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We present a class of one-dimensional, strictly neutral, Vlasov-Maxwell equilibrium distribution

functions for force-free current sheets, with magnetic fields defined in terms of Jacobian elliptic

functions, extending the results of Abraham-Shrauner [Phys. Plasmas 20, 102117 (2013)] to allow

for non-uniform density and temperature profiles. To achieve this, we use an approach previously

applied to the force-free Harris sheet by Kolotkov et al. [Phys. Plasmas 22, 112902 (2015)]. In one

limit of the parameters, we recover the model of Kolotkov et al. [Phys. Plasmas 22, 112902

(2015)], while another limit gives a linear force-free field. We discuss conditions on the parameters

such that the distribution functions are always positive and give expressions for the pressure, den-

sity, temperature, and bulk-flow velocities of the equilibrium, discussing the differences from pre-

vious models. We also present some illustrative plots of the distribution function in velocity space.
VC 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
[http://dx.doi.org/10.1063/1.4997703]

I. INTRODUCTION

Force-free current sheets, with magnetic fields satisfying

r � B ¼ 0; (1)

r� B ¼ l0j; (2)

j� B ¼ 0; (3)

are appropriate for plasma modelling in, e.g., the solar atmo-

sphere and planetary magnetospheres (e.g., Refs. 3–15).

Equations (1)–(3) imply that the current density is parallel to

the magnetic field: j ¼ aðrÞB. The case where a ¼ 0 defines

a potential field, and when a is constant, we have a linear

force-free field. When a varies with the position r, the field

is referred to as nonlinear force-free.

Such current sheets as described earlier can play a cru-

cial role in, e.g., magnetic reconnection processes, for which

it is often necessary to consider kinetic length scales (e.g.,

Ref. 16), since many astrophysical plasmas are approxi-

mately collisionless. To initialise the studies of collisionless

reconnection, a Vlasov-Maxwell (VM) equilibrium can be

used; since current sheets are strongly localised, they are

often well described by one-dimensional (1D) VM equilib-

rium models. The work by Wilson et al.17 was the first exam-

ple of a study of collisionless reconnection for which an

exact nonlinear force-free equilibrium was used in the initial

setup, using a distribution function (DF) found by Harrison

and Neukirch18 for the “force-free Harris” current sheet

B ¼ B0ðtanhðz=LÞ; sechðz=LÞ; 0Þ: (4)

Other studies of collisionless reconnection in force-free cur-

rent sheets have involved the use of approximate force-free

equilibria (e.g., Refs. 19–26) or linear force-free equilibria

(e.g., Refs. 27–29).

To find VM equilibrium DFs consistent with force-free

current sheets involves solving the VM equations in the

opposite order from what is usually done; a magnetic field

satisfying Equations (1)–(3) is specified, and the DFs are

then given by the solution of an inverse problem (e.g., Refs.

30–33). As such, finding exact force-free VM equilibria is

generally a non-trivial task, and this is reflected in the rela-

tively small number of known solutions. Linear force-free

VM equilibria have been discussed in, e.g., Refs. 18, 27, 31,

and 34–37. The first solution for a nonlinear force-free field

was found by Harrison and Neukirch38 (see also Ref. 39) for

the force-free Harris sheet, and these solutions were later

extended by Kolotkov et al.2 to allow for non-uniform den-

sity and temperature profiles (with respect to the spatial coor-

dinate). A number of other equilibrium DFs have also been

found for this field. Wilson and Neukirch40 found DFs with

an arbitrary dependence on the particle energy; Stark and

Neukirch41 discussed DFs in the relativistic limit; Allanson

et al.33,42 found DFs in terms of infinite sums over Hermite

polynomials, with an arbitrarily low plasma beta (in the pre-

vious work on the force-free Harris sheet, the plasma beta

was constrained to be greater than unity); Dorville et al.43

discussed “semi-analytic” DFs for a magnetic field, which

includes the force-free Harris sheet as a special case.

Abraham-Shrauner1 discussed VM equilibria for a non-

linear force-free magnetic field given in terms of Jacobian

elliptic functions. This work can be thought of as a generali-

sation of some of the previous work, to account for both lin-

ear and nonlinear force-free equilibria in one model, since,a)Electronic mail: fw237@st-andrews.ac.uk
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in one limit of the elliptic modulus, the magnetic field

becomes the force-free Harris sheet field, and in another

limit, it becomes a linear force-free field. The DFs discussed

give rise to spatially uniform temperature and density pro-

files, in a similar way to some of the models mentioned

above. In this paper, we will extend this class of DFs to

include those consistent with non-uniform temperature and

density profiles, using a similar approach used by Kolotkov

et al.2 for the force-free Harris sheet. As for Abraham-

Shrauner’s DFs, the new DFs we will discuss include both

the linear force-free limit and the force-free Harris sheet

limit.2

The paper is laid out as follows; in Sec. II, we outline

the background theory of 1D VM equilibria; in Sec. III, we

present an overview of the work by Abraham-Shrauner;1 we

discuss the extension of this work to include non-uniform

temperature and density profiles in Sec. IV, and the velocity

space structure of the new DFs is discussed in Sec. V; we

end with a summary in Sec. VI.

II. 1D VLASOV-MAXWELL EQUILIBRIA

In line with some of the previous work on 1D VM equi-

libria (e.g., Refs. 18, 38, and 39), we assume that all quanti-

ties depend only on the z-coordinate and that the magnetic

field, B ¼ ðBx;By; 0Þ, can be written as the curl of a vector

potential, A ¼ ðAx;Ay; 0Þ. We will not repeat all of the

details here, but the result of the above assumptions is that

the problem reduces to solving Ampère’s law in the form

d2Ax

dz2
¼ �l0

@Pzz

@Ax
; (5)

d2Ay

dz2
¼ �l0

@Pzz

@Ay
; (6)

to find Pzz, which is the zz-component of the pressure tensor,

defined by

PzzðAx;AyÞ ¼
X

s

ms

ð
v2

z fsðHs; pxs; pysÞd3v; (7)

where we assume that the DFs can be chosen in such a way

that they are compatible with strict neutrality (the scalar

potential / ¼ 0).31 Note that we only consider Pzz since this

is the component of the pressure tensor which is important

for the force-balance of the 1D equilibrium. The DFs,

denoted by fs, are assumed to be functions of the particle

energy, Hs ¼ msðv2
x þ v2

y þ v2
z Þ=2, and the x- and y-compo-

nents of the canonical momentum, p ¼ msvþ qsA, since

these are known constants of motion for a time-independent

system with spatial invariance in the x- and y-directions.

Once Ampère’s law has been solved for Pzz, the DF can be

found by solving Eq. (7). This is an example of an inverse

problem.

III. ABRAHAM-SHRAUNER’S MODEL

In this section, we discuss some properties of the model

developed by Abraham-Shrauner,1 in order to give context to

the discussion we will present in Sec. IV. In Abraham-

Shrauner’s work, a nonlinear force-free current sheet profile

is considered, described by the magnetic field

B ¼ B0ðsnðz=LÞ; cnðz=LÞ; 0Þ; (8)

where B0 is a constant, L is the current sheet half-thickness,

and sn and cn are Jacobian elliptic functions44 with the

modulus k suppressed (where 0 � k � 1). In the limit k !
0; snðz=LÞ ! sin ðz=LÞ and cnðz=LÞ ! cos ðz=LÞ, and so the

magnetic field (8) becomes the linear force-free field

B ¼ B0ðsin ðz=LÞ; cos ðz=LÞ; 0Þ. In the limit k ! 1; snðz=LÞ
! tanhðz=LÞ and cnðz=LÞ ! sechðz=LÞ, giving the force-

free Harris sheet magnetic field [Eq. (4)]. The vector poten-

tial, A, used by Abraham-Shrauner1 is given by

Ax ¼
B0L

k
arcsin ksn z=Lð Þð Þ þ kp

2

� �
; (9)

Ay ¼
B0L

k
ln

kcn z=Lð Þ þ dn z=Lð Þ
1þ k

� �
; (10)

where dn is also an elliptic function. This can be seen by

using standard integrals45 and by choosing the integration

constants such that, when k! 1; Ax ! 2B0Larctanðez=LÞ;
Ay ! �lnðcoshðz=LÞÞ—the vector potential components

used in some of the previous work on the force-free Harris

sheet (note also that an alternative gauge for A is discussed

for the force-free Harris sheet by Allanson et al.33).

The current density is given by

j ¼ B0

l0L
sn z=Lð Þdn z=Lð Þ; cn z=Lð Þdn z=Lð Þ; 0ð Þ ¼ dn z=Lð ÞB

l0L
;

(11)

and so the force-free parameter a is given by

a zð Þ ¼
dn z=Lð Þ

l0L
: (12)

Note that, in the limit k ! 0; dnðz=LÞ ! 1, and so a is con-

stant (the linear force-free case), but is otherwise a function

of position (the nonlinear force-free case).

It is assumed that the pressure has the form

PzzðAx;AyÞ ¼ P1ðAxÞ þ P2ðAyÞ; Ampère’s law in the form of

Eqs. (5) and (6) can then be solved for Pzz in terms of the

macroscopic parameters, which gives

Pzz¼Pt1þPt2

� B2
0

2l0

3

2
þ 1

2k2
cos

2kAx

B0L
�kp

� ��

�1

4

1

k
þ1

� �2

exp
2kAy

B0L

� �
�1

4

1

k
�1

� �2

exp �2kAy

B0L

� ��
;

(13)

where Pt1 and Pt2 are constants. This expression can then be

used in Eq. (7) to determine the DF, which can be written in

terms of the constants of motion as
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fs Hs; pxs; pysð Þ ¼
n0se

�bsHsffiffiffiffiffiffi
2p
p

vth;s

� �3
a0s �

1

2k2
exp

1þ k2ð Þu2
ys

2v2
th;s

 !"

� cos kbsuxspxs � kpð Þþ 1

4

1

k
þ 1

� �2

� exp
1� k2ð Þu2

ys

2v2
th;s

 !
exp kbsuyspys

� �

þ 1

4

1

k
� 1

� �2

exp
1� k2ð Þu2

ys

2v2
th;s

 !

� exp �kbsuyspys

� �#
; (14)

where a0s is a dimensionless constant, uxs and uys are

constant parameters with the dimension of velocity, bs

¼ ðkBTsÞ�1
and vth;s ¼ ðbsmsÞ�1=2

. In the limit k ! 1, this

DF takes the form of that discussed in Refs. 38 and 39 for

the force-free Harris sheet. In the opposite limit, i.e., k ! 0,

it takes a general form which is similar to that described in

Refs. 18, 31, and 37, but with a shift in pxs and pys (this cor-

responds to a regauging of the vector potential).

Note that a number of relations exist between the param-

eters of the model, to ensure positivity of the DFs, strict neu-

trality, and consistency between the microscopic and

macroscopic descriptions of the equilibrium (see Ref. 1 for

further details). Using these relations, the equilibrium den-

sity, pressure, and temperature can be expressed as

n ¼ n0 a0 þ
1

2

� �
; (15)

Pzz ¼
n0 be þ bið Þ

bebi

a0 þ
1

2

� �
; (16)

T ¼ Pzz

n
¼ be þ bi

bebi

; (17)

where a0 and n0 are constant parameters that are introduced

when the strict neutrality condition (/ ¼ 0) is imposed. The

expressions (15)–(17) are independent of the elliptic modu-

lus k; this can be seen for Pzz through the force-balance

equation
B2

2l0

þ Pzz ¼ PT ; (18)

where PT is the total pressure, since B2 ¼ jBj2 ¼ B2
0 for the

magnetic field (8), which is independent of k. Since, in this

case, Pzz ¼ ðbe þ biÞn=ðbebiÞ, it follows that the density and

temperature will also be independent of k. As can be seen

from the expressions (15) and (17), Abraham-Shrauner’s

model has density and temperature profiles that are constant

across the current sheet, in a similar way to the models dis-

cussed in Refs. 18, 33, and 38–42. In Sec. IV, we discuss

how the method of Kolotkov et al.2 can be used to extend the

model to have spatially non-uniform density and temperature

profiles across the current sheet, while still maintaining a

constant pressure as is required for a force-free equilibrium

(see, e.g., Ref. 18).

IV. EXTENSION TO NON-UNIFORM TEMPERATURE/
DENSITY CASE

To extend the model of Abraham-Shrauner1 to have

non-uniform temperature and density profiles, we consider a

DF of the form

fs ¼
n0sc3=2

ffiffiffiffiffiffi
2p
p

vth;s

� �3
exp �cbsHsð Þ a0sþa1s cos ckbsuxspxs�kpð Þð Þ

þ n0sffiffiffiffiffiffi
2p
p

vth;s

� �3
exp �bsHsð Þ b0sþb1s exp kbsuyspys

� ��
þb2s exp �kbsuyspys

� �
Þ;

(19)

(where c > 0) i.e., a modification of Abraham-Shrauner’s

DF. This corresponds to assuming that the pxs-dependent

population has a different energy dependence than the pys-

dependent population, through the factor c. We effectively

also have two separate constant background populations

(through the constants a0s and b0s) whose energy dependen-

ces differ. These two populations have been included to

allow the limit k ! 0 to exist, and to ensure this we assume

that the constants a0s and b0s scale with the elliptic modulus

k as follows:

a0s ¼ �a0s þ
c

2k2
exp

u2
xs

2v2
th;s

 !
; (20)

b0s ¼ �b0s �
1

2k2
exp

u2
xs

2v2
th;s

 !
; (21)

for constants �a0s and �b0s. Note that we have defined the con-

stants in this way so that we have a model that works for all

k values between 0 and 1, but for finite small k (or large

uxs=vth;s), the k-dependent parts of a0s and b0s can become

very large, which may lead to, e.g., a large maximum den-

sity, which may not be physically appropriate. If we were

only interested in a particular finite small value of k, we

could redefine the constants to avoid such issues.

By calculating the number density (ns ¼
Ð

fsd
3v) of the

modified DF (19), and imposing the condition / ¼ 0

(niðAx;AyÞ ¼ neðAx;AyÞÞ, we obtain the neutrality relations

(A1)–(A8) in the Appendix. We can then express ns¼ n as

nðAx;AyÞ¼n0 a0þb0þa1 cosðckbsuxsqsAx�kpÞ½
þb1 expðkbsuysqsAyÞþb2 expð�kbsuysqsAyÞ�; (22)

and the pressure can be calculated from the DF through

Eq. (7) as

Pzz ¼ n0

be þ bi

bebi

a0

c
þ b0 þ

a1

c
cos ckbsuxsqsAx � kpð Þ

�

þb1 exp kbsuysqsAy

� �
þ b2 exp �kbsuysqsAy

� ��
: (23)

Note the c�1 factors appearing in parts of Eq. (23), meaning

that the pressure is no longer simply a multiple of the density
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as in Abraham-Shrauner’s model. Eq. (23) for the pressure

can be compared with Eq. (13) to give the relations

(A11)–(A16) (see the Appendix) between the microscopic

and macroscopic parameters. Using these relations, and the

neutrality relations in the Appendix, the modified DF (19)

can then be written as

fs ¼
c3=2n0s exp �cbsHsð Þffiffiffiffiffiffi

2p
p

vth;s

� �3
a0s �

c
2k2

exp
ck2 þ 1
� �

u2
xs

2v2
th;s

 ! 

� cos ckbsuxspxs � kpð Þ
!

þ n0s exp �bsHsð Þffiffiffiffiffiffi
2p
p

vth;s

� �3

1

4
exp

u2
xs � k2u2

ys

2v2
th;s

 ! 

� 1

k
þ 1

� �2

exp kbsuyspys

� �(

þ 1

k
� 1

� �2

exp �kbsuyspys

� �)
þ b0s

!
: (24)

Sufficient conditions for the positivity of the DF (24) across

the whole phase space can be derived by assuming that the

functions

g1s pxsð Þ ¼ a0s�
c

2k2
exp

ck2þ1
� �

u2
xs

2v2
th;s

 !
cos ckbsuxspxs� kpð Þ;

(25)

g2s pysð Þ¼ b0sþ
1

4
exp

u2
xs�k2u2

ys

2v2
th;s

 !

� 1

k
þ1

� �2

exp kbsuyspys

� � 

þ 1

k
�1

� �2

exp �kbsuyspys

� �!
; (26)

are both positive, and are given by

�a0 >
c

2k2
exp

ck2u2
xs

2v2
th;s

 !
� 1

" #
; (27)

�b0 >
1

2k2
1� 1� k2ð Þexp �

k2u2
ys

2v2
th;s

 !" #
; (28)

where �a0 and �b0 are defined in the Appendix. Note that

these conditions are well defined in the limit k! 0. Since

0 � k � 1; c > 0 and the exponential term in Eq. (27) has a

minimum value of unity, we see that �a0 � 0.

The new DF (24) describes an equilibrium with non-

uniform density and temperature profiles; we can show this

by writing them as functions of z using Eqs. (9), (10), and

(A13)–(A15) and the definitions of �a0 and �b0, which gives

n zð Þ ¼ n0 �a0 þ �b0 þ
1

2
þ c� 1ð Þsn2 z=Lð Þ

	 

; (29)

T zð Þ¼Pzz

n

¼beþbi

bebi

�a0

c
þ �b0þ

1

2

� �
�a0þ �b0þ

1

2
þ c�1ð Þsn2 z=Lð Þ

� ��1

;

(30)

where the uniform value of the pressure is given by

Pzz ¼
n0 be þ bið Þ

bebi

�a0

c
þ �b0 þ

1

2

� �
; (31)

which is independent of the modulus k (for the same reasons

as discussed in Sec. III), and is similar to the expression

found by Kolotkov et al.2 for the force-free Harris sheet.

Note, however, that this time the density depends on k, due

to the introduction of the c factors in the DF (the pressure

can no longer be written as Pzz ¼ ðbe þ biÞn=ðbebiÞ as it can

in the uniform temperature model). It can be seen that, for

c¼ 1, we recover the constant density/temperature case of

Abraham-Shrauner.1

Provided the DF (24) is positive over the whole phase

space, then the density, pressure, and temperature will also

be positive everywhere. Note, however, that the opposite is

not true, i.e., a positive density and pressure do not imply a

positive DF. We ensure that the DF is positive by choosing

parameters in such a way that the conditions (27) and (28)

are satisfied (for both ions and electrons). Figure 1 shows

profiles of the density and temperature for different values of

c, with k¼ 0 (the linear force-free case). Figure 2 shows the

same quantities with k¼ 0.5. They are normalised to have a

value of unity at the lower z-boundary of each plot, and we

have chosen parameters such that the DFs are positive for

ions and electrons (note that if we choose uxe=vth;e, then this

fixes uxi=vth;i through Eq. (A7), if we specify the mass ratio

and the ratio be=bi). For c ¼ 1:0 in each figure, we see that

both the density and temperature are constant, as in

Abraham-Shrauner’s model. For the other values of c shown,

the quantities have a periodic structure. In regions where the

density is enhanced/depleted (with respect to the constant

value for c¼ 1), there is a corresponding depletion/enhance-

ment of the temperature, which ensures that the two quanti-

ties multiply together to give a constant pressure, as required

for the force-free equilibrium. Additionally, in regions where

the values of c > 1 lead to an enhancement/depletion of the

quantities, the opposite behaviour is seen when c < 1, i.e., a

depletion/enhancement of the quantities. Similar features are

seen by Kolotkov et al.2 (which we obtain in the limit

k! 1), but note that the density and temperature are not

periodic in this case, and so, for a particular c value, there is

either an enhancement or depletion of the density/tempera-

ture (not both).

We will now briefly discuss some other properties of the

model. The plasma beta, defined in this case as the ratio of

Pzz to the magnetic pressure B2
0=ð2l0Þ, is given [using Eq.

(A11)] by

bpl ¼
�a0

c
þ �b0 þ

1

2
: (32)

092105-4 Wilson, Neukirch, and Allanson Phys. Plasmas 24, 092105 (2017)



Using the conditions (27) and (28) for positivity of the DF,

we have that

bpl >
1

2
þ 1

2k2
exp

ck2u2
xs

2v2
th;s

 !
� 1� k2ð Þexp �

k2u2
ys

2v2
th;s

 !2
4

3
5:

(33)

For k¼ 0 and k¼ 1, for example, it is straightforward to

show that bpl must be greater than unity (as in, e.g., the mod-

els in Refs. 1, 2, 38, and 40), since u2
xs=v

2
th;s � 0.

The bulk-flow velocity components, defined by

Vs ¼
1

ns

ð
vfsd

3v; (34)

have the form

Vxs ¼
cuxssn z=Lð Þdn z=Lð Þ

�a0 þ �b0 þ 1=2þ c� 1ð Þsn2 z=Lð Þ ; (35)

Vys ¼
uyscn z=Lð Þdn z=Lð Þ

�a0 þ �b0 þ 1=2þ c� 1ð Þsn2 z=Lð Þ ; (36)

Vzs ¼ 0: (37)

Through these expressions, we see the role played by the

parameters uxs and uys, which can also be written in terms of

the ratio of the species gyroradius, rg;s, to the current sheet

half-width, L, by using Eq. (A16) (similarly to Neukirch

et al.39) as

u2
ys

v2
th;s

¼ c2u2
xs

v2
th;s

¼ 4
r2

g;s

L2
: (38)

The current density can be calculated from the bulk flow

velocity as

j ¼
X

s

qsnsVs; (39)

and has components

FIG. 2. (a) Density and (b) temperature profiles for various values of c, for k¼ 0.5. Both quantities are normalised to have a value of unity at the lower

z-boundary.

FIG. 1. (a) Density and (b) temperature profiles for various values of c, for k¼ 0 (the linear force-free case). Both quantities are normalised to have a value of

unity at the lower z-boundary.
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jx ¼ n0ecðuxi � uxeÞsnðz=LÞdnðz=LÞ; (40)

jy ¼ n0eðuyi � uyeÞcnðz=LÞdnðz=LÞ; (41)

jz ¼ 0: (42)

Using Eqs. (A11) and (A17), we can show that these expres-

sions are equivalent to those obtained macroscopically from

Ampère’s law [Eq. (11)].

In the models in e.g., Refs. 1, 38, and 39, the spatial

structure of the current density is determined solely by the

structure of the bulk flow velocity since the density is con-

stant, in contrast to the classic Harris sheet model,46 where

the bulk flow velocity is constant, and it is the spatial depen-

dence of the density that determines the structure of the cur-

rent density. In this extended model (and also that of

Kolotkov et al.2), however, both the bulk-flow velocity and

density are spatially dependent, and so the spatial structure

of the current density is determined from the product of the

two quantities.

A. Limiting values of k

In the limit k ! 1, the number density, temperature, and

pressure [Eqs. (29)–(31)] go to the form discussed by

Kolotkov et al.2 for the force-free Harris sheet, and the DF

(24) becomes the Kolotkov DF (note that our notation is

slightly different).

In the limit k! 0, the field becomes linear force-free,

and we get a DF of the form

fs ¼
c3=2n0 exp �cbsHsð Þffiffiffiffiffiffi

2p
p

vth;s

� �3
�a0 �

c2u2
xs

4v2
th;s

þ c
4

cbsuxspxs � pð Þ2
 !

þ 1

4

n0 exp �bsHsð Þffiffiffiffiffiffi
2p
p

vth;s

� �3
4�b0 � 2�

u2
ys

v2
th;s

þ bsuyspys þ 2
� �2

 !
;

(43)

which is a modified form of the DF obtained in the k! 0

limit of the DF (14). The density and temperature have the

form given by Eqs. (29) and (30), respectively, where

snðz=LÞ ¼ sin ðz=LÞ.

V. VELOCITY SPACE STRUCTURE OF DF

In this section, we present some illustrative plots of the

DF (24) to show the effect of changing c, i.e., the effect of

changing the energy dependence of the different particle

populations. In the vx- and vy- directions, it is possible to

choose sets of parameters for which there are multiple peaks

in the DF, which may have implications for the stability of

the equilibrium. Neukirch et al.39 and Abraham-Shrauner1

derive conditions on the parameters in their models such that

their DFs will be single-peaked over the whole phase space.

Due to the increased complexity of the DFs in terms of

energy dependence, however, we have not yet carried out a

full analysis of the velocity space structure—this is left for a

future investigation.

In the discussion of the plots below, we will refer to the

cases where the pxs population is “hotter”/“colder” than the

pys one. This refers to the pxs population having an energy

dependence resulting in a “narrower”/“wider” Maxwellian

factor in the DF than the pys one. We note, however, that

because the DFs are not purely Maxwellian, the temperature

cannot be properly defined in terms of the width of the DF,

but the widths of the first and second parts of the DF give us

a qualitative measure of the temperature difference between

the different populations. This notion of temperature should

not be confused with the definition of the temperature given

in Eq. (30).

A. vx -direction

In Fig. 3, we plot the electron DF (24) in the vx-direction

(for vy ¼ vz ¼ 0) with c ¼ 1 (i.e., the Abraham-Shrauner

DF). We have chosen a set of parameters for which, at z¼ 0,

the DF has a double maximum in vx (these are the same

parameters as in Fig. 2). We note, however, that it is also

possible to choose parameters for which the DF has only a

single maximum in vx over the whole phase space, if

required (by increasing the density of the background popu-

lations appropriately). In Fig. 3, and all subsequent figures in

this paper, we normalise the DF to have a maximum value of

unity.

Our main aim in this section is to investigate the effect

of changing c on the velocity space structure of the DF. This

is why we have chosen parameters that give a double maxi-

mum for c ¼ 1, since the effect of changing c is illustrated

more clearly in such cases. Figure 4 shows plots of the elec-

tron DF for various values of c which are less than unity. For

c ¼ 0:92, the double maximum still exists, but has become

more slight; for the smaller values of c shown (0.2 and 0.7),

the double maximum has disappeared. In the vx-direction,

the second part of the DF (which does not depend on c) has

the Maxwellian form gðpysÞ exp ð�bsHsÞ. For c < 1, the pxs-

dependent population and the first background one are

“hotter” than the pys-dependent and second background pop-

ulations, and so the Maxwellian factor exp ð�cbsHsÞ (in the

FIG. 3. The electron DF in the vx-direction (with vy ¼ vz ¼ 0) for c ¼ 1.
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first part of the DF) has a narrower width than the factor in

the second part of the DF. The “narrow” first part of the DF,

including the cosine which can give double maxima in vx, is

therefore “swamped” by the wider second part for decreasing

c, and we see the behaviour in Fig. 4.

Figure 5 shows plots of the electron DF for various val-

ues of c, which are greater than unity. We see that the double

maximum in the middle becomes more pronounced as c is

increased. This is due to the fact that the Maxwellian

FIG. 4. The electron DF in the vx-direction (with vy ¼ vz ¼ 0) for (a)

c ¼ 0:92, (b) c ¼ 0:7, and (c) c ¼ 0:2. FIG. 5. The electron DF in the vx-direction (with vy ¼ vz ¼ 0) for (a)

c ¼ 1:1, (b) c ¼ 1:2, and (c) c ¼ 1:3.
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exp ð�cbsHsÞ multiplying the first part of the DF is now

wider than the Maxwellian that multiplies the second part

(the pxs-dependent population and the first background one

are now “colder” than the pys-dependent and second back-

ground populations), so the first part dominates and deter-

mines the behaviour of the DF. In Figs. 3–5, we have chosen

the parameters �a0 and �b0 such that the DFs are positive for

all values of c we consider. As can be seen from the positiv-

ity conditions (27), the minimum value of �a0 becomes signif-

icantly larger as c is increased (for fixed values of the other

parameters). If we were to further increase c, then the central

“dip” of the DF would become more pronounced, and the

DF would become negative; hence, we would need to

increase �a0 (and adjust �b0 if required).

B. vy -direction

In this section, we will show some illustrative plots of

the electron DF in the vy-direction for various values of c.

For the parameter set we used in Figs. 3–5, the DFs are sin-

gle peaked in all cases except for c ¼ 1:3, where there is a

double maximum as illustrated in Fig. 6.

From initial investigations, it seems to be difficult to find

a set of parameters from which we can illustrate the effect of

increasing or decreasing c. This may be due to the fact that

multiple maxima appear to occur at high values of uxe=vth;e,

for which we require large values of �a0 to ensure positivity of

the DF—i.e., a large background density. This often results in

the DF being single-peaked for smaller values of c.

Possible behaviour of the DF in the vy-direction can be

explored heuristically by noting that, for given values vx, vz

and z, the DF has the general form

fs vyð Þ¼C1 exp �
cv2

y

2v2
th;s

 !
þC2 exp �

v2
y

2v2
th;s

 !

þC3 exp � vyþkuysð Þ2

2v2
th;s

 !
þC4 exp � vy�kuysð Þ2

2v2
th;s

 !
;

(44)

for constants C1–C4, i.e., it consists of two Maxwellian parts

with varying widths, and two shifted Maxwellians—one

shifted in the positive vy-direction, and the other in the nega-

tive vy-direction (by the same amount). Depending on the
FIG. 6. The electron DF in the vy-direction (with vx ¼ vz ¼ 0) for the param-

eters used in Figure 5(c).

FIG. 7. The electron DF in the vy-direction (with vx ¼ vz ¼ 0) for various

parameters sets, to give an illustration of the possible behaviour of the DF in

this direction.
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relative values of C1–C4, therefore, the DF can exhibit differ-

ent behaviour, some examples of which are given in Fig. 7.

Note that we have taken different values of �a0 in each plot,

to ensure that the DFs are positive in each case.

VI. SUMMARY

In this paper, we have presented a class of 1D strictly

neutral Vlasov-Maxwell equilibrium DFs for both linear and

nonlinear force-free current sheets, with magnetic fields

defined in terms of Jacobian elliptic functions, which are an

extension of the DFs discussed by Abraham-Shrauner1 to

account for non-uniformities in the temperature and density,

whilst still maintaining a constant pressure (with respect to

the spatial coordinate), as is required for force-balance of the

force-free equilibrium. To achieve this, we have used

the method of Kolotkov et al.,2 which involves modifying

the DF of the original case to include temperature differences

between the different particle populations in the model, and

then ensuring that strict neutrality is satisfied and that there

is consistency between the microscopic and macroscopic

parameters of the equilibrium.

The new DF can be regarded as consisting of four parti-

cle populations: one depending on pxs, one on pys, and two

background populations. The pxs-dependent and first back-

ground population are taken to have the same energy depen-

dence in the DF, as do both the pys-dependent and second

background populations. Note that for the limit of vanishing

elliptic modulus, k, to give continuous DFs and pressure,

density, and temperature profiles, we require a particular

choice of the constants characterising the background popu-

lations, but this form can be changed for other k values if

desired (it has the “drawback” of giving a very large maxi-

mum density for certain parameter values).

We have derived sufficient conditions on the parameters

such that the positivity of the DFs is ensured, and have given

explicit expressions for the density, temperature, and pres-

sure across the current sheet. Additionally, we have derived

the components of the bulk-flow velocity from the DF, to

show that the spatial structure of the current density is deter-

mined by the product of the spatial structure of the density

and bulk-flow velocity, in contrast to the models of, e.g.,

Abraham-Shrauner1 and Neukirch et al.39 where the current

density structure is determined solely by the structure of the

bulk-flow velocity, and also in contrast to the Harris sheet

case,46 where it is determined solely by the density structure.

We have investigated limiting cases of the elliptic mod-

ulus, k. For k ! 1, the magnetic field becomes that of the

force-free Harris sheet, and in this limit, we recover a DF

similar to that found by Kolotkov et al.2 for this magnetic

field. In the limit k ! 0, the magnetic field becomes linear

force-free, and in Abraham-Shrauner’s case, the DF takes a

form which is similar to the one discussed in Refs. 18, 31,

and 37, but which is shifted in pxs and pys. In our extended

model, the k! 0 limit simply gives an extension of this

shifted DF to include non-uniformity in both the temperature

and density.

We have also illustrated graphically the effect of chang-

ing the temperature difference between the particle

populations in the DF. In the vx-direction, we found that

making the pxs part “colder” than the pys part can result in

rather pronounced double maxima of the DF (due to a cosine

term in vx), but when the pxs part is “hotter,” these maxima

are less significant, or the DF becomes single peaked. In the

vy-direction, the DF contains two drifting Maxwellians (with

the same energy dependence), and two non-drifting

Maxwellians (with different energy dependences), and so

there is the possibility of double maxima in the DF depend-

ing on the relative values of the coefficients of the separate

parts.

Double maxima in the DF may lead to velocity space

instabilities (e.g., Ref. 47). Due to the increased complexity

of the model, however, we have not attempted a systematic

study of the velocity space structure, i.e., we have not

derived conditions on the parameters such that the DF can be

multi-peaked for some z, as has been done by Neukirch

et al.39 and Abraham-Shrauner.1 This is left for a future

investigation. We note, however, that it will be possible to

choose the density of the background populations large

enough such that there are only single maxima of the DF

over the whole phase space.
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APPENDIX: PARAMETER RELATIONS

In Sec. IV, by imposing the strict neutrality condition

neðAx;AyÞ ¼ niðAx;AyÞ ¼ n, we obtain the relations

n0e exp
u2

xe

2v2
th;e

 !
¼ n0i exp

u2
xi

2v2
th;i

 !
¼ n0; (A1)

a0e exp � u2
xe

2v2
th;e

 !
¼ a0i exp � u2

xi

2v2
th;i

 !
¼ a0; (A2)

a1e exp � 1þck2
� �

u2
xe

2v2
th;e

 !
¼a1i exp � 1þck2

� �
u2

xi

2v2
th;i

 !
¼a1;

(A3)

b0e exp � u2
xe

2v2
th;e

 !
¼ b0i exp � u2

xi

2v2
th;i

 !
¼ b0: (A4)

b1e exp
k2u2

ye � u2
xe

2v2
th;e

 !
¼ b1i exp

k2u2
yi � u2

xi

2v2
th;i

 !
¼ b1; (A5)

b2e exp
k2u2

ye � u2
xe

2v2
th;e

 !
¼ b2i exp

k2u2
yi � u2

xi

2v2
th;i

 !
¼ b2; (A6)

bejuxej ¼ bijuxij; (A7)
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�beuye ¼ biuyi: (A8)

Using the choices (20) and (21) for a0s and b0s, the condi-

tions (A2) and (A4) can equivalently be written as

�a0e exp � u2
xe

2v2
th;e

 !
¼ �a0i exp � u2

xi

2v2
th;i

 !
¼ �a0; (A9)

�b0e exp � u2
xe

2v2
th;e

 !
¼ �b0i exp � u2

xi

2v2
th;i

 !
¼ �b0; (A10)

where a0 ¼ �a0 þ c=ð2k2Þ; b0 ¼ �b0 � 1=ð2k2Þ.
By calculating two expressions for the pressure Pzz, in

terms of the macroscopic and microscopic parameters of the

equilibrium, respectively, and comparing these expressions,

we obtain the relations

n0

be þ bi

bebi

¼ B2
0

2l0

; (A11)

a0

c
þ b0 ¼

Pt1 þ Pt2

B2
0=2l0

� 3

2
; (A12)

a1

c
¼ � 1

2k2
; (A13)

b1 ¼
1

4

1

k
þ 1

� �2

; (A14)

b2 ¼
1

4

1

k
� 1

� �2

; (A15)

2

B0L
¼ cbsjuxsjqs ¼ bsuysqs ) uys ¼ cjuxsj: (A16)

Similarly to previous work (e.g., Ref. 39), we can derive an

expression for the current sheet half-width L, in terms of the

microscopic parameters, as

L ¼ 2 be þ bið Þ
l0e2bebin0 uyi � uyeð Þ2

 !1=2

: (A17)
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