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Abstract. Ensemble approaches are becoming widely used in climate
research. In contrast to whether forecast, however, in the climatic con-
text one is interested in long-time properties, those arising on the scale
of several decades. The well-known strong internal variability of the cli-
mate implies the existence of a related dynamical attractor with chaotic
properties. Under the condition of climate change this should be a
snapshot attractor, naturally arising in an ensemble-based framework.
Although ensemble averages can be evaluated at any instant of time,
results obtained during the convergence of the ensemble towards the
attractor are not relevant from the point of view of climate. In simula-
tions, therefore, attention should be paid to whether the convergence
to the attractor has taken place. We point out that this convergence is
of exponential character, therefore, in a finite amount of time after ini-
tialization relevant results can be obtained. The role of the time scale
separation due to the presence of the deep ocean is discussed from the
point of view of ensemble simulations.

1 General considerations

A recently emerging view in climate science claims that the relevant quantities of
the climate system are the statistics taken over an ensemble of possible realizations
evolved from various initial conditions; see e.g. [1–5] for low-order models, and [6–
12] for general circulation models (GCMs). In this paper we argue that investigating
whether the ensemble has converged to a dynamical attractor is important. Such an
investigation is lacking from certain large scale simulations (see [6–10]). We claim that
large scale models, too, should be augmented by a careful study of the convergence.

The relevance of attractors for the climate system stems from its unpredictability.
In this context, unpredictability means that even if the initial condition, correspond-
ing to a given time instant, is approximately known, the system evolves in consid-
erably different ways from slightly differing initial conditions that comply with the
approximate knowledge. In other words, the dynamics is chaotic-like. Right after ini-
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tialization, the possible ways of evolution are similar to each other and are strongly
determined by the approximate initial condition. Weather forecasting concentrates
on this period. In particular, probabilistic weather prediction aims to uncover the
possible ways of evolution [13] on the short time scale of days or weeks. With time
passing, however, the set of the possible ways of evolution is, due to the nonlinearity
of the equations of motion, broadening. We argue that a long-term “final” plethora of
these ways of evolution is what is of main interest for climate research.

Asymptotically, the set of the possible ways of evolution converges to a so-called
dynamical attractor, and its distribution on the attractor (which is not uniform) also
becomes unique. Uniqueness means independence of the initial conditions, including
independence of the above-mentioned approximate knowledge. This distribution is, in
mathematical terms, the natural probability distribution of the dynamical attractor of
the climate system. It is clear that the natural probability distribution of the attractor
is what defines the probabilities of all possible weather situations and, more generally,
all states of the whole system that are permitted by its dynamics. On the one hand,
being independent of the initial state, this is the probability distribution that accu-
rately reflects what is called the internal variability of the climate. In particular, the
width (the higher order moments) of the probability distribution characterizes the
strength of the internal variability. On the other hand, the expectation values of the
physical quantities provide the climatic mean values. A novel feature of the approach
is that it enables one to obtain both characteristics, i.e., the internal variability and
the climatic mean values, simultaneously. In fact, all this implies that the climate
itself is best defined as the attractor along with its natural distribution. If, however,
expectation values are evaluated too early, they do not characterize the climate, or
the attractor, but rather they characterize how the convergence towards the attractor
takes place, also reflecting properties of the initialization. It is this subjective char-
acter of ensemble simulations that can be excluded by waiting long enough, until
the convergence to the attractor occurs, after which the ensemble results reflect the
objective properties of the climate.

In more technical terms, in the language of dynamical systems theory, in the unre-
alistic case when a stationary forcing is imposed on the climate system, its dynamical
attractor is a usual chaotic attractor [14] and is also stationary in time. If the forcing
is of general time-dependence, as in the climate dynamics during climate change, then
the attractor is called a snapshot [15] or pullback [1,16] attractor (for experimental
realizations, see [17,18]) which is well-defined in any particular time instant and also
has its own time evolution. This implies the time evolution of the climatic means and,
more generally, of the relevant probability distribution, which can be interpreted as
a climate change [3]. Since this time evolution is uniquely determined by the forcing
scenario the climate system is subject to, this evolution represents what is called [25,
10] the “forced response” of the climate system [11].

Our studies [19,20] indicate that the process of convergence of an ensemble to the
attractor and its natural probability distribution from any set of initial conditions is
“fast”: it is expected to have a characteristic time scale and to be “exponential-like”,
i.e., faster than any power-law. This is a consequence of the dissipative nature of
the dynamics. It is due to the exponential character that the convergence possesses
a characteristic time, τ ,1 and we can say that after some t∗, which is a few times
multiple of τ added after the time of initialization, a convergence to the attractor and
its natural distribution has taken place (with an exponential accuracy).2

1 In autonomous dissipative mixing dynamical systems τ is understood formally as the
reciprocal of the first nonzero eigenvalue of the transfer operators [21,22].

2 In fact, one can associate distinct t∗ values to distinct observables. Therefore, a more
specific recommendation of ours is that the convergence should be checked separately for
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It is from t∗ on that the ensemble characterizes the full plethora of possibilities,
along with their appropriate probabilities, that is permitted by the climate dynamics.
It is thus only after t∗ that one can clearly distinguish the forced response, as the shift
in climatic mean values, from the effect of internal variability [19,20]. Furthermore, the
standard deviations over the ensemble provide a measure for the strength of internal
variability only then, as well. After t∗, any element of the ensemble represents a
possible evolution of the climate system. Some authors consider a description based
on ensembles that have converged to attractors as the “theory of parallel climate
realizations”, as discussed in [23]. We emphasize that evaluating any statistics earlier
than t∗ leads to results that do depend on the initial condition (like in weather
forecast), and are thus, strictly speaking, not relevant from the point of view of the
climate and its change.

2 Investigating the convergence

The process of converging to the attractor should be investigated numerically by
taking different sets of initial conditions and following the time evolution of the
corresponding ensembles. In practice, one may initialize one ensemble relatively far
in the past before the time interval of interest, and investigate how another ensemble,
initialized later, converges to the previously initialized one. Similarly in part to how
it was done in [19] for a low-order model, we shall illustrate the convergence via
numerical examples in the intermediate-complexity GCM, the Planet Simulator [24],
in a version treating the upper ocean as a heat reservoir with prescribed heat fluxes.
The details of our model setup are discussed in [20,23]. In particular, we use the
default settings except for the depth of the mixed-layer ocean which we take to be
200m.

The lower graph in Fig. 1 presents the forcing scenario, prescribed via the atmo-
spheric CO2 concentration. We initialize our first ensemble, consisting of 40 members,
at t0 = 0. Initially, the atmosphere is at rest, and the difference between the ensemble
members is obtained by randomly perturbing the surface pressure field by an amount
on the order on the order of 10 hPa. The ensemble average of the annual mean sur-
face temperature of Earth as a function of time is plotted in Fig. 1 as a gray line
turning into black at t∗ = 200 yr. This line covers the entire time span of 1500 yr.
After an initial transient lasting up to t∗ = t0 + tc ≈ 200 yr, the average is constant,
Tcold ≈ 8◦C, up to t = 600 yr, and this already indicates that a convergence has taken
place to the attractor corresponding to the initially constant CO2 concentration of
360 ppm (this is why we change gray into black at t∗). Since in the period 0 < t < t∗

the climate is the same cold stationary climate of 360 ppm, just as for t∗ < t < 600 yr,
the mean climatic temperature is Tcold also for 0 < t < t∗. This value we mark by a
black horizontal line segment in the period 0 < t < t∗, too, in order to indicate that
the attractors exists, and carries the same average as later also in this interval.3 The
deviation of the average temperature T taken with respect to our ensemble (gray line)
for 0 < t < t∗ from Tcold (black) illustrates our message: the ensemble average (gray)

various different observables of particular interest as part of a particular climate-oriented
investigation.

3 Note that this is so only because the forcing is constant. Otherwise, such an extrapolation
of the attractor average is not possible, so that the attractor average is not available before
the convergence of the first ensemble. It can, however, always be generated by another
ensemble initiated much earlier (at negative times in our example). Numerically, the constant
value plotted for [0, 200] yr is obtained here as the temporal average of the black line for
[200, 600] yr.



4 Will be inserted by the editor

is well defined but has no climatic relevance. Conclusions drawn from the ensemble
before convergence to the attractor takes place may lead to temperatures strongly
different (2...3◦C higher) from the climatic mean Tcold. It is only for t > t∗ where the
ensemble properly characterizes the climate (after gray and black merge).
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Fig. 1. (Color online.) The annual global surface mean temperature T as a function of time
in different ensembles. The ensemble average taken over the ensemble initialized at t0 = 0 is
shown in gray from 0 to 200 yr and in black from 200 yr on when it represents the average on
the attractor. The constant black line before 200 yr represents the average on the attractor
at these time instants (Tcold; see text, and also Footnote 3). The entire black line represents
the time evolution of the average on the snapshot attractor for all t. The red line from 591 yr
to 790 yr [also gray in print] marks the ensemble average taken over the ensemble initialized
at t′0 = 591 yr before the average merges at t∗

′ with the black line designating the attractor.
In the inset, we show the difference ∆T of the red and the black lines as a function of time.
We also include here an exponential fit (marked dotted) for the interval [596, 656] yr which
yields a relaxation time τ = 36 yr. In the main plot, the CO2 concentration, i.e., the forcing,
is also given (in orange [gray in print], see the bottom graph), as well as t0 and t′0 (the time
instants of initialization), and t∗ and t∗

′ (the time instants up to which the convergence of
the ensemble averages to the attractor values take place with an accuracy comparable to
the size of the numerical fluctuations). The vertical pair of dot-dashed (dashed) lines in gray
mark the beginning (end) of the linear ramps in the CO2 concentration.

The average on the attractor (black line) starts changing at t = 600 yr, and is
seen to roughly follow the later linear increase and decrease (from t = 600 yr and
t = 1050 yr, respectively) in the CO2 concentration4. In this period the driving is not
constant, the attractor underlying the climate thus cannot be a traditional attractor,
but it is a snapshot attractor. It turns out to be strongly time-dependent in this
period, indicating climate change. We emphasize that this attractor (the black line)
reflects the dynamical attractor of the problem in the whole time span investigated.

We initialize a second ensemble (also of 40 members) at t′0 = 591 yr with an
algorithm similar to that of the first one. The average taken over the second ensemble,
marked by red in Fig. 1, converges to the black line, i.e., to the average on the snapshot
attractor (which is numerically generated, by this time, as the ensemble average over
the first ensemble), within about t′c = 200 yr, i.e., by t∗′ = t′0 + t′c ≈ 790 yr. The
convergence times tc and t′c to the attractor turn thus out to be approximately the
same for t0 and t′0. According to the inset of Fig. 1, the difference ∆T between the red

4 It is worth observing that the temperature reaches both its upper and lower plateau with
a time delay (of about 100 yr) compared to that of the CO2 plateaus.
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and the black lines of the main plot decreases in time exponentially, as exp(−t/τ), with
a relaxation time of τ = 36 yr with which t′c ≈ 5τ . This observation illustrates that
the black line indeed corresponds to a snapshot attractor: it attracts any ensemble,
whenever it is initialized, and it is unique. This is why it characterizes the climate
for any t, even along the CO2 ramps. In the period t′0 < t < t∗′ the average taken
over the second ensemble (red line) differs from the average characterizing the climate
(black line). We see here that ensemble results taken before convergence are, of course,
misleading also in a period of climate change.

Figure 2 concerns a third ensemble which is initialized on the increasing ramp
of the CO2 concentration: we took one member of the first ensemble on the turn of
year 609 to 610 (i.e., at t′′0 = 610 yr)5, and perturbed its surface pressure field by an
amount on the order of 0.1 hPa. This way we obtained 192 approximate replicas of
a weather situation (that of t = 610 yr in the chosen ensemble member) occurring
on the snapshot attractor. Letting our third ensemble evolve in time is done in the
very same spirit as what is performed by [10]; this way we simulate how the internal
variability emerges from approximate observational data corresponding to a particular
time instant.
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Fig. 2. (Color online.) The annual mean surface temperature T of a single gridpoint in
the Southern Pacific ocean (at 180◦E and about 64◦S) as a function of time: the dark
blue [dark gray in print] thick line marks the ensemble average taken over the ensemble
initialized at t′′0 = 610 yr, and the black thick line stands for the average on the attractor
(represented numerically by an ensemble initialized at t0 = 0); see the main text for details.
The time evolutions of the 192 individual members of the newer ensemble (the third ensemble
considered in this paper) are included in light blue [light gray in print], as thin lines. For
better visibility, the last unperturbed year, which is year 609, is also included for the graphs
of the newer ensemble. In this year, all members of the newer ensemble, and thus also their
ensemble average, coincide with the originating member of the first ensemble. The time
evolution of this member is indicated by a dark gray thin line. In the inset, we show the
difference ∆T of the blue and the black thick lines as a function of time with an exponential fit
for the interval [613, 631] yr which yields a relaxation time τ ≈ 27 yr. The CO2 concentration,
i.e., the forcing, is also included (in orange, in the bottom plot), as well as t′′0 , and t∗

′′ (the
time instant up to which the convergence takes place). The vertical dot-dashed (dashed) line
in gray marks the beginning (end) of the linear ramp in the CO2 concentration.

5 Note that our calendar starts with year 0.
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In Fig. 2, showing the annual mean surface temperature as a function of time in
one particular arbitrarily chosen gridpoint of the Southern Pacific, one can observe
how the different members of the third ensemble (in light blue [light gray in print])
spread out from one point, corresponding to year 609. Furthermore, by t∗′′ ≈ 650 yr,
the ensemble average taken over the third ensemble (dark blue line [dark gray in
print]) converges to that taken over the natural distribution of the snapshot attractor
(i.e., to the black line)6, thus t′′c ≈ 40 yr here.7 A precise estimation of a relaxation
time τ is, in this case, more difficult, but we estimate it to be τ ≈ 27 yr. It is clear
that from t∗′′ ≈ 650 yr on, i.e., after a “fast” (exponential-like) convergence, the third
ensemble (which emerges from realistic initial conditions, i.e., from those that are on
the snapshot attractor but are localized to some particular region of the attractor
only) also represents the natural probability distribution.

As a main consequence which illustrates the importance of the convergence, the
dark blue line of Fig. 2 represents the response of the system to the increasing CO2

concentration faithfully for t > t∗′′ ≈ 650 yr (i.e., after a merger with the black line),
but not earlier.

3 General conclusions

The results in Section 2 suggest that a similar investigation of the convergence to
the natural probability distribution of the attractor would be informative also in any
GCM. More generally, this strategy is to be followed in the investigation of any dis-
sipative dynamical system with drifting parameters, both high- and low-dimensional
ones, since all such systems call for a description in terms of snapshot attractors and
ensembles.

High-dimensional systems, like GCMs, have, however, several different time scales
for relaxation; it has been reported e.g. in [10] that: the time scales determined by
the atmosphere, the land and the sea ice are short (up to years), those by the upper
ocean are on the order of several decades, while those by the abyssal circulation are on
the order of thousands of years. The deep ocean was, at the same time, observed by
the authors to change very little during the investigation period of a few centuries. In
this case, we believe, it might be useful to consider the abyssal circulation “frozen-in”
rather than aiming to explore its own internal variability. If the abyssal circulation
proves to be approximately the same in all members of the ensemble, it is meaningful
to concentrate on the internal variability of the rest of the system.

The view of a slow dynamics to be “frozen-in” can be relaxed in the following spirit.
The described situation with a large time scale separation appears and is exploited
also in other research areas (e.g. that of subgrid-scale process parametrizations). Such
systems are called “fast-slow systems” [26]. The standard approach separates variables
(possibly after an appropriate coordinate transformation) into two groups: x repre-
senting fast and y representing slow variables. Just the opposite to parametrizations,
these are the fast x variables that are of (primary) interest regarding climate change.
Regarding y as a parameter a traditional attractor can be defined in the x-space; and

6 We represent the snapshot attractor and its natural distribution in this case by an
ensemble initialized at t0 = 0 and consisting of 192 members — we have 152 additional
members beyond those constituting the ensemble discussed in Fig. 1.

7 It is illuminating to see the drastic difference between an ensemble property (the thick
blue line [dark gray in print]) and the single time series (the dark gray thin line) of the chosen
originating member. The latter oscillates about the ensemble average (the thick black line)
in the entire time span shown, while the former rapidly converges to the ensemble average.
This illustrates the clear advantage of the ensemble view.



Will be inserted by the editor 7

in case of a time evolution of y independent of x (obtained in the spirit of a so-called
deterministic parametrization) a snapshot attractor is present in the x-space. In our
example the abyssal ocean dynamics can be represented by the variables y, and the
rest of the system (including the upper ocean) by the variables x. However, beside
the y terms, in the equations for x genuine external forcing terms may also be present
that have other time scales than y, such as e.g. industrial CO2 emissions or a volcano
eruption.

Having numerically constructed the said snapshot attractor for the x variables
alone for the investigation period, the convergence of the ensemble initialized at some
t0 to the natural probability distribution could be studied in detail. We emphasize
that for such an investigation it suffices to perturb the atmosphere only (or indeed
any subset of the x variables), as already done in our examples and in [10]. This would
allow identifying the time t∗ from which on the plethora of the ensemble characterizes
appropriately the probabilities of all possibilities that are permitted by the climate
dynamics. As discussed in Section 1, the further evolution of the ensemble, i.e., for
t > t∗ = t0 + tc, reflects accurately any changes in the climate, i.e., in the snapshot
attractor and its natural distribution, due to the used external forcing.

The investigation described here may also be necessary to carry out in any cli-
mate model, in order to obtain solid knowledge and correct results about the climate
change in the particular model that is subject to some forcing scenario. Our method
for numerically determining the forced response eliminates the uncertainty of any
single-realization climate projection that originates from the internal variability of
the dynamics. Instead, it offers an opportunity to study also the dynamical structure
and the time evolution of the internal variability itself.
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