectable in the sparse scene. In the rich scene,
movement of the light source did cause a slight change
in the luminosity of surfaces, mainly the walls, but
participants focused on the three poles in the center of
the room.

Procedure

Each trial followed a two-interval pattern. At the
beginning of each trial, participants guided themselves
to a specific location in the virtual room. A yellow box
drawn in one eye’s image showed a plan view of the
viewing zone that participants had to enter to start the
trial, and a red cross showed their own location. This
meant that they could walk to the viewing zone while
still wearing the headset. When their cyclopean point
was within the zone, the image changed, and they saw
the three poles in front of them.

In this first interval, the poles were visible provided
that participants moved within the 20 cm 3 80 cm
viewing box (otherwise the scene went blank). In the
virtual room, this box was centered at one of the three
starting locations shown in Figure 3 with the long axis
of the viewing box at right angles to the line joining the
center of the viewing box to the point midway between
the red and the blue poles. The size of the viewing box
was chosen to allow for lateral movement. Participants
were allowed to view the stimulus for as long as they
wished but generally did so for a few seconds. When
participants were happy that they had remembered
their location with respect to the poles, they pressed a
button on a hand-held controller.

On the button press, the participant’s current
location within the viewing box was marked as the
‘‘goal point’’ for the trial (the position to which they
would then try to return). In contrast to the data in
Figure 1, participants were free to choose the goal point
themselves within the viewing zone. After a blank
interstimulus interval of 0.5 s, they were instanta-
neously transported to another location (by moving the
virtual room). Hence, although their view of the poles
changed between intervals, participants’ physical loca-
tion in the real world remained the same. Note that, for
the data shown in Figure 1, an extra interval was

Figure 3. Stimulus configurations. The 36 pole configurations for interval 1 of the experiment. Each of the three boxes represents a 4

3 4 m area of the virtual reality space. The red, green, and blue dots represent pole positions, and the black circles represent the

centers of the interval 1 viewing zones. The 12 green pole locations marked with a black dot were included twice: once as a ‘‘normal’’
condition and once with the green pole moving between intervals 1 and 2 by 4.0–4.5 cm. This makes 48 conditions in all. The marks

on the side of the plot indicate a distance of 1 m.
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inserted into the protocol (interval 1b) as the partici-
pant was shown a fixed view of the scene that was
repeated across multiple trials (Pickup et al., 2013), but
in the current paper, we used two intervals, and hence,
there was a slightly different goal point on every trial.

On some trials, an additional small movement of the
green pole was introduced between intervals (described
in more detail in ‘‘Optimisation for model comparison’’
in Methods). The participants’ task in interval 2 was to
navigate back to the ‘‘goal’’ location and to press a
button when they believed they had reached that point.
This location was then marked as the ‘‘end point’’ for
that trial. If the task were carried out perfectly, the
coordinates of this end point would exactly match the
coordinates of the goal point when described in the
original frame of reference.

In the sparse-cue condition, each participant com-
pleted 336 trials in total, corresponding to seven
complete repetitions of the 48 conditions shown in
Figure 3, which were spread out over several experi-
mental sessions. Twelve out of the 48 conditions were
repeated conditions but with a small change in position
of the green pole between intervals as described above
and in ‘‘Optimisation for model comparison’’ in
Methods. Participants S5–S8 also completed an addi-
tional full set of 336 trials using the rich-cue
environment. As in the sparse-cue condition, the scene
remained the same between intervals 1 and 2 (other
than any small movement of the green pole). Over the
course of the experimental sessions, participants
alternated between rich-cue and sparse-cue blocks.

Optimization for model comparison

The purpose of changing the position of the green
pole between intervals on some trials was to elicit
navigational errors that were maximally discriminative
in relation to the two models that we examined
(analogous to the picking of cue values in an adaptive
psychometric procedure to provide the most informa-
tive response on each trial, e.g., Watson & Pelli, 1983).

To find the pole configuration and specific shift in
the green pole position that would have the largest
effect on model predictions, a set of possible pole
locations was created, and the green pole was shifted by
4.0–4.5 cm either in depth or laterally between intervals
1 and 2. These shift magnitudes were chosen to be small
enough that participants in a pilot study did not report
noticing that there had been any shift during an
informal interview afterward but large enough that the
differences in model predictions were as pronounced as
possible. For each possible condition, we then evalu-
ated the predicted end point distributions under the
view-based model and the reconstruction-based model
using typical parameterizations in each case that gave

predictions about the likely locations of participants’
end points (e.g., as shown in Figure 11). This allowed
us to select the 12 cases with the biggest difference
between view-based and reconstruction-based predic-
tions. Our measure of difference was the Kullback–
Leibler divergence (Kullback & Leibler, 1951) between
the two distributions of predicted end points.

After the main experiment had been completed, we
tested four participants (S1–S4, tested in Oxford) on 96
trials (the final two repetitions of the experiment) using
a forced-choice paradigm to determine whether the
green pole had moved between intervals. Participants
carried out the task exactly as before, navigating back
to the goal location, but were asked to press one button
to indicate that the green pole had moved and another
if it had not (movement on 50% of trials).

Experimental results

Sparse-cue scene

Figure 4 shows data from the sparse-cue condition.
It plots in plan view, for all participants, the location of
the poles, including all the possible locations of the
green pole (shown in more detail in Figure 3), the
locations of the goal points (black), and the locations of
the ‘‘end’’ points (red and blue crosses for conditions in
which the green pole did or did not move between
intervals, respectively). As explained in the Methods,
the goal point was determined by the location at which
the participant left the viewing zone in interval 1, so it
was slightly different on every trial—hence, the spread
of the black dots. We did not analyze the distribution
of goal points chosen by participants, and this
distribution may well not have been random within the
viewing zone, e.g., if participants found some config-
urations easier to memorize than others (the raw data is
available in the Supplementary Material). This means
that Figure 4 cannot illustrate the spread of end points
and how it is affected by the relative landmark
positions in the same way as Figure 1. Instead, we leave
the quantitative analysis of the end point data to the
comparison of models, in which every end point from
every trial is related to the prediction of the two models
tailor-made for that particular configuration of poles
and that particular goal location, which is unique for
each trial. Nevertheless, even by plotting all the homing
errors for one condition relative to the correct location,
as shown in Figure 5, there is a strong indication of
systematic biases in the distribution of homing errors.
When the data from all trials are combined together as
in Figure 4, some general observations can be made.
For example, certain observers tend to move system-
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atically closer to the poles (or, for other observers,
further from the poles) than the true goal location.

Of the four participants we tested to see whether they
could notice the green pole moving, two had a d0 of less
than one (0.29 and 0.58), one had a d0 of 1.46, and one
had an infinite d0, i.e., this participant (S4) was correct
on all 96 trials. Unlike the participants S1–S4,
participants S5–S8 were simply asked about whether
they saw the green pole move between intervals at the

very end of the experiment, and participants S6, S7,
and S8 said they did not. S5 noticed the movement, and
this participant shows a distinctly different navigation
behavior in the green-pole-moving condition than in
the green-pole-static conditions. In ‘‘Model comparison
results’’ in Model comparison, we show a reanalysis of
the data from S4 and S5, excluding all the green-pole-
moving trials. The reanalysis shows that the conclu-
sions about model comparison were not affected.

Rich-cue scene

Figure 6 shows the data for the rich-cue scene.
Comparing Figures 6 and 4, the spread of end points in
Figure 6 appears smaller. Confirming this, permutation
tests showed that the root-mean-square error of all four
participants who carried out both experiments was
significantly lower in the rich-cue versus the sparse-cue
conditions (all ps , 0.001).

Modeling details

In this section, we describe details of the recon-
struction-based and view-based models of homing; then
in the next section on Model comparison, we compare

Figure 4. Homing in a sparse-cue environment. Blue ‘‘þ’’ symbols show the ‘‘end points’’ in the green-pole-static conditions, red ‘‘3’’
symbols show end points from the green-pole-moving conditions, and black dots show the goal points. Note that all conditions are

plotted together, accounting for the three clusters of goal points, which correspond to the three viewing zone locations, and also for

all green pole locations.

Figure 5. Systematic biases in homing errors. For two example

conditions from the sparse-cue experiment (both with a static

green pole position between intervals), end point locations are

plotted relative to the goal point (shown at the center of the

plot). The plan view of pole position and original goal point

spread are shown in the insets. Ticks are separated by 1 m, and

the orientation of the plot is the same as the insets.
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the data from Experimental results with the predictions
of both models.

The reconstruction-based model

The reconstruction-based model creates a metric
reconstruction of the world given two ‘‘cameras’’ or
viewpoints at known locations in the ‘‘viewing zone’’
from which participants viewed the scene. It assumes
that the image location of rays from objects in the
scene (the three poles) is known up to some degree of
precision (r). r as well as the separation between the
cameras were free parameters when Pickup et al.
(2013) optimized this reconstruction model using their
data (but the rotation of the cameras was constrained
so that they always faced the green pole). They found
that two cameras placed at the maximum permitted
separation (80 cm) best explained the navigation data
in that paper (and a r of 0.0128 times the assumed
focal length of the camera, see Pickup et al., 2013, for
details). The logic of allowing such a wide baseline is
that participants could move from side to side in the
viewing zone up to a maximum of 80 cm, and this
provided useful motion parallax, so the models should
have access to this information too. The image error
associated with each feature (r) results in a spread in

the estimate of the location of the corresponding pole
as shown in Figure 7.

In the reconstruction model used in this paper, these
parameters (camera location and r) were fixed as
above, but one parameter was allowed to vary to best
fit the data for each participant (k), defined in Equation
1 below. So, the steps required to determine the
likelihood of a given data set under the reconstruction
model were as follows:

1. A metric reconstruction was carried out from a
series of views in interval 1. The views were taken
from a line within the viewing zone, orthogonal to

Figure 7. Examples from the reconstruction-based model. The

pole configurations match those in Figure 1. Each plot shows a

model built up in egocentric coordinates, in which the

‘‘forward’’ direction is taken as being toward the green pole.

The ellipses illustrate the uncertainty (covariance of the model)

around each pole estimate. The magenta strip shows the 0.8-m-

wide region over which the set of views used for the

reconstruction is taken. This matches the width of the start zone

in interval 1 of the homing task. Reproduced from Pickup et al.

(2013) under the terms of the creative commons attribution

license.

Figure 6. Homing in a rich-cue environment. End points in the

green-pole-static (blue ‘‘þ’’) and green-pole-moving (red ‘‘3’’)
conditions. The goal points are shown as black dots. This

experiment was carried out by four observers as shown. As in

Figure 4, data for all the conditions are plotted together.
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a line from the center of the viewing zone to the
center point between the two outer poles.

2. From these views, we obtained a Gaussian
representation of each pole’s location in egocen-
tric 2-D coordinates.

3. The difference between the current location’s
egocentric pole representation and the goal point’s
egocentric representation was found using the
Bhattacharyya distance d. Details of how this was
calculated are given in Pickup et al. (2013), and
Figure 7 provides an illustration: If panels a and b
were overlaid, there would be quite a large overlap
between ellipses of the same color whereas the
overlap between panels a and c would be much
smaller and the Bhattacharyya distance corre-
spondingly larger. Bhattacharyya distance is a
standard measure of distance between probability
distributions. Each pole was treated indepen-
dently. An alternative to this approach that takes
the relationship between poles into consideration
is described in Pickup et al. (2013), but it bears
some similarities to the view-based model, and we
opted to test the extremes of the reconstruction- to
view-based spectrum.

4. The (un-normalized) likelihood of the location
matching the goal point was taken to be

L} exp �kdf g; ð1Þ
where k is the additional weighting parameter,
which we allowed to vary across participants. It
determines how quickly the likelihood should
decay with the magnitude of the Bhattacharyya
distance, d (Pickup et al., 2013).

5. To turn the likelihoods into full probabilities that
can be compared across trials, we ensured that the
integral of the likelihood function across the (x, y)
plane is unity. For this, we estimated the integral

Z ¼
Z
x

Z
y

exp kdðx; yÞf gdxdy ð2Þ

where d(x, y) is the Bhattacharyya distance
between the goal point’s egocentric representation
and the egocentric representation built at the
point (x, y).

6. The (normalized) probability of an end point
under the model is therefore

L ¼ 1

Z
exp �kdf g: ð3Þ

7. The total likelihood of the data set was found by
multiplying together the normalized probabilities
for each data point.

Examples of the reconstruction-based end point
likelihood maps are shown on the left hand side of
Figure 11. For each participant, we found the value of

k that maximized the total likelihood of that partici-
pant’s training data. Different values for k indicate
individual differences in sensitivity to divergence
between the representations being compared. One
participant may be very sensitive to the change in
representations, and another may not. For the eight
participants in these experiments, the values of k were
0.195, 0.102, 0.120, 0.167 (0.208 in the reanalysis
described in ‘‘Model comparison results’’ in Model
comparison), 0.4644 (0.476 in the reanalysis), 0.241,
0.118, and 0.144, respectively.

The view-based model

A view-based model is defined using image ‘‘fea-
tures’’ based on the visual angle between two poles or
the relative disparity between them. These image
measurements are assumed to be made at the ‘‘home’’
location and then compared with the same measure-
ments at the current location until the best match is
achieved. There are potentially a very large number of
measures that could be used as the basis of these
features even for a scene as sparse as the one we used
with three poles, for example, the angular separation
between any pair of poles, the ratio between angular
separations, or the relative disparity between any pair
of poles. Disparity was calculated assuming that
observers faced the green pole using a fixed interocular
distance (7.9 cm for the participants collected in Oxford
and 7.4 cm for those collected in Reading, based on the
calibration of the head-mounted displays). Pickup et al.
(2011) tested a large combination of such measures and
identified two that resulted in the features best able to
account for the homing data in that paper. In this
paper, we adopted these previously identified features,
just as we used the previously identified parameters in
the reconstruction model ( ‘‘The reconstruction-based
model’’ in Modeling details). The features were based
on (a) the angle between the outer poles (red and blue)
and (b) the disparity between the green pole and its
nearest neighbor divided by the angle between the
green pole and its nearest neighbor. Specifically, the
features we used are the difference between the above
quantities viewed from the goal and end points,
calculated as

fA ¼
/G

c � /E
c

/G
c

; ð4Þ

fB ¼
dGa
/G

a

� dEa
/E

a

: ð5Þ

where the superscript ‘‘G’’ means ‘‘viewed from the
goal location,’’ and ‘‘E’’ means ‘‘viewed from the
participant’s end point.’’
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/c and /a refer to the largest and smallest angles
between pairs of poles:

/a ¼ min hrg; hgb; hrb
� �

; ð6Þ

/c ¼ max hrg; hgb; hrb
� �

: ð7Þ

where the three monocular measurements available
from a view of our three-pole stimuli are hrg, hgb, and
hrb, which are the three visual angles between the poles
(red–green, green–blue, and red–blue, respectively).
The relative magnitudes of angles in the scene is
important because changes in a small angle have much
more of an impact on performance than the same
changes in a wide angle. Finally, da refers to the
disparity between the green pole and its nearest
neighbor (see Pickup et al., 2011).

Having fixed the features on the basis of previously
published data, the only adjustment of the view-based
model per participant was to find the best-fitting values
of the standard deviation for each feature. Figure 8
shows the two features in the sparse-cue data set
gathered from each participant as well as the 2-D
Gaussian distributions that resulted from the training
data. The mean and covariance of this Gaussian are a
full description of the model. This allows for interac-
tion between the two features, which is near zero for all
participants.

Most participants show slight biases, i.e., the peak of
the distribution does not coincide with the origin,
especially in the proportional c error (x-axis). This can
also be observed in Figures 4 and 6, in which responses
are, on the whole, either slightly closer or further away
from the three poles than the goal point, which can be
accounted for in this model by allowing the mean
proportional error in c (feature fA) to be slightly higher
than zero.

As with the reconstruction-based models, these view-
based models have to be normalized, and it is not
sufficient that the Gaussian in feature space is
normalized because the transform between feature
space and (x, y) space is not area-preserving. As before,
we find the total likelihood of the data under the view-
based model by multiplying together the probabilities
of all the individual end points recorded for a given
participant. An example of the view-based model
results being transformed back into a room coordinate
frame is shown on the right hand side of Figure 11.

Model comparison

In this section, we describe the methods we used to
compare the two models, and then, in ‘‘Model
comparison results’’ in Model comparison, we show the
comparison. An illustration of the principle underlying

the model comparison is shown in Figure 9, which
replots the data from Figure 1 but now showing the
predictions of the two types of model. As we pointed
out in the Introduction, these data were collected

Figure 8. Data from the sparse-cue conditions plotted in feature

error space. The full sets of data collected from the eight

participants are shown here projected into our 2-D feature

space. In this case, the horizontal axis feature is the

proportional error in the red–blue angle, c, and the vertical axis

feature is the disparity gradient for the pair of poles spanned by

the smallest visual angle (Equation 5). Both of these features

are dimensionless as they are ratios. Red ellipses indicate the 2-

D Gaussians fitted to the training subset of the point cloud

(with the ellipse indicating one standard deviation).
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separately from the main data in this paper and are for
illustration only (Pickup et al., 2013), but they show,
for example, how the elongated distribution of end
points in all four panels match the shape of the model
predictions of the view-based model better than the 3-D
reconstruction-based model. One might think that all
that is required is to compute the ratio of likelihoods of
the data under each model (Bayes factor). For each
participant, we plot likelihoods for each model but also
demonstrate how sampling from each model can
provide a more detailed picture of the differences
between the models and how the data compare to
samples taken from each model. This constitutes a
principled method for determining which model should
be preferred.

Methods for model comparison

When considering all the data from one participant,
the likelihood of the whole set of data under both
models can be compared to the likelihood of a random
sample from both of the models (in which a ‘‘sample’’
consists of the same number of ‘‘test’’ conditions that
the participant carried out, i.e., 84). Measuring a test
statistic of data under two models and comparing it to

samples drawn from both models is far more infor-
mative that simply comparing the likelihood of the data
under each model. Of course, we can do the random
sampling many times over and produce a distribution
of likelihoods of the samples under both models. Then
we can see whether the experimental data plausibly
come from one or the other of the sampling distribu-
tions.

Figure 10 illustrates this point for a very simple case
of two ‘‘models’’ that are simply 1-D Gaussian
distributions with a different mean and standard
deviation. The likelihood of a sample under the red
Gaussian ‘‘model’’ is similar whether the sample was
drawn from the red probability density function (PDF)
or from the blue PDF. One can see that this might
happen from looking at the left panel in Figure 10. The
values of x would be quite different for the two
samples, but the height of the red curve over all the
samples (total likelihood) could well be similar. This
intuition is confirmed in the right panel in Figure 10,
which shows on the y-axis that the likelihood of
samples under the red Gaussian model is very similar
whether the samples originate from the red Gaussian
model (red dots) or from the blue Gaussian model (blue
dots). Of course, the reverse is not true. Sampling from
the red distribution yields a very large number of

Figure 9. Illustration of model predictions. A comparison between view-based and reconstruction-based models of homing. Raw data

from the four ‘‘demonstration’’ conditions shown in Figure 1. The colored dots again show the locations of the three vertical poles,

the white markers participants’ end positions, and the magenta ‘‘þ’’ indicates the true goal location. Top row: Predictions of end point

location likelihood under a view-based model. Bottom row: Predictions of end point location likelihood under a reconstruction-based

model. Columns a through d show four different configurations of the poles and goal points, which led to very different patterns of

errors by the participant.
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samples that are extremely unlikely under the blue
model, pulling down the total likelihoods and making
the cloud of samples from the red PDF quite different
from those drawn from the blue PDF when assessed
under the blue model. The view-based and reconstruc-
tion models that we examine show a similar pattern.
For each model, we create a reference distribution
derived from simulated data sets that are sampled
directly from the model predictions. This distribution
tells us what kind of likelihoods we would expect if the
model used to create the simulated data sets was the
‘‘true’’ underlying model. Hence, we can say whether
the likelihood of the experimental data under that
model is ‘‘typical’’ or ‘‘untypical’’ in relation to the
random samples or, at least, whether it is more typical
of one model over another.

For our experimental data, Figure 11 shows the
sampling process used to generate the simulated data
sets. The two plots on the top row show the predictions
of each model in two example conditions. The plots on
the bottom row show 1,000 sampled end points from
those distributions. The model gives likelihood maps
for each of the goal point–pole position combinations,
and by taking samples of hypothetical end points from
each of the test set condition likelihood maps, we can
combine samples from several conditions into a full
simulated data set.

For each participant, we trained both a reconstruc-
tion-based model and a view-based model using the 252
green-pole-static conditions (sparse-cue, seven repeti-
tions of 36 conditions). For the reconstruction-based
model, this training determined k (the one free
parameter in that model), and for the view-based

model, the training determined the mean and covari-
ance matrix of the errors in feature space (which specify
the view-based model). The remaining 84 green-pole-
moving trials (seven repetitions of 12 different condi-
tions) were used as the ‘‘test set’’ over which the
sampling distribution was evaluated, yielding the mean
log likelihood of the test data as a single scalar value,
which we call ‘‘tdata.’’ These trials had been chosen in
advance as being especially discriminative between the
two models (see ‘‘Optimisation for model comparison’’
in Methods). We also show additional analyses for
participants S4 and S5 because of concerns that they
may have noticed the difference between green-pole-
moving and green-pole-static trials and changed their
strategy as a result (discussed in ‘‘Optimisation for
model comparison’’ in Methods). In this case, we
avoided the green-pole-moving trials in the testing
phase: The model was trained on two thirds of the
green-pole-static data (random split) and tested on the
other third (Figure 13).

In each simulated experiment, we drew one sample
from one of the models for each of the 84 conditions
that make up a complete test set, i.e., we had 84 ‘‘end
point’’ locations. For each of these sets of 84 simulated
trials, we could calculate the test statistic (tdata) under
each of the models, i.e., both under the model that was
used to generate the simulated data set and under the
rival model. These two values of tdata give rise to a
single point plotted at the relevant coordinate in Figure
12, color-coded according to the model from which the
sample was drawn. We repeated this many times (104

independent samples) for each model under consider-
ation and for each participant.

Figure 10. Simple example of model comparison. The left panel shows two normal distributions, which define the two models we

want to compare in this example.We sample from each model in turn to create simulated data sets and evaluate the likelihood of the

samples under each model (tdata). Results of the comparison are plotted in the right panel, showing the mean log likelihood of data

sampled from the red and blue models. The red model has similar likelihoods for data generated using either model whereas the

likelihoods under the blue model are quite distinct and allow the underlying distribution to be identified.
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Model comparison results

Figure 12 shows the results of the model comparison
for all eight participants in the sparse-cue condition. As
in the right hand panel of Figure 10, each axis plots the
mean log likelihood, log(t)/n, under the view-based
model and the reconstruction model of samples taken
from each model. The red cloud of dots shows
likelihoods of simulated data drawn from the recon-
struction model, blue dots shows the same for the view-
based model. Now we can see where the data fall on
this plot. The magenta dot shows the likelihoods of the
actual data for each participant under both models.

For all participants except S5, the experimental data
has a higher total likelihood under the view-based
model than under the reconstruction-based model.
Also, inspecting the marginal distributions in Figure
12, it is clear that the experimental data (shown as
magenta circles) lie at the extremes of the distributions
of likelihoods for the reconstruction model (shown in
red) and, in fact, the experimental data are significantly
different from the samples drawn from the recon-
struction model for all participants (all ps , 0.05).
Using the same criteria, the data are significantly
different from the simulated view-based data sets for

only three out of eight participants (S4, S5, and S6).
This suggests that the view-based model may be
preferable to the reconstruction-based one. However,
as discussed above, the real differences between the
models emerge when the likelihoods of the data under
both models are considered together. In this case, it is
clear from inspection of Figure 12 that for all
participants except S5, the experimental data (magenta
circles) are more similar to the samples from the view-
based model (blue dots) than they are to those from the
reconstruction model (red dots).

S4 and S5 were discussed previously (Experimental
results) as they may have detected that the green pole
sometimes moved and changed their strategy on these
trials. Figure 13 shows a reanalysis for these participants
using only the green-pole-static trials, i.e., avoiding any
trials in which the green pole moved. For participant S5
in particular, the data are now much more similar to the
samples drawn from the view-based model.

A quantitative version of this informal inspection is
to grow a circle out from the experimental data for each
participant (magenta dot in Figure 12) and to collect a
cumulative count of the number of samples from each
model (blue or red dots) that fall within the circle as the
radius increases. This is illustrated in Figure 14, which

Figure 11. Sampling from the models. Examples of sampling from the end point distributions described by one reconstruction-

based model (left half of the figure) and one view-based model (right half of the figure). There are two green pole configurations,

labeled ‘‘A’’ and ‘‘B.’’ The top row shows the end point probability distributions according to the two models, and the bottom row

shows samples from these distributions (1,000 points are shown per plot). Each box above represents a 5 3 5 m area in virtual

space. The red, green, and blue dots represent pole locations in interval 1, and the magenta marker represents the ‘‘goal point’’
location, i.e., the final viewing location for interval 1 of the experiment. Sampling was carried out using a simple rejection sampler

for both models.
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Figure 12. Results of model comparison in the sparse-cue conditions. The magenta marker shows the likelihood (tdata) of the data

under the two models for each participant. The red dots show the same but for samples drawn from the reconstruction model;

similarly, the blue dots show the distribution we would expect to see under the view-based model. The marginal histograms show the

distribution of likelihoods of each type of simulated data set under each model.
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shows the number of tdata points from simulated data
sets for both models that fall within a certain radius
around the real data. Data from all participants are
combined in this plot. There are always more samples
from view-based models for every radius in the
combined plot. Specifically, we calculate the ratio of
reconstruction-based simulations relative to all data
sets that fall within a given radius; we then increase the
radius up to the point at which it includes either all of
the samples from one model or all of the samples from
the other model. Before that point, the ratio never
exceeds 0.01 for all participants except S4 (ratio ¼
0.4112), S5 (ratio ¼ 1), and S6 (ratio ¼ 0.1592). After
reanalysis, this ratio drops to 0.384 for S4 and to 0.169
for S5 (note that Figure 14 shows the reanalyzed data).

If the two models provided equally good descriptions
of the data, one would expect (on average) a similar
number of samples from each model to lie within the
tested region, whatever its radius. If, instead, almost all
the samples turn out to come from one model rather
than the other, as we have found here (Figure 14), this
is strong evidence to prefer that model over its rival.

We consider the implication of these results in more
detail in the Discussion. For now, it is worth looking
back at the biases in end points shown in Figure 4 and
noting that one of the reasons that the view-based
model performs better is that it is able to model this
tendency of participants to systematically overestimate
or underestimate the relative distance to the landmarks
(Figure 4).

Figure 13. Reanalysis for two participants, excluding green-pole-moving trials. The possibility that participants S4 and S5 may

have used a different strategy on green-pole-moving trials prompted a reanalysis of their data excluding these trials. Two thirds

of the green-pole-static data were used for training and the remaining third for testing. Otherwise, the plots are the same as for

Figure 12.

Figure 14. Number of model samples in the neighborhood of the data. This shows the cumulative number of samples (across all

participants) that fall within a given radius of the real data likelihoods as shown in Figures 12 and 13. The blue and red curves show

this for samples from the view-based and reconstruction-based models (blue and red points in previous figures, respectively).
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Navigation in a rich-cue
environment

In the sparse-room condition, a limited number of
features were available to participants, which made
modeling tractable. Although this method uses an
environment that would not be encountered in a real-
life situation, it allowed us to draw distinctions between
the two types of models.

Adding a large number of additional points makes
this approach unfeasible. For the sparse environment,
we originally investigated 19 possible view-based fea-
tures in describing the spatial relationship between the
three available landmarks (Pickup et al., 2011). The
number of possible combinations of features increases
exponentially in a rich-cue environment, making it
unfeasible to systematically determine which ones give
rise to models that best fit the data. Additional
complications arise from the fact that visible features are
now spread through three dimensions rather than two.

Nevertheless, it is still possible to demonstrate the
effect that extra scene features have, in general, on both
view-based and 3-D models. Figure 15 shows how
exactly the same view-based model that we used for the
sparse-cue data gives rise to a much smaller range of
predicted navigation errors when the range of depths of
features is increased. This shrinkage occurs without
altering the model and even when the number of
features remains the same. A similar diminution of the
range of predicted errors is evident for the 3-D
reconstruction model when more features are added to
the scene (Figure 15, bottom row). The parameters of
the model are the same as for the sparse-cue scene, but
now the likelihood of a location matching the goal
point depends on the Bhattacharyya distance between
the Gaussian distributions of more features than
before, and the features are more widely distributed in
space. This shrinkage in the predicted range of
navigation errors agrees qualitatively with the data on
rich-cue environments, in which RMS errors reduced
significantly compared to the sparse-cue scene (‘‘Rich-
cue scene’’ in Experimental results). However, any
attempt to make a quantitative comparison of the
models using data from the rich scene would face severe
challenges—not least in attempting to identify which of
the many possible features might be used by observers.

Discussion

In this paper, we have compared the ability of two
different classes of models to explain the pattern of
errors that participants make when they carry out a
homing task in virtual reality. We showed that a

model based on view-based features, such as the visual
angle separating two landmarks, outperforms a model
based on recreating the full 3-D coordinates of
landmarks in the scene (Pickup et al., 2011; Pickup et
al., 2013). The data from eight individual participants
support this conclusion. The data have higher
likelihoods under the view-based model than the 3-D
reconstruction model (the location of all but one of
the magenta points in Figures 12 and 13 is below the
line of equality), but more significantly, the likelihood
of the data under the view-based model is similar to
that of a random sample drawn from the view-based
model (Figures 12 through 14). This is not true for the
3-D reconstruction model: The likelihood of the data
under the 3-D reconstruction model is not similar to
the likelihood of a random sample taken from the 3-D
reconstruction model.

We have also carried out the same homing task in a
rich-cue environment, i.e., a virtual room with a floor,
walls, and furniture in addition to the three poles that
were the only visible features in the sparse environment.

Figure 15. The effect of a richer cue scene. Both the view-based

model (top) and the 3-D reconstruction model (bottom) show a

constriction of the range of predicted end point locations when

the scene is changed. Top right: The purple pole has a greater

depth in relation to the green and blue poles, and this has the

effect of tightening the likelihood distribution even without any

change in the model. Bottom right: Adding more poles also

restricts the range of the likelihood distribution for the

reconstruction-based model. Model parameterization is taken

from participant S5 for both the view-based model and the

reconstruction model (k).

Journal of Vision (2017) 17(9):11, 1–19 Gootjes-Dreesbach, Pickup, Fitzgibbon, & Glennerster 15

Downloaded From: http://jov.arvojournals.org/pdfaccess.ashx?url=/data/journals/jov/936403/ on 08/29/2017



Unsurprisingly, all participants in the rich-cue envi-
ronment showed lower RMS errors when returning to
the goal location than they did in the sparse-cue
condition (Figure 6). After all, there are now many
more cues available that specify the goal location, and
some of these will change very rapidly with changes in
the observer’s location. This means that a view-based
model will predict a narrower spread of ‘‘end points’’
than it does in a sparse-cue environment even without
any change to the model. Similarly, a 3-D reconstruc-
tion model will predict a narrower spread of errors in
the rich-cue environment because it depends on the
overlap of the Gaussian error distributions around a
larger number of features spread throughout the room.
As Figure 15 shows, these factors mean that both
models predict a shrinkage of the pattern of errors,
qualitatively in line with the shrinkage that participants
show. This narrow range of errors makes it hard to
distinguish the predicted pattern of errors for the 3-D
reconstruction and view-based models in a rich-cue
environment, and we have not attempted to do so here.
Any systematic comparison would need to take account
of a very large range of potential features for the view-
based model and possibly include eye tracking to
improve any estimate of the features observers were
using. In the case of the 3-D reconstruction algorithm,
the Bhattacharyya distance for comparing current and
stored reconstructions would have to be related to the
3-D Gaussian spread of errors around each feature
rather than 2-D Gaussians projected onto a plane as we
have used. Nevertheless, our assumption is that the
visual system does not switch between view-based and
reconstruction strategies depending on the complexity
of the scene. We have shown that a view-based strategy
provides a better fit to the data in a sparse-cue
environment, and we have not found evidence that it
switches to a different approach in a rich-cue environ-
ment.

Tasks similar to the one used in the present paper
have been used to investigate navigational strategy in
humans. Waller, Loomis, Golledge, and Beall (2001)
conducted an experiment that bears a strong resem-
blance to our homing task as the participants were
asked to return to a previously viewed goal location in
a simple virtual reality environment that consisted of
only three landmarks (like our experiment, these were
vertical poles, but in this case, the poles had a fixed
physical radius of 12 cm). The authors distinguished
between two hypotheses: Either participants used the
distance of landmarks or their bearings. However,
because participants were inside the triangle made up of
the three landmarks for most of the time, the angle
between landmarks was often too large to see both at
once, and so, understandably, this cue was found to be
relatively ineffective. This was not the case in the
current experiment, in which all three landmarks were

visible at the same time. Here, the angle between
landmarks was one of the most successful features.
Foo, Warren, Duchon, and Tarr (2005) compared
navigation in a landmark-free environment to that in
which landmarks were available. They found that
participants could not find novel shortcuts when
landmarks were removed (i.e., in a plain desert world),
suggesting that participants did not form an accurate
cognitive map of the surroundings in this case. As in
the homing task used here, the authors also tested
navigation on trials in which landmarks were deliber-
ately displaced, finding that participants adjusted their
route in line with the displacement. The task used by
Foo et al. differs from our simple homing because it
can, in theory, be solved by triangulation using two
previously learned routes.

Homing requires participants to correctly identify
their position in a coordinate frame of some kind and
to relate that to a different position at a later time.
Described at this very general level, ‘‘homing’’ could
encompass a wide variety of tasks, from threading a
needle up to large-scale navigation. Each of these tasks
could be described within a view-based framework or a
3-D, Cartesian one. For example, the 2-D image vector
joining the end of a thread to the eye of a needle,
recorded in two binocular views, is very similar to the
novel view of the scene at the beginning of interval 2 in
our experiment: The task is to change that view until
the ‘‘goal’’ image is reached when the thread and the
needle coincide. Many other tasks have been described
in a similar way: Wilkie, Wann, and Allison (2008)
suggest view-based information as the basis for steering
a bicycle through a series of obstacles. McBeath,
Shaffer, and Kaiser (1995) suggest that catching in
baseball involves tracking the angle between the ball
and background objects, and similar strategies have
been discussed in relation to making a cup of tea (Land,
Mennie, & Rusted, 1999). Chains of goal locations, or
‘‘nodes’’ linked together, allow an agent to follow a
route, and there are principled methods for dividing up
a scene into discrete nodes to form a graph (Franz,
Schölkopf, Mallot, & Bülthoff, 1998a), which may be
laid down in long-term memory (Röhrich, Hardiess, &
Mallot, 2014). A 3-D reconstruction is conceptually far
simpler. In theory, a world-based, 3-D model could
underlie actions from the smallest (threading a needle)
to the largest (navigation), all using reconstruction in
the same coordinate frame. Computer vision demon-
strates that this is technically feasible (Cummins &
Newman, 2011; Davison, 2003).

We have compared two very distinct approaches to
building representations of a point in space and
compared this to a stored representation of that point.
The experimental setup was specifically designed to
maximize the difference between the two models in this
context. However, some authors have suggested
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intermediate models that include locally defined 3-D
coordinate frames for restricted regions of space with
links between these metric reconstructions that are
looser and not necessarily defined in a 3-D coordinate
frame (Chrastil & Warren, 2014; Mallot & Basten,
2009; Meilinger, 2008). On a smaller scale, Pickup et al.
(2013) examined a model to represent the layout of a
scene based on the relative 3-D location of pairs of
features. This has many properties in common with a
view-based model using the relative 2-D location of
image features and could be described as a hybrid or
intermediate model between a view-based and a 3-D
reconstruction model. Models that include view- and
reconstruction-based components might perform better
in capturing the pattern of navigation errors that we
have observed, but we have only explored the two
extremes here.

Conclusion

We have shown that, at least for a simple environ-
ment, it is possible to contrast the predictions of two
models of homing behavior based either on matching
views or on building a 3-D reconstruction of the scene.
In this simple case, there is clear evidence in favor of a
view-based model. For a richly textured environment,
we cannot distinguish between the models. An argu-
ment based purely on grounds of parsimony, however,
would favor the same model applying in this case, too.

Keywords: motion parallax, virtual reality, stereopsis,
homing, view-based, navigation
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