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Abstract

Wearable technologies are valuable tools that can encourage people to monitor their own well-being and
facilitate timely health interventions. In this paper, we present SPW-2; a low-profile versatile wearable
sensor that employs two ultra low power accelerometers and an optional gyroscope. Designed for minimum
maintenance and a long-term operation outside the laboratory, SPW-2 is able to offer a battery lifetime of
multiple months. Measurements on its wireless performance in a real residential environment with thick
brick walls, demonstrate that SPW-2 can fully cover a room and - in most cases - the adjacent room, as well.
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1. Introduction
The increasing trends in elderly populations [8] and
the continuous rise of chronic medical conditions,
such as depression and diabetes, push the limits of
national health systems [7]. Wearable technologies [5]
and Ambient Assisted Living (AAL) infrastructures
are widely considered promising directions that could
encourage people to monitor their own well-being and
facilitate timely interventions.

In addition to health-oriented applications, long-
term activity monitoring with wearable technologies
is a tool that facilitates health-oriented research.
Avon Longitudinal Study of Parents and Children
(ALSPAC) is a cohort study of children born in
the county of Avon in England. During the first
stage of the study in the early 90s, thousands
of pregnant women were monitored. More recently,
the study continues; monitoring the grandchildren
of the originally monitored subjects [22] and the
researchers adopt wearable technologies to replace
diaries. SPHERE (a Sensor Platform for Healthcare
in a Residential Environment) is an interdisciplinary

∗Corresponding author. Email: xenofon.fafoutis@bristol.ac.uk

Figure 1. SPW-2: The Second SPHERE Wearable.

research collaboration that aims to monitor volunteers
in their own home environment [31]. Wearable sensors
are used, among other sensing modalities, to monitor
the everyday behaviour of the users [10].

Long-term activity monitoring outside the labora-
tory, such as monitoring the activities of daily life in
a residential environment, introduces important chal-
lenges that typically do not rise in controlled labo-
ratory environments. The employed wearable devices
need to be small, lightweight, comfortable and with
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minimum maintenance requirements. Contrary to fash-
ionable wearable gadgets that implement fitness appli-
cation, wearable devices that are aimed for healthcare
applications cannot depend on the user for regular
maintenance, such as recharging or replacing the bat-
tery. As an example, consider patients suffering from
mental conditions. In such situations, the user is not
in a position to maintain the technology that supports
them. In addition, in health-oriented research studies
outside the laboratory, long battery lifetime increases
the reliability of data collection, as the problem of data
loss, due to improper maintenance of the technologies
used, is mitigated.

With the aforementioned requirements as the pri-
mary goal, this paper focuses on system-level chal-
lenges of designing wearable sensors for healthcare in
a residential environment. In this context, we present
SPW-2 (the Second SPHERE Wearable), shown in Fig. 1.
SPW-2 extends our previous work [9], building on the
experience gained by using SPW-1 (the First SPHERE
Wearable) in health-oriented studies in real environ-
ments. The contribution of this work is twofold. Beyond
offering a tool to the pervasive health research commu-
nity, we provide insight to researchers and engineers
who are developing similar systems. In particular, (i)
we provide a thorough energy consumption study that
is the basis of meaningful battery lifetime estimations
for different sensor configurations; (ii) we demonstrate
how various sensor configurations affect the lifetime of
wearable devices; (iii) we quantify the performance of
wireless battery charging; and (iv) we identify the value
of a stable power supply with respect to the quality of
the measurements. Moreover, we study SPW-2’s wire-
less performance in the context of body-centric commu-
nications. The study includes measurements both in a
controlled (i.e. anechoic chamber) and in a residential
environment.

The remainder of the paper is organised as follows.
Section 2 summarises the related work. Section 3
presents the system design of our wearable sensors.
Section 4 evaluates SPW-2’s performance and compares
it to its predecessor. Lastly, Section 5 concludes the
paper.

2. Related Work
In recent years fashionable gadgets, such as Fitbit,
Jawbone UP and Nike+ Fuelband SE, have appeared
in the consumer electronics market [17]. Such fitness
devices demonstrate the rise of a trend towards self-
monitoring, as well as the willingness of users to wear
them. These commercial gadgets are of limited use for
research or medical applications due to limited access
to the raw data, their lack of interoperability with other
healthcare systems and their limited expandability to
new sensor technologies. Furthermore, their need for

regular recharging (typical battery lifetime of less than
a week) hinders their suitability for target groups
that are uncomfortable with or physically unable of
managing modern technologies.

The research community has also used several
wearable devices for activity monitoring, a few of
which are briefly reviewed in this paper. We refer
the reader to [5] for an exhaustive survey on smart
wearable technologies. Verity [30] is an AAL platform
that is using a wearable device equipped with an
accelerometer and a piezo-resistive sensor for fall
detection and heart rate monitoring. In [13], the authors
propose an AAL platform based on a waist-worn
accelerometer that is able to identify basic activities,
such as sitting, walking, running and jumping.
Similarly, [32] and [6] perform identification of basic
activities using multiple on-body accelerometers and
gyroscopes. These platforms use off-the-shelf hardware
and do not focus on their power consumption, resulting
to wearable devices that require regular recharging.
Other works present low power hardware that target
various body sensing applications by incorporating
different types of sensors, such as bio-impedance
sensors [18], microphones [21] and inertial sensors [15].

On a different perspective, related work on Wireless
Body Area Networks (WBANs) typically focuses on the
networking aspects of body sensor networks [28].

3. System Design
Wearable sensors can be arguably considered as
the most resource-constrained things in the IoT,
as they must be sufficiently small and lightweight
to be comfortably worn by people. These physical
requirements introduce several challenges in the system
design. Their batteries, for instance, are of much
smaller capacity compared to typical wireless sensor
nodes. Their wireless performance is also constrained
by their small form factor, which neither allows
the use of antennas of high efficiency, nor provides
the necessary space for sufficient isolation between
the antenna and the other electronic components. In
addition, wearable sensors are mobile - thus, with high
dynamics in the wireless network - and the wireless
signal is frequently shadowed by the body of the
user. The application of wearable sensors for long-term
monitoring for healthcare in a residential environment
makes matters worse. Different to commercial fitness-
oriented wearable platforms, which depend on the user
for regular maintenance (i.e. recharging the battery),
wearable sensors designed for residential healthcare,
are targeted to groups of the population that are not
necessarily comfortable with modern technology or
capable of maintaining it.

Targeting the aforementioned system specifications,
the SPHERE wearable sensors are designed with the
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Figure 2. SPW-1: Top view (left) and bottom view (right) of the
circuit board.

Figure 3. SPW-1: Top copper layer (left) and bottom copper
layer (right) of the circuit board. The differentially-fed loop
antenna is printed around the other components.

wrist as the target body position. A wrist-mounted
device is widely considered as the most socially-
acceptable and least invasive choice to the subject’s
everyday routine, as people of both sexes often wear
wrist-worn gadgets, such as watches and bracelets.
Alternative body positions, such as the chest or the
waist, can be realised via an appropriate enclosure,
but hold the risk of being removed by the subject and
compromising the effectiveness of the system. Social
studies [33][3] have shown the importance of wearable
devices being comfortable and not intrusive to the daily
life activities. In [19], the authors assess various body
positions and present comparison results in which the
wrist ranks high in all the considered activities in terms
of classification accuracy.

Our previous work is focused on SPW-1 [9], the first
wearable platform of SPHERE, which is presented in
Section 3.1. Section 3.2 extends our previous work,
introducing the second generation of the SPHERE
wearable platform, named SPW-2.

3.1. SPW-1: The First SPHERE Wearable
Fig. 2 shows the printed circuit board (PCB) of SPW-
1, with dimensions of 24 × 39 × 3.8 mm. The primary
component is a nRF51822 system-on-chip (SoC) which
incorporates an ARM Cortex M0 processor, 32KB of
RAM, 256KB of non-volatile flash memory, and a
Bluetooth Low Energy (BLE) radio [4]. Two ADXL362
accelerometers are interfaced, over SPI (Serial Periph-
eral Interface), to the nRF51822. The ADXL362 is a
micro-power triaxial digital accelerometer that has 12-
bit resolution (8-bit formatted data is also available for
more efficient single-byte transfers), a maximum sam-
pling frequency of 400 Hz, and supports measurement
ranges of ±2g, ±4g, ±8g. It also employs a 512-sample
FIFO buffer (First In First Out). The incorporation of

two accelerometers, at a distance of 30 mm, provides
a low power alternative to a gyroscope. Indeed, dif-
ferential measurements from multiple accelerometers
can be used to derive the angular acceleration [25][29].
The accelerometers are powered by the SoC through its
GPIO (General Purpose Input Output) pins and hence
is able to power them on and off individually. Therefore,
the use of the second accelerometer is optional. The
ADXL362 also provides two interrupt pins (INT1 and
INT2) that can be used either to generate interrupts on
events, or to generate events based on external triggers.
The two INT1 pins of the accelerometers are connected
to GPIO pins of nRF51822 with the purpose of gener-
ating interrupts that wake up the SoC. The two INT2
pins are connected, over the same bus, to a GPIO of the
SoC as an input. Using INT2, the SoC generates a square
wave signal that synchronises the accelerometers by
triggering the measurements. The use of the interrupts
is also optional.

Regarding powering options, SPW-1 is compatible
with various sources. Ultra low power consumption
is partially achieved by using the SoC in low power
mode, i.e. at 1.8V. The system employs the LTC3388
DCDC (Direct Current to Direct Current) converter that
efficiently converts any voltage source from 2.7V to
6V, to the required 1.8V. Thus, the converter supports
multiple options, including 3V coin cell batteries
(e.g. CR2032), 3.7V rechargeable Lithium-Polymer (Li-
Po) batteries, and supercapacitors. Moreover, SPW-
1 is energy harvesting ready, in the sense that any
harvester that works at the appropriate voltage level,
is compatible. The converter can be also bypassed,
as the board provides direct access to the 1.8V trail.
SPW-1 also employs an MCP73831, a 500 mA linear
charge management controller with 4.2V output that
is compatible with single cell 3.7V Li-Po batteries.
The battery charger is, by default, isolated from
the remaining of the circuit and can be optionally
connected.

With regard to input and output interfaces, SPW-
1 employs one button and two LEDs (Light Emitting
Diodes). The button and one of the LEDs are controlled
by the SoC and, thus, are available to the application.
The other LED is connected to the battery charger
indicating when the battery is charging. Moreover,
external sensors can be connected to SPW-1, using
7 available GPIOs (all support digital inputs; 2 of
them also support analogue inputs). The INT2 line of
the accelerometers is also externally available, so that
external sensors can be synchronised to the embedded
accelerometers.

Energy awareness is also considered in the design.
With a potential divider, the high voltage of the source
is appropriately conditioned to the requirements of
the SoC’s analogue-to-digital converter (ADC). When
a battery (e.g. CR2032) is used, this feature can be
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Figure 4. SPW-2: Top view (left) and bottom view (right) of the
circuit board.

Figure 5. SPW-2: Top copper layer (left) and bottom copper
layer (right) of the circuit board. SPW-2 employs a meandered
inverted-F antenna.

used to issue low-battery warnings. In case of energy
harvesting, energy-awareness allows the system to
adapt to the available ambient energy.

As far as wireless is concerned, SPW-1 employs a
meandered loop antenna printed on the FR4 substrate,
matched to the differential RF output of the nRF51822
(shown in Fig. 3). The loop antenna was measured
to have an efficiency of about 60% (relative to a
high-efficiency reference antenna) and a maximum
directivity of 7 dBi (computed from the measured
3D radiation pattern). The antenna was measured in
isolation in an anechoic chamber. Furthermore, SPW-
1 supports external antennas by incorporating u.FL
connectors. Using solder-bridges, the user can select
either the embedded loop antenna or the external
antennas. The radio of the nRF51822 supports 7
transmission power levels ranging from −20 dBm to
4 dBm.

SPW-1 has been extensively used by the participants
of research studies, conducted by SPHERE [27] and
ALSPAC [22] in free-living conditions. Moreover, it has
been used in research on energy harvesting solutions
for wearable sensors [11]. The extended use of SPW-
1 in various research projects exposed some its the
weaknesses. These include: (i) long-term participants
highlighted that SPW-1 would be more comfortable
if it were smaller and thinner; (ii) its internal flash
memory is not sufficient to allow outdoors usage; (iii)
more stable voltage regulation is required for noiseless
acceleration sampling; and (iv) its voltage regulator is
not efficient when used with a supercapacitor, due to its
high minimum input voltage (2.7V). In the next section,
we build on this experience, introducing the second
generation of the SPHERE wearable, SPW-2.

3.2. SPW-2: The Second SPHERE Wearable
Fig. 4 shows the PCB of SPW-2, with dimensions of 20 ×
41 × 3 mm. The primary component is a CC2650 SoC

Figure 6. The enclosure of SPW-2.

which incorporates an ARM Cortex M3 processor, 30KB
of RAM, 128KB of non-volatile flash memory, and a
2.4 GHz radio. The CC2650 offers more energy-efficient
wireless connectivity, making SPW-2 more energy-
efficient than its predecessor. In addition, CC2650 is
more versatile as it is the first off-the-shelf radio that
supports both BLE and IEEE 802.15.4 [1], the physical
and link layer of 6LoWPAN, Zigbee [34] and Thread
[24]. For a comprehensive comparison of BLE and IEEE
802.15.4, we refer the reader to the literature [20][12].

Similarly to SPW-1, SPW-2 employs two ADXL362
accelerometers. With SPW-1, we demonstrated the
practical improvements in energy consumption of
using a DCDC converter, instead of a linear voltage
regulator [9]. Yet, the output voltage of the switching
regulator has a 50 mV periodic fluctuation, which
is introducing noise in the measurements of the
ADXL362 accelerometers. SPW-2 mitigates this issue by
incorporating two voltage regulators. A low-noise linear
voltage regulator (TPS78318) provides the required
1.8V to the accelerometers, whilst a high-efficiency
DCDC converter (TPS62746) powers the remaining
board. Their combination improves the noise levels of
the experiments at the cost of only a minor increase
of the power consumption of the accelerometers (see
Section 4).

Instead of a 5V input battery charger, SPW-2 employs
the BQ51050B, a Qi-compliant [14] wireless power
receiver and battery charger, that enables an inductive
short-range wireless charging solution for 3.7V Li-Po
batteries. The circuit is matched to a 7.5 µH low-profile
(22 × 15 mm) Qi-compliant wireless power receiver coil
(WE-WPCC). We opted for wireless charging and Li-
Po batteries as the primary power source of SPW-2 for
two reasons: it is a user-friendly means of replenishing
the battery, and it enables the manufacturing of low-
cost waterproof enclosures for the wearable sensor. In
particular, SPW-2 is designed to fit a 100 mAh Li-Po
(34 × 13 × 2.5 mm). This results to an overall thickness

4
EAI Endorsed Transactions on Pervasive 

Health and Technology
 07 2017 - 09 2017 | Volume 3 | Issue 12 | e1



Designing Wearable Sensing Platforms for Healthcare in a Residential Environment

Table 1. Summary of Features

Features SPW-1 SPW-2
SoC nRF51822 CC2650
BLE Yes Yes
IEEE 802.15.4 No Yes
Processor Cortex M0 Cortex M3
RAM 32KB 30KB
Internal Flash 256KB 128KB
Coin Cell Support Yes Yes
Li-Po Support Yes Yes
Battery Voltage 2.7 − 6 V 2.15 − 5.5 V
Battery Charger Yes Yes
Wireless Power (Qi) No Yes
Energy Awareness Yes Yes
Charging Awareness No Yes
Accelerometer 2 2
Gyroscope No Yes
External Flash No 8MB
PCB Antenna Yes Yes
Max. Directivity 7 dBi 5.3 dBi
Max. Tx Power +4 dBm +5 dBm
External Antenna Yes No
LED 2 1
Button 1 1
GPIOs 7 5 (SPI)
Analogue GPIOs 2 3 (SPI)

of less than 7 mm, including the PCB, the battery and
the wireless power receiver coil (see the enclosure of
SPW-2 in Fig. 6).

In addition, SPW-2 incorporates a gyroscope
(LSM6DS0). Gyroscopes require several orders
of magnitude more power than the ADXL362
accelerometers. For this reason, the LSM6DS0 is
powered from a GPIO, allowing it to be completely
powered off when not needed. Furthermore, SPW-
2 incorporates an 8 MB peripheral flash memory
(MX25R6435F) that only consumes 200 nA in
shutdown mode. Similarly to SPW-1, SPW-2 employs
one button and one general purpose LED. Moreover,
external sensors can be connected using 5 exposed
GPIOs (all support digital inputs; 3 of them are shared
with the SPI bus, but also support analogue input).

With regard to RF, SPW-2 employs a meandered
inverted-F antenna printed on the FR4 substrate,
matched to the differential RF output of the CC2650
(shown in Fig. 5). The antenna has a maximum
directivity of 5.3 dBi. It should also be noted that
CC2650 allows a higher transmission power of +5 dBm
compared to the nRF51822 used by SPW-1.

Table 1 compares SPW-2 to SPW-1, summarising
their features.

4. Performance Evaluation
In comparison to the first generation of the SPHERE
wearable, SPW-2 has a smaller form factor, offering
several additional features including wireless charging,
a gyroscope, additional flash memory, and support
for IEEE 802.15.4 (as summarised in Table 1). In
this section, we evaluate the performance of SPW-2,
in terms of energy consumption (providing realistic
battery lifetime estimations), wireless coverage (using
measurements in both an anechoic chamber and a
residential environment), and its noise levels. Its
performance is benchmarked against its predecessor,
SPW-1, which was benchmarked against an off-the-shelf
board in our previous work [9]. Moreover, we evaluate
the performance of the wireless charger.

4.1. Power Profile and Battery Lifetime Estimations
In this section, we compare the energy consumption
of SPW-1 and SPW-2, providing realistic estimations
on their battery life. For both devices, we calculate
the power profile by measuring the current through a
10 Ω series resistor on the positive side of the power
source, as in [10]. Idle currents are measured with a
digital multimeter. The supply voltage is 3.7V, that is
the nominal voltage of Li-Po batteries.

SPW-1 yields a constant idle power consumption of
8.4 µW, which includes the idle consumption of the
nRF51822 in sleep mode with the low frequency oscil-
lator active, the idle consumption of the accelerometers
deactivated, and the quiescent consumption of all the
remaining components. Each accelerometer adds an
extra constant power consumption of approximately
3 µW when active. SPW-2 employs several more compo-
nents that are directly powered by the battery, including
the external flash memory, the Qi wireless charger and
the linear regulator. Because of the idle consumption
of those components, SPW-2 yields a slightly higher
overall idle consumption of 8.6 µW. In addition, SPW-
2 powers the accelerometers through a linear regulator
that generates less noise at the cost of less efficient
voltage regulation. As a result, each accelerometer adds
an extra constant power consumption of approximately
3.3 µW when active. The result of this design choice
on the noise levels is evaluated in Section 4.1. Overall,
the several additional features of SPW-2 contribute to a
slightly higher idle power consumption.

Next, we measure the energy required by the radio
for transmitting data. In particular, we compare SPW-
1 and SPW-2 in BLE mode that is the communication
protocol that is supported by both. We measure the
energy consumption of the transmission of a triple
BLE advertisement (i.e. 3 packets of 39 bytes) at all
different transmission power levels. An example of the
power profile of SPW-2 when transmitting a triple BLE
advertisement at 5 dBm is shown in Fig. 7. The energy
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BLE advertisement.

is then derived by calculating the integral of the power
profile. Fig. 8 shows the total energy consumed for
the transmission of a triple BLE advertisements at all
supported transmission power levels for SPW-1 and
SPW-2. SPW-2 performs significantly better, consuming
approximately 40% less energy than SPW-1 at 4 dBm,
and approximately 30% less energy at 0 dBm. In SPW-
1, it can be observed that reducing the transmission
power from the maximum level to −4 dBm is very
beneficial for the battery lifetime, as it reduces the
energy consumption for transmission by approximately
33%. In SPW-2 though, the transmission events are
very energy-efficient. As a result, a similar reduction is
less beneficial, as it reduces the energy consumption by
approximately 17%.

We next evaluate the power required for using
the processor. To measure the processing power, both
platforms were programmed to perform some dummy
processing cycles (integer multiplication and addition).
The processing power of SPW-1 is 9.5 mW, whilst the

processing power of SPW-2 is 8 mW. Transferring the
data from the FIFO buffer of ADXL362 to the memory
of the SoC takes approximately 0.2 ms (SPI clock
at 4 MHz). Hence, transferring a single acceleration
sample from the accelerometer to the SoC consumes
approximately 1.9 µJ for SPW-1, and approximately
1.6 µJ for SPW-2.

Let us now combine the consumption measurements
in an attempt to provide realistic battery lifetime esti-
mations, based on an indicative scenario. Such esti-
mations demonstrate how the lifetime of the battery
scales with the configuration of different parameters,
such as the number of sensors, the resolution, and
the sampling frequency. In particular, we consider a
scenario where the wearable device streams raw accel-
eration data using the undirected connectionless BLE
advertisements (similarly to infrastructure presented
in [10]). Although data reliability can be addressed at
the receiver [26], this communication approach does
not provide delivery guarantees and, thus, can be only
applied to applications that can tolerate data loss or
make use of specific missing data techniques [16]. We
also assume the following. We assume that repetition
coding on the three advertisements [10] is used to
provide resilience to interference. We further assume
the maximum BLE packet size of 39 bytes, which allows
for 24 bytes of payload: 18 bytes used for acceleration
data and 6 bytes are used for meta-data. This provides
necessary space for either 4 triaxial samples of 12-bit
resolution or 6 triaxial samples of 8-bit resolution. We
also assume that the SPI bus between the sensors and
the SoC is clocked at 4 MHz, the transmission power
is set to its maximum level, and that the system is
powered by a 100 mAh Li-Po battery (3.7V).

The battery lifetime estimations are based on the
following equation:

T =
EBAT

PI + PXL ×N + (ESP I + EBLE) × fs ×N
, (1)

where EBAT is the total energy of the battery; PI is the
idle power consumption; PXL is the power consumption
of a single accelerometer; ESP I is the energy consumed
for transferring a single acceleration sample over SPI
from the accelerometer to the SoC; EBLE is the energy
consumed for the transmission of a single sample over
BLE given by Fig. 8 and divided by the number of
samples inside a packet; fs is the sampling frequency;
and N is the number of accelerometers.

Table 2 shows the battery lifetime estimations, in
days, assuming different configuration scenarios. The
frequency column represents the sampling frequency
of the accelerometer(s) in Hz. Notice that the battery
lifetime ranges from few days to years, depending
on the configuration. Observe that at high sampling
frequencies the energy consumption is dominated by
frequent duty cycles. At low sampling frequencies,
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Table 2. Battery Lifetime Approximations in Days

Platform Freq.
1 Accel. 2 Accel.

8-bit 12-bit 8-bit 12-bit

SPW-1

0.1 990 951 742 699
1 530 435 322 254

10 93 67 48 34
20 49 34 24 17
50 20 14 10 7

100 10 7 5 3

SPW-2

0.1 962 940 718 693
1 623 539 396 330

10 137 102 72 53
20 73 53 37 27
50 30 22 15 11

100 15 11 7 5

instead, the idle consumption becomes increasingly
more important. In [19], the authors use accelerometers
with 8-bit resolution to perform activity classification.
Experimenting with different sampling frequencies, the
authors show that the performance of the classifier
reaches a high level at approximately 10 Hz with
only marginal improvement at higher frequencies.
In this configuration, the battery lifetime of SPW-
2 is approximated at 137 days. For comparison,
SPW-1 yields a battery lifetime of approximately 93
days in the same configuration (an improvement of
47%). Indeed, SPW-2 yields higher battery lifetime
than SPW-1 in most of the considered configuration
scenarios. Due to its higher idle power though, this
improvement decreases as the sampling frequency
decreases. Eventually, at very low frequencies (see f =
0.1 Hz), SPW-1 performs better than SPW-2.

Let us now investigate how the use of the
gyroscope affects the battery lifetime of SPW-2. With
the gyroscope and one accelerometer activated, the
battery lifetime estimations are based on the following
equation:

T =
EBAT

PI + PXL + PGY + (ESP I + EBLE) × fs × 2
, (2)

where EBAT is the total energy of the battery; PI is the
idle power consumption; PXL is the power consumption
of a single accelerometer; ESP I is the energy consumed
for transferring a single sample over SPI from the
sensor to the SoC; EBLE is the energy consumed for
the transmission of a single sample over BLE given by
Fig. 8 and divided by the number of samples inside
a packet; and fs is the sampling frequency. PGY is the
power consumption of the gyroscope, calculated from
Table 10 of [23]. The transmission power is fixed to
5 dBm and the resolution of the samples is set to 12
bits.

Table 3. SPW-2: Battery Lifetime Approximations in Days

Frequency Accel. Only Accel. & Gyro.
10 102 3.2
20 53 2.4
50 22 2.1

100 11 1.8

Table 3 shows the battery lifetime estimations, in
days, assuming different sampling frequencies for
two scenarios: only one ADXL362 accelerometer is
activated, and one ADXL362 accelerometer and the
gyroscope are activated. It can be observed that the use
of the gyroscope is responsible for a reduction of the
battery lifetime of SPW-2 by one order of magnitude.

4.2. Charging Performance
SPW-2 employs a Qi-compatible wireless battery
charger. To comply to the specifications of our target
Li-Po battery (100 mAh), we have limited the charging
current to 91 mA. Fig. 9 plots the charging the charging
power of a full charging cycle when SPW-2 is in contact
with a Qi-compatible off-the-shelf charging station.
It can be observed that a full charging cycle takes
approximately 80 minutes, whilst the charging rate
decreases as the battery is reaching its full capacity.
Fig. 10 shows the battery’s state of charge as a function
of time. The battery requires 63 minutes of charging to
reach 90% of its full capacity.

In the next experiment, we explore the dependency
of the maximum charging power to the distance of
separation between the wearable and the charging
station. The blue bars in Fig. 11 show the charging
power at various distances when we do not limit the
charging current. The horizontal line indicates the
maximum charging power supported by our target
battery (i.e. 0.37 W). It can be seen that the wireless
charging system can support the maximum charging
power of the battery for up to approximately 8 mm
of separation between the wearable sensor and the
charging station. For reference, when SPW-2 is inside
its enclosure, shown in Fig. 6, its separation to charging
station is 2 mm, including the strap.

4.3. Noise Levels
The offset of the acceleration measurements produced
by the ADXL362 depends on its supply voltage.
Therefore, the less noisy is voltage regulator, the
less noisy are the data produced. SPW-1 powers the
accelerometers through a DCDC high-efficiency voltage
regulator, which is responsible for a 50 mV fluctuation
on the power supply of the accelerometers. SPW-2
powers the accelerometers through a less efficient, yet
less noisy linear regulator. In Section 4.1, we showed

7 EAI Endorsed Transactions on Pervasive 
Health and Technology

 07 2017 - 09 2017 | Volume 3 | Issue 12 | e1



Xenofon Fafoutis et al.

Time (m)
0 20 40 60 80

Po
w

er
 (

m
W

)

0

100

200

300

400

Figure 9. Charging power of a full charging cycle.
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Figure 10. State of charge as a percentage of the battery
capacity over the charging time.
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Figure 11. Charging power for various separation between the
SPW-2 and the charging coil. The horizontal line indicates the
maximum charging power supported by the employed battery.

how this approach affects the idle power of SPW-2. In
this section, we quantify the benefits of this approach
on the noise levels.

To this end, we let SPW-1 and SPW-2 immobile
for 10 minutes, whilst collecting the acceleration
measurements that they produce. Fig. 12 plots the
histograms of the difference of each measurement from
the mean value for each axis (SPW-1 is shown on top
and SPW-2 is shown below). The standard deviation of
the samples for SPW-1 are: 6 mg for the x-axis, 7.2 mg
for the y-axis, and 6.9 mg for the z-axis. In contrast,
the standard deviation of the samples for SPW-2 are:
4.6 mg for the x-axis, 5.1 mg for the y-axis, and 5.7 mg
for the z-axis. The results demonstrate a substantial
improvement in the noise levels.

4.4. Wireless Performance
In comparison to SPW-1, the 2.4 GHz antenna of
SPW-2 has a smaller form factor; yet, it is better
isolated from the other components. The former
has a negative effect on its wireless performance,
whereas the latter has a positive effect. In this section,
we evaluate SPW-2’s wireless performance. First, we
benchmark SPW-2 against SPW-1 in an anechoic
chamber, i.e. a controlled interference-free environment
that eliminates the multipath components of the
wireless signal. The experiments are constructed as
follows. In one side of the room, we place the wearable
sensor (SPW-1 and SPW-2). At the other side of the
room, at a distance of 4.4 m, we place a receiver unit
with two orthogonally polarised dipole antennas. The
receiver unit is set in BLE scanner mode, in which it
operates as a receiver, hopping among channels 37, 38,
and 39, and logs the RSSI of all the received packets. In
both experiments, the position of the receiver was fixed
while two motors rotated the wearable device through
all angles in 3D space.

Fig. 13 plots the CDF (cumulative distributed
function) of the RSSI of all the packets received
for SPW-1 and SPW-2. It can be observed that both
wearable sensors yield an equal 40-th percentile. This
indicates that they have identical wireless performance
in the worst case scenarios. In better links though, SPW-
2 demonstrates a marginally better performance - its
80-th percentile is approximately 1 dB higher.

We, next, evaluate the wireless performance of SPW-
2 in a typical residential environment in the city of
Bristol, UK. In each one of two adjacent rooms, we
deployed a receiver unit identical to the ones used in
the previous experiment, as shown in Fig. 14. SPW-
2 was mounted on the wrist of a human, who was
performing random walks and random activities within
the room for approximately 30 minutes (room size:
3 × 3 m). Thus, the measurements capture the effect of
body shadowing and multipath propagation in a wide
variety of situations. Fig. 15 shows the CDF of the
RSSI of all the received packets, as measured from the
receivers located in the same room and the adjacent
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Figure 12. Noise levels of SPW-1 and SPW-2.
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Figure 13. Comparison of the wireless performance of SPW-1
and SPW-2 in the anechoic chamber.

room respectively. At the maximum transmission power
setting, observe that in the case of the same room, the
RSSI ranges from −90 dBm to −39 dBm, whilst the
median is at −62 dBm. In the adjacent room, the RSSI
ranges from −100 dBm to −55 dBm, whilst the median
is at −76 dBm. Our previous measurements indicate
that the packet error probability threshold of 1% is
at −93 dBm when CC2650 is in BLE mode [12]. As a
result, SPW-2 can fully cover a single room with less
than 1% probability of error, as well as most of the
cases of the adjacent room. It is approximated that one

BLE receiver per two rooms is required for full-house
coverage. A more comprehensive study on providing
full-house wireless coverage for wearable sensors in a
residential environment like the SPHERE house can be
found in [2].

5. Conclusion
This work is focused on the system-level challenges
of designing wearable sensors for pervasive health,
presenting SPW-2, our wearable activity sensing
platform. This paper extends our previous work on
SPW-1 [9], building upon the experience of using SPW-
1 in experiments outside of the laboratory.

SPW-2 is based on two accelerometers for activity
sensing and either BLE or IEEE 802.15.4 for wireless
communication. Aimed for long-term activity moni-
toring, SPW-2 is a lightweight wearable sensor that
decreases the dependency on the user for maintenance.
In typical residential healthcare scenario, such as the
sensing system presented in [10], SPW-2 can yield a
battery lifetime of several months. Indeed, as shown
in this paper, the battery lifetime of wearable sen-
sors depends a lot on the configuration (resolution,
sampling frequency) of their sensors, ranging from
days to years. Indicatively, at a sampling frequency of
10 Hz and 8-bit resolution (a configuration used in
[19]), the estimated battery lifetime of SPW-2 is 137
days, enabling long-term monitoring applications in
scenarios that require low maintenance (e.g. monitoring
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Figure 14. The floor plan of the SPHERE house. Two receiver
units are deployed in the lounge and the bedroom. SPW-2 is
mounted on the wrist of a user who is performing random walks
and activities in the lounge.

patients that suffer from conditions that prevent them
from regularly maintaining their wearable sensors).

With respect to its predecessor, SPW-2 offers a variety
of new features that include: wireless charging, an
optional gyroscope, an external flash memory, and
support for IEEE 802.15.4 that makes it compatible
with additional protocol stacks (e.g. Zigbee and
Thread). In addition, SPW-2 is more energy-efficient,
produces data of higher fidelity, and offers a similar
wireless range despite its smaller form factor.

SPW-2 will be part of the SPHERE sensing platform
[31] that will be deployed in the houses of 100
volunteers in the city of Bristol, UK, in 2017. In these
deployments, each house resident will wear SPW-2 for a
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Figure 15. Wireless performance of SPW-2 in the a residential
environment.

year, and the data will be published for further research
in digital health.
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