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Abstract

The fluid-mechanics community is currently di-
vided in assessing the boundaries of applicabil-
ity of the macroscopic approach to fluid me-
chanical problems. Can the dynamics of nano-
droplets be described by the same macroscopic
equations as the ones used for macro-droplets?
To the greatest degree, this question should be
addressed to the moving contact-line problem.
The problem is naturally multiscale, where even
using a slip boundary condition results in spu-
rious numerical solutions and transcendental
stagnation regions in modelling in the vicin-
ity of the contact line. In this publication, it
has been demonstrated via the mutual compar-
ison between macroscopic modelling and molec-
ular dynamics simulations that a small, albeit
natural, change in the boundary conditions is
all that is necessary to completely regularize
the problem and eliminate these nonphysical ef-
fects. The limits of macroscopic approach ap-
plied to the moving contact-line problem have
been tested and validated from the first micro-
scopic principles of molecular dynamic simula-
tions.

Keywords: wetting, nano-scale, contact line,
macroscopic boundary conditions, molecular
dynamics simulations.

Introduction

The modelling of the wetting of a solid sub-
strate by a liquid on the continuum scale is a
general problem in science and in the emerging
industrial applications of nanofluidics.1–5 This
problem often involves moving contact lines and
requires such a set of macroscopic boundary
conditions for the Navier-Stokes equations to
ensure the macroscopic problem is well-posed
and also demonstrates the correct kinematics
of the simulated flows. It is well known that
the standard no-slip boundary condition in a
moving contact-line problem leads to a non-
integrable stress singularity at the contact line
such that no solution to the whole hydrody-
namic problem exists.6 Removal of this singu-
larity can be achieved through the introduction
of finite slip into the macroscopic boundary con-
ditions.6–9 Nevertheless, even if the no-slip con-
dition is relaxed, the macroscopic problem is
susceptible to spurious numerical solutions and,
irrespective of the slip model, features nonphys-
ical stagnation regions and weak singularities of
pressure,10–12 which are not observed in experi-
ments.13–16 An attempt to remove artificial fea-
tures in capillary flow modelling has been made
in the interface formation theory (IFT), where
the liquid motion is rolling and the pressure is
regular.10,11,17

However, the IFT required an essential as-
sumption of macroscopically finite, rather long
relaxation times of the surface phases, which
was found not to be the case in monatomic
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and bead-spring Lennard-Jones (LJ) model flu-
ids via direct molecular dynamics simulations
(MDS).18–20 The short, practically microscopic
relaxation time of the surface phase obtained
in the MDS was mostly conditioned by the
characteristic intrinsic width of the interfa-
cial region,19,20 which, as it turned out, was
about one atomic diameter or smaller even for
water liquid-gas interfaces.21,22 The MDS re-
sults were supported by experimental evidence.
The intrinsic width obtained in the MDS of
monatomic LJ model fluids (when the model LJ
interaction potential of the particles was very
close to that measured experimentally, for ex-
ample between argon atoms) was found to be in
very good agreement with that estimated from
experiments.21,23–25 Similar values of the intrin-
sic width were reported for the liquid-gas in-
terfaces of carbon tetrachloride, water, alkanes
and alcohols.25 Therefore, it is difficult at the
moment to expect, at least for simple interfaces,
that the relaxation times of the surface phase
would be on the time scale required by the IFT.
Obviously, another solution within the macro-
scopic framework should be found to remove ar-
tificial features in the modelling at the contact
line.

While the presence of a stagnation point
seems to be insignificant for simulations of large
scale flows, consider for example the asymp-
totic analysis by Cox,26 the stagnation zone can
substantially affect the kinematics of nano-flows
and simulation of capillary flows with complex
interfaces laden with surfactant molecules or
nanoparticles.27–29 In the latter, the stagna-
tion zone will significantly impede the motion
of surfactant molecules or nanoparticles creat-
ing either artificial surface tension gradients in
the macroscopic solutions or a conglomeration
of nanoparticles, which in turn may substan-
tially affect a simulation of particle assembly
processes.30,31 At the same time, the estimated
slip lengths for a variety of liquid-solid combina-
tions lie in the mesoscopic range,32,33 where the
notion of the stress tensor, the main quantity in
macroscopic description, is ill-defined.34,35 The
question then appears to what extent and how
can we model such flows using macroscopic ap-
proach? To answer these questions we will turn

to MDS of bead-spring model fluids and di-
rectly compare the MDS results with macro-
scopic modelling using a modified set of bound-
ary conditions naturally derived from the mi-
croscopic principles. It is demonstrated that
the problem can be fully adequate without re-
sorting to complex mesoscopic approaches, such
as diffuse interface models,36,37 even if the sur-
face phase relaxation time is macroscopically
zero and there are mesoscopic length scales in-
volved.

In this study, we focus on the steady motion
of a contact line of a Newtonian liquid in a
two-dimensional case in an inviscid gas or vac-
uum over a stationary homogeneous and flat
substrate, Figure 1. All liquid interfaces are
assumed to be simple, that is not laden with
surfactant molecules and/or nanoparticles, and
in isothermal conditions. The later approxima-
tion should hold even in extreme wetting con-
ditions. Indeed, assuming no singular sources
of the heat production (no singular shear rates)
in the contact line region with a characteris-
tic length scale L0 and a steady state, balanc-
ing the thermal energy flux from the contact
line region with the viscous dissipation in it,
one has ∆T0 ≈ µγ̇2L2

0κ
−1. Here, ∆T0 is the

temperature variation with respect to a bulk
value, µ is liquid viscosity, κ is the coefficient
of thermal conductivity of the liquid, γ̇ is the
shear rate. Then for water at room tempera-
ture, L0 = 1 nm and γ̇ = 1010 s−1, ∆T0 ≈ 0.2 K.
So that, large temperature variations or gra-
dients at the contact line, which may poten-
tially create surface tension gradients leading to
strong Marangoni effects, are only expected at
hydrodynamic velocities approaching the liquid
thermal velocity, that is at much higher shear
rates γ̇ ≈ 1011 s−1.

In the reference frame moving with the con-
tact line, the dynamic contact angle θc is as-
sumed to be a function of the substrate veloc-
ity U according to the modified Young-Dupré
equation,38 γ cos θc = γLS − γGS −F (U), where
γ, γGS and γLS are the liquid-gas, gas-solid and
liquid-solid coefficients of surface tension re-
spectively, and F (U) is the velocity dependent
friction force acting on the contact line per unit
length.39 The origin of that singular force F has
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been studied in detail using MDS.39 It has been
shown that the force is the consequence of the
microscopic processes taking place at the con-
tact line on the length scale of a few atomic
distances, which is induced by the interaction
potential of the constituent molecules. The ob-
served length scale defines the size of the con-
tact line zone. The result of the microscopic in-
teractions is nonlinear friction force distribution
acting on the first monolayer at the solid sub-
strate. The integral of the distribution over the
contact line zone results in the singular force F ,
which manifests in the modified Young-Dupré
equation. In this work we consider macroscopic
interaction of the bulk liquid with its interfaces
beyond the contact line zone, that is the bound-
ary conditions to the Navier-Stokes equations.
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Figure 1: An illustration of the moving contact
line problem in two-dimensional geometry with
dynamic contact angle θc and the magnified
view of the liquid-solid boundary layer. The
free surface is designated by Γ1 and the liquid-
solid interface is designated by Γ2. The contact
line is at rest and the substrate is moving in the
tangential direction with velocity U = (0, 0, U).

Models and simulation meth-

ods

Experimental studies of dynamic wetting phe-
nomena have been focusing on the behaviour of
the apparent dynamic contact angle as a func-
tion of the contact line velocity, while much

lesser attention has been paid to velocity distri-
butions in the proximity of the contact line.4 In
part, this was caused by the experimental diffi-
culties with the spatial resolution of the velocity
field at the contact line region. Earlier studies
of the velocity distribution at the contact line
by means of particle tracking velocimetry had
spatial resolution up to several micrometres at
best, which was nevertheless sufficient to verify
available asymptotic theories of the flow motion
at the contact line.14,15 Recently, spatial res-
olution about 50 nm has been achieved using
the total internal reflection fluorescence tech-
nique.16 While this was the great achievement,
it was still insufficient to resolve velocity in the
proximity of the contact line region given ex-
perimentally observed slip lengths often found
around ten nanometers or much less.32,33 At the
same time, it is in that region where the macro-
scopic approximation may break down and is in
need for corrections. To verify a set of macro-
scopic boundary conditions formulated to cor-
rect macroscopic problem descriptions at the
contact lines, we turn to MDS where the spatial
resolution at the contact line is not an issue. In
particular, we consider a problem of a meniscus
forced to move at constant velocity in between
two solid substrates separated by the distance
of tens of nanometers, which is a simplified two-
dimensional version of a common experimental
set-up with a meniscus moving in a hollow nee-
dle under elevated pressure conditions.

Macroscopic boundary conditions

To understand how the boundary conditions
should be modified at the contact line, consider
first the Navier slip condition,6,7 which is sim-
ply a linear relationship between the variation
of the tangential velocity across an interfacial
layer and the tangential stress acting from the
bulk liquid on the interface,

µn · (∇u + (∇u)T ) ·T |Γ2

= β(U− u) ·T|Γ2
, (1)

see Figure 1 for an illustration. Here, u is
the hydrodynamic velocity in the bulk, n is
the outward pointing normal vector, the tensor
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T = I− nn extracts the tangential to the inter-
face component of a vector, µ is liquid viscosity
and β is the coefficient of sliding friction. The
ratio µ/β has the dimension of length and rep-
resents the apparent slip length Ls = µ/β. The
application of the boundary condition (1) along
with the impermeability condition u · n = 0
leads to a stagnation zone at the contact line
and a logarithmic singularity in the pressure,
such that the radial velocity behaves as ur ∝ r
and the pressure p ∝ ln r when approaching the
contact line region r → 0.10,11

Within the framework of non-equilibrium
thermodynamics, the boundary condition (1)
appears as a linear phenomenological law be-
tween fluxes and thermodynamic forces occur-
ring in the singular entropy production in the
liquid-solid interfacial layer.40 In this approach
the interfaces can carry singular particle den-
sity ρs, which is not an excess quantity, as it
would be in the Gibbs’ formulation, but the to-
tal number of liquid particles in the interface
per unit area transported with surface velocity
vs.

10,11 This method of treatment developed in
the works of Bakker, Guggenheim and in the
IFT, 11,35 and references therein, is more con-
venient for formulation of boundary conditions
for macroscopic equations, such as the Navier-
Stokes equations.

In the formulation, ρs and γ are surface
scalars and vs is a surface vector. That is, if
considering them as functions of all three spa-
tial coordinates defined on a smooth surface Γ
with a normal vector n, (n·∇)vs = 0, for exam-
ple. The divergence of a surface vector then is
∇·vs = ∇·(vs·T)+(vs·n)∇·n, where∇·(vs·T)
can be calculated using a parametrization of the
surface Γ. In a steady state, when vs · n = 0,
∇ · vs = ∇ · (vs ·T).

Therefore, any changes in the tangential ve-
locity u ·T |Γ2

at the interface inevitably result
in a change of the total flux in the interfacial
layer ρ

(2)
s vs ·T |Γ2

, Figure 1. Further, we will of-

ten use the standard shorthand notation ρ
(i)
s for

ρs on Γi, where the superscripts (1) and (2) in-
dicate the liquid-gas and liquid-solid interfaces
respectively. Then, simply by conservation of

mass in the interfacial layer one has

∂ρ
(2)
s

∂t
+∇ · (ρ(2)

s vs) |Γ2
= ρu · n|Γ2

(2)

where ρ is the bulk liquid density. Based on the
previous study of the surface phase relaxation
time in bead-spring model fluids,20 we may pre-
sume that it is negligible on the macroscopic
time scale of hydrodynamic motion at temper-
atures far from the critical point of the liquid.
Hence, for isothermal flows and homogeneous
substrates the liquid solid interface can be de-
fined by ρ

(2)
s = const. Then, from (2)

ρu · n|Γ2
= ρ(2)

s ∇ · vs |Γ2
. (3)

So, the introduction of finite slip in the bound-
ary conditions implies that the standard imper-
meability condition should be also relaxed at
the contact line. At a stationary free surface,
similar to (3) assuming ρ

(1)
s = const

ρu · n|Γ1
= ρ(1)

s ∇ · vs |Γ1
. (4)

Note that both boundary conditions (3) and (4)
can be obtained within the IFT framework in
the limit of zero relaxation time and negligible
surface tension gradients ∇γ = 0.10,11

The boundary conditions (3) and (4) should
be complemented with the conservation of sur-
face flux at the contact line

ρ(1)
s vs · τ |Γ1

= ρ(2)
s vs · τ |Γ2

(5)

and the functional dependencies

vs ·T|Γ1
= u ·T|Γ1

(6)

vs ·T|Γ2
=

u + U

2
· T|Γ2

(7)

to eliminate surface velocity vs from the model.
Here τ is the unit tangential vector to the inter-
face, which is normal to the contact line, Figure
1. The functional relationships (6) and (7), as
is seen, can be interpreted as the plug and Cou-
ette flows in the boundary layers respectively,
and can be obtained in the same limit of zero re-
laxation time in the IFT.10,11 Indeed, in the IFT
in general, in the framework of non-equilibrium
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thermodynamics, on a free surface

4B(vs − u) ·T|Γ1
= (1 + 4AB)∇γ|Γ1

(8)

and on a solid substrate

vs ·T|Γ2
=

u + U

2
· T|Γ2

+ C∇γ|Γ2
, (9)

where A, B and C are some constant phe-
nomenological parameters of the theory.10,11

Then, in the absence of any surface active
molecules, that is in the approximation of sim-
ple interfaces, and in isothermal conditions,
that is in the absence of any gradients of tem-
perature at the interfaces, surface tension is at
equilibrium ∇γ = 0 in the limit of zero relax-
ation time, and the results (6) and (7) follow
from (8) and (9).

At the free surface one has also the condition
of zero tangential force acting on the interface

µn · (∇u + (∇u)T ) ·T
∣∣
Γ1

= 0 (10)

and the dynamic condition (at zero external
pressure){

−p+ µn · (∇u + (∇u)T ) · n
}
|Γ1

= −γ∇ · n |Γ1
, (11)

where p is pressure in the liquid.
Choosing Ls, U and p0 = µU

Ls
as the charac-

teristic length scale, velocity and pressure re-
spectively, one can bring the system of govern-
ing equations for the moving contact line prob-
lem into a non-dimensional form by normaliz-
ing x/Ls, y/Ls, z/Ls, u/U and p/p0. We note
here that for simplicity of the notations, we will
use the same symbols for the non-dimensional
quantities as previously used for the dimen-
sional variables. In the limit of Re = ρULs

µ
� 1,

the system of equations then takes the standard
form of the Stokes equations

∇ · u = 0, ∇p = ∆u. (12)

The boundary conditions (1), (3)-(11) after
eliminating vs become at the liquid-solid inter-
face

u · n |Γ2
= α2∇ · (u ·T) |Γ2

, (13)

n·(∇u+(∇u)T )·T |Γ2
= (Ū− u)·T |Γ2

, (14)

at the free surface

u · n |Γ1
= α1∇ · (u ·T) |Γ1

, (15)

n · (∇u + (∇u)T ) ·T |Γ1
= 0 (16)

Ca{−p+ n · (∇u + (∇u)T ) · n} |Γ1

= −∇ · n |Γ1
(17)

and at the contact line

α1u · τ |Γ1
= α2(u + Ū) · τ |Γ2

(18)

with the non-dimensional parameters α1 = ρ
(1)
s

ρLs
,

α2 = ρ
(2)
s

2ρLs
, Ca = µU

γ
(the capillary number) and

the velocity vector Ū = (0, 0, 1).
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Figure 2: Snapshot of the moving droplet sim-
ulation set-up in MDS at U = 0.03u0 and a
dynamic contact angle θc = 114 ± 4◦, u0 =√
εff /mf . The static contact angle θ0 = 39±3◦.

The set-up is periodic in the x-direction with
H = 60σff . The magnified view is the distribu-
tion of particle density. The dashed lines (red)
designate the bulk-interface boundary. The dis-
tance z is measured along the substrate from
the equimolar point of the density distribution
in the first monolayer 0 ≤ y ≤ 1.1σff and the
distance y is measured from the equimolar point
of the solid particle distribution in the first layer
facing the liquid in the lower substrate.

Molecular dynamics simulations

Before analyzing the macroscopic problem (12)-
(18), we examine the flow at the three-phase
contact line region by means of MDS of a large,
60000 particles of mass mf , cylindrical liquid
droplet forced to move with constant velocity
U between two identical solid substrates in pe-
riodic in the x-direction geometry, Figure 2 and
Figure 3. Each substrate is made of three face-
centered cubic lattice layers of particles of mass
mw = 10mf . Indexes f and w designate liquid
and substrate particles respectively.

The MDS setup is similar to that used in
the studies of the contact line force,39 so that
here we only recollect the main aspects of the
technique. Both substrate and liquid parti-
cles interact via the LJ potentials Φij

LJ(r) =

4εij

((σij
r

)12 −
(σij
r

)6
)

with the cut off distance

2.5σij. Here r is the distance between the par-
ticles, εij and σij are characteristic energy and
length scales. The liquid particles in most sim-
ulations performed in this study (unless other-
wise stated) are combined into linear chains of
NB = 5 beads using the Kremer-Grest model,
which has proven itself for decades as a realistic
and robust model in rheological studies of poly-
mer dynamics.41 Using the chain molecules al-
lowed to virtually remove the gas phase in the
simulations, to simplify evaluation of the free
surface profiles, and to smoothly control the
liquid viscosity by gradually varying the chain
length NB. The state of the liquid, its tem-
perature T0 = 0.8 εff /kB (kB is the Boltzmann
constant) was locally controlled by means of a
dissipative particle dynamics thermostat with
the cut-off distance of 2.5σff , matching the cut-
off distance of the LJ potential, and friction

ςdpd = 0.5τ−1
0 , τ0 = σff

√
mf

εff
to have minimal

side effects on particle dynamics.42 The bulk
density was ρ = 0.91σ−3

ff with no gas phase
present in the problem. The droplet depth in
the periodic direction was set to ∆x = 18σff

to be short enough to suppress the Plateau-
Rayleigh instability. The solid wall particles
were attached to anchor points forming the lat-
tice layers via harmonic potential chosen such
that to neglect elasto-capillarity effects.43 The
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anchor points in the layer of the solid wall fac-
ing the liquid molecules have been slightly ran-
domized in the vertical y direction, with the
amplitude

√
〈δy2〉 = 0.3σff , to avoid any bias

towards ideal substrates in the study. The solid
wall particles were moving with velocity U in
the z-direction, where a reflective wall acted as
a barrier to simulate a forced wetting regime
in a moving meniscus. The substrate parti-
cle density in most simulations (unless other-
wise stated) was set to ΠS = 4.1σ−3

ff with
σwf = 0.7σff and εwf = 0.9 εff to have a static
contact angle θ0 = 39± 3◦.

After initial equilibration during 10000 τ0

with the time step 0.01 τ0, used in the study,
we reached a steady state to take measurements
of dynamic contact angle, density and veloc-
ity distributions in the interfacial layers and in
the bulk. Distributions of density and veloc-
ity were averaged over the droplet depth ∆x
and a time interval 10000 τ0, unless otherwise
specified. The dynamic contact angle θc was
a function of velocity U , Figure 2 and Figure
3, determined from the free surface profiles de-
fined as the locus of equimolar points of den-
sity distributions, Figure 4. The location of the
equimolar surface has been determined by mea-
suring density distributions along the z-axis in
the layers of ∆y = 1σff thickness with the spa-
tial resolution ∆z ≈ 0.3σff . The size of the
observation box along the z-direction was cho-
sen to be small enough to resolve the observed
liquid-gas interface density profiles, Figures 2,
10 and 12.

The free surface profiles were developed by
means of a three-parameter (R, y0, z0) circular
fit

(ȳ − y0)2 + (z − z0)2 = R2, (19)

which has been applied to the positions of the
equimolar points obtained in the MDS exclud-
ing a layer adjacent to the substrate of thick-
ness h

(2)
s = 4σff corresponding to the liquid-

solid interface, Figure 2 (magnified view). Here,

ȳ = y − h(2)
s and the distance y is measured as

in Figure 2. The choice of the fitting function
has been dictated by the fitting accuracy, see
Figure 4, and to some extent by the fact that
at small capillary numbers Ca� 1 (low viscous

stresses), the free surface profile is bound to be
circular.11 Similar fitting functions were used to
evaluate free surface profiles of liquids drops in
the absence of gravity and at low capillary num-
bers, when the surface shape is expected to be
spherical.18

At large capillary numbers, Ca ∼ 1, the free
surface shape may not be always circular. So
that in general the circular fit (19) has been
only applied to a part of the free-surface profile
of length ≈ 20σff . As one can see, Figure 4 (a),
even in this case, Ca = 1.14, the fit has demon-
strated very good accuracy. We have verified
that changing the arc length by approximately
±5σff at a fixed h

(2)
s produced an uncertainty in

the contact angle determination not more than
∆θc ≤ 1◦.

The necessity to cut off a layer of molecules
at the solid substrate to calculate a contact an-
gle is due to strong bending of the equimo-
lar surface observed at the solid substrate on
the length scale of a few atomic distances, Fig-
ures 2, 10 and 12. Apparently, this was due
to the strong density perturbations, the parti-
cle layering, induced by the solid wall poten-
tial commonly observed in MDS at the contact
lines.44 The question then arises whether the
bended area should be included in the calcula-
tions of contact angles or not. We have clarified
this issue previously, as other groups did,45 by
directly probing the Young-Dupré equation in
equilibrium conditions by placing a cylindrical
(to avoid possible line tension effects) drop of
40000 particles on the substrate.39 The static
contact angle was then obtained in two ways:
first by direct measurements from the free sur-
face profiles using the same methodology as
described above and second, for comparison,
via the Young-Dupré equation using indepen-
dently calculated equilibrium surface tensions.
We have found a very good agreement between
the two angles, when the highly bent region
was excluded from the contact angle evalua-
tion procedure, in full accordance with the fact
that the contact angle is an experimentally ob-
served, macroscopic quantity. We also note,
that slightly increasing the cut-off distance by
2σff produced an uncertainty in the contact an-
gle determination not more than ∆θc ≤ 1◦. One
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needs of course to keep the cut-off distance at a
minimum in MDS given usually the small size
of the systems.

We would like to note that the particular set
of MDS parameters used and discussed in this
work is representative of a larger set of MDS
simulations produced in the previous work.39

The simulations were performed for different
model liquids with NB ranging from NB = 1
to NB = 30, at different static contact angles
θ0 in the range 0◦ ≤ θ0 ≤ 106◦, at different
system sizes H, Figure 2 and Figure 3, ranging
from H = 40σff to H = 100σff , at different
contact line velocities 0.005u0 < U ≤ 0.2u0

(u0 =
√
εff /mf ) and at different temperatures

0.8 εff /kB ≤ T0 ≤ 1 εff /kB, see details in the
previous work.39 While the value of the macro-
scopic model parameters, such as Re, Ca, ρ

(1)
s ,

ρ
(2)
s and Ls, which we consider in detail in the

next section, might differ from one case to an-
other, there was no qualitative differences ob-
served in the flow kinematics discussed in this
work and in the other cases studied.39

Macroscopic parameters from
MDS

To compare the results of MDS with the macro-
scopic description (12)-(18), the model param-

eters Re, Ca, ρ
(1)
s , ρ

(2)
s and Ls were directly

defined from the MDS. The capillary number
Ca = µU/γ was obtained from liquid viscos-
ity µ = 10.5

√
εffmf /σ

2
ff and surface tension

γ = 0.92 εff /σ
2
ff , calculated as in reference.19 In

our approach here, there is some degree of ar-
bitrariness how one can set apart the interfaces
from the bulk.11,35 To get an estimate for char-
acteristic values of interfacial parameters a min-
imum cut-off the areas with strong variations
of density is applied. Density perturbations in-
duced by the solid wall potential fade away at
y ≈ 4σff counting from the equimolar point of
solid wall particles, see the magnified view in
Figure 2, with a similar length scale observed
in the liquid-gas interfaces. The position of in-
terfaces is defined according to ρs = const. The
liquid-solid interfacial shape is then a straight
line at a fixed distance from the substrate h

(2)
s =

4σff . Accordingly, the position of the free sur-
face facing the liquid bulk was set as the locus
of points equidistant from the equimolar sur-
face of the liquid-gas interface density profiles
in the normal to the equimolar surface direc-
tion. For consistency, the free surface should
cross the liquid-solid interface boundary at a
point where no variations of the surface density
is observed, ρ

(2)
s = const, Figure 2. This way

the width of the liquid-gas interfacial layer and
the position of the contact line, at zCL ≈ 4σff in
this case, are fully defined. Integrating the par-
ticle density distribution across the interfaces,
one gets ρ

(1)
s ≈ 5.5σ−2

ff and ρ
(2)
s ≈ 3.5σ−2

ff .

U=0.1 u
0

-4 0 4
0

4

8

(y
-h

(2
)

s
)


ff

(z-z
CL

)
ff

z

xy

H

Figure 3: Snapshot of the moving droplet sim-
ulation set-up in MDS at U = 0.1u0 and a
dynamic contact angle θc = 136 ± 5◦, u0 =√
εff /mf . The static contact angle θ0 = 39±3◦.

The set-up is periodic in the x-direction with
H = 60σff . The magnified view is the distri-
bution of the flow field in the bulk. The size of
the arrows is proportional to the velocity mag-
nitude. The dashed lines (red) designate the
bulk-interface boundary. In the plot, distances
y and z are measured as in Figure 2.
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Figure 4: Illustration of the free surface profiles
(equimolar surfaces) developed from the MDS
at NB = 5, T0 = 0.8 εff /kB and θ0 = 39 ± 3◦,
shown by symbols, and the circular fits (ȳ −
y0)2 + (z − z0)2 = R2 to them (solid, red lines),

where ȳ = y − h
(2)
s and the distances y and z

are measured as in Figure 2. Here, (a) θc =
136 ± 5◦, Ca = 1.14, R = 34.8 ± 1.7σff , y0 =
24.9±1.1σff , z0 = 23.2±1.6σff , (b) θc = 65±4◦,
Ca = 0.057, R = 59.7±5σff , y0 = 25.2±1.6σff ,
z0 = −51.7± 4.7σff .

The apparent slip length Ls = µ
β

can be ob-
tained from MDS in homogeneous film flow con-
ditions by measuring velocity profiles uz(ȳ) at

ȳ = 0, ȳ = y − h(2)
s . From (1) in the absence of

gradients in the z-direction, Ls
∂uz
∂ȳ

= uz and we
have obtained Ls = 3.8± 0.8σff .

Results and Discussion

What do we observe in the MDS? In the bulk of
the liquid domain, the flow demonstrates clear
rolling motion with non-zero flux in and out
of both interfacial layers at the contact line,
as is qualitatively expected from the modified
boundary conditions (3) and (4), where the im-
permeability condition has been relaxed, Figure
3, the magnified view. This behaviour is typi-
cal, irrespective of the contact angle (obtuse or
acute), and it has been also observed in MDS
using a different set-up.46 The tangential and
normal to the substrate velocities uz, vs and un
are clearly non-zero at the contact line, demon-
strating no stagnation zone or any obstacle to
the flow both in the bulk and in the interfaces,
Figure 5(a)-(b). Note, that the velocities uz
and un have been measured in MDS via aver-
aging over a layer parallel to the substrate of
thickness ∆y = 2σff centered at y = h

(2)
s . At

the same time, the surface velocity vs has been
obtained via averaging in the whole layer adja-
cent to the substrate of thickness ∆y = h

(2)
s . In

all velocity distribution measurements, spatial
resolution in the z-direction was ∆z ≈ 1σff .

In our parameter range Re = ρULs

µ
� 1, and

the flow is in the Stokes regime. At the same
time the length scales involved are in the meso-
scopic range, that is Ls ≈ h

(2)
s . The question is

can we simulate this kind of flows using macro-
scopic description (12)-(18) and with what ac-
curacy?

Obviously, conditions (13), (15) and (18) rep-
resenting conservation of mass should be always
fulfilled if conditions (6) and (7) are satisfied,
which is the case, as one can see from Figure
5(b). The conservation of mass principle itself
is satisfied in the MDS with high accuracy, Fig-
ure 5(a). The other boundary conditions would
be difficult to validate directly since the notion
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Figure 5: MDS results at U = 0.1u0, Ca =
1.14, θc = 136±5◦, Figure 3, u0 =

√
εff /mf : (a)

Distributions of the reduced normal flux den-
sity

un
U

and the reduced tangential flux density

gradient in the z-direction
1

ρU

∂(ρsvs)

∂z
at the

liquid-solid interface of the moving droplet at
h

(2)
s = 4σff to verify conservation of mass in the

boundary layer (3). (b) Distributions of the re-

duced surface velocity
vs
U

and
uz + U

2U
to verify

boundary condition (7) at the liquid-solid inter-

face in the MDS at h
(2)
s = 4σff . In the plots,

distance z is measured as in Figure 2. The MDS
results were averaged over five statistically in-
dependent simulations.
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Figure 6: A comparison between continuum
simulations and MDS in three cases: I at U =
0.1u0, Ca = 1.14, θc = 136 ± 5◦, h

(2)
s = 4σff ,

α1 = 1.6, α2 = 0.51 and Ls = 3.8 ± 0.8σff ,
II at U = 0.1u0, Ca = 1.14, θc = 136 ± 5◦,
h

(2)
s = 6σff , α1 = 0.93, α2 = 0.36 and Ls =

8 ± 0.9σff , III at U = 0.03u0, Ca = 0.34,

θc = 114 ± 5◦, h
(2)
s = 4 σff , α1 = 1.6, α2 =

0.51 and Ls = 3.8 ± 0.8σff . Here, parameter
u0 =

√
εff /mf . (a) Distributions of the tan-

gential velocity uz at the liquid-solid interface.
(b) Distributions of the normal velocity un at
the liquid-solid interface. The solid lines are
continuum finite-element simulations, symbols
represent the results of MDS. In the plots, dis-
tance z is measured as in Figure 2. The MDS
results were averaged over five statistically in-
dependent simulations.
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of stress tensor is not well defined on mesoscopic
length scales.34,35

H
M
=13.7 L

s

Velocity scale 
         (U)

3 L
s

Pressure scale 
        (U/L

s
)

Figure 7: A sample of typical continuum sim-
ulations with a dynamic contact angle of θc =
136◦ at Ca = 1.14. The macroscopic param-
eters are α1 = 1.6, α2 = 0.51 and Ls =
3.8±0.8σff . The top plot shows the final profile
after an ALE finite element scheme is applied to
the problem. Notice the continuum simulation
is a good approximation of the MD simulations
which are overlaid as black dots on the profile.
The colour indicates velocity amplitude. The
bottom plot shows the velocity profile near the
contact angle and distribution of pressure (the
colour map).

To verify the accuracy of the macroscopic
approach, we use an arbitrary Lagrangian-
Eulerian (ALE) finite-element simulation of the
problem (12)-(18) with the parameters and ge-
ometry taken directly from the MDS set-up.
That is, a liquid flow is simulated in steady
conditions in a macroscopic droplet forced to
move in between two solid substrates separated
by the distance HM = 13.7 ± 2.9Ls using the
macroscopic set of parameters α1 = 1.6 and
α2 = 0.51 directly calculated from the set of
interfacial parameters h

(2)
s = 4 σff , Ls = 3.8 ±

0.8σff , ρ
(1)
s = 5.5σ−2

ff and ρ
(2)
s = 3.5σ−2

ff ob-
tained in the MDS. The macroscopic parameter
HM was obtained by deducting the width of the
two liquid-solid interfacial layers 2h

(2)
s = 8σff

from the MDS set-up width H = 60σff .
The dynamic contact angle θc was fixed to

the values observed in MDS at a particular sub-

H
M
=13.7 L

s

Velocity scale 
         (U)

Pressure scale 
        (U/L

s
)

3 L
s

Figure 8: A sample of typical continuum sim-
ulations, similar to Figure 7. Here it is with a
dynamic contact angle of θc = 114◦ at Ca =
0.34 and a set of the macroscopic parameters
α1 = 1.6, α2 = 0.51 and Ls = 3.8± 0.8σff .

Velocity scale 
         (U)

H
M
=13.7 L

s

Pressure scale 
        (U/L

s
)

1.5 L
s

Figure 9: A sample of typical continuum sim-
ulations, similar to Figure 7. Here it is with
a dynamic contact angle of θc = 65◦ at Ca =
0.057 and a set of the macroscopic parameters
α1 = 1.6, α2 = 0.51 and Ls = 3.8± 0.8σff .
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Figure 10: Distribution of the particle den-
sity at the contact line of a moving droplet at
U = 0.06u0 (Ca ≈ 0.69) and a dynamic con-
tact angle θc = 123 ± 5◦, u0 =

√
εff /mf . The

static contact angle θ0 = 0◦ at εwf = 1.2 εff and
σwf = σff . The dashed lines (red) designate the
bulk-interface boundary. In the plot, distances
y and z are measured as in Figure 2.

strate velocity U . The results of simulations at
different velocities U and dynamic contact an-
gles, in particular at θc = 136◦, Ca = 1.14,
Re = 0.033 (as in Figure 3), at θc = 114◦,
Ca = 0.34, Re = 0.01 (as in Figure 2) and
at θc = 65◦, Ca = 0.057, Re = 1.65 × 10−3,
are shown in Figures 6(a)-(b), 7, 8 and 9. One
can see that continuum simulations can cor-
rectly reproduce all qualitative features of the
global velocity field in the bulk, see Figures 7,
8 and 9. The results of continuum simulations
are also in a very good quantitative agreement
with the MDS results. Consider, for example,
distributions of tangential uz and normal un
velocities at the solid substrate, Figure 6(a)-
(b), and the shape of the free surface profiles,
Figures 7, 8 and 9. Note, the pressure in the
continuum solution to the problem (12)-(18) is
regular, Figures 7, 8 and 9, and the free sur-
face profiles have no concave bending at obtuse
contact angles typical with a logarithmic sin-
gularity of the pressure field. This was exactly
observed in the MDS, Figure 2, Figure 3, Figure
4(a), and Figures 7 and 8, and in the nanoscale
experiments.47 The characteristic value of the
pressure at the contact line obtained in the

FEM simulations is consistent with the viscous
stresses, which are expected to be developed on
the length scale of one slip length Ls, that is
p ≈ µU/Ls. Note, that the pressure regular-
ity also suggests, that in our case there are no
spurious solutions reported in reference.12

To probe the sensitivity of the methodology
to the cut-off distance h

(2)
s , we have performed

FEM simulations with a different set of macro-
scopic parameters α1 = 0.93 and α2 = 0.36
corresponding to the set of interfacial parame-
ters obtained in the MDS using a different value
of the cut-off distance h

(2)
s = 6σff , that is sub-

sequently Ls = 8 ± 0.9σff , ρ
(1)
s = 6.8σ−2

ff and

ρ
(2)
s = 5.3σ−2

ff . The width of the macroscopic
set-up was then set to HM = 6 ± 0.7Ls. As is
seen from Figure 6(a)-(b), a similar approxima-
tion can be achieved by the continuum model.
So, that the methodology is practically invari-
ant to the cut-off procedure.

How sensitive are the macroscopic parameters
of the model to the properties of the solid sub-
strate, such as the substrate density ΠS, the
strength εwf and the length scale σwf of the in-
teraction potential? Apparently those parame-
ters affect the state of the liquid-solid interface,
its surface tension and, as a consequence, the
wettability of the solid surface, that is the static
contact angle θ0.

Consider a droplet of the same liquid with
the number of beads NB = 5 at T0 = 0.8 εff /kB
moving in the same geometry over a substrate
with the particle density set to ΠS = 1.4σ−3

ff

and with the interaction potential εwf = 1.2 εff

with the length scale σwf = σff to have a static
contact angle θ0 = 0◦. The distribution of the
particle density in this case is shown in Figure
10 at Ca ≈ 0.69. One can readily observe that
due to the larger length scale σwf = σff and es-
sentially larger characteristic interaction energy
εwf , the density perturbations extend deeper
into the liquid volume. The minimal cut-off
distance turned out to be h

(2)
s = 6σff in this

case.
If we follow the same procedure used in this

work to set apart the bulk of the liquid from
its interfaces, as is shown in Figure 10, we ob-
tain that ρ

(1)
s = 4.8σ−2

ff and ρ
(2)
s = 5.1σ−2

ff .
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These values are not far from ρ
(1)
s = 6.8σ−2

ff

and ρ
(2)
s = 5.3σ−2

ff obtained for the same cut-
off distance, but in the partially wetting case
at a static contact angle θ0 = 39 ± 3◦. The
apparent slip length Ls = 8.5 ± 0.9σff ob-
tained from MDS in homogeneous film flow con-
ditions by measuring velocity profiles uz(ȳ) at

ȳ = 0, ȳ = y − h
(2)
s , is practically identical

to that observed in the partially wetting case
Ls = 8 ± 0.9σff . This is no coincidence, since
the slip length is apparent and is mostly condi-
tioned by the width of the interface, that is by
the cut-off distance h

(2)
s , and by liquid viscosity.

The macroscopic parameters of the model then
are α1 = 0.62 and α2 = 0.33. A comparison be-
tween ALE finite element simulations and the
MDS results for this set of parameters is shown
in Figure 11 demonstrating again a very good
agreement.

Pressure scale 
        (U/L

s
)

0.75 L
s

Velocity scale 
         (U)

H
M
=5.7 L

s

Figure 11: A sample of typical continuum simu-
lations, similar to Figure 7. Here it is with a dy-
namic contact angle of θc = 123◦ at Ca = 0.69,
the static contact angle θ0 = 0◦ and a set of the
macroscopic parameters α1 = 0.62, α2 = 0.33
and Ls = 8.5± 0.9σff .

If we change liquid properties, a similar range
of parameters is observed. For example, for
a liquid consisting of long-chain LJ molecules
with NB = 50, µ = 61.8

√
εffmf /σ

2
ff , γ =

0.92 εff /σ
2
ff and ρ = 0.89σ−3

ff at T0 = 1 εff /kB,
using the same procedure, as is shown in Figure
12, one obtains ρ

(1)
s = 7.5σ−2

ff , ρ
(2)
s = 5.1σ−2

ff

and Ls = 13± 1.1σff .
So one can see that changing the microscopic
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Figure 12: Distribution of the particle den-
sity at the contact line of a moving droplet at
U = 0.1u0 (Ca ≈ 6.7) and a dynamic con-
tact angle θc = 137 ± 5◦, u0 =

√
εff /mf . The

static contact angle θ0 = 0◦ at εwf = 1.3 εff and
σwf = σff . The liquid consists of long-chain
molecules NB = 50 having macroscopic param-
eters µ = 61.8

√
εffmf /σ

2
ff , γ = 0.92 εff /σ

2
ff and

ρ = 0.89σ−3
ff at T0 = 1 εff /kB. The dashed lines

(red) designate the bulk-interface boundary. In
the plot, distances y and z are measured as in
Figure 2.
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parameters of the model has no dramatic effect
on the values of the macroscopic interfacial pa-
rameters.

Conclusions

In conclusion, we have demonstrated by com-
parison with MDS that a simple modification of
macroscopic boundary conditions to the Navier-
Stokes equations can completely regularize the
moving contact-line problem and remove the
deficiency of the macroscopic approach with a
slip boundary condition. The modification is
to relax the impermeability condition and to
allow for the mass exchange between interfaces
and the bulk area. This is shown to be a key to
reproduce the rolling motion observed in MDS
and in the simulations using the diffuse inter-
face approaches.37 In the latter, the imperme-
ability condition is naturally relaxed and a good
agreement with MDS was also observed despite
the need to involve microscopic length scales
to resolve the structure of the interfacial lay-
ers. At the same time, our results imply that
liquid slippage alone, even with spatially vary-
ing slip lengths,9 is insufficient to reproduce the
flow kinematics at contact lines. The modified
macroscopic model can be used at the nanoscale
without producing non-physical effects.
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Figure 13: TOC. Illustration of the rolling mo-
tion obtained in macroscopic modelling at the
contact line.
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