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Abstract

We present a model for generating probabilistic forecasts by combining kernel density esti-
mation (KDE) and quantile regression techniques, as part of the probabilistic load forecasting
track of the Global Energy Forecasting Competition 2014. The KDE method is initially im-
plemented with a time-decay parameter. We later improve this method by conditioning on
the temperature or the period of the week variables to provide more accurate forecasts. Sec-
ondly, we develop a simple but e�ective quantile regression forecast. The novel aspects of our
methodology are two-fold. First, we introduce symmetry into the time-decay parameter of the
kernel density estimation based forecast. Secondly we combine three probabilistic forecasts with
di�erent weights for di�erent periods of the month.

1 Introduction

In this paper we present our methodology used in a winning entry for the probabilistic load fore-
casting track of the Global Energy Forecasting Competition 2014 (GEFCom2014). The competition
consisted of twelve weekly tasks which require using historical data for the estimation of 99 quan-
tiles (0.01, 0.02, ..., 0.99) for each hour of the following month. Each forecast is evaluated using the
pinball function. For further details on the competition structure and the data the interested reader
should refer to the GEFCom2014 introduction paper [4]. In Section 2 we present a preliminary
analysis of the data that motivates the development of the main forecasting methods introduced
in Section 3. In Section 4 we give a short description of our submissions in chronological order to
explain the reasoning behind the chosen forecasts and the developments of the subsequent forecasts.
We present an overall view of the results and conclude in Section 5 with a discussion, lessons learned
and future work.

2 Preliminary Analysis

We start by performing a preliminary analysis to determine our initial forecast methods. We �rst
tested the competition's initial historical data set to con�rm that load and temperature are strongly
correlated, as shown in other studies [2], see also the GEFCom2014 introduction paper [4] for the
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time-series plots of the data. This motivates the development of our kernel density estimation
method conditional on the temperature (see Section 3.3). We also found that all the weather
stations were strongly correlated with each other and the load data. Hence as an initial estimate of
the temperature we simply took an average over all 25 stations.

The load data has strong daily, weekly and yearly seasonalities as well as trends [4]. A visual
analysis of the load data showed that certain hours of the day exhibited strong bi-annual seasonalities
(such as 11pm) whereas others did not (e.g. 3pm). This could be due to heating and cooling
appliances being employed through the seasons. This inspires our choice of biannual model in the
quantile regression based forecast (see Section 3.4). Consideration of the autocorrelation and partial
autocorrelation plots con�rmed the presence of the weekly and daily periodicities. Our forecasts
described in the following section are in�uenced with this periodicity in mind.

3 Methododology

In this section we present the main methods implemented for the competitive tasks of the compe-
tition.

3.1 Kernel Density Estimation (KDE)

Many of the methods we employ are non-parametric kernel density based estimates and similar to
those as presented in [5] for probabilistic wind forecasting and [1] for household-level probabilistic
load forecasting. This method is motivated by the strong weekly correlations in the data. A simple
kernel density estimate produces an estimate of the probability distribution function f(X) of the
load X (at a particular future time period) using past hourly observations {Xi} (assuming i = 1 is
beginning of historical load data: 1st Jan 2005.). It is given by

f(X) =
1

nhx

n∑
i=1

K

(
X −Xi

hx

)
, (3.1)

where hx is the load bandwidth. We use a Gaussian kernel function, K(•), for all our kernel based
forecast methods. Our �rst method is a KDE with a time decay parameter, 0 < λ ≤ 1. The role of
the decay parameter is to give higher weight to more recent observations. To forecast day D of the
week, D = 1, 2, . . . , 7, at hour h, h = 1, 2, . . . , 24, we applied a KDE on all historical observations
of the same day D and hour h. This method only considers observations belonging to the same
hourly period of the week, denoted by w, w = 1, . . . , 168, and we refer to it as KDE-W. This can
be expressed as

f(X) =
1

nhx

n∑
i=1

{imod s=w}

λα(i)∑n
i=1

{imod s=w}
λα(i)

K

(
X −Xi

hx

)
. (3.2)

The parameter s = 168 is the number of forecasting hours in a week and α(i) is a periodic function
given by 1

α(i) = min (|D − (D(i)− 1A(i))|, T (i)− |D −D(i)|) , (3.3)

1The careful reader should note that the formula (3.3) might need a further correction by one when D is in a leap
year. However this does not a�ect our results, since we did not forecast leap years. Additionally such an error would
have a negligible e�ect in the weight.
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where D(i) = 1, 2, . . . , T (i) is the day of the year (consisting of T (i) days) corresponding to the
historical data Xi and D is the day of the year corresponding to the forecasted day. To correct for
leap years we use an indicator function 1A(i) where A = {i|D(i) > 28 and T (i) = 366}. Expression
(3.3) is simply a periodic absolute value function with annual period, whose minimum values occur
annually on the same dates as the forecasted day.

This method is similar to the one presented in [1]. However the new feature is the half-yearly
symmetry of the time-decay exponential (3.3). Since there is an annual periodicity in the load we
incorporated it into the time-decay parameter such that observations during similar days of the year
in�uence the forecast more than other, less relevant observations. The decay parameter also helps
us to take into account the non-stationary behaviour of demand. This method performed better
compared to a similar KDE-W using only a simple monotonically decreasing time-decay parameter
across the year. The model parameters were generated using cross-validation on the month prior
to the forecasting month. To �nd the optimal bandwidth, hx, we used the fminbnd function from
the optimisation toolbox in Matlab. For the time-decay parameter λ we considered di�erent values
between 0.92 and 1 with 0.01 increments2.

The kernel density based estimate has been used as a benchmark in probabilistic forecast methods
applied to household level electricity demand. It serves as a useful starting point for our forecasts
[1]. The method has the advantage of being quicker to implement than more complicated kernel
based methods, such as the conditional kernel density estimate on independent parameters, which
we introduce in the next sections.

3.2 Conditional Kernel Density Estimate on Period of Week (CKD-W)

A KDE forecast conditional on the period of the week, denoted by w, w = 1, . . . , 168, (CKD-W) [1]
gives a higher weight to observations from similar hourly periods of the week and can be represented
as

f(X|w) =
n∑
i=1

λα(i)K((wi − w)/hw)∑n
i=1 λ

α(i)K((wi − w)/hw)
K

(
X −Xi

hx

)
(3.4)

where α(i) is de�ned in (3.3).
This method is similar to the one presented in [1]. However the new feature is the half-yearly

symmetric time-decay exponential (3.3) which is justi�ed by the yearly periodicity of the load as
explained in the previous section.

The validation process can be computationally very expensive, especially while searching for
multiple optimised parameters (here there are three parameters, the bandwidths for load and week
period variables, and the time decay). In particular, despite using the Matlab parallelisation toobox,
executing this method on our (conventional) machines3, required more than a day to complete,
which is not practical given the weekly constraints of the competition. In an attempt to reduce
the computational cost, we reduced the number of historical observation and the length of the
validation period. We only used observations starting from January of 2008 and we cross-validated
our parameters using only one week from the validation month4.

2The time-decay parameter must be in the interval (0, 1], the smaller the value the fewer historical observations
which have signi�cant in�uence on the �nal forecast. After testing over several tasks we found that the decay
parameter is bounded below by 0.92.

3All forecasts were executed on a machine with Intel Core i7-361QM Quad-Core Processor @ 2.30GHz and 16GB
of memory.

4Initially we used the �rst week, but later we used the last week from the validation month because it is closer to
the period to be forecasted. However the improvement was minor.
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For the optimisation of the bandwidths we used the fminsearch function (implementing a log
transformation to ensure that we only model for positive values) from the optimisation toolbox in
Matlab. For the time-decay parameter we looped over di�erent values of λ between 0.92 and 1 with
0.01 increments. At the �nal stages of the competition we used the fminsearchbnd function5 for
parameter optimisation, which improves both the computational time and the accuracy. We call
this implementation of the method CKD-W2, see also Section 4.

3.3 Conditional Kernel Density Estimate on Temperature Forecast (CKD-T)

Weather information is particularly useful for an accurate load forecast (among many references in
the literature see [5] in the context of CKD methods, and also a winning entry of GEFCom2012 [2]).
For this reason we implemented a KDE method conditional on the temperature (CKD-T). We take
the explanatory variable to be the mean hourly temperature T from the 25 weather substations.
The conditional probability density is given by

f(X|T ) =
∑
i∈A

K((Ti − T )/hT )∑
i∈AK((Ti − T )/hT )

K

(
X −Xi

hx

)
, (3.5)

where hT is the bandwidth of the temperature kernel and Ti is the temperature corresponding to
the same hour h and day d as the load Xi. The index subset A consists of indices at time h and
days d − 5, . . . , d, . . . , d + 5 of all previous years. The formula (3.5) does not include a time-decay
parameter since we assume the temperature is the main driver of seasonality. Thus we do not
include a decay parameter which would increase the computational expense for very little gain.
For parameter optimisation we used the fminsearch function, implementing a log transformation as
with the CKD-W forecast.

Since temperature forecasts are inaccurate beyond a few days this method was only implemented
for the �rst day of a task. As we will shortly describe in Section 3.5, the remaining days of a task are
forecasted using a weighted combination of CKD-W and a quantile forecast, introduced in Section
3.4.

3.3.1 Temperature Forecast

The CKD-T method requires a forecast of the mean temperature in order to create a load forecast.
We follow a simple autoregression forecast method, similar to that presented in [7]. The model was
chosen for its simplicity. In addition, temperature can change rapidly within a couple of days, and
without more data (such as wind speeds and direction), and the access to complicated numerical
weather prediction software we decided a simple model is appropriate for our uses. The model
consists of a trend, seasonalities (both diurnal and yearly) and lagged temperature variables. We
model the temperature Tj at timestep j as

Tj = β0 + β1j + Sdj + Saj +

25∑
k=1

αkTj−k. (3.6)

The diurnal seasonal terms are described by

Sdj =

P∑
p=1

(
γp sin

(
2πp

d(j)

24

)
+ δp cos

(
2πp

d(j)

24

))
, (3.7)

5http://www.mathworks.com/matlabcentral/fileexchange/8277-fminsearchbnd--fminsearchcon.
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where γp, δp are Fourier coe�cients (with P = 4) and d(j) = j mod 24 is the conversion to the
hour of the day. The yearly seasonal terms are modelled by

Saj =
M∑
m=1

ψm sin

(
2πm

(f(j) + φ)

365

)
, (3.8)

where ψm, m = 1, 2, ...,M and M = 3, are the coe�cients and f(j) = j/24. The method slightly
di�ers from that in [7] which uses f(j) = bj/24c (the day of the data). The shift φ ensures the
period terms match the period of the data as optimally as possible. The value φ = −85 was
chosen such that the mean absolute percentage error (MAPE) is minimised. We set j = 0 for the
start of data at midnight on 1st January 2005. The �nal terms of equation (3.6) are the lags. By
consideration of the autocorrelation, we checked the potential number of lag terms to use and found
that the previous 25 hours gave the minimum MAPE for day ahead and month ahead temperature
forecasts over November 2009 (a preliminary task). The values of M,P and φ were all chosen by
cross validation over the month of November 2009. The coe�cients β0, β1, γp, δp and ψ were found
via the linear regression function in Matlab, regress.

We attempted to select the most representative and accurate weather stations to improve the
day ahead CKD-T forecast. We chose groups of three and six weather stations which gave the best
MAPE for a day ahead temperature forecast. Using the average temperature from these stations in
(3.6) did not provide a consistent improvement in the pinball scores. Hence we only used the mean
over all weather stations for the CKD-T day ahead forecasts.

3.4 Quantile Regression (QR)

The quantile regression is a generalisation of standard regression where each quantile is found
through the minimisation of a linear model to historical observations according to a loss function
[6]. Suppose we have a model of the demand, at time t = 1, ..., n given by f(Ut,β), where Ut

are the independent variables and β are the unknown model parameters. Also suppose we have
observations of the load yt at the same times t = 1, ..., n. Then for a given quantile q the aim is to
�nd the parameters βq given by

βq = argmin
β

n∑
t=1

ρq(yt − f(Ut,β)), (3.9)

where ρ(•) is the loss function given by

ρq(z) = |z(q − 1(z<0))|, (3.10)

where 1(z<0) is the indicator function. We created a simple linear function, for each hour of the
day separately, based on only trend and seasonal terms. For each daily hour on day k (with k = 1
meaning 1st Jan 2005) of the data set, we de�ne our model by

Lk = a0 + a1k +
2∑
p=1

bp sin

(
2πp

(k + φ1)

365

)
+

2∑
m=1

cm sin

(
2πm

(k + φ2)

365

)
. (3.11)

The �rst shift term is chosen φ1 = −111, by minimising the MAPE, and the second shift is φ2 =
φ1 − 364/2. The double seasonality o�set term was used because of the double yearly period
discovered in the load for some hours of the day. The coe�cients a0, a1, b1, b2, c1, c2 are found for
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each quantile forecasted via a simple linear programming method. We implemented this using
optimset function in Matlab utilising the Simplex algorithm option. To reduce computational cost
we only used 500 days of history to �nd the parameters. Once the quantile forecasts were found we
resorted them to ensure there was no crossing of the quantiles [3].

3.5 Mixed Forecasts and Hybrid Forecasts

Each of the main forecasts presented had di�erent performance for di�erent forecast horizons. For
this reason we created new forecasts which were mixes of our main methods based on their perfor-
mances over di�erent horizons. We consider two main methods

• Mix 1: This is simply the CKD-W forecast but using the CKD-T forecast for the �rst day.

• Mix 2: As mix 1 but using the QR forecast from the start of the 8th day until the end of the
month.

With the success of the mixed forecasts (see Section 4) we also explored combinations of the
forecasts. This has been shown to improve the overall forecast accuracy compared to individual
forecast methods [8]. We split the forecast into �ve di�erent time periods. Period one was simply
the �rst day, period two the rest of the �rst week, period three the second week, period four the
third week and period �ve the rest of the month. For the �rst period we simply used the CKD-T
which had the best day ahead accuracy of all the forecasts. For each of the other periods we took
a weighted average of the quantiles time series in the quantile regression forecast, FQR, and the
CKD-W forecast, FCKD-W,

FHybrid(τ) = w(τ)FCKD-W(τ) + (1− w(τ))FQR(τ), (3.12)

where τ = 2, 3, 4, 5 is the time period and 0 ≤ w(τ) ≤ 1 is the average optimal weight at time period
τ . The optimal weight of each past task is found by searching di�erent weighted combinations of
the CKD-W with the quantile regression forecasts for each time-period τ > 1 that minimise the
pinball scores. We repeat this process for a number of past tasks and then take the average optimal
weight for each time period. We call this forecast the hybrid forecast.

4 Task Submissions and Results

We ranked our forecasts using the scores from prior tasks. We used this to understand which
methods to persist with and which ones to reject or adapt. In this section we describe our selection
procedure for each task in chronological order to justify our methodology and approach. Figure 1
shows graphically the scores for our best submissions, the benchmark and the top scoring forecast
for each task6. The plot shows our forecasts performing consistently well in all tasks other than
task four and eight as we will explain below. We note that the leader is not the same entrant for
each task. The benchmark is simply the previous year's load used for all quantiles.

In tasks 4 and 5 we implemented the KDE-W method (see Section 3.1). December 2010 (task
3) appeared to have unusually low temperatures and since this month was also used for parameters
training it could explain the high scores of most entrants of task 4. We note that the simple quantile
regression forecast (introduced in task 9) performs very well for this method, scoring 10.36, in fact

6Tasks 1 to 3 were trial tasks. We focused on searching for patterns, trends and correlations in the load and
temperature data and developing our more sophisticated methods. We submitted simple parametric models and the
KDE-W method.
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Figure 1: Pinball scores of our submitted forecast, the benchmark and the �nal leader.

beating the top entry score. This could be due to being less in�uenced by the previous, exceptional,
month.

For tasks 6 and 7, we developed the CKD-W method to take into account weekly e�ects. This
was found to perform better than the KDE-W method. We also submitted a CKD-W for task
8 but trained the parameters on the same month of the previous year, rather than the previous
month of the same year. The data from the previous year would be less recent but likely related
to the current month's behaviour due to annual periodicity of the load. In addition, data from the
previous month had little in�uence on forecasts of beyond a week so it made sense to attempt to
optimize parameters on data available for the entire period. Although this method performed better
than CKD-W for task 7 the method did not perform as well as expected for the task 8 submission
and was abandoned from thereon.

We found that the CKD-T method, although poor for forecasting the entire month was the most
successful method for forecasting a day ahead (see Section 3.3). In addition we developed the QR
forecast which was performing well, especially at horizons of over a week ahead. Hence, for tasks 9,
10 and 11 we implemented our mixed forecasts. Modifying the �rst day forecast with the CKD-T
forecast, to create mix forecast 1, gave us improved forecast for task 9. Further improvements
came with mix forecast 2 which was used as our submission for task 10 and 11 (giving us second
place in both leaderboards). Further testing of the forecasts on older tasks indeed con�rmed the
improvement of the methods. Up to this point the mix 2 forecast gave the more consistent best
scores for tasks 2 through to 8 with the smallest average pinball score of 8.61 compared to the
next best of the quantile forecast with the CKD-T for the �rst day of 8.63 (the benchmark average
was 15.28). This seems to indicate that a major contribution to the improvement came from the
quantile regression forecast.

For tasks 12 to 15 we implemented the hybrid forecast. For these tasks we trained the weights
using tasks 6 to 11, 2 to 12, 2 to 13 and 2 to 14 respectively. This forecast performed better for
each task compared to our other methods, see also Table 1. For task 15, we initially attempted to
model separately the special days, Christmas Eve, Christmas Day and New Year's day. However we
saw no improvement in our forecasts and since these days all occurred on weekends for task 15, we
abandoned this idea. The hybrid models were consistently the best model for tasks 12 to 14 with
an average pinball score of 5.36 compared to the next best score of 5.41 for the CKD-W2 method.
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Forecast LS WT Actual Hybrid QR CKD-W2 Mix 2 Mix 1 CKD-W KDE-W

Score 54.2 50.8 48.5 51.4 48.7 48.7 48.4 47.5 47.4 44.6

Table 1: Weighted average scores of the leading team of each task (�LS�), the competition's winning
team (�WT�) and our valid submitted forecasts (�Actual�) and our main methods described in
Section 3.

However for task 15 the method did not perform too well, with a pinball score of 9.55 compared
to only 7.844 for the KDE-W and 8.099 for the CKD-T (the winning score was 8.229). In fact the
CKD-T method performed surprisingly well for tasks 12 through 14 with an average score of 5.42
meaning a better score on average than the hybrid forecast for tasks 12 through 15 (6.089). This
is particularly surprising given the CKD-T method had the worst performance of all methods prior
to task 12. This could possibly be the result of relatively stable temperatures for these months.

The �nal scores were calculated as a weighted average of the percentage improvement relative
to the benchmark for each task. Each percentage score was given a weight which increased linearly
from the fourth to last task. The scores for selected methods (plus, for comparison the scores of the
leading submission for each task 7 and the competition's winning team) are shown in Table 1. The
larger the score the better the forecast. The hybrid forecast uses the weights used in the �nal task
and therefore is not a completely accurate representation of the actual hybrid forecast score since
the data was optimized to the same tasks. However it does show the potential of the method. If we
had more time then potentially we could train the weights on a larger sample for each time period
by a rolling window rather than, sometimes, less than six tasks. The table shows the improvements
made with subsequent tasks. We note, despite the simplicity of the method, the QR forecast is one
of the best non-hybrid forecast on average. However on a few tasks this forecast did not perform as
well as the CKD-W and CKD-W2 forecasts (tasks 5, 6, 11, 14) and thus a mixed forecast is perhaps
a more reliable choice since these methods perform well when QR does and reduce the errors when
QR does not perform as well. The better score of CKD-W2 over CKD-W shows the importance of
using the best optimization programs for the forecast.

5 Summary and Discussion

We have described a number of methods for creating probabilistic forecasts and outlined our method-
ology for adapting these forecasts for each task. We chose and developed these methods based on
a number of characteristics including success of the methods in similar applications, their compu-
tational simplicity and their versatility in incorporating the periodic nature of the data. We have
created several forecasts which perform well and obtain the lead score in a number of tasks. Our
forecasts performed consistently well, too. All forecasts beat the benchmark with only three of the
twelve submissions not improving on the benchmark by at least 40%. Overall we obtained �ve top
two �nishes in the twelve tasks, with top position twice and second position on three occasions.
This was the second highest top two �nishes amongst all �nal candidates.

There are periodicities in the scores likely due to more variability in load due to heating and
cooling. The benchmark and forecast scores are correlated due to this. Very large benchmarks
scores are likely due to large di�erences in weather conditions. In certain tasks (such as 3 and 4)

7The leading submission is the best submission from all teams for each task. Not to be confused with the submission
of the winning team.
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all teams scored poorly. For example, task 3 we found that there were very low temperatures which
correlated with large forecast errors on the 14th December. The strong correlation between the
weather and load demand imply that the biggest single improvement in forecast accuracy will come
from better long term weather forecasts.

Table 1 illustrates that the hybrid forecast is the best scoring overall. However it is clear that
the simple quantile forecast is responsible for much of this improvement with all forecasts using
this method scoring very similarly. Although CKD-W2 and QR perform similarly on average, the
CKD-W2 only performs better than the quantile regression on a few tasks. On those tasks the
di�erence is signi�cant and therefore the hybrid forecast reduces this discrepancy.

Further improvements could have been done to further improve the scores. There are a number of
changes which may improve the basic forecasts (CKD-W, CKD-T, QR) such as including weekday
identi�ers or improving the choice of weather stations. However the simplest modi�cation we could
make is to improve the weights used in the hybrid forecasts. In particular we could train the weights
on a rolling basis from one day to the next. This mean that the most recent (and accurate) weights
could be applied, and potentially we could even forecast such weights. In this paper we have reported
a simple combination of our two forecast methods to create a hybrid forecast. It has been shown
that a simple linear combination is not optimal since, even if the forecasts are properly calibrated,
the �nal forecast will not be [8]. Hence we could also consider other methods, for example the
beta linear pool method as described in [8]. A surprising for us result of the competition was the
success of very simple methods. The quantile regression, which only modelled the trend and yearly
seasonality, was one of our, and the competitions', best performing forecasts. Such methods could
thus be used as benchmarks for more complicated methods.
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