
Understanding causality and uncertainty 
in volcanic observations: an example of 
forecasting eruptive activity on Soufrière 
Hills Volcano, Montserrat 
Article 

Published Version 

Creative Commons: Attribution 4.0 (CC-BY) 

Open Access 

Sheldrake, T. E., Aspinall, W. P., Odbert, H. M., Wadge, G. and
Sparks, R. S. J. (2017) Understanding causality and 
uncertainty in volcanic observations: an example of 
forecasting eruptive activity on Soufrière Hills Volcano, 
Montserrat. Journal of Volcanology and Geothermal Research,
341. pp. 287-300. ISSN 0377-0273 doi: 
10.1016/j.jvolgeores.2017.06.007 Available at 
https://centaur.reading.ac.uk/72257/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1016/j.jvolgeores.2017.06.007 
To link to this article DOI: http://dx.doi.org/10.1016/j.jvolgeores.2017.06.007 

Publisher: Elsevier 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Journal of Volcanology and Geothermal Research 341 (2017) 287–300

Contents lists available at ScienceDirect

Journal of Volcanology and Geothermal Research

j ourna l homepage: www.e lsev ie r .com/ locate / jvo lgeores
Understanding causality and uncertainty in volcanic observations: An
example of forecasting eruptive activity on Soufrière Hills
Volcano, Montserrat
T.E. Sheldrake a,b,⁎, W.P. Aspinall a, H.M. Odbert a, G. Wadge c, R.S.J. Sparks a

a School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's Road, Bristol BS8 1RJ, UK
b Department of Earth Sciences, University of Geneva, rue des Maraîchers 13, Geneva CH-1205, Switzerland
c Department of Meteorology, University of Reading, Reading RG6 6AL, UK
⁎ Corresponding author at: Department of Earth Science
Maraîchers 13, Geneva CH-1205, Switzerland.

E-mail address: thomas.sheldrake@unige.ch (T.E. Shel

http://dx.doi.org/10.1016/j.jvolgeores.2017.06.007
0377-0273/© 2017 The Authors. Published by Elsevier B.V
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 5 October 2016
Received in revised form 2 June 2017
Accepted 6 June 2017
Available online 8 June 2017
Following a cessation in eruptive activity it is important to understand how a volcano will behave in the future
and when it may next erupt. Such an assessment can be based on the volcano's long-term pattern of behaviour
and insights into its current state via monitoring observations. We present a Bayesian network that integrates
these two strands of evidence to forecast future eruptive scenarios using expert elicitation. The Bayesian
approach provides a framework to quantify the magmatic causes in terms of volcanic effects (i.e., eruption and
unrest). In October 2013, an expert elicitation was performed to populate a Bayesian network designed to help
forecast future eruptive (in-)activity at Soufrière Hills Volcano. The Bayesian network was devised to assess
the state of the shallow magmatic system, as a means to forecast the future eruptive activity in the context of
the long-term behaviour at similar dome-building volcanoes. The findings highlight coherence amongst experts
when interpreting the current behaviour of the volcano, but reveal considerable ambiguity when relating this to
longer patterns of volcanism at dome-building volcanoes, as a class. By asking questions in terms of magmatic
causes, the Bayesian approach highlights the importance of using short-term unrest indicators frommonitoring
data as evidence in long-term forecasts at volcanoes. Furthermore, it highlights potential biases in the judge-
ments of volcanologists and identifies sources of uncertainty in terms of magmatic causes rather than scenar-
io-based outcomes.
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1. Introduction

Important decisions can rest on forecastingwhen a volcanowill next
erupt: in the short-term, whether to evacuate people at risk (e.g.,
Surono et al., 2012) and in the long-term, for land-use planning and to
improve resilience to eruptive activity (e.g., Marzocchi et al., 2004).
Two different approaches can be taken: methods for short-term fore-
casting usually focus on interpreting patterns of geophysicalmonitoring
observations (e.g., Sparks, 2003; Sobradelo and Martí, 2015); and, for
long-term analysis, inferences may be based on a statistical characteri-
sation of the eruptive history of a volcano (e.g., Bebbington, 2008,
2013) or the absence of short-term unrest indicators (e.g., Wadge and
Aspinall, 2014). Importantly, short-term forecasts are usually only
utilised once volcanic unrest is observed, and where monitoring data
neva, rue des
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are assumed to be anomalous and indicative of precursory eruptive be-
haviour (Marzocchi and Bebbington, 2012).

Generally, volcanic forecasting is traditionally based on statistical in-
ference, that is, analysing past observations to calculate the probability
of future events, using either or both empirical data and expert opinion.
Statistical inference can be particularly tricky to implement, however,
when data are sparse or the forecasting timescales are long. Neverthe-
less, there are instances when understanding volcanic unrest is impor-
tant for making long-term forecasts: such as during long periods of
dormancy when occasional episodes of unrest are observed that are
not contemporaneous with eruptive activity (e.g., Santorini 2011–12;
Stiros et al., 2010; Aspinall and Woo, 2014); or when there are very
low or no obvious signs of unrest but considerable uncertainty as to
whether an eruption is finished, and it is desirable to assess the likeli-
hood that the volcano has entered a state of repose that is characteristic
of a long-duration cessation in eruptive activity (e.g., Soufrière Hills Vol-
cano; Wadge and Aspinall, 2014).

As the understanding of volcanic behaviour has evolved over recent
decades, it is questions involving reverse causality that have motivated
scientific research and provided the main basis for development of
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Examples of the direction of reasoning in terms of ‘causes’, ‘effects’ and ‘outcomes’
in: (a + b) event trees where ‘causes’ are implicit in the ‘effects’ and so reasoning is from
‘effects’ to ‘outcomes’, either (a) indirectly or (b) directly; (c+d) a Bayesiannetworkwith
reasoning from ‘causes’ to ‘effects’, where (c)magmatic processes are explicitly identified,
or (d) where the effects implicitly represent magmatic processes. Arrows represent the
flow of information and nodes represent ‘observable’, ‘latent’ and ‘outcome’ states.
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conceptual models for magmatic systems (Cashman and Sparks, 2013;
Sparks and Ashman, 2016). For example, why does a volcano deform
during phases of lava extrusion (Odbert et al., 2015) or why do mafic
enclaves occur in andesitic lavas (Barclay et al., 2010)? Thus it makes
sense to design forecasting models using a similar rationale. Recently,
there has been growing interest in the application of BayesianNetworks
(shortened to Bayes Net, or also known as Belief Nets or Bayesian Belief
Networks) to incorporate such causal inference into forecastingmodels
(Aspinall et al., 2003; Aspinall andWoo, 2014; Hincks et al., 2014), as an
alternative to more traditional approaches based on statistical
inference.

To investigate the applicability of a causal inference approach, we
combine empirical evidence about long-term patterns of activity with
short-term geophysical and geochemical observations at Soufrière
Hills Volcano (SHV). SHV has been in a continuous state of unrest
since 1992, characterised by intermittent phases of eruptive activity
(Sparks and Young, 2002; Wadge et al., 2014), although since March
2010 there has been a pause in eruptive activity at the surface and an in-
creasing interest in projecting when it might next erupt.1 SHV provides
an excellent example ofwhere statistical inference is limitedwhen fore-
casting the long-term behaviour. Causal inference provides an opportu-
nity to combine monitoring and phenomenological observations with
magmatic and volcanic theory to aid long-term forecasts. However,
the application of causal inference can bemore widespread than simply
this one application or just long-term forecasting, and so first we pro-
vide a summary of the main differences between statistical and causal
inference within volcanology.

2. Causal-statistical dichotomy in volcanology

Forecasts of eruptive activity are commonly based on the estimation
of relationships between observations and events using statistical infer-
ence. For example, this could be the correlation between observations of
unrest such as deformation, and volcanic eruptions (Phillipson et al.,
2013). This is because it is often easier to study the ‘effects’ of magmatic
processes, such as unrest and eruptive activity, and quantify the rela-
tionship between these effects to estimate the likelihood of future
events, rather than identify the magmatic ‘causes’ of particular scenari-
os. Within volcanology, this framework of statistical inference is com-
monly implemented in eruption forecasting using event trees (e.g.,
BET, Marzocchi et al., 2008; HASSET, Sobradelo et al., 2013), where the
logic is entirely forward as the tree represents the progression through
a sequence of conditional relationships (Fig. 1a–b).

Causal inference is based on an analysis of potential future events
under changing conditions, which requires a level of judgement
(Pearl, 2009). Causal inference can be graphically displayed using a
Bayesian network, which consists of arcs (arrows) identifying the di-
rection of causality between nodes, which represent ‘effects’, ‘causes’
and ‘outcomes’ (Fig. 1c–d). Nodes represent a state space (e.g., types
of eruptive activity) with, in principle, no limit on the possible num-
ber of states a node can take. The states of a node can be modelled
using continuous probability distributions between zero and one,
and thus represent discrete random variables. Such a network design
enables magmatic ‘causes’ to be quantified explicitly (Fig. 1c) or
implicitly (Fig. 1d), based entirely on the observation of ‘effects’.
The application of Bayes Rule to such relationships is the mathemat-
ical concept that allows inferences about ‘causes’ to be made ratio-
nally on the basis of evidence from ‘effects’, where C is the ‘cause’
and E is the ‘effect’:

Pr CjEð Þ ¼ Pr Cð Þ Pr EjCð Þ
Pr Eð Þ ð1Þ
1 At the time of this study –October 2013, noting that the pause in eruptive activity has
continued to the present (September 2016)
Whilst Bayes theorem is used in event trees to quantify ‘effects’
using a joint distribution of observed variables (i.e. at a specific node),
the structure of an event tree itself is not Bayesian. Consequently, an
event tree is not a Bayesian network, although it can be mapped into a
Bayesian network (e.g., Aspinall et al., 2003). In both event trees and
Bayesian networks, the state-set of a discrete nodemust be both mutu-
ally exclusive and exhaustive (e.g., erupt vs not erupt) and arcs cannot
contain complete circular pathways. However, in a Bayesian network,
monitoring data are modelled as ‘effects’ (Fig. 1c–d), whereas in event
trees they indirectly represent a ‘cause’ (e.g., inferred magmatic unrest)
(Fig. 1b) or used to quantify the probability of a casual process, based on
a conditional relationship (Fig. 1a).

In a volcanological context, Bayesian networks use physical, chemi-
cal and other observational evidence to understand the dynamics and
relationships between different magmatic and volcanic processes with
the aim of ultimately forecasting eruptive behaviour probabilistically
(Aspinall and Woo, 2014; Hincks et al., 2014). This is achieved by de-
signing a model to capture, as comprehensively as feasible, how mag-
matic processes modulate observational data (e.g., monitoring data,
volcanic eruptions). Observable and outcome nodes can be linked via la-
tent nodes, which represent unobservable or inaccessible magmatic
processes (Fig. 1c), therefore allowing Bayesian networks to be de-
signed based on a physical model for the magmatic system (Hincks et
al., 2014). This structuring represents reverse-causal reasoning, as infor-
mation acquired about ‘effects’ (e.g., eruptive activity or volcanic un-
rest) is used to constrain the likely ‘cause’ (i.e., the driving magmatic
process). Crucially, however, the conditional relationships between
the nodes can be based on forward causality (Gelman and Imbens,
2013), that is, the probability of observing ‘effects’ (e.g., seismicity)
given specific ‘causes’ (e.g., magma intrusion or no magma intrusion).

Traditionally, the utilisation of Bayesian networks in disciplines such
as the medical sciences is performed to quantify conditional relation-
ships when plenty of data are available, and where ‘causes’ can be em-
pirically linked to ‘effects’ (e.g., via post-mortems). However, in
complex natural systems such as volcanoes this is not the case, as
‘causes’ (i.e., magmatic processes) for past events cannot be unequivo-
cally diagnosed and are only inferred. This has implications for how a
Bayesian network should be designed and how conditional probabilities
are quantified: one approach is to populate a network using uncertainty
judgements elicited from the understanding of experts using formalised
techniques (Aspinall and Woo, 2014; Hincks et al., 2014).

When a Bayesian network does not implicate a physical model it
does not require latentnodes, and so the physical causes become implic-
it in the outcomes. Thus, arcs point directly from outcome nodes (e.g.,
eruption scenario) to observation nodes (e.g., seismicity) in a logic tree
structure (Fig. 1d) (e.g., Aspinall and Woo, 2014). This means that con-
ditional probabilities between nodes can be quantified directly by a
combination of observational data (Aspinall et al., 2003) and expert
judgement (Aspinall and Woo, 2014).
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3. Application: Soufrière Hills Volcano

3.1. Geological background

Soufrière Hills Volcano (SHV) is an andesitic dome-building volcano
on the island of Montserrat in the Caribbean (Fig. 2). In 1995 it erupted
following three years of seismic unrest and several centuries of dorman-
cy, which included ~30-year cycles of elevated seismicity (Young et al.,
1998; Sparks and Young, 2002; Odbert et al., 2014). The eruption of SHV
has involved five distinct phases of lava extrusion over the subsequent
fifteen years, monitored by the Montserrat Volcano Observatory
(MVO) (Wadge et al., 2010, 2014). The phases of activity were
characterised by the repeated formation of Peléean andesitic lava
domes that grew and collapsed and, intermittently, vulcanian explo-
sions (Sparks and Young, 2002; Wadge et al., 2014) until February
2010, when, after an explosion and flank collapse, the latest large
dome stopped growing and thereafter only experienced minor mass-
wasting (Wadge et al., 2014). Between these phases of activity there
Fig. 2.Modified map of Hazard Level System on Montserrat from Cole et al. (2011) used at the
island, with hazard zones (indicated by yellow and blue outlined areas) encompassing over
which meant that areas with letters in red circles were open only to ‘essential workers’, yello
website for further details and more up-to-data hazard map (http://www.mvo.ms).
were pauses when no significant lava extrusion occurred, and eruptive
activity was limited to isolated ash venting or small explosive events
(Norton et al., 2002; Cole et al., 2014).

Each time eruptive activity at SHV paused, and the volcano entered a
state of repose, therewas a focus on forecasting if, when, and how erup-
tive activity would restart. As a corollary, there was also an increasing
impetus to develop criteria to identify when the eruption had ceased,
which became synonymouswith identifying a long-term pause in erup-
tive activity (Wadge andAspinall, 2014). Since 1997, a Scientific Adviso-
ry Committee (SAC) has met in conjunction with MVO, annually to
biannually (including during pauses of eruptive activity), to discuss
the on-going state of the volcano and to forecast how eruptive activity
may evolve in the future. Within the role of the SAC, identifying when
the eruption had ceased was based on meeting simultaneously a set of
on-going criteria defined in terms of monitoring metrics relating to
three key observables (Fig. 3), all three to be sustained jointly over a
year, or longer (Wadge andAspinall, 2014): (1) absence of low frequen-
cy seismicity associated with active magmatic processes; (2) average
time of this study (i.e. 2013). Soufrière Hills Volcano (SHV) is located in the south of the
half the island area. At the time of this study the Hazard Alert System was at Level Two,
w circles allowed ‘daytime access’, and green circles were ‘unrestricted access’. See MVO

http://www.mvo.ms


Fig. 3. Summary of the threemainmonitoring observables as used byMontserrat Volcano Observatory, and provided to the Scientific Advisory Committee as a Report for the SAC October
2013 meeting (Stewart et al., 2013). Pink bars are phases of dome-extrusion and green bars are pauses in eruptive activity. The top plot panel shows the pattern of total seismicity, with
most seismicity occurring during periods of dome-growth. The middle panel represents the radial deformation of the cGPS station MVO1, 7.6 km from SHV. The bottom panel is a time
series of SO2 fluxes, with COSPEC measurements in green and DOAS measurements in blue.
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SO2 fluxes below the measurement detection level (50 tonnes per day;
Edmonds et al., 2003) and (3) absence of discernible surface deforma-
tion of the volcanic edifice from continuous GPS data, that could be
interpreted as reflecting deep magmatic pressurisation.

As time has passed since the latest active phase ended (February
2010), the question of when and whether eruptive activity will resume
became more pressing, with public perception of volcanic hazard
diminishing and demands to develop economic enterprises increasing.
The current period of quiescence at SHV at the time of this study (Octo-
ber 2013) was two times longer than any of the previous pauses since
1995, and as it continues (now almost four times longer; September
2016) the pressure to identify evidence on which to base a forecast of
future eruptive activity increases.

3.2. Formulating a model

We utilise aspects of Bayesian Networks and Bayes theorem to fore-
cast long-term eruptive activity at SHV,with the aim of quantifying cau-
sality between monitoring observations, magmatic processes and
eruptive activity. Two different models were investigated in separate
workshops: one including students and researchers at the University
of Bristol (February 2013) and one on Montserrat that included obser-
vatory staff and senior academic researchers (October 2013). This
paper reports the findings of the second workshop.

We forecast eruptive activity being renewed in four different scenar-
ios: (1) less than one year (reflecting the traditional forecasting
timeframe of the SAC); (2) one to five years (timescales that are similar
to previous SHV eruptive cycles); (3) five to thirty years (a timescale
relevant to civic planning); (4) and greater than thirty years. Each one
of these intervals ismutually exclusive and their respective probabilities
add up to unity as it is assumed that SHVwill erupt at some point in the
future.
Forecasting the renewal of eruptive activity in specific time intervals
allows us to utilise the odds formulation of Bayes theorem (Eq. 2). The
left-hand side of this equation gives the posterior odds for eruption in
a given time interval (i.e., the eruption forecast); the first term on the
right-hand side represents the prior probability of eruptive activity
being renewed, before monitoring data are incorporated as evidence;
and the second term is the likelihood ratio, which quantifies the evi-
dence for the volcano erupting versus not erupting (¬signifies negative
evidence), given the monitoring data that are available.

odds eruptjobsð Þ � odds eruptð Þ Pr obsjeruptð Þ
Pr obsj¬eruptð Þ ð2Þ

The application of Bayesian networks to forecast over the timescales
considered in this study (i.e., years to decades) presents a series of chal-
lenges. Firstly, the inclusion of an unknown state or unobservable pro-
cess via a latent node (e.g., Hincks et al., 2014) is based on conceptual
models and equivalent magmatic processes that are generally poorly
constrained over timescales of years to decades. Furthermore, empiri-
cally linking observation nodes directly to outcome nodes (e.g., Aspinall
et al., 2003) over these longer timescales is problematic due to the rela-
tively short duration that monitoring data covers and, therefore, ab-
sence of a statistically significant empirical evidence base.

The Bayesian network is formulated so that estimates of the prior
probability for eruptive activity incorporate various strands of empirical
evidence in a systematic way (Fig. 4a; Section 3.3). Specifically, the
Bayesian network is designed to account for the dynamic nature of the
volcano: how it has behaved in the past and the implications of this
for how it might behave in the future. These observations are updated,
using a likelihood function, based on a synthesis of current monitoring
observations (Fig. 4b; Section 3.4), to calculate the posterior probability
of eruptive activity. This conceptual approach provides a structured



Fig. 4.ABayesian network for the synthesis ofmultiple strands of evidence (blue ellipses) at SHV: (a) represents the calculation of theprior probability forwhether SHVwill erupt based on
empirical evidence for long-termmagmatic processes; and (b) represents the likelihoodmodel incorporating a fixed-effects meta-analysis, which is used to update the prior probabilities
calculated in (a), based on current levels of volcanic unrest. Each node represents a state and the arrows represent reasoning in the network.
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framework for interpreting observations of volcanic unrest, reflecting
evolving conditions in the upper crustal environment, and relating
them to the longer pattern of eruptive activity.

Data is incorporated into the model using expert judgements via an
elicitation procedure (Section 3.5). Once actual evidence is entered into
the Bayesian network via observable nodes (a process known as instan-
tiation), the prior probabilities for the query node are converted to their
posterior odds form (Eq. 3).

odds eruptð Þ � Pr eruptð Þ
Pr 1−eruptð Þ ð3Þ

3.3. Prior probability for eruptive activity

There is increasing evidence that over years to decades the broad
spectrum of volcanic activity that is observed at dome-building volca-
noes cannot be fully described by a conceptual model focussed only
on the transfer of magma to upper crustal regions, and instead must
also account for the dynamic destabilisation of multiple regions of
magma and magmatic fluids throughout the crust (Christopher et al.,
2015; Sparks and Ashman, 2016). It is non-trivial, however, to constrain
the extent to which any single magmatic process contributes to moni-
toring observations made at the surface. Consequently, we characterise
the long-term behaviour of SHV as either persistent or episodic
(Sheldrake et al., 2016).

Persistent and episodic regimes are characterised by different pat-
terns of eruptive activity (Sheldrake et al., 2016). In a persistent regime,
the duration a volcano spends in a state of eruption is broadly similar to
the time it spends in a state of repose. By contrast, in an episodic regime,
the duration a volcano spends in a state of eruption is orders of magni-
tude shorter than the time it spends in a state of repose. Importantly, ab-
solute timescales for persistent and episodic volcanism vary between
different volcanoes as a result of variations in the physical, thermal
and chemical structure of magmatic systems. At SHV, a persistent
regime has existed since the onset of the eruption in 1995, although
over longer century timescales eruptive activity has been episodic. Con-
sequently, any prior probability of when SHV may erupt in the future
can be based onwhether SHV is judged to have remained in a persistent
regime, or has entered a state of reposemore characteristic of an episod-
ic regime, as was the case in the centuries prior to 1995.

The judgement of whether SHV remains in a persistent regime, or
has entered a state of repose more characteristic of an episodic regime
is guided by phenomenological (long-term measures of eruption rate
and magmatic degassing) observations from both SHV and other
dome-building volcanoes (Sheldrake et al., 2016). Long-term measures
of eruption rate (i.e. lava extrusion rate, tephra emission rate) docu-
ment changes in the explosivity, duration, frequency and/or style of
eruptive activity. The eruption rate may diminish, remain consistent,
or even escalate, depending upon whether SHV remains in a persis-
tent or episodic regime. Generally, however, over timescales for
episodic volcanism, which vary between volcanoes, the eruption
rate diminishes during the course of an eruption. The pattern of mag-
matic degassing varies markedly between a persistent and episodic
regime. At volcanoes that remain in a persistent regime degassing
is sustained between phases of eruptive activity, and can be
decoupled fully from the extrusion of magma. In contrast, over time-
scales for episodic volcanism, a state of repose is characterised by
negligible degassing, albeit fluxes can remain high for several years
following an eruption.

Whether SHV remains in a persistent regime is indicative (although
not explicitly) of the underlying long-term magmatic processes, and so
acts like a latent node in the Bayesian network. In this sense, we can in-
terpret Eruptive regime as a causal state node. This network formulation
allows information about ‘causes’ (i.e., the eruptive regime) to be quan-
tified using observations of current ‘effects’ (the pattern of degassing
and eruption rate) to quantify future ‘effects’ (i.e., outcomes). This sec-
tion of the network has a diverging structure, with arcs from the latent
node to the observable nodes and the query node (Fig. 4a) that are quan-
tified using a conditional probability table (CPT).
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3.3.1. Latent nodes

3.3.1.1. Eruptive regime. (ER) is a Booleannodewith two states: (i) true, if
SHV remains in a persistent regime; or (ii) false, if it has entered a state
of repose characteristic of an episodic regime.

3.3.2. Observable nodes

3.3.2.1. Persistent degassing. (PD) is a Boolean node with two states: (i)
true, if the degassing behaviour of SHV since it last erupted in February
2010 is characteristic of a persistent regime; or (ii) false, if the degassing
behaviour of SHV since it last erupted in February 2010 is characteristic
of a volcano entering a state of repose characteristic of an episodic re-
gime. This node requires probabilities that the current degassing behav-
iour would be observed, given that SHV either remains in a persistent
regime or enters a state of repose characteristic of an episodic regime.
Importantly, these two questions are notmutually exclusive when enu-
merating their probabilities.

3.3.2.2. Eruptive trend. (ET) has three states: (i) escalating; (ii) consistent;
or (iii) diminishing, which characterise the current long-term eruption
rate at SHV. The node requires the probabilities (which may be differ-
ent) for SHV remaining in a persistent regime, given each of these
three trends occurring. Furthermore, the Bayesian network requires
the probability that the current behaviour of SHV is characterised by
each of the three trends. Relevant evidence is not explicitly identified
but includes direct observations of previous eruptive activity, such as
the pattern in the frequency or intensity of explosive activity, or changes
in long-term measures of eruption rate, such as lava extrusion.

3.3.3. Query node

3.3.3.1. Erupt. (Er) is a Boolean node with two outcomes: (i) yes or (ii)
no, depending upon whether, or not, SHV is forecast to erupt in the
given time interval of concern.

3.4. Likelihood of eruptive activity

The eruption at SHV has generated a rich, multi-parameter dataset,
recorded and updated regularly at theMVO,which has enabled detailed
investigation of many volcanic processes. Here, we consider how erup-
tive processes are manifest in three core monitoring datasets: seismici-
ty; degassing; and deformation (Fig. 3; Supplementary material).
Whilst other physical parameters are routinely recorded at MVO (e.g.,
lava effusion rate, surface rockfall activity, thermal imagery, ground
strain, etc), these three core datasets have the longest, most consistent
record (Wadge et al., 2014).

The monitoring observations are used to characterise the current
state of the upper crustal magmatic system, and ultimately calculate
the likelihood of each of the eruptive scenarios. Given that the duration
over which current monitoring data exist at SHV (~20 years) is similar
to the timescales of the processes we are seeking to characterise, direct
reasoning from current observable ‘effects’ of magmatic processes (e.g.,
monitoring data) to future ‘effects’ (i.e., eruptive outcomes) cannot be
performed empirically, as there is little evidence to determine a back-
ground level of unrest.

There is considerable evidence at many dome-building volcanoes
that magma storage zones are found in upper crustal regions
(Sheldrake et al., 2016, and references therein). Indeed, at SHV there is
evidence for multiple zones (Elsworth et al., 2008; Mattioli et al.,
2010; Hautmann et al., 2014) with pressure sources extending from
the shallow crust (~5 km depth) to the middle crust (10 to 15 km
depth), and at least four geochemically distinctivemagma compositions
(Christopher et al., 2014). Numerical modelling of strain and deforma-
tion signals associated with eruptive activity indicates that magmatic
processes over an extended depth range are influential in controlling
eruptive activity at SHV (Elsworth et al., 2008; Gottsmann and Odbert,
2014; Hautmann et al., 2014). This said, it is difficult to characterise
these different magmatic sources and related processes in any detail,
let alone distinguish between their individual contributions to eruptive
activity over the timescales we are interested in. Ideas on howmagmat-
ic systems work and how they control volcanism are changing (Sparks
and Ashman, 2016), so developing a Bayesian Network model which
is strongly linked to particular conceptualmodels is problematic. Conse-
quently, we refrain from explicitly incorporating these processes into
our model. Instead, we characterise the quasi-static state of the shallow
volcanic system using a latent node, called Increasing Reservoir Eruption
Potential (I-REP; Fig. 4b). This term represents all processes in the mag-
matic system that would increase the likelihood for SHV to erupt (e.g.,
second boiling, magma injection). This allows experts to interpret evi-
dence collectively, from both SHV and other dome-building volcanoes,
without being constrained to identify individual magmatic processes
that are specific to particular conceptual or numerical models.

3.4.1. Reservoir eruption potential
The rationale for defining the latent node I-REP is that it provides a

basis for combining multiple monitoring observables into a single
state descriptor for the shallow magmatic system. This means each
monitoring observable can be interpreted without having to define a
priori discrete states (e.g., a background level threshold) or relevant
timescales.

When the state of I-REP is true the likelihood ratio in Eq. 2 has two
components:

Pr I−REPTRUEjerupttn ;tnþ1

� �
ð4Þ

which represents the probability that I-REP is true, given that SHV will
erupt in the time interval tn;tn+1, and;

Pr I−REPTRUEj¬erupttn ;tnþ1

� �
ð5Þ

which represents the probability that I-REP is true, given that SHV will
not erupt in the time interval tn;tn+1.

Alternatively, when the state of I-REP is false, the likelihood ratio in
Eq. 2 has the two following components;

Pr I−REPFALSEjerupttn ;tnþ1

� �
ð6Þ

which represents the probability that I-REP is false, given that SHVwill
erupt in the time interval tn;tn+1, and;

Pr I−REPFALSEj¬erupttn ;tnþ1

� �
ð7Þ

which represents the probability that I-REP is false, given that SHVwill
not erupt in the time interval tn;tn+1. In other words, we quantify the
probability that an eruption would and would not be associated
with upper crustal processes, which in turn constrains our diagnostic
model.

We assume that there is only one correct, but unknown, value for the
probability of I-REP being true, which is estimated using fixed-effects
meta-analysis. This approach involves calculating the weighted mean
for the variable I-REP, based on the strength of the evidence (i.e., uncer-
tainty) when interpreting each monitoring observable. As each piece of
evidence is given as a probability between 0 and 1, it can be represented
using a Beta distribution,

θi � Beta αi;βið Þ ð8Þ

where i represents each monitoring variable. Each piece of evidence is
weighted according to the ratio of the sum of the parameters of its



Table 1
Prior and posteriormean probabilities for SHV next erupting in each of the four time inter-
vals (t b 1; 1 ≤ t b 5; 5 ≤ t b 30; t ≥ 30), where t is in years, from the Bayesian network.
Values in brackets are standard deviations.

Erupt(t b 1) Erupt(1 ≤ t b 5) Erupt(5 ≤ t b 30) Erupt(t ≥ 30)

Prior 0.38 (0.14) 0.38 (0.17) 0.15 (0.09) 0.09 (0.09)
Posterior 0.32 (0.13) 0.35 (0.17) 0.20 (0.12) 0.13 (0.11)
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Beta distribution and the sum of the parameters of all n Beta distribu-
tions,

πi ¼ ai þ βi

∑n
i¼1 ai þ βið Þ ð9Þ

in which the sum of the parameters for a Beta distribution represents
the variance or uncertainty in that observation. As the sum of the pa-
rameters increases the variance decreases and hence the uncertainty
in interpretation of the monitoring observable decreases. A natural dis-
tribution for the weighting parameter π is a Bernoulli distribution,

πi � Bern pið Þ ð10Þ

where p is the resultingweighted probability that I-REP is true, given as:

θI−REPTRUE ¼ πGAS � θGASð Þ þ πSEIS � θSEISð Þ þ πDEF � θDEFð Þ ð11Þ

with the converse probability equivalent to theweighted probability for
I-REP being false,

θI−REPFALSE ¼ 1−θI−REPTRUE ð12Þ

3.5. Expert elicitation

Expert elicitation is a technique where the judgements of scientists
or individuals who have specialist knowledge in a particular subject
can be pooled and expressed quantitatively. The approach can be useful
in situations where limited quantitative data exist and causal parame-
ters cannot be readily obtained empirically or from the results of nu-
merical models. Consequently, expert elicitation has been previously
applied to quantify the judgements of scientists when forecasting
events in natural systems (Aspinall, 2010; Aspinall and Cooke, 2013).

Eliciting the judgement of experts allows the collective uncertainty
in the group to bequantifiedusing probability distributions for variables
of interest. This approach is particularly suited to forecasting applica-
tions in volcanology where observational data may be sparse (e.g., few
or no historical observations;Martí et al., 2008) or where forward-caus-
al inference is made based upon unobservable (e.g., crustal) processes
(Hincks et al., 2014).

We utilised an expert elicitation approach to quantify the judge-
ments of ten experts, which included experienced volcanologists who
were full-time staff at the observatory or members of the Scientific Ad-
visory Committee. Theweighted views of all experts for a number of tar-
get questions (Supplementary material) are combined to calculate the
optimised Decision-Maker (DM) distribution, which represents the
group consensus (Supplementary material). Given that expert elicita-
tion has been used routinely on Montserrat since 1997 (Wadge and
Aspinall, 2014) themethod was already familiar to the experts who en-
gaged in this study.

3.6. Model fitting

All probability distributions for the target questions are defined on
the interval 0 to 1 to account for uncertainty in expert judgement.
Hence, we parameterise them as Beta distributions (Eq. 8) based upon
the reported median and 90% credible interval. This is performed
using the `beta.parms.from.quantiles' function (Bélisle, 2012) in R statis-
tical language (R Development Core Team, 2008). Each component
probability is calculated independently and then combined using
Bayes rule via a series of deterministic relationships (Fig. 4). The result
is a posterior distribution for the probability of SHV erupting in the
four time intervals.

The posterior distributions of the outcome node and latent nodes are
estimated according to the probability model specified in Sections 3.2–
3.3 using Markov Chain Monte Carlo (MCMC) methods implemented
with the WinBUGS software (Lunn et al., 2000), using R statistical lan-
guage and the R2WinBUGS package (Sturtz et al., 2005).

4. Results

Prior and posterior probabilities for whether SHV will next erupt in
each of the four time intervals (Erupt node), are presented in Table 1.
Prior distributions are conditioned upon state of the Eruptive regime
and the long-term behaviour SHV, and updated to calculate the posteri-
or distribution, based on evidence for shallow magmatic processes and
the current state of the volcano (synthesised using the latent variable I-
REP). Large uncertainties are observed in the forecasts for future erup-
tive activity, which are a consequence of extensive uncertainties ob-
served in the elicitation results.

Instances of substantial uncertainty are not uncommon in elicita-
tions regarding natural systems, where data and observations can be
sparse, processes are stochastic and understanding or predictability is
limited (Aspinall and Cooke, 2013; Hincks et al., 2014). Generally, the
uncertainty bounds are smaller for performance-weighted solutions
(i.e., using calibration weights) than for equal weights combinations
(i.e., each expert has the same weight). Therefore, the levels of uncer-
tainty indicated by the performance-weighted solutions are not reflec-
tive of either the applicability of our method or reliability of the
results. Rather, we consider it reflects the true scientific uncertainty of
the issues being explored.

4.1. Long-term behaviour of SHV

The Bayesian network utilises two strands of evidence (Eruptive
trend and Persistent degassing nodes) to infer the long-term eruptive re-
gime of SHV. Given this evidence, the DM considers it more than twice
as likely that inOctober 2013 SHV remained in a persistent regime, rath-
er than having entered a state of repose that is more characteristic of an
episodic behaviour pattern (Fig. 5). This is informed mostly by the
degassing behaviour of SHV during the period of quiescence since
February 2010 (Fig. 5a), rather than the trend in eruptive activity
(Fig. 5b),which provides nugatory evidence for inferring either a persis-
tent or episodic regime.

Integral to the performance of the Bayesian network and calculation
of a prior distribution is an understanding of the states that comprise
the latent node Eruption regime. To do this we analyse the probability
distributions for eruptive activity being renewed in each time interval
(t b 1; 1 ≤ t b 5; 5 ≤ t b 30; t ≥ 30 years), conditional on remaining in a
persistent regime or entering a state of repose characteristic of an epi-
sodic regime (Fig. 6).

Conditional on SHV remaining in a persistent regime, across the
group's judgements a similar pattern in probabilities for each state of
the query node Erupt is observed (Fig. 6a), suggesting experts have a
clear understanding of the term persistent and its implications for future
eruptive activity.Within the group,median probabilities decrease as the
duration of the forecast increases. A few experts within the group pro-
vided higher median probabilities for the second time interval (1 b t
≤ 5 years), but this is reasonable given that the duration of this interval
is four times longer than the first interval (t b 1 year). For the third and
fourth time intervals, median probabilities across the group of experts
are clustered.



Fig. 5.Marginal posterior distributions for the probability that SHV remains in a persistent regime, conditional on: (a) interpretation of the Persistent degassingnode (red bars), and (b) the
interpretation of the Eruptive trend node (green bars). Blue lines represent the joint probability of SHV remaining in a persistent regime given evidence for both the Eruptive trend and
Persistent degassing nodes.
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In contrast, there is little consistency in the median probabilities for
the query node Erupt, conditional on being in an episodic regime (Fig.
6b), indicating a lack of commonality between experts on what this
term represents and entails in the context of event forecasting. This dis-
parity in forecasts for the two regimes reflects the general interpretation
of volcanoes as chaotic systems, characterised by intermittency (Odbert
et al., 2014) where, in a persistent regime, eruptive activity can be
Fig. 6. Median probabilities for each of the experts in the elicitation for the probability of eru
conditional on SHV: (a) currently remaining in a persistent regime, or (b) entering a stat
Supplementary material).
periodic, and in an episodic regime eruptive activity is envisaged as
being more random.

To further understand the disparity between responses for a persis-
tent and for an episodic regime, we analyse how the experts interpret
the pattern of degassing (Persistent degassing node) during the current
pause in eruptive activity since February 2010 (Fig. 7). First, we consider
question 34, asked as part of the elicitation (Supplementary material):
ptive activity being renewed in the four time intervals (t b 1; 1 ≤ t b 5;5 ≤ t b 30; t ≥ 30),
e of repose characteristic of an episodic regime, in October 2013. (Questions 17–24:



Fig. 7. Probability distribution quantiles (5th, 50th, 95th percentiles) for the 10 experts
and the performance-weighted (PW) result for the conditional probabilities for
observing the current pause in eruptive activity and accompanying degassing behaviour,
given SHV: (a) remains in a persistent regime, or (b) has entered a state of repose
characteristic of an episodic regime. (Questions 33–34: Supplementary material).
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‘Assuming SHV is in an episodic regime, what is the probability of ob-
serving the current period of quiescence (over 3 years at the time of
the elicitation) accompanied by the observed degassing?’. All partici-
pants, except one expert, provide wide uncertainty distributions
centred on 50% (Fig. 7b). Either the experts consider the pattern of
degassing in an episodic regime as intrinsically ambiguous, or their un-
derstanding of an episodic regime is inchoate, and thus attempting to
characterise degassing behaviour of a volcano in an episodic regime by
elicitation is inherently disordered.

The opposite scenario is presented by question 33: ‘Assuming SHV is
in a persistent regime, what is the probability of observing the current
period of quiescence (over 3 years) accompanied by the observed
degassing?’. In comparison to question 34, experts' probability distribu-
tions here have smaller credible intervals and are not uniformly centred
on 50% (Fig. 7a). Median values range from 25% to 80%, and thus are
interpreted as reflecting distinct individual beliefs of the experts rather
than a general lack of understanding in the term persistent. This is sup-
ported further when comparing the likelihood of being in a persistent
regime (Eq. 13), with the equivalent forward causal statement in ques-
tion 31: ‘What is the probability that SHV is in a persistent regime given
current levels of degassing at SHV?’. Both the likelihood ratio (LR) and
forward causal statement provide similar values for being in a persistent
regime, given current levels of degassing (Table 3).

LR ¼ Pr DegassingjPersistentð Þ
Pr DegassingjEpisodicð Þ ð13Þ

4.1.1. Interpreting long-term trends
A number of questions regarding the observable nodes of the Bayes-

ian network, including the eruptive trendnode,were re-elicited after the
SACmeeting, following discussion of the initial results with the experts.
This was a consequence of evident incoherence in the answers between
experts that did not appear to be due solely to uncertainty. In an attempt
to reconcile or remove discrepancies, and to understand the thinking of
the experts, the re-elicitation included mutually exclusive questions
regarding both persistent and episodic regimes (e.g., questions 25 to
30; Supplementarymaterial), rather than just considering questions re-
garding a persistent regime (e.g., questions 4 to 6; Supplementary ma-
terial), as was performed originally during the SAC meeting.

For an escalating or consistent trend there is still considerable ambi-
guity in the results between experts, with re-elicited distributionsmov-
ing in both positive and negative directions, and little coherence across
the group (Fig. 8a–b). The results for a diminishing trend convey more
conviction, with coherence in the results as credible intervals reduce
in size andmedian values either remaining similar or decreasing follow-
ing re-elicitation (Fig. 8c).

Whilst ambiguity still remains for an escalating and consistent trend,
coherence in the results for a diminishing trend demonstrates the ad-
vantages of asking all relevant mutually exclusive questions in an elici-
tation, rather than presuming the complement of the result from one
question can be reliably used to enumerate the probability value of its
alternate.
4.2. Current state of the volcano

Coherence in the outcomes of questions 10 to 13 (Supplementary
material), concerning future eruptive scenarios and the current state
of I-REP (Fig. 9) suggests there is: (1) a common understanding within
the group ofwhat the latent parameter I-REP represents; and (2) a com-
mon basis for how the monitoring data are interpreted. Expert's condi-
tional probabilities for I-REP, given each of the four time intervals, show
a similar pattern with the highest median probabilities associated with
the shortest durations (t b 1 year) and the lowest median probabilities
associated with the longest durations (t ≥ 30 years). Consequently,
even a slight deviation from 50% for the value of I-REP influences the
posterior timeframe-dependent distributions for SHV erupting. Specifi-
cally, the observation of (or lack of) volcanic unrest decreases the prob-
ability of SHV erupting in the two shorter time intervals, with
probabilities increasing for eruptive activity in the two longer time in-
tervals (Table 1).

The experts provided large uncertainties on their interpretation of
the monitoring observables (Fig. 10), and consequently the posterior
distribution for I-REP does not deviate significantly from 50% (Fig. 11).
The values of the fixed-effects weighting parameters in themeta-analy-
sis were πDEF = 0.38, πSEIS = 0.21 and πGAS = 0.41. To investigate the
uncertainty in more detail we perform a paired comparison with prob-
abilistic inversion (Supplementary Material) to quantify how the group
ranks (from highest to lowest) the three monitoring observables, in
terms of the probability that I-REP is true. Given current observations,
the deformation is considered to be more diagnostically important for
a positive value of I-REP than degassing or seismicity (Fig. 12). However,
levels of agreement in the ranking of the observables amongst the group
are modest, with a coefficient of concordance of 0.38 and coefficient of
agreement of 0.23. Importantly, the null hypothesis – that the group
as a whole provided random, unstructured responses on the ranking
of observables – can be rejected with a p-value of 0.02.

Median probabilities for I-REP, given current observations of de-
formation, appear to cluster into two groups (Fig. 10): one group
judged the state of I-REP to be true (Experts 1, 6 and 9) whereas
the other group were unsure (Experts 2,33,4,5,7 and 8). In the elici-
tation literature this is referred to as a ‘two schools of thought’ ambi-
guity (Hincks et al., 2014). In the discussion at the SACmeeting there
was a general consensus that, based on the previous observations of
deformation at SHV, inflation equated to the true state of I-REP.
However, some participants suggested the trend in far-field defor-
mation could be ‘flattening out’ whereas others interpreted it to be
still increasing. As a consequence, we suggest the trend in deforma-
tion was interpreted differently within the group of experts, which
resulted in the apparent dichotomous clustering in median probabil-
ities observed in Fig. 10.



Fig. 8. Probability distribution quantiles (5th, 50th, 95th percentiles) for the 10 experts for observing: (a) an escalating trend; (b) a consistent trend, and (c) a diminishing trend, conditional
onSHV remaining in a persistent regime. Blue squares represent answers from theoriginal SACmeeting inOctober 2013 (Questions 4–6: Supplementarymaterial) and red triangles the re-
elicited versions (Questions 25–30: Supplementary material). All experts except one participated in the re-elicitation.
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5. Discussion

5.1. Forecasting long-term eruptive activity at SHV

Large uncertainties in eruptive forecasts (Table 1) stemmainly from
hesitancy in drawing firm inferences from the long-term behaviour of
Fig. 9. Elicited median probabilities for the 10 experts for the conditional probability that
the state of I-REP is true conditional on SHV next erupting in each one of the four time
intervals t b 1; 1 ≤ t b 5;5 ≤ t b 30; t ≥ 30). (Questions 10–13: Supplementary material).
SHV and implications of the sustained degassing since February 2010.
Thus, it is likely that this uncertainty will remain until there is a marked
change in SO2 flux or there is a significant improvement in understand-
ing of the nature of magmatic degassing, and its long-term implications.
Furthermore, the considerable expert uncertainty surrounding the di-
rect informativeness of existing strands of monitoring data suggests
that getting close to a probability high enough to satisfy the proposition
that the eruption has stopped (however defined)with significant confi-
dence f̶romanevidence-basedDM synthesis of judgements and existing
data i̶s improbable within several years at least. The propagation of un-
certainty through Bayesian networks highlights many human beings'
inherent tendency to underestimate uncertainty in complex systems
(Best et al., 2013), suggesting that our model, despite the data limita-
tions, provides a rational approach to constraining such uncertainty
for long-range volcanic forecasting at SHV, or other volcanoes.
5.2. Interpretation of monitoring data

Generally, analyses ofmonitoring data and other observations of un-
rest are undertaken to seek and discern signals that may be short-term
precursors to eruptive activity (e.g., Sparks, 2003; Marzocchi and
Bebbington, 2012). Over longer timescales monitoring observables can
be used as negative evidence, where the absence of signals or changes
in data mean increased likelihood of no further eruptive activity. In
both cases, however, the relationships between specific magmatic pro-
cesses and monitoring observations are far from perfectly understood.
We have endeavoured to overcome this problem in the Bayesian net-
work design by developing the concept of “eruption potential”, which
allows experts to judge the competition between slow processes (e.g.,
heat loss) and fast processes (e.g., destabilisation andmagma transport)
in their interpretation of volcanic unrest.



Fig. 10. Probability distribution quantiles (5th, 50th, 95th percentiles) for the 10 experts and the equal weighted (EW) and performance-weighted (PW) group result for the conditional
probabilities that the state of I-REP is true, given each of the three observables: (a) current degassing, (b) seismicity and (c) cGPS. (Questions 14–16: Supplementary material).
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It appears, in this case, that monitoring data cannot be used to de-
cide, independently, and deterministically, when a volcano has entered
a state of repose characteristic of a long-term pause in eruptive activity,
or when an eruption - in this case at SHV - has ‘ended’. However, mon-
itoring data still has a significant role in long-term forecasting at volca-
noes. Indeed, over half the expert group suggested that if SHV does not
erupt for at least the next 30 years there is still a 20% (median probabil-
ity) chance or greater that the current state of I-REP is true (i.e., a state in
which shallow crustal processes are increasing the likelihood of SHV
erupting): one expert even suggests that this probability is as high as
50% (Fig. 9).
Fig. 11. Weighted distribution for the probability that the state of I-REP is true given a
fixed-effects meta-analysis of the degassing, seismicity and deformation at SHV during
the current pause in eruptive activity.
The inclusion of a latent node that does not represent a specificmag-
matic process has likely increased the extent of uncertainty in the
model, due to differences in what magmatic processes experts judge
as significant for their interpretation of the data. Nevertheless, the con-
cept of “eruption potential” has enabled experts to quantify the state of
themagmatic system,without being constrained to any specific concep-
tualmodel, and has permittedmonitoring data to be used as evidence to
update probabilistic forecasts over a range of timescales using Bayes
Fig. 12. Paired comparison ranking scores using the median probabilities in Fig. 10. The
circles around the ranking scores represent the 90% credible interval for each ranking
score.
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theorem. Specifically, it appears that interpretation of the shallowmag-
matic system at SHV depends greatly on the interpretation of the geo-
detic observations.

5.3. Unique and common volcanic behaviour

Given the discrepancy in the experts ability to interpret either an ep-
isodic or persistent regime, it appears that in general experts found it
difficult to interpret the current observations at SHV in the wider, ge-
neric context of eruptive behaviour at dome-building volcanoes. A
Likert-style questionnaire (Likert, 1932) was designed to investigate
this statement, with the goal of understanding the rationale behind
the scientific understanding thatwas drawnon, andwhich observations
informed the judgements of the experts. There were five questions to
which experts were asked to respond with a number between 1 and
7, with 1 being unimportant and 7 being very important (Table 3).
Two extra observers, who were not part of the original elicited group,
also participated in this questionnaire.

The results of the questionnaire indicate that there are two schools
of thought regarding how useful experts found the two major sources
of information. One group (Table 3: B, C, E, I, J) considers the observa-
tions that are particular to SHV (Table 3: Q2–4) as being significantly
more important than either empirical observations from other volca-
noes (Table 3: Q1) or generic models for magmatic processes (Table 3:
Q5). In contrast, a second group (Table 3: A, D, F, G, H) consider both
sources of evidence as equally useful, albeit with a slightly heavier
weighting towards data and scientific understanding that is specific to
SHV. Whilst both these groups identify that SHV has unique character-
istics, the latter group clearly believes that, over the timescales we are
considering, the process of forecasting eruptive activity is based on
identifying magmatic processes common to many similar volcanoes.
In this regard, we noted that whilst observatory staff tended to fall
more in the first school of thought, although not exclusively, academics
were more likely to favour the alternative view.

Two experts (K & L) consider empirical evidence from other volca-
noes not to be important (Table 3: Q1), yet they posit as exchangeable
(i.e. similar) the processes and conceptual models that are so informed
by analogues (Table 3: Q5). This represents the conundrum of universal
processes versus unique volcanoes (Cashman and Biggs, 2014) and that,
whilst empirical data may be used to deduce common magmatic pro-
cesses using similar conceptual models, scientists still may not consider
this information exchangeable when forecasting eruptive activity.

5.4. Biases in expert judgement

In constructing the problem framework, based on the application of
Bayes theorem (Eq. 2), each piece of evidence is considered to be condi-
tionally independent.When Bayesian networks are populated by obser-
vational data, conditional independence can be justified based solely on
the assumptions of those designing the network (Sobradelo and Martí,
2015). When incorporating expert judgement into a Bayesian network,
Table 2
Comparison ofmedian probabilities for the probability of an Eruptive regime based on interpreta
inverse conditional probabilities (columns 2 to 5); and (b) forward-conditional probabilities (c
likelihood (column 5) is on a scale of 0 to 1. The probabilities originate from the re-elicitation

Expert Pr(degassing|persistent) Pr(degassing|episodic) L

1 80 20 8
2 55 45 1
3 55 45 1
4 50 50 1
5 75 50 1
6 25 45 0
7 – – –
8 30 60 0
9 50 50 1
10 70 40 1
however, the assumption of conditional independence is harder to jus-
tify, as experts may not interpret the data as independent, especially
when concerning latent nodes.

An example of where conditional independence may be invalidated
is in the interpretation of the Eruptive trend for two experts (numbers 6
& 8), which appear to be influenced by their interpretation of the Persis-
tent degassing node Based on the degassing, both experts judge that
there is a low probability that SHV remains in a persistent regime
(Table 2: column 5). However, this judgement alsomanifests in theme-
dian probabilities for SHV remaining in a persistent regime, given each
state (escalating, consistent and diminishing) of the node Eruptive trend,
which fall below 50% in the re-elicited questions (Fig. 8). In comparison,
other experts within the group provide median probabilities that are
more highly variable across these three states with similar bounds on
the uncertainty.

Similar issues of conditional independence are observed when ex-
perts interpret themonitoring data. Firstly, there is systematic variation
in the probabilities for the node I-REP, given each monitoring observa-
tion (Fig. 13). By this we mean that experts who provide high median
probabilities for SO2, also provide higher probabilities for seismicity
and cGPS; and, vice-versa, where experts who provide low median
probabilities for degassing, they also provide lower probabilities for
seismicity and deformation. Secondly, one expert (expert 4) interprets
the value of I-REP given seismicity to be much higher in comparison to
the rest of the group (Fig. 13). However, the significance this expert
places on seismicity also appears to manifest at other nodes: including
in their high belief that SHV remains in a persistent regime (Table 2: col-
umn 5) and high belief that SHVwill erupt within a year in a persistent
regime (Fig. 6a).

5.5. Causality and uncertainty in eruptive forecasts

At the SAC meeting experts were additionally asked: ‘Given what has
happened up to the present and given current conditions, what is the
probability that nothing significant will happen (i.e., no collapse, no re-
start of dome growth, no magmatic explosion) in the next 12 months?’
The performance weighted median estimate for this question was 67%,
which is effectively identical to the complement of the posterior value
for Pr(erupt b1),which is 0.68 (Table 1). This result is promising as it sup-
ports the results of the Bayesian network: however, it might raise the
question of whether the added complexity is justified. Nevertheless,
adopting a Bayesian approach to the problem provides an opportunity
to update beliefs in a logical and rational way, as well as disaggregating
the contributions of different factors to understandwhere the largest un-
certainties arise. This provides the potential to direct future research in
understanding specific ‘causes’ and thus reduce uncertainties in future
forecasts. Likewise, added sophistication to parts of the model can be
used to explore the importance of specific evidence or processes.

The inclusion of unobservable parameters providesmuch greater flex-
ibility in the model than conventional or deterministic approaches, en-
abling various different strands of evidence to be incorporated.
tion of the degassing behaviour of SHV in the current period of repose, calculated using (a)
olumn 6). Elicited probabilities (columns 2, 3 and 6) are on a scale of 0 to 100, whereas the
and so no values exist for expert 7.

ikelihood ratio Likelihood(persistent) Pr(persistent|degassing)

0/20 = 4.00 4.00/(1 + 4.00) = 0.80 80
.22 0.55 60
.22 0.55 50

0.5 85
.5 0.6 65
.56 0.36 30

– –
.5 0.33 40

0.5 50
.75 0.64 75



Fig. 13. Elicitedmedian values for the probability that the state of I-REP is true, given each
of the three monitoring observables, degassing, seismicity and deformation. (Questions
14–16: Supplementary material).
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However, using expert judgement to populate the Bayesianmodel requires
a common understanding of what the latent nodes represent. We identify
coherence amongst experts when discussion relates to characterising the
current state of the volcano (e.g., I-REP node), but discussion regarding
longer-termmagmatic processes providesmore ambiguous and less coher-
ent results, especially concerning the Eruptive trend node, interpretingwhat
an episodic regime represents (Fig. 6–8), and relating the behaviour of SHV
to other dome-building volcanoes (Table 3).

When using expert judgement to populate a Bayesian network it is
non-trivial to understand and account for all dependencies in the vari-
ables of interest. Furthermore, it is unrealistic to expect experts to al-
ways interpret the evidence independently. Nevertheless, it will
become important to understand these dependencies as expert elicita-
tion and Bayesianmethods becomemore commonly employed for fore-
casting eruptive activity. Hence, it will be valuable to explore the role of
eliciting correlations between elicited variables (Garthwaite et al.,
2005) or perhaps the development ofmore complex network structures
such as vines, which allow dependences between random variables to
be accounted for (Bedford and Cooke, 2002).

6. Conclusions

We describe the application of a Bayesian Network for providing sci-
entific support to decision making in relation to a volcano - a complex
natural systemwith sparse data - presenting a case example of how caus-
al inference can be used to design probabilistic forecastingmodels. To en-
sure that judgements of experts concerning forecasts of future eruptive
behaviour can be elicited tractably, it has been advantageous to keep
the Bayesian network model simple, using an empirical approach to ana-
lyse evidence for unobservable magmatic processes. This Bayesian
approach for combining empirical evidence means criteria (or metrics)
for the significance of observables are not required a priori. With the inclu-
sionof latentnodes in theBayesianNetwork, evidencehasbeensynthesised
Table 3
Results from a questionnaire on the relevance of the different sources of evidence (i.e. relevant
their order is not equivalent to the order in the elicitation results (1−10), as this questionnaire w
the elicited group but took part in discussions related to the elicitation.

1. How important was the information from the analog volcano report and workbook?
2. How important was the monitoring data since 1995?
3. How important was the monitoring data since the current period of quiescence (since F
4. How important were the discussions on the possible volcanic and geophysical processe
5. How important were the science discussions that referred to data and ideas developed
in a logical way, based around discussion of magmatic processes; but, im-
portantly, by using the eruption potential concept, inference is not restrict-
ed to a single conceptual model for all magmatic systems.

Forecasting volcanic eruptions over long-timescales requires some
conceptualisation or accounting for magmatic processes occurring in
the vertical direction throughout the crust. However, volcanologists'
perspectives when interpreting observations of volcanic unrest are typ-
ically dominated by short-term, shallow crustal processes. Here, an al-
ternative methodology is presented with which monitoring data can
be used to update beliefs of when a volcano is next going to erupt, with-
out the need to interpret volcanic unrest as either explicitly positive ev-
idence (i.e., precursory) or negative evidence (i.e., baseline).

In volcanology, there is often a lack of adequate available data upon
which statistical inference can be based. Causal inference provides a bal-
ance between statistically robust methods and a level of pragmatism.
Utilising Bayes Rule in the graphical framework of a Bayesian network
allows evidence to be interpreted to estimate the probability of ‘causes
of effects’. It allows various strands of conditionally dependent evidence
to be interpreted and synthesised to estimate the probability of ‘causes’
(i.e., magmatic processes) and thus forecast eruptive activity. Signifi-
cantly, this allows the sources of uncertainty in probabilistic forecasts
to be quantified in terms of the ‘causes’ rather than ‘effects’. Such an ap-
proach will also provide the potential to include alternative sources of
evidence such as petrological data, where it is easier to interpret data
with respect to ‘causes’ (i.e., long-term magmatic processes) rather
than ‘outcomes’ (i.e., eruptive (in-)activity).

Expert judgement provides a tractable solution to issues of sparse
data at a volcano and has the potential to be a relevant approach to
quantify ‘causes of effects’ when forecasting eruptive (in-)activity at
volcanoes in general. The findings from our analysis indicate that ex-
perts may find it hard to interpret different data strands independently
and so Bayesian networks and forecastingmodels must be carefully de-
signed to account for this.

In this novel approach, magmatic ‘causes’ have not been explicitly
identified in the probabilistic model. Instead evidence is interpreted
with regard to long-term patterns of behaviour, informed by empirical
data from other volcanoes. The results of our expert elicitation suggest
experts found it easier to interpret the evidence for the status quo at
SHV (i.e., in a persistent regime) and were less confident in relating
other patterns of dome-building volcanism to SHV. In a comparable ap-
proach, monitoring observables are used to interpret the state of the
magma reservoir system rather than identify specific magmatic pro-
cesses. There is coherence amongst the experts in their interpretation
of what this ‘latent node’ represents, suggesting a similar approach
could be employed when analysing observations of unrest to forecast
eruptive activity over much shorter timescales than we consider here.
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