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Inferring structural connectivity 
using Ising couplings in models of 
neuronal networks
Balasundaram Kadirvelu, Yoshikatsu Hayashi & Slawomir J. Nasuto

Functional connectivity metrics have been widely used to infer the underlying structural connectivity in 
neuronal networks. Maximum entropy based Ising models have been suggested to discount the effect 
of indirect interactions and give good results in inferring the true anatomical connections. However, 
no benchmarking is currently available to assess the performance of Ising couplings against other 
functional connectivity metrics in the microscopic scale of neuronal networks through a wide set of 
network conditions and network structures. In this paper, we study the performance of the Ising model 
couplings to infer the synaptic connectivity in in silico networks of neurons and compare its performance 
against partial and cross-correlations for different correlation levels, firing rates, network sizes, network 
densities, and topologies. Our results show that the relative performance amongst the three functional 
connectivity metrics depends primarily on the network correlation levels. Ising couplings detected the 
most structural links at very weak network correlation levels, and partial correlations outperformed 
Ising couplings and cross-correlations at strong correlation levels. The result was consistent across 
varying firing rates, network sizes, and topologies. The findings of this paper serve as a guide in 
choosing the right functional connectivity tool to reconstruct the structural connectivity.

Recent developments have made it possible to record the simultaneous spiking activity of hundreds of neurons1, 2. 
Functional connectivity is a statistical description of the mutual dependencies observed in multi-neuronal spik-
ing activity3. Functional connectivity has a non-trivial relationship with the underlying anatomical architecture 
of the neuronal circuits4. The ability to reconstruct the underlying structural connectivity from the functional 
connectivity remains an important open question5, 8.

The most common functional connectivity measure used in the study of neuronal activity is cross-correlation9. 
However, the usefulness of cross-correlation in inferring the structural connectivity in a neuronal network is lim-
ited. Due to the fact that each pair of nodes is considered independently in calculating the cross-correlations, it 
is not possible to determine if the correlated activity of a neuron pair is the result of direct or indirect connection 
between them, or the result of a common input10, 11. Partial correlation overcomes this limitation by removing the 
effects of the activity of all other neurons (assuming that the effects are additive) while assessing the relationship 
between two spike trains12. A recent study13 has confirmed that partial correlation outperforms cross-correlation 
in inferring the structural connectivity in simulated networks.

Another approach in obtaining the functional connectivity of a neuronal network is to tune the parame-
ters of a statistical model so that the probability distribution of the spike data generated by that model agrees 
with the probability distribution of the spike data recorded from the neuronal network14. Then the parameters 
of the model can be considered to represent the functional connections between the neurons in the network. 
Shlens & co-workers15 and Schneidman & co-workers16 observed that the probability distribution of the binary 
second-order maximum entropy model was able to explain around 90% of the spatial correlation structure of the 
spike data recorded from groups of neurons. This conclusion has also been later reported by other research groups 
for both in vivo17 and in vitro18 recordings. The probability distribution of a second-order maximum entropy 
model is identical to the Gibbs equilibrium distribution (as given by equation (1)) of the Ising model, widely used 
in statistical physics14, 16. Thus, the coupling parameter of the Ising model lends itself as an alternative measure of 
functional connectivity. The probability distribution of the Ising model is given by the following equation:
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where σ σ= { }i  and σi = ±1 represents the presence or absence of a spike of a neuron i in a time window. The 
external field parameter hi and the coupling parameter Jij are the parameters of the Ising model. Z is the normal-
izing denominator and is called the partition function.

Studies16, 17, 19, 20 suggest that the Ising coupling parameters can remove the effects of the indirect interac-
tions and account only for the direct interactions rendering Ising coupling parameter as a robust indicator of 
the underlying structural connectivity in the network. Watanabe et al.21 show that the Ising couplings from a 
resting state fMRI data reflect the anatomical connections of the brain more accurately than partial correlation 
and other functional connectivity measures. To the best of our knowledge, no comparison has been carried out 
between Ising couplings and partial correlations in the microscopic scale of neuronal networks, testing through 
a wide set of network conditions and network structures. In our paper, we set out to systematically study the 
relationship between Ising couplings and the underlying structural connections and contrast it to partial and 
cross-correlations, in in silico neuronal networks. We also address the question of how firing rate, network cor-
relation, network size, and topology affect the performance of the Ising couplings to unravel the true anatomical 
structure of neuronal networks.

We use in silico networks in our study as the structural connections are known and different network con-
ditions can be easily controlled in simulations. It is difficult to evaluate the performance of a functional con-
nectivity tool to infer the underlying synaptic connectivity in in vivo or in vitro neuronal networks as the real 
anatomical connectivity in those networks is not known fully5. We evaluate Ising couplings against partial and 
cross-correlations in scale-free, modular small-world and random network topologies of in silico networks, as 
studies22 suggest that the structural connectivity in neuronal networks exhibits features of complex networks. 
Studies support the existence of scale-free network connectivity in primary cortical cultures23 and developing 
hippocampal networks24. Analysis of the activity of cultured neurons during maturation suggests an evolution of 
the network structure from a random topology to a small-world topology25. We also evaluate the three functional 
connectivity metrics for different firing rates and correlation levels in networks of various sizes and network den-
sities, as literature6, 7 indicates that the activity of neuronal networks is characterized by such factors. In summary, 
in this work, we systematically study the predictability of the underlying structural connections by Ising cou-
plings, in comparison to partial and cross-correlations, in in silico neuronal networks and how the predictability 
is affected by different network conditions.

The paper is organised as follows. A detailed account of the in silico networks and the simulation of the net-
work of neurons is presented in the methods section. The same section also describes the calculation of the Ising 
parameters, partial and cross-correlations from the spike trains. The results of the systematic comparison between 
Ising parameters, partial correlations and cross-correlations are presented and evaluated in the results and dis-
cussions sections respectively.

Methods
Simulation Network. The simulation network consisted of N Izhikevich spiking model neurons26. 
Izhikevich model was chosen for its computational efficiency and its capability to generate several firing patterns 
based on four parameters27. All the neurons were modeled as excitatory neurons. To achieve heterogeneity in the 
spiking dynamics, the neurons were modeled using the parameters (a, b) = (0.02, 0.2) and (c, d) = (−65, 8) + (15, 
−6)r2, where r is a uniformly distributed random variable in the interval (0, 1). The case of r = 0 corresponds to a 
regular spiking neuron model, and r = 1 corresponds to a chattering neuron model. r2 was used to bias the distri-
bution towards regular spiking neurons28.

Inspired by Rocha et al.29, we modeled the input current, Ii, to each neuron i using the equation

= + − ∗ + ∗I I CF I CF I[(1 ) ] (2)i i
base

i
thalamic

i
synaptic

The total input current Ii to each neuron i consisted of 3 components: Ii
base was a constant input with an addi-

tive Gaussian noise of zero mean and unit variance which influenced the average firing rate of the neuron. Ii
thalamic 

was a noisy random input which was given by a Gaussian variable multiplied by a constant and was uncorrelated 
for any two neurons. Ii

synaptic of a neuron i was the sum of the synaptic inputs from the presynaptic neurons con-
nected to it. CF was a global control factor variable (0 ≤ CF ≤ 1) which determined the amount of correlation 
between the firing of the neurons in the networks by controlling the relative contribution of Ithalamic and Isynaptic. 
When CF = 0, the contribution of Isynaptic to total input became zero and the input of a neuron was influenced by 
the noisy Ithalamic, and hence the firing between the neurons was less correlated. When CF = 1, the contribution of 
the Ithalamic component became zero. The firing of a neuron increased the Isynaptic of its postsynaptic neuron and 
hence the postsynaptic neuron had higher chances of firing together with the presynaptic neuron. Thus, neurons 
spiked together more when CF = 1. The network of Izhikevich neurons was simulated for different values of aver-
age firing rates and correlation levels by adjusting the values of Ibase and CF.

The connectivity between the neurons was given by the adjacency matrix A = (wij). The firing of the j th neu-
ron affected the voltage of the i th neuron by an amount wij multiplied by CF. The strengths of the links (non-zero 
wij in the adjacency matrix) were distributed normally with a mean of 0.6 and a standard deviation of 0.13 and 
were limited to the interval [0.21, 0.99]. Self-loops were not allowed. The adjacency matrix for each simulated 
topology (scale-free, small-world, and random networks) was generated using the corresponding topology gen-
eration algorithms. Scale-free (SF) topology was generated using directed preferential attachment model for 
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network growth30. Brain connectivity toolbox31 was used to generate modular small-world (SW) topology with a 
specified number of fully connected modules connected via randomly distributed inter-module connections. 
Erdos-Renyi (ER) random networks were generated with a fixed connection probability between all pairs of neu-
rons. For all topologies, the total number of links in the network was fixed at 20% of the total possible links (which 
is N * (N − 1)) as studies13, 32, 33 suggest that on an average each neuron is connected to 10% to 30% of the other 
neurons in in vitro cultures.

Data from the simulation network. The neuronal network was then simulated for a length of time to 
capture the spike train data. When the voltage of a neuron reached a threshold (which was a dynamic value, 
depending on the parameters of the neuron), a spike was initiated. The time of the spike and the number of the 
neuron which spiked was recorded to generate the spike train data of the simulated neuronal network. The dura-
tion of the simulation (which was set to 10 minutes) was then split into many time bins of equal width 10 ms 
considering the spike transmission delay in the network. The state of a neuron i in a time bin was represented by 
σi, and it took a value of +1 or −1 corresponding to the presence or absence of spikes in that time bin. The average 
firing rate σi data of a neuron i and the average pairwise joint firing rate σσi j data

 for a pair of neurons i and j were 
calculated using the following equations:

∑σ σ=
=B

1 ,
(3)i data
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where the angle brackets indicate time averaging, B was the total number of time bins for the duration of the 
simulation and σi

b was the state of the neuron i in a particular time bin b18. The covariance Covij between the firing 
of two neurons i and j was defined as σσ σ σ= − ⋅Covij i j data i data j data

. And, the correlation coefficient 

between the spike trains of the neurons i and j was calculated as ρ =ij
Cov

s s
ij

i j
 where si was the standard deviation of 

firing activity σi of the neuron i. The mean network correlation ρ was calculated as the average of the correlation 
coefficient between all pairs of neurons.

Calculation of Ising parameters. We calculated the parameters hi and Jij of the Ising model using 
Boltzmann learning34, which is a gradient descent algorithm. We started with an initial value for the parameters 
hi and Jij and adjusted them iteratively according to equations (5) and (6) till the first and second order moments 
of the Ising model ( σi model and σσ〈 〉i j model) agreed with the estimates obtained from the simulation data ( σi data 
and σσ〈 〉i j data) within the desired accuracy.
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where α is the learning rate, and it was kept less than 1 to get a smoother convergence.
As can be seen from the equations, the Ising model moments(〈σi〉model and 〈σiσj〉model) need to be calculated for 

each gradient descent iteration and is a computationally intensive task. We adopted the method found in Yeh et 
al.35 for computing the 〈σi〉model and 〈σiσj〉model from the Ising parameters hi and Jij. The exact method of calculating 
the Ising model moments has a computational complexity of the order (2 )N  and is possible only for small N 
(<20). For larger N, we used Monte Carlo sampling based on Metropolis-Hastings simulation which has a com-
plexity of  Iteration Number( ). A very large number of iterations of the order of 107 was used in our simulation.

Calculation of cross-correlation and partial correlation. Cross-correlation can be interpreted as the 
probability of a neuron (called the target neuron) spiking at a time τ+t( ) conditioned on another reference 
neuron spiking at a time t where τ is called the time lag13, 36. Let x and y be the spike trains of the reference  and the 
target  neurons, respectively. The cross-correlation function Cxy(τ) is defined as follows13:

∑ ∑τ = −
τ τ
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where Nx and Ny are the total number of spikes in the spike trains x and y, respectively, and ts is the timing of a 
spike in the spike train x. The cross-correlation function is symmetric. That is, if we compute the cross-correlation 
function keeping x as reference and y as the target and then compute cross-correlation function keeping y as ref-
erence and x as the target, we will get the same function but just reversed in time.

τ τ= −C C( ) ( ) (8)xy yx
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The cross-correlation matrix (CCM) is an N × N matrix. The (i, j)-th element of the CCM (CCij) corresponds 
to the maximum amplitude of the cross-correlation function for the neuron pair (i, j). Because of equation (8), 
the CCM matrix is symmetric in nature, i.e. CCM(i, j) = CCM(j, i). Cross-correlation fails to distinguish between 
direct and indirect connections as it is calculated pairwise for each pair without any consideration of the influence 
of the other elements of the network on the activity of the pair of neurons.

Partial correlation approach attempts to solve this problem by removing the linear contribution of other neu-
rons in the population when calculating the dependence for a pair of neurons. Consider x and y as two neurons 
in a population P of neurons. The partialised cross-spectrum Sxy P between neurons x and y is obtained as fol-
lows10, 37:

= − −S S S S S( ) (9)xy P xy xP PP yP
1

where Sxy is the full cross spectrum between the neurons x and y, SxP (SyP) corresponds to the cross spectrum 
between the neuron x (y) and the population P and SPP is the cross spectrum between the rest of the neurons in 
the population P. The partial correlation function is given by a scaled version of the inverse Fourier transform of 
Sxy P. A good reference for the calculation of partial correlation can be found at Poli et al.13. Similar to CCM, par-
tial correlation matrix (PCM) is a N × N symmetric matrix and the (i, j)-th element in the PCM (PCij) corre-
sponds to the maximum amplitude of the partial correlation function for the neuron pair (i, j).

We computed cross-correlation and partial correlation matrices (CCM and PCM) using ToolConnect37, an 
open-source toolbox.

Evaluation of functional connectivity matrices. The structural connectivity matrix (also called the 
adjacency matrix) is a directional and sparsely connected (i.e. connectivity defined only between specific pairs 
of neurons) binary matrix. The functional connectivity matrices (Ising coupling J matrix, CCM, PCM) are 
non-directional and generally, all-to-all connected matrices. For meaningful comparison between the structural 
and functional connectivity matrices, both matrices have to be reduced to a sparse, binary and non-directional 
form, through thresholding, binarising, and symmetrising31. Each functional connectivity matrix was thresh-
olded based on the absolute values of its elements and then binarised to convert it to a sparsely connected matrix. 
The absolute value of the elements was considered for the thresholding of the functional connectivity matrices 
because negative values can occur in functional connectivity matrices (and may indicate inhibitory links in the 
structural topology). The structural connectivity matrix was symmetrised and converted to a non-directional 
matrix. We then compared the symmetrised structural connectivity matrix (SCM) against the thresholded and 
binarised functional connectivity matrices (FCM) for different threshold levels. We recorded the results of the 
comparison using the metrics of true positives (TP), false positives (FP), true negatives (TN) and false negatives 
(FN). If a non-zero value in the FCM corresponds to a non-zero value in the SCM, it is recorded as a TP. If a zero 
value in the FCM corresponds to a zero value in the SCM, it is recorded as a TN. If a zero value in the FCM cor-
responds to a non-zero value in the SCM, it is called an FN. If a non-zero value in the FCM corresponds to a zero 
value in the SCM, it is called as an FP.

We assessed the performance of the functional connectivity metrics to uncover the underlying structural con-
nectivity by the amount of match between the SCM and the FCM for different threshold levels using the standard 
receiver operating characteristic (ROC) curve analysis. The ROC is a standard method to study the performance 
of a binary classifier as the classification threshold is varied38. The ROC curve is the plot of the relationship 
between the true positive ratio (TPR) and the false positive ratio(FPR) for different threshold levels. The TPR is 
defined as the ratio of the number of links in the FCM that match the existing links in SCM to the total number of 
links in the SCM. FPR is defined as the ratio of the links in FCM that do not match the links in SCM to the total 
number of zeros in the SCM. TPR and FPR are given by the following equations:

= =
+

TPR TP
P

TP
TP FN( ) (10)

= =
+

FPR FP
N

FP
TN FP( ) (11)

We then summarized the performance of the ROC curve in a single number using the common approach of 
calculating the area under the ROC curve (abbreviated as AUC)38. The value of the AUC varies between 0 and 1 
as the ROC curve covers a portion of the area under unit square (both TRP and FPR vary from 0 to 1). A random 
classifier has a ROC curve along the diagonal line joining (0, 0) and (1, 1) and an AUC value of 0.5. A perfect 
classifier has a ROC curve that hugs the upper left corner of the plot and an AUC value of 1.0. The closer the value 
of AUC is to 1, the better is the classifier.

Results
We compared the relationship between the functional connectivity matrices (Ising couplings, cross-correlations, 
and partial correlations) and the structural connectivity for different simulated network sizes, topologies, firing 
rates and network correlation levels.

Effect of mean network correlation. We initially studied the performance of the three functional con-
nectivity measures to uncover the underlying synaptic connectivity for different levels of network correlation for 
fixed firing rates in scale-free networks. The results for scale-free networks of 30 nodes for a fixed mean firing 
rate of 20 Hz is shown in Fig. 1b. For very weak levels of correlation (ρ = 0.001 and ρ = 0.003), partial correlations 
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and cross-correlations performed no better than a random classifier and their AUC values were close to 0.5. In 
contrast, the AUC value of Ising couplings was significantly higher when compared to partial correlations and 
cross-correlations at very weak levels of correlation (p < 0.01, two-sample t-tests). When the network correlation 
level increased upto a value of 0.03, the AUC of Ising couplings increased and then gradually decreased. This can 
be explained as follows. When the network correlation was small, the synaptic connectivity in the network had 
a very weak effect on the spike trains of the neurons in the network and the neurons with the weakest synaptic 
connections were indistinguishable from the unconnected neurons. As the correlation level increased, the effect 
of synaptic connectivity on the spike trains became stronger, and the gap between the correlation in the spike 
trains of the connected neurons and the unconnected neurons increased. As a direct result, the detectability of the 
links also increased. However, after a particular point, the effect of the indirect connections became stronger, and 
it became difficult for Ising couplings to distinguish between the direct connections and the indirect connections 
and the AUC dropped as a result.

Figure 1. Effect of mean network correlation. (a) The first column in each row shows the raster plot of the 
spiking activity from a simulated neuronal network for a firing rate of 20 Hz and different network correlation 
levels. Histogram of the Ising couplings, partial correlations and cross-correlations for the pairs of neurons that 
are synaptically connected and not connected are shown respectively in the second, third and fourth columns. 
The corresponding ROC curves of the three functional connectivity metrics are shown in the last column. The 
first, second and third rows correspond to mean network correlation levels (ρ) of 0.001, 0.03 and 0.3 
respectively. (b) Plot of the AUC values for different mean network correlation levels in scale-free networks of 
30 neurons for a fixed firing rate of 20 Hz. Mean value was calculated from ten simulated networks. For weaker 
correlation levels (0.001 and 0.003), AUC value of Ising couplings was significantly higher than partial and 
cross-correlations. For stronger correlation levels (0.1 and 0.3), partial correlations had a significantly higher 
AUC value compared to Ising couplings and cross-correlations (p < 0.01, two-sample t-tests). (c) True positive 
rate (TPR) and false positive rate (FPR) for the reconstruction of the structural connections by the three 
functional connectivity metrics thresholded at a sparsity threshold value of 20%.
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The AUC curve of partial correlations followed a similar pattern. However, the performance of partial corre-
lation increased at a much faster rate with increase in the correlation levels, and soon it equalled and eventually 
surpassed Ising couplings for strong levels of correlation (ρ = 0.1 and ρ = 0.3). The AUC of partial correlations 
was significantly higher than that of Ising couplings for strong levels of correlation (p < 0.01, two-sample t-tests). 
For intermediate levels of network correlation (ρ = 0.01 and ρ =0.03), there was no difference between the AUC 
values of Ising couplings and partial correlations. The superior performance of the partial correlations at stronger 
levels of network correlations can be explained as follows. When the network correlation is strong, a spike in the 
presynaptic neuron evokes a spike in the postsynaptic neuron with high probability, and a linear dependency 
emerges between the spike train of the presynaptic and the postsynaptic neurons. Though indirect interactions 
emerge in the case of strong network correlations, the relationship between the spike trains of the indirectly con-
nected neurons is still linear. As partial correlation can remove the linear effects of the population, partial corre-
lations were able to discount the effect of spurious indirect interactions introduced at stronger levels of network 
correlation. We tested for the range of correlation levels for different fixed firing rates and different network sizes 
and found that the same trend persisted for all cases.

The AUC score gives a good summary of the performance of the functional connectivity metrics for every 
possible threshold value. However, in practice, we have to use a single threshold value typically. We tested the 
quality of reconstruction of the structural links for a sparsity threshold value of 20% (the strongest 20% of the 
functional connectivity links are considered to represent the structural links) based on the prior knowledge of 
the network density of the structural network, and the results are presented in Fig. 1c. The results are in general 
agreement with the results obtained earlier using the AUC scores. We can see that a higher AUC score in Fig. 1b 
corresponds to a higher true positive rate (TPR) and a lower false positive rate (FPR) in Fig. 1c.

Effect of mean firing rate. We then studied the effect of mean firing rate on the quality of recovery of the 
structural connections. Figures 2b and 2c present the effect of firing rate on the AUC of Ising couplings, partial 
and cross-correlations for fixed network correlation levels of 0.001 and 0.3, respectively. At a weak correlation 
level of 0.001, the AUC values of partial and cross-correlations remained low at around 0.5 and the AUC of 
Ising couplings was significantly higher than those of partial and cross-correlations for all firing rates (p < 0.01, 
two-sample t-tests). At a strong value of correlation of 0.3, all the three functional connectivity metrics show an 
increase in performance with an increase in firing rates. The relative difference between the AUC scores of partial 
correlations and Ising couplings persisted, and partial correlation detected significantly (p < 0.01, two-sample 
t-tests) more links when the correlation was strong for all the firing rates considered. Our observation that the 
AUC of partial correlations and cross-correlations increases with firing rates is consistent with the similar obser-
vations of Eichler10.

Effect of network topology. Apart from networks with scale-free connectivity, we assessed the per-
formance of Ising couplings, cross-correlations and partial correlations in networks of neurons with modular 
small-world connectivity and random connectivity. We maintained the same link density across the three topol-
ogies. The results of the assessment for networks of 30 nodes for a mean firing rate of 20 Hz are plotted in Fig. 3. 
We observed that trend of how the AUC scores of the three functional connectivity metrics vary with the network 
correlation levels did not change across topologies. We also observed that the AUC scores of Ising couplings, par-
tial and cross-correlations in scale-free topology were not considerably different from their corresponding scores 
in random topology. However, the AUC scores of the three metrics in the small-world networks were considera-
bly higher than their corresponding scores in scale-free networks. The high relative performance of the metrics in 
the case of small-world networks when compared to scale-free networks or randomly connected networks can be 
explained as a direct effect of our topology construction. The modular small-world networks were constructed by 
linking together fully connected modules with randomly distributed inter-module connections31. The number of 
inter-module connections was fewer when compared to intra-module connections. Hence, each node was influ-
enced more strongly by the direct interactions from the other nodes in the same module (there were no indirect 
interactions within a module as each node was connected to every other node in the module) when compared 
to the indirect interactions from nodes in the other modules. So, the effect of indirect interactions was weaker in 
the case of small-world networks when compared to scale-free and random networks. As a result, all the three 
functional connectivity metrics performed better at disentangling direct interactions from indirect interactions in 
the modular small-world topology when compared to the other two topologies. To sum up, we observed that Ising 
couplings performed better at weaker levels of correlations and partial correlations performed better at stronger 
levels of correlation irrespective of the underlying structural connectivity topology.

Effect of network size. We computed the three functional connectivity metrics for scale-free networks 
of different sizes (11, 20, 30, 60 and 120 nodes) and analysed how the network size affected the reconstruction 
of the structural connections. For both weak (Fig. 4a) and strong (Fig. 4b) correlation cases, all the three func-
tional connectivity metrics displayed a reduced performance with an increase in the number of nodes. Partial 
correlation is known to have a reduction in performance with increased network size because of the so-called 
‘marrying-parents’10 or ‘married-nodes’13 effect (When two neurons A and B share a postsynaptic neuron C, 
then the two input neurons A and B can become correlated as an artifact). Our results show that Ising model also 
suffers a reduction in detectability of the structural links for larger networks. Though the performance of all the 
three metrics decreased with increase in network size, the relative performance difference between Ising model 
and partial correlation remained. As a result, Ising couplings had the highest AUC in weaker correlation levels in 
networks of all sizes and partial correlations was the winner at stronger correlation levels in networks of all sizes.
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Effect of network density. The structural networks considered so far had a network density of 0.2. To 
study the impact of the network density, structural networks were constructed with a network density of 0.5. The 
new structural networks were simulated to generate activity patterns, and the resulting functional connectivity 
metrics were computed. Figure 5 shows the plot of the AUC scores for Ising couplings and partial correlations 
for networks with the network density 0.2 and 0.5. It can be observed that even for networks with a higher net-
work density of 0.5, the pattern of Ising couplings performing better at lower values of correlation and partial 
correlations performing better at higher values of correlation was preserved. Another interesting observation is 
that the AUC score of partial correlations in networks with higher network density is significantly smaller when 
compared to the corresponding scores in networks with a network density of 0.2 (p < 0.01, two-sample t-tests). 

Figure 2. Effect of mean network firing rate. (a) The first and second rows correspond to firing rates of 10 Hz 
and 40 Hz respectively for a fixed correlation level (ρ) of 0.001. The third and fourth rows correspond to firing 
rates of 10 Hz and 40 Hz respectively for a fixed correlation level of 0.3. Raster plot of the spiking activity from a 
simulated neuronal network is shown in the first column. Histogram of the Ising couplings, partial correlations 
and cross-correlations for the pairs of neurons that are synaptically connected and not connected are shown 
respectively in the second, third and fourth columns. The corresponding ROC curves of the three functional 
connectivity metrics are shown in the last column. (b) and (c) Plot of the AUC values for different firing rates in 
scale-free networks of 30 neurons for fixed mean network correlation levels of 0.001 and 0.3 respectively. Mean 
value was calculated from ten simulated networks.
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This observation is consistent with the similar observations of Poli et al.13. The reduced performance of the partial 
couplings with increasing network density can again be attributed to the marrying-parents effect. Ising couplings 
also showed a reduced performance when the network density increased. However, the study did not find any 
significant statistical difference between the AUC scores of Ising couplings corresponding to the networks with 
two different network densities (p < 0.01, two-sample t-tests).

Impact of the fit of Ising parameters. We computed the Ising parameters using the gradient descent 
method. We defined the cost function as the maximum difference between the 〈σi〉 or σσi j  of the Ising model 

Figure 3. Effect of network topology. (a) Plot of the AUC values for networks of 30 neurons with scale-
free (SF), small-world (SW) and Erdos-Renyi (ER) random network topologies. Data was averaged over 
ten simulated networks for each network condition. Firing rate was fixed at 20 Hz in all cases. All the three 
topologies had the same link density of 0.2. (b) An example of the structural connectivity network for each 
topology. Scale-free networks form a few highly connected hub nodes. Modular small-world networks 
present a balance of segregation and integration via dense intra-module connections and sparse inter-module 
connections. Most nodes in random networks have a degree in the vicinity of the average degree of the network.

Figure 4. Effect of network size. Plot of the AUC values for networks of various sizes for a fixed firing rate 
of 20 Hz and correlation levels of 0.001 and 0.3 are displayed in the left panel (a) and the right panel (b) 
respectively. The mean value was calculated from ten networks for all cases except for networks of 120 nodes in 
which case the data is from the simulation of a single network.
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and that of the data from the simulation. The cost function quantified the error in the fit of the Ising model 
parameters. Greater the difference between the averages of the model and the data, greater is the error in the fit of 
the model parameters. We ran the gradient descent algorithm for different values of the cost function and studied 
how the accuracy with which we fitted the Ising model parameters affected the reconstruction of the structural 
connectivity. Figure 6 shows the plot of the AUC values for different values of the error in the fit of the Ising model 
parameters. It can be seen that the capability of the Ising parameters to reconstruct the structural connectivity 

Figure 5. Effect of network density. Plot of the AUC values of Ising couplings and partial correlations for two 
different network densities and a fixed firing rate of 20 Hz and varying correlation levels. Data was averaged over 
ten scale-free networks of 30 nodes.

Figure 6. Effect of fit of the Ising model parameters on the inference of structural links. The error in the fit of 
the Ising model parameters is plotted against the AUC values obtained for the corresponding error levels for 
three mean network correlation levels (ρ) and a fixed firing rate for scale-free networks of 30 neurons. In all 
cases, lower the error in the fit of the Ising model parameters, higher was the detection of links in the structural 
connectivity matrix.
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(given by the AUC score) increased with the decrease in the error in the fit of model parameters. It is to be noted 
that the gradient descent algorithm takes more time to compute more accurate model parameters. Thus, the 
number of the structural links correctly detected by the Ising parameters depends on the accuracy of the estima-
tion of the model parameters, which, in turn, depends on the time the gradient descent algorithm is run for. In 
comparison, partial and cross-correlations can be computed using analytical solutions and also the time required 
to compute partial correlations is a fraction of the time required to compute Ising parameters, especially for larger 
systems.

Discussion
Functional connectivity metrics have been widely used to infer the underlying structural connectivity of the neu-
ronal circuits8, 22, 39. However, the conventional functional connectivity metric of cross-correlation is susceptible 
to the impact of indirect interactions arising out of poly-synaptic connections and common inputs. Maximum 
entropy based Ising models have been suggested to be able to discount the effect of indirect interactions and to 
account for only the direct ones16, 19, 20. Similarly, partial correlation approach has also been reported to remove 
the linear contribution of other neurons in the population and measure the direct interaction strength10, 12. Which 
of the above two functional connectivity approaches provides the best measure of the underlying structural con-
nectivity remains an open question, which has been addressed in this paper.

We found that the relative performance of the three functional connectivity tools was determined primarily by 
the network correlation levels (Fig. 1). Partial and cross-correlations performed only as well as a random classifier 
at very weak levels of network correlation (ρ = 0.001). In contrast, Ising couplings had a considerably higher AUC 
score when compared to partial correlations when the correlation levels were very weak (ρ = 0.001 and ρ = 0.003). 
However, partial correlation gained the advantage when the network correlation increased and performed bet-
ter than Ising couplings at higher correlation levels (ρ = 0.1 and ρ = 0.3). At higher network correlation levels, 
whenever a presynaptic neuron spikes, there is a high chance that the postsynaptic neuron will spike as well and 
the relation between the spike trains of the neurons in the network tend to become linear. As partial correlations 
can remove the linear effects of the activity of all other neurons while assessing the relationship between two spike 
trains12, partial correlations outperform Ising couplings at higher network correlation levels. We found that the 
trend was consistent across different firing rates, network sizes and network topologies. Studies on networks of 
vertebrate retina40, 41 have reported that the correlation between the activity of pairs of neurons is usually very 
weak (correlation coefficients in the range 0.001 to 0.1). This encourages further studies applying Ising models to 
assess structure-function relationship for in vivo and in vitro networks of neurons at low correlations. At the same 
time, partial correlations are a better choice in networks with high levels of correlation.

With technological advances42, 43, the number of electrodes on the MEA are on the rise and the performance of 
the functional connectivity metrics for larger network size becomes important. It is known that the AUC of partial 
correlations will deteriorate when the number of neurons in the network increases because of the ‘married-nodes’ 
effect10. We observed that the AUC of Ising couplings also decreased when the number of neurons increased. 
Though all the three functional connectivity metrics suffered a reduction in AUC with an increase in the number 
of neurons in the network (Fig. 4), the relative AUC score amongst the three tools did not vary with the network 
size. Ising couplings had the highest AUC at weaker correlation levels, and partial correlations had the highest 
AUC at stronger correlation levels for all tested network sizes.

In addition to considerations of the accuracy of estimating the structural connectivity, the choice of the appro-
priate tool should also be informed by other factors such as speed of computation. The time required to compute 
the functional connectivity metrics becomes an important consideration, particularly for larger networks. The 
Boltzmann learning method used to calculate the Ising parameters is a very slow gradient descent algorithm34. 
For a larger number of nodes, we also have to run long Monte Carlo sampling steps per iteration as an exact 
computation of the moments of the Ising model are computationally expensive35. In comparison, analytical solu-
tions exist to compute partial and cross-correlations in a much shorter span of time. For example, computation 
of partial and cross-correlations for a network of 60 neurons took in the order of minutes using the ToolConnect 
toolbox37 whereas the computation of Ising couplings using the Boltzmann learning method took in the order 
of hours (on the same hardware and under similar load conditions). Faster approximation methods34, 44 exist to 
compute Ising couplings quickly. Each approximation method makes a few assumptions about the structure of 
the underlying network and firing conditions. When the assumptions are not fully met, it will affect the fit of the 
model parameters. We, therefore, studied how the accuracy of the fit of the Ising model parameters affected the 
reconstruction of the underlying structural connectivity matrix (Fig. 6). We observed that the smaller the error 
in the fit of the model parameters, the higher was the detection of the links in the structural connectivity matrix. 
This effect has to be taken into account when opting for a quick approximate solution vs. a time consuming exact 
solution to compute Ising parameters.

Roudi et al.34 calculated equilibrium Ising coupling parameters for a simulated model of cortical network and 
found no significant relation between the Ising couplings and the synaptic connectivity of the network. The poor 
performance of the equilibrium Ising model in their work could be attributed to the symmetry of its undirectional 
couplings, which were nevertheless used to estimate the asymmetric directional connections of the simulated 
network. For meaningful comparison and analysis between the structural and functional connectivity matri-
ces, both matrices should be reduced to a sparse binary undirected form, through thresholding, binarising, and 
symmetrising31. The significantly improved results we obtained for Ising couplings corroborate this approach for 
comparison between the structural and functional connectivity matrices.

There have been enhancements to the standard Ising model. When Glauber dynamics is added to the model, 
it is referred to as kinetic Ising model45. The couplings of the kinetic Ising model are asymmetric and can account 
for the directionality of the links. Hertz et al.46 observed that the couplings of a kinetic Ising model are successful 
in recovering the synaptic connectivity of a simulated cortical network when compared to a standard Ising model. 
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Our objective here has been to study the capability of standard Ising model couplings under different conditions 
in comparison to the partial and cross-correlations. Hertz’s results might be taken to indicate that neural system’s 
state transitions are described by the temporal dynamics of the stochastic process. However, in spite of the fact 
that neural systems might indeed be non-equilibrium, our results may indicate that the systems we investigated 
in this paper were to a large extent governed by equilibrium states, which can be described by equilibrium Ising 
models. It is worth noting that Ising model itself will not apply to systems far from equilibrium. A similar study of 
the capabilities of kinetic Ising model couplings in comparison to partial correlation and other functional connec-
tivity measures for networks involving both excitatory and inhibitory neurons under different network conditions 
will be one of the avenues for future research.

Conclusion
In summary, we performed a systematic study to benchmark the performance of Ising couplings to reconstruct 
the underlying structural connections in comparison to partial and cross-correlations, in in silico neuronal net-
works. We assessed the effect of firing rate, network correlation, network size, network density, and topology 
on the performance of the three functional connectivity metrics. This paper presents the key finding that the 
relative performance of the three functional connectivity tools depended primarily on the network correlation 
levels. Amongst the three compared functional connectivity metrics, Ising couplings detected the most structural 
links at weaker correlation levels and partial correlations at stronger correlation levels. These results were con-
sistent across various firing rates, network sizes, and topologies. All the three functional connectivity measures 
showed a decreased detectability of the structural links with an increase in the number of neurons in the network. 
Understanding the strengths and weaknesses of the individual functional connectivity metrics, the network con-
ditions in which they are applied and the computational time demands should serve as a guide in choosing the 
right functional connectivity tool to reconstruct the structural network topology.
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