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Exact Vlasov-Maxwell equilibria for asymmetric current sheets
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1Solar and Magnetospheric Theory Group, School of Mathematics and Statistics, University of St Andrews,
Saint Andrews, UK, 2Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading,
Reading, UK, 3NASA-Goddard Space Flight Center, Greenbelt, Maryland, USA

Abstract The NASA Magnetospheric Multiscale mission has made in situ diffusion region and
kinetic-scale resolution measurements of asymmetric magnetic reconnection for the first time, in the
Earth’s magnetopause. The principal theoretical tool currently used to model collisionless asymmetric
reconnection is particle-in-cell simulations. Many particle-in-cell simulations of asymmetric collisionless
reconnection start from an asymmetric Harris-type magnetic field but with distribution functions that
are not exact equilibrium solutions of the Vlasov equation. We present new and exact equilibrium solutions
of the Vlasov-Maxwell system that are self-consistent with one-dimensional asymmetric current sheets,
with an asymmetric Harris-type magnetic field profile, plus a constant nonzero guide field. The distribution
functions can be represented as a combination of four shifted Maxwellian distribution functions. This
equilibrium describes a magnetic field configuration with more freedom than the previously known
exact solution and has different bulk flow properties.

Plain Language Summary Magnetic reconnection is a fundamental phenomenon in space
science and is currently a subject of intense study. During a reconnection event, stored energy that had
been bound up in stressed electromagnetic fields is released in the form of heat and the kinetic energy of
particles. The NASA MMS mission is currently making measurements of these phenomena in the Earth’s
Magnetosphere, with unprecedented levels of accuracy and resolution. Our work presents a theoretical
model of a structure in space known as an asymmetric current sheet such as the MMS mission encounters
during a reconnection event. The model can be implemented into computer simulations, with which to
compare to the results from MMS satellite data. This will help us understand the fundamental physics of
asymmetric magnetic reconnection.

1. Introduction

The formation of current sheets is ubiquitous in plasmas. These current sheets form between plasmas of dif-
ferent origins that encounter each other, such as at Earth’s magnetopause between the magnetosheath and
magnetospheric plasmas [Dungey, 1961; Phan and Paschmann, 1996]; or they develop spontaneously in mag-
netic fields that are subjected to random external drivings [Parker, 1994], such as in the solar corona region.
Under most circumstances, the plasma conditions on either side of the current sheet can be different, e.g.,
the magnetic field strength and orientation. Such current sheets are dubbed asymmetric. Asymmetric current
sheets are also observed at Earth’s magnetotail [Øieroset et al., 2004], in the solar wind [Gosling et al., 2006],
between solar flux tubes [Linton, 2006; Murphy et al., 2012; Zhu et al., 2015], in turbulent plasmas [Servidio et al.,
2009; Karimabadi et al., 2013], and inside tokamaks [Kadomtsev, 1975].

As per Poynting’s theorem [Poynting, 1884; Birn and Hesse, 2010], these intense current sheets are ideal loca-
tions for magnetic energy conversion and dissipation [Zenitani et al., 2011]. The dominant mechanisms that
release the free energy include magnetic reconnection, and various plasma instabilities. The asymmetric
feature has now been included in modeling the reconnection rate [Cassak and Shay, 2007], the development
of the lower hybrid instability [Roytershteyn et al., 2012] and the suppression of reconnection at Earth’s mag-
netopause [Swisdak et al., 2003; Phan et al., 2013; Trenchi et al., 2015; Liu and Hesse, 2016]. The physics in the
linear stage could affect the dynamical evolution of the current sheets [Dargent et al., 2016]. Thus, developing
an exact Vlasov equilibrium for the current sheet is important, but it is challenging. The well-known solution
of the symmetric Harris sheet [Harris, 1962] has been extended to the relativistic regime [Hoh, 1966],
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Figure 1. Normalized magnetic field B̃x , current density j̃y , and scalar
pressure p̃ for Parameter Set One.

the Kappa distribution [Fu and Hau, 2005],
and later the force-free limit [Harrison
and Neukirch, 2009a; Wilson and Neukirch,
2011; Stark and Neukirch, 2012; Abraham-
Shrauner, 2013; Allanson et al., 2015;
Kolotkov et al., 2015; Allanson et al., 2016].
In this letter, we present a new exact
Vlasov-Maxwell equilibrium solution for
asymmetric current sheets.

The intention of the exact solution that
we present in this paper is to represent
a step forward in the analytical modeling
of asymmetric Vlasov-Maxwell equilibria,
which is of particular relevance to particle-
in-cell (PIC) simulations and analysis using
kinetic theory. Inevitably, working within
the confines of an exact model does imply
that we cannot accurately represent all
desired features of the magnetopause
current sheet system, and some of these
restrictions will be discussed.

1.1. The Current Sheet Equilibrium
The specific magnetic field profile that we consider is a one-dimensional (1D) current sheet, composed of an
‘asymmetric Harris sheet’ with a constant guide field, such as that first used in analytical study of the tearing
mode at the dayside Magnetopause in Quest and Coroniti [1981]. In mks units and (x̂, ŷ, ẑ) ∼ (L̂, M̂, N̂) coordi-
nates [e.g., see Hapgood, 1992], the vector potential, magnetic field and current density for the ‘asymmetric
Harris sheet plus guide’ (AH+G) model can be written

A(z̃) = B0L( C3z̃, −C1z̃ − C2 ln cosh z̃, 0),
∇ × A = B(z̃) = B0(C1 + C2tanhz̃, C3, 0), (1)

1
𝜇0

∇ × B = j(z̃) =
B0

𝜇0L
( 0, C2sech2z̃, 0), (2)

respectively, with 𝜇0 the magnetic permeability in vacuo; C1,C2, and C3 ≠ 0 dimensionless constants; and B0

and L dimensional constants that normalize the vector potential (A = B0LÃ), magnetic field (B = B0B̃), current
density (j= j0 j̃), and z (z=Lz̃), with j0 =B0∕(𝜇0L).

The fluid equilibrium for the AH+G current sheet is maintained by the gradient of a scalar pressure, p = p(z),
according to ∇p= j × B and d∕dz[p + B2∕(2𝜇0)]=0. The scalar pressure in force balance with the AH+G field
is given by

p(z̃) = PT −
B2

0

2𝜇0

(
C2

1 + 2C1C2 tanh z̃ + C2
2 tanh2 z̃ + C2

3

)
, (3)

for PT the total pressure (magnetic plus thermal), and p(z)> 0 for C2
1 + 2|C1C2|+ C2

2 + C2
3 <2𝜇0PT∕B2

0. Example
profiles of B̃x , j̃y , and p̃(z̃)=p∕PT are plotted in Figure 1 for parameter values C1 =0.5, C2 =−1.35, C3 ≈−0.42,
and PT ≈ 3.92B2

0∕(2𝜇0), and hereafter referred to as Parameter Set One. For Parameter Set One, the left- and
right-hand sides of the plot could represent the magnetosphere and magnetosheath, respectively, while the
central current sheet is in the magnetopause (see Figure 2 for a representative diagram of the equilibrium con-
figuration). Parameter Set One corresponds to magnetic field asymmetry, total magnetic shear, and number
density/scalar pressure asymmetries of

Bratio =
|Bsphere||Bsheath| = 2, 𝜙B,shear = cos−1

(
b̂sphere ⋅ b̂sheath

)
≈ 140∘

nratio =
nsheath

nsphere
= pratio =

psheath

psphere
≈ 9.50,
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Figure 2. A representative diagram of the equilibrium magnetic
field, for C1 + C2 < 0, C1 − C2 > 0 and C3 < 0.

with b̂ the magnetic field unit vector, the
sheath/sphere subscripts denoting z=∞,−∞,
respectively. These asymmetries show posi-
tive similarities with certain magnetopause
properties, given typical magnetopause con-
ditions [e.g., see Burch et al., 2016; Hesse et al.,
2016]. We stress that these asymmetries relate
to a particular selection of parameters, which
are chosen to demonstrate an example of the
types of asymmetric conditions that the dis-
tribution function (DF) can support.

The ratio of the number densities was derived using a relation, p(z̃)=Cn(z̃), for C a constant. This “fluid” relation
is valid even for the Vlasov model that we shall derive, but this does not mean that the “kinetic temperature” is
constant and merits the following discussion. The macroscopic force balance self-consistent with a quasineu-
tral Vlasov equilibrium is maintained by the divergence of a rank-2 pressure tensor, Pij = Pij(Ax(z),Ay(z))
[e.g., see Channell, 1976; Mynick et al., 1979; Schindler, 2007], according to ∇ ⋅ P = j × B. Hence, p = nkBT
is in principle an approximation to the kinetic physics, with the pressure and temperature properly defined
by rank-2 pressure tensors. However, in our geometry, the scalar pressure that maintains fluid equilibrium is
identified with the pressure tensor component that is self-consistent with a kinetic equilibrium, according to
p=Pzz [e.g., see Harrison and Neukirch, 2009a], giving

d
dz

(
Pzz +

B2

2𝜇0

)
= 0. (4)

Note that Pzz is not the only nonzero component of Pij , but it is the only component that plays a role in the
force balance of the equilibrium. It can be shown [Channell, 1976] that for 1D Vlasov-Maxwell equilibria like
that considered in this paper, p = Pzz = Cn holds, and so our expression for nratio is correct for both the fluid
and kinetic approaches. In section 2.2 we shall use other components of Pij to define the kinetic temperature,
which is asymmetric, as plotted in Figure 5.

The AH+G magnetic field is very similar to a magnetic field introduced in the Appendix of Alpers [1969], in
a rotated coordinate system: the AH+G field defined in equation (1) reproduces the “Alpers magnetic field”
under a rotation tan 𝜃 = C1∕C3. However, the Alpers magnetic field has one fewer degree of freedom (i.e., an
extra constraint on C1,C2, and C3).

1.2. Nonequilibrium Initial Conditions for PIC Simulations
In the effort to model asymmetric magnetopause reconnection, fields such as the Alpers and AH+G models,
and variations that could involve a “double” current sheet structure and/or no guide field have been used in
PIC simulations in, e.g., Swisdak et al. [2003], Pritchett [2008], Huang et al. [2008], Malakit et al. [2010], Wang et al.
[2013], Aunai et al. [2013], Hesse et al. [2013], Hesse et al. [2014], Dargent et al. [2016], and Liu and Hesse [2016].
All of these studies except that of Dargent et al. [2016] have used “flow-shifted” Maxwellian DFs as initial
conditions

fMaxw,s(z, v) = n(z)(√
2𝜋vth,s

)3
exp

[(
v − Vs(z)

)2

2v2
th,s

]
, (5)

with vth,s a characteristic value of the thermal velocity of species s, Vs the bulk velocity of species s, and n(z) the
number density. These DFs can reproduce the same moments (n(z),Vs(z), p(z)) necessary for a quasineutral
fluid equilibrium.

Despite the fact that the DF, fMaxw,s, in equation (5) reproduces the desired moments, it is not an exact solu-
tion of the Vlasov equation and hence does not describe a kinetic equilibrium. As explained in Aunai et al.
[2013] on the subject of particle-in-cell (PIC) simulations, the fluid equilibrium characterized by a flow-shifted
Maxwellian can evolve to a quasi steady state “with an internal structure very different from the prescribed
one,” and as demonstrated in Pritchett [2008], undesired electric fields, Ez , “coherent bulk oscillations” and
other perturbations may form.

ALLANSON ET AL. EXACT ASYMMETRIC VLASOV EQUILIBRIA 3
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The main aim of this paper is to calculate exact solutions of the equilibrium Vlasov-Mawell equations con-
sistent with the AH+G magnetic field in equation (1), in order to circumvent the need to use nonequilibrium
kinetic DFs of the form in equation (5) as initial conditions in collisionless PIC simulations of asymmetric
reconnection.

1.3. Two Prior Vlasov-Maxwell Equilibria for Asymmetric Current Sheets
In the Appendix to Alpers [1969], a DF is derived that is consistent with the Alpers magnetic field (as described
in section 1.1). As is necessary for consistency between the microscopic and macroscopic descriptions, the
Alpers DF is self-consistent with the prescribed magnetic field; i.e., the sum of the individual species (kinetic)
currents are equal to the current prescribed by Ampère’s law, i.e.,

∑
s js = j = ∇ × B∕𝜇0. However, the js are

nonzero at z = +∞ (in our coordinates), i.e., the magnetosheath side. In contrast, equation (2) shows that
the macroscopic current densities vanish as z → ±∞; i.e., the Alpers DF gives species currents js that are not
proportional to the macroscopic current j. That is to say that there is finite ion and electron mass flow at infinity.
This could be appropriate if one wishes to consider a larger scale/global magnetopause model that includes
flows at the boundary corresponding to the magnetosheath, for example, but it might not be appropriate if
one wishes to consider the domain as a “patch,” representing a current sheet structure locally (while formally
speaking, the spatial domain in our model is infinite; this is not necessarily intended to reproduce the entire
spatial domain of the solar wind-magnetosheath-magnetopause-magnetosphere system). The nonvanishing
of the individual species bulk flows at the boundaries in the Alpers equilibrium are also inconsistent with
most of the initial conditions of typical PIC simulations of asymmetric reconnection, viz., in the absence of an
exact Vlasov equilibrium the simulations are typically initiated with a shifted Maxwellian consistent with zero
species flow at the boundary. The DF that we derive shall be consistent macroscopically with an equilibrium
for which there are no mass flows at infinity and is self-consistent with a magnetic field that has more degrees
of freedom than that in Alpers [1969].

The second relevant work is that of Belmont et al. [2012], in which “semianalytic” Vlasov-Maxwell equilibria are
found numerically. The magnetic field in that paper is actually a symmetric Harris sheet without guide field, i.e.,
C1 =C3 =0, but with asymmetric profiles of the density, pressure, and temperature. The DFs calculated therein
are not found using a typical constants of motion approach as is to be used in this paper. Instead, they are
found by considering ion DFs, such that when expressed in terms of the motion invariants, are double-valued
functions. The “semianalytic” DF that is derived by Belmont et al. [2012] has been used as the initial condition
for PIC simulations in Dargent et al. [2016]. The model was generalized by Dorville et al. [2015] to include a
magnetic field profile similar to the force-free Harris sheet [Harrison and Neukirch, 2009a], and also an electric
field profile.

2. New Vlasov-Maxwell Equilibrium for Asymmetric Current Sheets
2.1. Channell’s Method
The AH+G equilibrium defined by equations (1) and (4) is translationally invariant in the xy plane, giving rise
to two conserved canonical momenta for particles of species s, pxs =msvx +qsAx , pys =msvy +qsAy . Because we
are considering an equilibrium, the particle Hamiltonian of species s is also conserved, Hs =msv2∕2+qs𝜙, for𝜙
the electrostatic potential. Jeans’ theorem implies that one can always solve the Vlasov equation by choosing
fs to be a function of known constants of motion [Jeans, 1915; Lynden-Bell, 1962], and the solution will be
physically meaningful provided fs ≥ 0 and velocity-space moments of all order exist [Schindler, 2007]. Using
this fact, and assumptions common to much theoretical work on 1D translationally invariant Vlasov-Maxwell
equilibria [e.g., see Alpers, 1969; Channell, 1976; Schindler, 2007; Harrison and Neukirch, 2009a; Wilson and
Neukirch, 2011; Abraham-Shrauner, 2013; Kolotkov et al., 2015; Allanson et al., 2015, 2016], we assume 𝜙 = 0
(strict neutrality) and that

fs(Hs, pxs, pys) =
n0s

(
√

2𝜋vth,s)3
e−𝛽sHs gs(pxs, pys), (6)

for n0s a constant with dimensions of number density, 𝛽s =1∕(msv2
th,s), ms the mass and gs an unknown func-

tion of the canonical momenta for particle species s, which is yet to be determined. Calculating self-consistent
gs functions (and hence Vlasov equilibrium DFs) for a given macroscopic equilibrium is an example of the
“inverse problem in collisionless equilibria” [e.g., see Channell, 1976; Allanson et al., 2016], for which there is
not necessarily a guaranteed exact solution. The method that we shall use is known as “Channell’s method”
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[Channell, 1976] which is used in many of the works listed above and has been somewhat generalized in
Mottez [2003]. We note that a treatment of this inverse problem is given in Alpers [1969] that is very similar to
that of Channell. The major benefit of using Channell’s method for this problem is that we obtain an exact solu-
tion that is readily implementable, but one downside is that the asymmetry of the number density is directly
tied to that of the magnetic field; i.e., there can be no asymmetry in the density profile when C1 = 0. This is in
contrast to the numerical methods used by Belmont et al. [2012] and Dorville et al. [2015].

The method rests on calculating a functional form of Pzz(Ax ,Ay) that “reproduces” the scalar pressure of
equation (3) as a function of z, i.e., Pzz(Ax ,Ay)(z) = p(z), but also that satisfies 𝜕Pzz∕𝜕A = j(z) (for fuller details
on the background theory of this first and crucial step, see, e.g., Mynick et al. [1979], Schindler [2007], and
Harrison and Neukirch [2009b]). There could in principle be infinitely many functions Pzz(Ax ,Ay) that satisfy
both the criteria necessary for Channell’s method; however, we shall choose a specific Pzz(Ax ,Ay) which allows
us to make analytical progress.

Similar to the procedure in Alpers [1969], by substituting linear combinations of two distinct representations
of tanh z̃(Ax ,Ay),

tanh z̃ = 1 − e−z̃sechz̃ = 1 − e
C1−C2
C2 C3

Ãx e
1

C2
Ãy
,

tanh z̃ =
√

1 − sech2z̃ =
√

1 − e
2C1

C2 C3
Ãx e

2
C2

Ãy
,

into equation (3), we arrive at

Pzz(Ãx , Ãy) = PT −
B2

0

2𝜇0

{
C2

1 + C2
3 + 2C1C2

(
1 − e

C1−C2
C2 C3

Ãx e
1

C2
Ãy

)
+C2

2

[
k

(
1 − e

C1−C2
C2 C3

Ãx e
1

C2
Ãy

)2

+ (1 − k)
(

1 − e
2C1

C2 C3
Ãx e

2
C2

Ãy

)]}
,

(7)

for k a constant. This form of Pzz satisfies 𝜕Pzz∕𝜕Ax(z̃) = 0 and 𝜕Pzz∕𝜕Ay(z̃) = B0C2∕(𝜇0L)sech2z̃ when k = C1∕C2

and is positive over all (Ax ,Ay) when C1C2 < 0 and (C1 − C2)2 + C2
3 < 2𝜇0PT∕B2

0.

Next we use the assumed form of the DF in equation (6) in the definition of the pressure tensor component Pzz

as the second-order velocity moment of the DF, Pzz =
∑

s ms ∫ v2
z fsd3v. Note that the pressure tensor should be

written as the second-order moment of fs by w2
s =

(
v − Vs

)2
, but the DF (equation (6)) is an even function of

vz , which implies that Vzs = 0. When the dependence of fs on the Hamiltonian, Hs, is given by exp(−𝛽sHs) as it is
here, the integral equation for Pzz can be interpreted [Allanson et al., 2016] as a Weierstrass transform [e.g., see
Bilodeau, 1962] and can be amenable to solution by Fourier transforms [e.g., see Harrison and Neukirch, 2009a;
Abraham-Shrauner, 2013], or expansion of gs in Hermite polynomials [e.g., see Abraham-Shrauner, 1968;
Hewett et al., 1976; Channell, 1976; Suzuki and Shigeyama, 2008; Allanson et al., 2015, 2016]. However, using
standard integral formulae and/or the fact that exponential functions are eigenfunctions of the Weierstrass
transform [e.g. ,see Wolf , 1977], we pose the following DF as a solution:

fs

(
Hs, pxs, pys

)
=

n0s(√
2𝜋vth,s

)3
e−𝛽sHs

×
(

a0se𝛽s(uxspxs+uyspys) + a1se2𝛽s(uxspxs+uyspys) + a2se𝛽s(vxspxs+vyspys) + bs

)
,

(8)

for a0s, a1s, a2s, bs, uxs, uys, vxs, and vys as yet arbitrary constants, with the “a, b” constants dimensionless, and
the “u, v” constants the bulk flows of individual particle populations [e.g., see Davidson, 2001; Schindler, 2007].

For the full details describing how the microscopic and macroscopic parameters of the equilibrium are related,
and how they are fixed, see Appendix A. In particular, note that bs must satisfy a certain bound in order to
guarantee nonnegativity of the DF.

2.2. The Distribution Function is a Sum of Four Maxwellians
The equilibrium DF in equation (8) is written as a function of the constants of motion (Hs, pxs, pys), which
was suitable for constructing an exact equilibrium solution to the Vlasov equation. However, we can write fs

ALLANSON ET AL. EXACT ASYMMETRIC VLASOV EQUILIBRIA 5
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explicitly as a function over phase space (z, v), in a form similar to that in equation (5). The crucial mathematical
step is to complete the square in the exponent of equation (8) [e.g., see Schindler, 2007], e.g.,

e−𝛽s(Hs−uxspxs−uyspys) = eqs𝛽s(uxsAx+uysAy)e
(

u2
xs+u2

ys

)/(
2v2

th,s

)

× e
−
[
(vx−uxs)2+(vy−uys)2+v2

z

]/(
2v2

th,s

)
.

In this manner the DF can be rewritten as

fs(z, v) = 1(√
2𝜋vth,s

)3

⎡⎢⎢⎣0s(z)e
− (v−V0s)2

2v2
th,s +1s(z)e

− (v−V1s)2

2v2
th,s +2s(z)e

− (v−V2s )2

2v2
th,s + be

− v2

2v2
th,s

⎤⎥⎥⎦ , (9)

for the population density and bulk flow variables (“ ,V”) defined by

0s(z) = a0eqs𝛽sA⋅V0s = a0e−z̃sechz̃,V0s = (uxs, uys, 0), (10)

1s(z) = a1eqs𝛽sA⋅V1s = a1e−2z̃sech2z̃,V1s = (2uxs, 2uys, 0), (11)

2s(z) = a2eqs𝛽sA⋅V2s = a2sech2z̃,V2s = (vxs, vys, 0), (12)

and with a0, a1, a2, and b defined in Appendix A. It is apparent from consideration of the right-hand side of
the definitions of the population densities, that N0s,N1s, and N2s are in fact independent of species. Note that
0s → 2a0 and 1s → 4a1 as z̃ → −∞; 0s → 0 and 1s → 0 as z̃ → ∞; and 2s → 0 as z̃ → ±∞.

The representation of fs in equation (9) has the advantages of having a clear physical interpretation, and of
being in a form readily implemented into PIC simulations as initial conditions. Despite the fact that each term
of fs as written in equation (9) bears a strong resemblance to fMaxw,s as defined by equation (5), fs is an exact
Vlasov equilibrium DF, whereas fMaxw,s is not.

Since the DF is a sum of shifted Maxwellian functions, it is important to understand if, and when, it is pos-
sible for the DF to have multiple maxima in velocity space, and/or anisotropies, and how the velocity-space
structure of the DF depends on the asymmetry of the macroscopic AH+G current sheet equilibrium. A full
parameter and/or microstability study of the DF is beyond the scope of this paper. However, we show some
preliminary results with parameter values that are consistent with asymmetric conditions that could be rel-
evant to PIC modeling of the magnetopause. In Figure 3 we plot the ion DF in (ṽx , ṽy) space, for different z̃
values, and for two sets of parameters. The left-hand column is self-consistent with the macroscopic Parameter
Set One, whereas the right-hand column is self-consistent with the same magnetic field but a higher value
of PT ≈ 4.22B2

0∕(2𝜇0), such that nsheath∕nsphere= 5.4: now known as Parameter Set Two. In Figure 4 we plot
the electron DF for Parameter Set One (the electron plots for Parameter Set Two are qualitatively very similar).
In order to plot the DFs, we must choose values of the constant microscopic parameters that appear in
the model. In line with some magnetopause current sheet observations [e.g., Kaufmann and Konradi, 1973;
Berchem and Russell, 1982], and current PIC approaches [e.g., Hesse et al., 2013; Liu and Hesse, 2016], we set the
characteristic values of these (constant) microscopic parameters by

n0i = 1, 𝛿i =
mivth,i

eB0L
= 0.1, T0i∕T0e = 5, T̃0i + T̃0e = 1.5,

for 𝛿i the ratio of the ion thermal Larmor radius to the current sheet width, and T̃0s = kBT0s∕(B2
0∕(𝜇0min0i)), i.e.,

the characteristic temperatures
(

kBT0s = msv2
th,s

)
are normalized using the characteristic ion Alfvén velocity.

We also use a realistic mass ratio mi∕me = 1836. The actual values of the plasma magnetization, temperature,
and temperature ratios will of course be position dependent. Note that both the electron and ion DFs are fully
determined once the following parameters are given:

n0i, 𝛿i, T0i∕T0e, T̃0i + T̃0e, mi∕me, PT , C1, C2, C3,

and hence, the parameter space to investigate is nine dimensional (in principle one could specify a different
set of nine parameters, provided that they are independent).

ALLANSON ET AL. EXACT ASYMMETRIC VLASOV EQUILIBRIA 6
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Figure 3. Ion DFs plotted at z̃ = −3,−1.5, 0, 1.5, 3 and normalized by max(vx ,vy ) fi(z = 0). (left column) Self-consistent
with Parameter Set One, i.e., nsheath∕nsphere = 9.5. (right column) Self-consistent with Parameter Set Two, i.e.,
nsheath∕nsphere = 5.4.
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Figure 4. Electron DFs plotted at z̃ = −1.5, 0, 1.5 and normalized by max(vx ,vy ) fe(z = 0). Self-consistent with Parameter
Set One, i.e., nsheath∕nsphere = 9.5.

By contrasting Figures 3 and 4, we see immediately that is the ions that carry the “non-Maxwellian” features
(anisotropies and possibly multiple peaks) for these parameter values. The ion DFs relevant to Parameter Set
One seem to suggest that stronger macroscopic asymmetries across the current sheet can be self-consistent
with more strongly non-Maxwellian ion DFs. Whereas those relevant to Parameter Set Two demonstrate that it
is possible to construct DFs with single maxima in velocity space, while still maintaining significant asymme-
tries across the sheet. However, we note that we only present preliminary results here, and a more detailed
parameter study will be important to carry out. It may be the case that the ion DFs for Parameter Set One
are physically unrealistic equilibrium configurations, as they seem susceptible to velocity-space instabilities
[Gary, 2005] (although the magnitude of the secondary peaks at z̃ = −3 are less than 10% of the maximum at
z̃ = 0), whereas those in Parameter Set Two may be more realistic. It will be interesting to carry out analytical
and/or numerical stability studies in the future.

In Figure 5 we plot the ion and electron number densities: ns(z, v)=∫ fsd3v, bulk flows: Vs(z, v)=n−1
s ∫ vfsd3v,

and kinetic temperatures: Ts(z)=
(

3kBns

)−1 (Pxx + Pyy + Pzz), for Parameter Set One (the plots for Parameter Set
Two are qualitatively similar). The number densities are normalized by the n0s parameter; the x and y compo-
nents of the bulk flow are normalized by |Vx,0s + Vx,1s + Vx,2s|∕3 and |Vy,0s + Vy,1s + Vy,2s|∕3 respectively, and
the temperatures are normalized by the characteristic ion Alfvén velocity. These curves demonstrate that it
is possible for the DF to be self-consistent with strong density, bulk velocity, and kinetic temperature asym-
metries across the current sheet. We also see that while the DF is not only self-consistent with jx =0, it is also
consistent with Vxs = 0; i.e., the independent species bulk flows in the x direction are zero. Furthermore the
bulk flows in the y direction decay to zero far from the sheet, in contrast to the aforementioned solution put

Figure 5. The ion and electron number densities, bulk flows, and temperatures. The number densities, ns, are
normalized by the n0s parameter. The components of the bulk flows, Vs, are normalized by the magnitude of the
components of V0s + V1s + V2s∕3. The temperatures are normalized using the characteristic ion Alfvén velocity,
vA0 =B0∕

√
𝜇0min0i . Parameter values: Parameter Set One.
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forward by Alpers [1969]. Hence, our solution has bulk flow properties at the boundaries that are consistent
with those of the initial conditions of typical PIC simulations of asymmetric reconnection.

3. Discussion

We have presented new, exact and fully self-consistent equilibrium solutions of the Vlasov-Maxwell system
in one spatial dimension. Macroscopically, these solutions describe an “asymmetric Harris sheet” magnetic
field profile, with finite guide field, such as has often been used in studies of magnetopause current sheets.
The expression for the Vlasov equilibrium distribution function is elementary in form and is written as a sum
of four exponential functions of the constants of motion, which can be rewritten in (z, v) space as a weighted
sum of “shifted-Maxwellian” distribution functions. This form for the distribution function can be readily used
as initial conditions in particle-in-cell simulations and should be particularly suited to studying asymmetric
reconnection processes, with potential relevance to, e.g., Earth’s magnetopause. The DF is self-consistent with
asymmetric profiles of the magnetic field, kinetic temperature, number density, and dynamic pressure.

Setting up a current sheet that has an exact Vlasov equilibrium in numerical simulations could be helpful for
the study of the collisionless tearing instability, which could be important to understand the nature of intense
current sheets at the reconnection X line. Oblique tearing modes were recently argued to play a potential
role in determining the orientation of the three-dimensional reconnection X line in asymmetric geometry
[Liu et al., 2015] and in causing the bifurcated electron diffusion region in the symmetric geometry [Liu et al.,
2013]. The former study is especially crucial for predicting the location of magnetic reconnection at Earth’s
magnetopause under diverse solar wind conditions [Komar et al., 2015]. Such an equilibrium solution also
facilitates the study of tearing instabilities under the influence of cross-sheet gradients [Zakharov and Rogers,
1992; Kobayashi et al., 2014; Pueschel et al., 2015; Liu and Hesse, 2016], important to the onset and suppression
of sawtooth crashes in fusion devices.

It will be important in the future to further analyze the velocity-space structure of the DF derived in this paper,
how it depends on the microscopic and macroscopic parameters, and the degree of asymmetry across the cur-
rent sheet. Also, it will be interesting further work to investigate the practical improvement in a PIC simulation
of implementing the DF derived in this paper, as compared to the typical fluid-based equilibrium approach.

Appendix A: Equilibrium Parameters and Their Relationships

We now proceed with the necessary task of ensuring that ni(Ax ,Ay) = ne(Ax ,Ay) (for ns(Ax ,Ay) the number
density of species s) in order to be consistent with our assumption that 𝜙 = 0. The constants a0, a1, a2, and b
are defined by these neutrality relations, are found by calculating the zeroth order moment of the DF, and are
given by

a0 = n0sa0se
(

u2
xs+u2

ys

)/(
2v2

th,s

)
, a2 = n0sa2se

(
v2

xs+v2
ys

)/(
2v2

th,s

)
, (A1)

a1 = n0sa1se
2
(

u2
xs+u2

ys

)/
v2

th,s , b = n0sbs. (A2)

Note that equations (A1) and (A2) hold for both ions and electrons (s = i, e). We must also ensure that the DF in
equation (8) exactly reproduces the correct pressure tensor expression of equation (7). After some algebra, we
find the “microscopic-macroscopic” consistency relations by taking the v2

z moment of the DF, which complete
this final step of the method, and are given by

PT −
B2

0

2𝜇0

[
(C1 + C2)2 + C2

3

]
= b

𝛽e + 𝛽i

𝛽e𝛽i
,

C1 − C2

C2C3B0L
= e𝛽iuxi = −e𝛽euxe, (A3)

4C1C2

B2
0

2𝜇0
= a0

𝛽e + 𝛽i

𝛽e𝛽i
,

1
C2B0L

= e𝛽iuyi = −e𝛽euye, (A4)

− C1C2

B2
0

2𝜇0
= a1

𝛽e + 𝛽i

𝛽e𝛽i
,

2C1

C2C3B0L
= e𝛽ivxi = −e𝛽evxe, (A5)

C2(C2 − C1)
B2

0

2𝜇0
= a2

𝛽e + 𝛽i

𝛽e𝛽i
,

2
C2B0L

= e𝛽ivyi = −e𝛽evye. (A6)
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A1. Nonnegativity of the DF
Since we integrate fs over velocity space to calculate Pzz , it is clear that nonnegativity of Pzz does not imply
nonnegativity of fs. Furthermore, it is clear from equations (A1) and (A4) that C1C2 < 0 implies that a0s < 0 (as
well as a1s > 0, a2s > 0). By completing the square, the DF can be rewritten and we see that nonnegativity of
the DF is assured provided bs ≥ a2

0s∕(4a1s).
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