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ABSTRACT

The skill of eight climatemodels in simulating the variability and trends in the observed areal extent of daily

temperature and precipitation extremes is evaluated across five large-scale regions, using the climate ex-

tremes index (CEI) framework. Focusing on Europe, North America, Asia, Australia, and the Northern

Hemisphere, results show that overall the models are generally able to simulate the decadal variability and

trends of the observed temperature and precipitation components over the period 1951–2005. Climatemodels

are able to reproduce observed increasing trends in the area experiencing warm maximum and minimum

temperature extremes, as well as, to a lesser extent, increasing trends in the areas experiencing an extreme

contribution of heavy precipitation to total annual precipitation for the Northern Hemisphere regions. Using

simulations performed under different radiative forcing scenarios, the causes of simulated and observed

trends are investigated. A clear anthropogenic signal is found in the trends in the maximum and minimum

temperature components for all regions. In North America, a strong anthropogenically forced trend in the

maximum temperature component is simulated despite no significant trend in the gridded observations,

although a trend is detected in a reanalysis product. A distinct anthropogenic influence is also found for trends

in the area affected by a much-above-average contribution of heavy precipitation to annual precipitation

totals for Europe in a majority of models and to varying degrees in other Northern Hemisphere regions.

However, observed trends in the area experiencing extreme total annual precipitation and extreme number of

wet and dry days are not reproduced by climate models under any forcing scenario.

1. Introduction

Many studies have documented trends in observed

temperature and precipitation extremes that could be

associated with severe socioeconomic impacts, both

globally (Alexander et al. 2006; Donat et al. 2013b) and

regionally [e.g., You et al. (2011) and Zhou and Ren

(2011) for Asia; Moberg et al. (2006) for Europe; and

Alexander and Arblaster (2009) and Gallant et al.

(2007) for Australia]. Warm maximum and minimum

temperature extremes have increased in most regions

around the globe (exceptions occur, e.g., for maximum

temperature extremes over eastern North America),

while the frequency of cold maximum and minimum

temperature extremes has decreased (Seneviratne et al.

2012; Donat et al. 2013b).While changes in precipitation

extremes are more spatially heterogeneous, increases in

the frequency of heavy precipitation events (e.g., ex-

ceeding the 95th percentile) occur in more regions than
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decreases (Seneviratne et al. 2012). Much attention has

therefore recently been given to understanding the

causes of changes in temperature and precipitation ex-

tremes, and to identify any anthropogenic contribution

to these changes. A number of studies have found a

detectable anthropogenic signal for minimum and in

some cases maximum temperature extremes globally,

and in some regions (e.g., Christidis et al. 2005, 2011;

Morak et al. 2011, 2013; Min et al. 2013). Human influ-

ence has also contributed to the intensification of annual

precipitation extremes over Northern Hemisphere land

areas (Min et al. 2011; Zhang et al. 2013).

In this study, a multimodel evaluation and attribution

study of variations in the areal extent experiencing

temperature and precipitation extremes for five regions

across the globe is conducted. This is undertaken using

an updated approach based on the climate extremes

index (CEI) framework (Karl et al. 1996; Gleason et al.

2008). It consists of five components measuring the

percentage area experiencing different types of ‘‘much

above or below average’’ temperature and precipitation

conditions. It was first introduced by Karl et al. (1996)

for the United States and there have since been a

number of updates (Gleason et al. 2008) and modifica-

tions applied to different regions (Gallant and Karoly

2010; Gallant et al. 2014). In a previous study (Dittus

et al. 2015), we introduced a newmethod to calculate the

areal extent of extremes, using extreme indices recom-

mended by the Expert Team on Climate Change De-

tection and Indices, often referred to as ETCCDI

indices (Zhang et al. 2011). Using this ETCCDI-based

modified CEI (EmCEI), historical changes in the area

experiencing temperature and precipitation extremes

were analyzed for four continental regions and one

hemispheric region: Europe (EURO), North America

(NA), Asia, Australia (AUS), and the Northern Hemi-

sphere (NH), where good observational data coverage is

available. Increases in the area affected by warm tem-

perature extremes were found for all regions, while in-

creases in the area experiencing precipitation extremes

were found for North America and Europe. In Asia,

changes in the area affected by precipitation extremes

were small but statistically significant.

The EmCEI and its components can be calculated in

model simulations, providing an opportunity to better

understand the causes for the observed trends. In the

present study, we determine whether trends obtained

under different radiative forcings allow the relative

contributions of human and natural effects on the

changes in the areal extent of extremes to be identified.

The EmCEI and its components are analyzed in a suite

of state-of-the art coupled climate models from phase 5

of the CoupledModel Intercomparison Project (CMIP5;

Taylor et al. 2012) under different combinations of im-

posed forcings. The different sets of simulations

include all forcings (historical), natural forcings

only (historicalNat), and greenhouse gases only

(historicalGHG). We first evaluate whether models are

able to simulate the variations of the EmCEI and its

components realistically, by investigating the variability

in observational and model-simulated components over

the period 1951–2005. Next, we compare historical

model simulated trends under different forcing scenar-

ios, including anthropogenic and natural forcing com-

binations, with the observed trends. Observed trends

over the period 1951–2010 are also included to illustrate

the importance of natural variability in the outcome of

the attribution analysis. The results presented in this

study thus provide an assessment of the relative contri-

butions of human and natural forcings on the changes in

the spatial extent of extremes, which cannot be achieved

by investigating the EmCEI in observations alone.

2. Data and methods

a. Definition of the EmCEI components

Using definitions from Dittus et al. (2015), five tem-

perature and precipitation components are analyzed in

this study. Each component measures the fraction of

area experiencing extreme conditions, calculated from

seven indices recommended by the ETCCDI (Zhang

et al. 2011). These indices, often referred to as ‘‘ex-

tremes indices,’’ measure the frequency, intensity, or

duration of so-called moderate daily extremes, even

though not all indices strictly represent extreme condi-

tions. In this study, a subset of these indices is used as

input data.

d Warm and cool days (TX90p and TX10p): Annual

percentage of days where maximum temperature is

above the 90th percentile or below the 10th percentile

respectively.
d Warm and cool nights (TN90p and TN10p): Same

definitions as their maximum temperature equivalent,

only using minimum temperature.
d Total annual precipitation (PRCPTOT) on days

where precipitation is equal to or exceeds 1mm.
d The precipitation amount from heavy rain days

(R95p): Total amount of rainfall per year that fell on

days when the 95th percentile was exceeded.
d The simple daily intensity index (SDII): Average daily

precipitation on a wet day (mmday21), where a wet

day is classified as $1mm.

These indices are used as input to calculate the five

temperature and rainfall components of the EmCEI,
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whichmeasure extreme conditions in the annual indices of

daily moderate extremes. Each component consists of two

parts, corresponding to the upper and lower tail extremes.

1) Maximum temperature: Percentage area where the

frequency of warm days (TX90p) is above the long-

term 90th percentile minus the percentage area

where the frequency of cool days (TX10p) is above

the long-term 90th percentile.

2) Minimum temperature: Same definition as for max-

imum temperature above but for minimum temper-

ature using warm (TN90p) and cool nights (TN10p).

3) Total precipitation: Percentage area where the an-

nual precipitation anomaly (PRCPTOT) divided by

its standard deviation exceeds the 90th percentile

minus the percentage area where it is less than the

10th percentile.

4) Heavy rainfall: Percentage area where the propor-

tion of annual rainfall due to heavy rain days (R95p/

PRCPTOT) exceeds the 90th percentile, minus the

percentage area where it is less than the 10th

percentile.

5) Wet and dry days: Percentage area where the num-

ber of wet days (WD 5 PRCPTOT/SDII) exceeds

the 90th percentile minus the percentage of area

where the number of dry days (DD 5 365 2 WD)1

exceeds the 90th percentile.

Note that the percentile thresholds of the ETCCDI in-

dices are always calculated from the entire period

available (i.e., 1951–2005 and 1951–2010 respectively).

The maximum temperature component thus represents

the difference between the percentage area experienc-

ing an extreme number of warm days and the percentage

area experiencing an extreme number of cold days.

Likewise, the minimum temperature component repre-

sents the difference between the percentage area expe-

riencing an extreme number of warm and cold nights.

Since the area experiencing cold extremes is subtracted

from the area experiencing warm extremes, a positive

value represents the percentage area by which warm

extremes exceed the percentage area affected by cold ex-

tremes, and vice versa. For the precipitation components,

positive values correspond to larger areas affected by wet

extremes and negative values to larger areas affected by

dry extremes (or, in the case of the heavy precipitation

component, a negative value indicates the absence of a wet

extremes rather than a dry extreme). A limitation of the

definitions above is that these components cannotmeasure

changes in the variance of the underlying distribution.

Hence, if increases in wet extremes were occurring con-

currently with increases in dry extremes, this would not be

indicated in the components as defined above. In Dittus

et al. (2015) we showed changes in the upper and lower tail

separately, and found no evidence of opposing trends oc-

curring in any region, although at the interannual scale wet

and dry extremes were found to sometimes occur con-

currently over substantial fractions of area. Further details

can be found in Dittus et al. (2015). To emphasize longer-

term trends and forced responses, 5-yr running means and

longer-term trends of the components listed above were

used for analysis throughout this study.

b. Data and processing

In this study, data from eight global coupled climate

models participating in CMIP5 (Taylor et al. 2012) were

used. The Global Historical Climatology Network–

Daily (GHCND)-based gridded temperature and

precipitation climate extremes indices (GHCNDEX;

Donat et al. 2013a) complemented by an updated grid-

ded land-based dataset of indices of temperature and

precipitation extremes (HadEX2; Donat et al. 2013b)

were used as observations and are described at the end

of this section. To assess the role of natural variability

and observational uncertainty, we also include results

for the 1951–2010 period as in Dittus et al. (2015) and

the ECMWF twentieth-century reanalysis (ERA-20C;

Poli et al. 2016), respectively. Note that the reanalysis

does not represent observed extremes. However, in the

absence of other observational global datasets of ex-

tremes, and to get some idea of uncertainty across

observation-based datasets, we here include extremes

indices calculated from ERA-20C. The ERA-20C re-

analysis is constrained by observations by assimilating

surface pressure and wind observations, and using sea

surface temperature and sea ice concentration as

boundary conditions. Thereby ERA-20C should re-

produce the synoptic-scale weather systems of the real

world, but daily maximum and minimum temperatures

and precipitation amounts are model-simulated variables.

The individual indices used to calculate the EmCEI show

reasonable agreement with gridded observations after

1950 (Donat et al. 2016a).

For the CMIP5 climate model simulations, the

ETCCDI indices required to calculate the EmCEI

components were obtained from the Canadian Centre

for Climate Modelling and Analysis (Sillmann et al.

2013a,b; http://www.cccma.ec.gc.ca/data/climdex). All

models for which indices were available for three or

more ensemble members for the historical and histor-

icalNat experiments were selected (Table 1). Since the

focus of this paper is on assessing the potential role of

1Or 366 days in a leap year for observations. In models this

number may also be 360, 365, or 365/366 depending on the

calendar used.
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anthropogenic forcing through comparing historical and

historicalNat simulations, themodels were chosen based

on availability of these scenarios. In addition, the his-

toricalGHG simulations were also used where available

(only seven models). Historical simulations include

greenhouse gas forcings and anthropogenic aerosol

forcings, as well as natural forcings including variations

of solar irradiance and volcanic aerosols. The histor-

icalNat experiments only include natural forcings (i.e.,

solar and volcanic). The historicalGHG experiments on

the other hand include variations of greenhouse gas

forcing only, excluding both natural and anthropogenic

forcings other than greenhouse gases (e.g., aerosol

forcing). These experiments span the period from 1850

to 2005; however, here we use data for the period from

1951 to 2005 to match the available observational period

(1951–2010) as closely as possible. It should be noted

that for two HadGEM2-ES simulations, the time period

spanning 1951–2004 was used, as the annual extreme

indices for 2005 were not available.

As in Dittus et al. (2015), the primary observations

used in this study consist of GHCNDEX (Donat et al.

2013a) data complemented by HadEX2 (Donat et al.

2013b). GHCNDEX data were regridded to HadEX2

resolution (2.58 3 3.758), using the same first-order

conservative remapping procedure as for the climate

models. Grid boxes that contain nonmissing data for at

least 80%of the time period were used, as well as 80% in

the first and last 10 years. HadEX2 data supplemented

GHCNDEX where no data were available over the

entire period or did not fulfil the completeness criteria.

The methods described here are identical to those used

in Dittus et al. (2015). We have included results for the

two periods 1951–2005 and 1951–2010, to match the

modeled time period available and the time period used

in our previous study respectively. A recent study (Kim

et al. 2016) found that attribution statements were sen-

sitive to the time period used, which also allows us to

assess the effect of natural variability. Figure 1 shows the

observational coverage available over 1951–2005. The

regions used in this study are the same as in Dittus et al.

(2015) and are also shown in Fig. 1. All indices were

masked to R95p coverage, as this index has the lowest

observational coverage available. Note that the results

for 1951–2010 weremasked with theR95p observational

coverage over that period; however, differences in cov-

erage between the two periods are minimal.

The model and reanalysis data were regridded to

HadEX2 resolution (2.58 3 3.758) using a first-order

conservative remapping procedure (Jones 1999) and

masked to the observational coverage of R95p (Fig. 1).

As in Dittus et al. (2015), prewhitened time series were

used to account for autocorrelation for all trend calcu-

lations. Trends are calculated using the Theil–Sen slope

estimator (Sen 1968). The multimodel or model mean

trend corresponds to the average trend across all en-

semble members, of all models or a single model re-

spectively. Trends were calculated for each ensemble

member prior to averaging. The variability in the

EmCEI components is estimated from detrended 5-yr

running mean time series. The multimodel mean vari-

ability is estimated as the square root of the average

variance from all ensemble members. Note that the

thresholds to determine extreme (i.e., top and bottom

10%) values are calculated relative to the climatology

at each grid box for each model run individually. This

effectively removes any model biases, as threshold

exceedances are determined relative to the models’

own threshold. This likely also reduces the effect of

differences in spatial scales (point data for the gridded

TABLE 1. List of model names, modeling groups, and corresponding number of ensemble members per scenario (historical,

historicalNat, and historicalGHG, respectively) used in this study. (Expansions of acronyms are available online at http://www.

ametsoc.org/PubsAcronymList.)

Model name Modeling center hist histNat histGHG

CCSM4 National Center for Atmospheric Research 3 4 3

CanESM2 Canadian Centre for Climate Modelling and Analysis 5 5 5

CSIRO Mk3.6.0 Commonwealth Scientific and Industrial Research Organisation in collaboration

with Queensland Climate Change Centre of Excellence

9 5 5

IPSL-CM5A-MR L’Institut Pierre-Simon Laplace 3 3 0

CNRM-CM5 Centre National de Recherches Météorologiques–Centre Européen de Recherche

et Formation Avancée en Calcul Scientifique

9 6 6

GFDL CM3 NOAA/Geophysical Fluid Dynamics Laboratory 5 3 3

MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean

Research Institute (The University of Tokyo), and National Institute for

Environmental Studies

3 3 3

HadGEM2-ES Met Office Hadley Centre (additional HadGEM2-ES realizations contributed by

Instituto Nacional de Pesquisas Espaciais)

4 4 4
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observations and area averages for reanalysis and

models) between the different datasets, which is known

to be a major source of observational uncertainty

(Herold et al. 2016) and an obstacle to adequately

compare observed andmodeled precipitation extremes

(e.g., Chen and Knutson 2008). Therefore, this allows

examination of forced responses irrespective of exist-

ing model biases. However, it is important to bear in

mind that model agreement would likely be lower if

absolute thresholds were used. The same logic also

applies to the different observational datasets.

3. Evaluating simulated EmCEI and components

Time series of the 5-yr smoothed EmCEI components

as simulated by CMIP5 models (using Europe as an ex-

ample) are shown in Fig. 2. The orange plume in Fig. 2

corresponds to the historical (all forcings) simulations.

The blue plume corresponds to the historicalNat sce-

nario and will be discussed in section 4. For both tem-

perature components, the historical simulations show a

clear increasing trend in the area affected by a much

above average number of warm days and nights, corre-

sponding also to a decrease in the area affected by a

much above average number of cold days and nights. The

range of historical simulations includes the observations

and reanalysis and is therefore consistent with observed

variations in these components. For the minimum tem-

perature component, the historical simulations appear to

slightly underestimate the observed increase in area

affected by warm extremes. However, as the plumes

represent the 5th–95th percentile range, the observations

are likely still within the simulated range. Note that be-

cause the area affected by extremes is calculated using

individual percentile thresholds for each realization,

differences between models as well as differences be-

tween models and observations are likely to be reduced,

as any systematic model biases are removed by com-

paring the changes relative to individual percentile

thresholds, not common thresholds. For the heavy pre-

cipitation component (Fig. 2, middle right), the model

simulations are consistent with observations; however,

the reanalysis lies slightly outside themodeled range. For

this component, there is little to no correlation between

interannual variations of observations and reanalysis.

For the total precipitation and wet and dry day compo-

nents, the models are unable to capture the full range of

observations and reanalysis. In this case, while there are

larger differences between observations and reanalysis

than for the temperature components, both products

agree reasonably well on decadal variations in these

components. The models’ inability to capture the full

range of observations and reanalysis could be due to an

inability to capture the long-term trends in these com-

ponents, or as a result of underestimating the observed

decadal variability in these components, or both.

To assess the models’ ability to simulate the observed

EmCEI and its components, a Kolmogorov–Smirnov

(KS) test was performed to determine whether there

is a statistical difference between the distributions of

FIG. 1. Merged GHCNDEX and HadEX2 coverage, adapted from Dittus et al. (2015) for the 1951–2005 base

period used here. The boxes define the regions used in this study. As in Dittus et al. (2015), GHCNDEX data were

regridded to HadEX2 resolution. HadEX2 data were used to complement GHCNDEX data where no GHNCDEX

data were available over the entire period.
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observed and simulated annual values. This test was

conducted for all detrended runs across the eight models

used in this study (41 in total for the historical simula-

tions) and for each of the detrended components for

both the gridded observations and reanalysis. In all re-

gions and components, the observed and modeled dis-

tributions of values are indistinguishable in a statistical

sense, at the 5% level. Some exceptions occur as shown

Table 2, perhaps slightly more so for the precipitation

components. Using a statistical test at the 5% level, the

expected number of random independent cases that would

be expected to fail such a test even if theywere drawn from

the same distribution would be 1 in 20 on average.

The interannual (not shown) and decadal variability

in the models has also been evaluated against the vari-

ability in the gridded observations and reanalysis

(Fig. 3). Overall, the models have comparable decadal

variability to the observations and reanalysis, with some

differences between the regions. For the heavy pre-

cipitation component (component 4), themodels tend to

overestimate the observed variability, but the model

variability is still consistent with observations except for

Europe. The variability in reanalysis lies well within the

modeled range. In the case of the total precipitation and

wet and dry day components, the simulated variability is

generally smaller than for the observations for most runs

over North America, and the average variability across

all models is substantially lower than observed. It is in-

teresting to note that both simulated and observed var-

iability of the total precipitation and wet and dry day

components are much larger across Australia than any

other region. This is likely due to the influence of El

FIG. 2. The simulated 5-yr smoothed EmCEI and its components for Europe. The plumes were obtained from eight multimember

CMIP5 models (41 ensemble members for the historical plume and 33 for the historicalNat plume). The range of values in the plume

represents the 5th–95th percentile of all values. The orange plume shows the historical simulations, and the blue plume shows the

historicalNat results. The solid lines show the multimodel mean for each set of experiments respectively. The black dashed line corre-

sponds to the gridded observations (GHCNDEX1HadEX2), the dotted line corresponds to the reanalysis (ERA-20C), and the orange

dashed line corresponds to a single historical model realization, for illustration purposes.

8290 JOURNAL OF CL IMATE VOLUME 29



Niño–Southern Oscillation (ENSO) on large-scale var-

iations in rainfall across Australia [see also Dittus et al.

(2015), where the observed time series showed large wet

and dry variations in phase with ENSO].

4. Modeled trends and causes

With few exceptions discussed in the previous section,

the models are able to capture the variability in the in-

dividual components. Hence, the trends in each com-

ponent as simulated under different forcing scenarios are

investigated here. Comparing the trends under the different

forcing scenarios allows identification of the effect of indi-

vidual forcings on components of the EmCEI. In particular,

the importance of anthropogenic effects is assessed using

historical simulations (including all forcings) and histor-

icalNat simulations (including only natural influences). We

first discuss the temperature attribution results, followed

byadetailed analysis of theprecipitation components across

the different regions.

a. Maximum and minimum temperature components

Figures 4 and 5 provide an overview of the trends

simulated for the different scenarios across regions, for

the maximum and minimum temperature components

respectively. Each vertical line represents trends from

one individual climate model, with models shown in the

same order as listed in Table 1. Each dot on these ver-

tical lines represents an individual ensemble member,

allowing an estimate of internal variability by providing

a range of trends within one climate model. Positive

trends in the temperature components are found across

all models for all regions (Figs. 4 and 5). Themultimodel

mean trend for the historical simulations is very similar

across regions, and the multimodel simulated trends are

consistent with observations in most cases. Exceptions

occur for the model-simulated trends in the maximum

FIG. 3. Decadal variability of the EmCEI components, across all models and regions. De-

cadal variability is represented by the standard deviation of the low-pass-filtered components

(5-yr running mean). The interannual time series were detrended using the Theil–Sen slope

estimator prior to applying the runningmean and calculating the standard deviation. Each gray

symbol represents one ensemble member; the black horizontal line corresponds to the square

root of the multimodel mean variance from all ensemble members. The red triangles represent

the observations based on themergedGHCNDEX andHadEX2 dataset, and the brown circles

represent the variability in ERA-20C.

TABLE 2. Number of cases where the null hypothesis (observed

and simulated EmCEI components are taken from the same dis-

tribution) is rejected, out of 41 detrended historical simulations

from eight models. The left number corresponds to the test being

performed with the gridded observations, and the second number

corresponds to test results with ERA-20C. Significance was as-

sessed at the 5% level.

EURO NA ASIA AUS NH

Max temp (C1) 0/0 0/0 0/0 0/1 1/1

Min temp (C2) 0/0 0/2 0/0 0/0 0/0

Total precipitation (C3) 0/0 0/0 0/0 0/0 0/0

Heavy precipitation (C4) 3/0 0/0 0/1 0/0 0/0

Wet and dry days (C5) 1/0 2/0 0/0 0/0 0/0
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temperature component in North America. In this re-

gion, the trend is small and not statistically significant in

the gridded observations but is statistically significant in

ERA-20C. The model-simulated trends are of similar

magnitude to the other regions and thus consistent with

the reanalysis, but not the gridded observations. The

lack of trend in the observations is likely due to the

so-called warming hole in the southeastern United

FIG. 4. Trends in the maximum temperature component for all regions and for all scenarios

(historical, historicalNat, and historicalGHG). Each model is represented by one vertical line, and

dots indicate the individual ensemble members. The models are in the order listed in Table 1. The

coloredhorizontal lines correspond to themultimodelmean.Thedashedhorizontal lines correspond

to the trends in gridded observations for two different time periods, and the dotted line corresponds

to the trends in theERA-20C reanalysis. Trends that are statistically significantly different from zero

are shown in black, and gray indicates that the trends are not significantly different from zero. The

significance of these trends is assessed using the Mann–Kendall trend test at the 5% level.

FIG. 5. As in Fig. 4, but for the minimum temperature component.
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States (e.g., Portmann et al. 2009). Studies have found

that coupled models cannot simulate a warming hole in

the second half of the twentieth century robustly (e.g.,

Kunkel et al. 2006; Meehl et al. 2012). Some studies

have suggested that the observed warming hole is a

consequence of internally generated decadal variability

in the tropical Pacific (e.g., Meehl et al. 2012, 2015) or

associated variations in the North Atlantic (e.g.,

Kunkel et al. 2006), in which case the models’ inability

to simulate a warming hole is to be expected. Other

studies have also suggested altered hydrologic feedback

(Pan et al. 2004, 2013) or anthropogenic aerosols (e.g.,

Yu et al. 2014) as causes for the warming hole. It is

unclear why the reanalysis does not appear to produce a

warming hole. A recent study did identify a warming

hole in ERA-20C (Donat et al. 2016a), but small dif-

ferences in the timing and extent of the warming hole

could have a significant influence on whether or not it

is captured by our definition of the spatial extent of

extremes.

The simulated historical trends in the minimum tem-

perature component are consistent with observations

and reanalysis in all regions, although for Europe and

Asia the trends in the 1951–2005 gridded observations

are slightly larger and just outside the modeled range. It

is interesting to note that while the multimodel ensem-

ble simulated trends are comparable with observations,

many individual models are not. The range of historical

forced trends is distinct from the range of trends from

the historicalNat simulations and in most cases in-

consistent with the historicalNat simulations on a model

by model basis. The historicalNat simulations are in-

consistent with the observations, indicating that the

long-term trends in the minimum temperature compo-

nents are caused by anthropogenic forcing. However,

the difference in the magnitude of observed trends be-

tween the two time periods and datasets is quite sub-

stantial in some regions. It is important to note that our

results pertain to the long-term trends in the tempera-

ture components, and do not preclude an influence of

natural forcings on variability at decadal and longer

time scales.

The historicalGHG simulations generally simulate

stronger trends than the historical simulations. This

difference is likely due to anthropogenic sulfate aerosol

forcing offsetting part of the greenhouse gas warming, as

this forcing is included in the historical but not the his-

toricalGHG simulations. An anthropogenic contribu-

tion to the increasing area affected by maximum and

minimum temperature extremes is thus found for all

regions, in particular from greenhouse gas forcing. For

Europe, this can also be seen in the top panels of Fig. 2,

where the increase in the maximum and minimum

temperature components in the historical simulations is

not reproduced by the natural simulations (blue plume).

For the maximum temperature component over North

America, an anthropogenic contribution is found in the

model simulations, but this is not consistent with the

gridded observations.

b. Precipitation components

The observed increasing trends in the area affected

by extreme total precipitation amounts are statistically

significantly different from zero at the 5% level for

Europe, North America, Asia, and the Northern

Hemisphere (Fig. 6). The reanalysis shows sub-

stantially different results in some cases, in Asia for

instance where the sign of the trend is negative, albeit

small and nonsignificant. The simulated trends under

the historical and historicalNat scenario are not con-

sistent with the observed trends for any model over

Europe, North America, and the Northern Hemi-

sphere, although they are consistent with ERA-20C in

all of these regions except North America (Fig. 7). It is

thus difficult to assess the models’ performance with

confidence given the differences between observations

and reanalysis. These results suggest that models (and

reanalysis) potentially underestimate the magnitude of

the forced signal, or underestimate the 50-yr variability

in this component. However, the differences between

gridded observations and reanalysis also are sub-

stantial, and hence add additional uncertainty. The

multimodel mean trend of the historical simulations is

larger than in the historicalNat simulations. However,

as the range of trends between both scenarios overlap

and the magnitude of the simulated historical trend is

substantially too low, attribution of changes in the area

affected by total precipitation extremes is not possible.

Over Asia, the historical trends are consistent with the

observed trend. Rather than the models performing

better over this region, it is likely that the better

agreement may be due to coincidence, as the observed

trend is smaller over Asia compared to other regions

and thus closer to the simulated trends. The histor-

icalNat simulations do not include the observed trend,

but there is substantial overlap between the range of

historical and historicalNat trends. Over Australia, the

observed trend was not statistically significant and

trends from all scenarios include the observed trend.

Note that the range of simulated trends for Australia is

approximately twice that in any other region. This is con-

sistent with the large decadal variability in the observed

and simulated rainfall components over Australia (Fig. 3),

associated with the importance of ENSO over this conti-

nent. The models are thus able to simulate changes in the

area affected by total rainfall extremes overAustralia well,
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even though natural variability is dominant for this

component over Australia.

For all regions except Australia, the multimodel mean

trend for the total precipitation component in the his-

toricalGHG simulations is larger than for the historical

simulations. For Australia, the multimodel mean trend

for the greenhouse gas (GHG) simulations is negative,

but there are a broad range of trends both positive and

negative for different models. In Asia as well as the

Northern Hemisphere, positive trends for all the GHG

simulations are found, which are generally consistent

with observations. These results indicate that GHG

forcing is needed to explain the observed trends. How-

ever, as the historical simulations cannot reproduce

observed trends, the strength of different forcings in the

model is not well captured and an attribution statement

FIG. 7. As in Fig. 4, but for the heavy precipitation component.

FIG. 6. As in Fig. 4, but for the total precipitation component.
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cannot be made. Overall, the models are not able to

reproduce the observed trends in this component in

Europe, North America, and the Northern Hemisphere.

For Europe, this can also be seen in Fig. 2, where the

plumes overlap throughout the entire period. For Asia

and Australia, the simulated trends are consistent with

observations. In Asia, this is likely due to the small ob-

served trend occurring in this region. In Australia, there

is no significant trend in the observations or the models,

suggesting that natural variability is dominant over this

continent. Very similar results are found for the wet and

dry day components (Fig. 8). It is well known that cli-

mate models generally produce precipitation too fre-

quently with too small intensities (e.g., Sun et al. 2006;

Dai 2006; Stephens et al. 2010). It is thus perhaps not

surprising that trends in this component based on the

number of wet days are less well captured than for the

heavy precipitation component, for example.

The results are more interesting for the heavy pre-

cipitation component (Fig. 7), particularly for Europe.

For Europe, six out of eight models are simulating

positive trends in this component, of which four have

trend magnitudes comparable with the observed trend,

and for five models the ranges of trends between his-

torical and historicalNat simulations do not overlap. In

Fig. 2, this can be seen in the last 15 years approximately,

where the plumes overlap but are increasingly diverging.

The trends in the historicalGHG simulations are slightly

larger than in the historical simulations. These results

show that an anthropogenic contribution to the heavy

precipitation component over Europe is found for a

majority of models analyzed. However, these results

also illustrate the importance of considering multiple

models for attribution studies of precipitation extremes,

as different attribution statements may be reached de-

pending on the choice of model. Moreover, the choice of

reference observational dataset is also key when as-

sessing model performance and agreement with obser-

vations, as illustrated by the difference between gridded

observations and reanalysis in Fig. 7. A majority of

simulations also show increasing trends in the area ex-

periencing above average contribution of heavy pre-

cipitation to total precipitation for Asia, and to a lesser

extent for North America. This is also reflected in the

Northern Hemisphere as a whole. Furthermore, as for

Europe, more than half of the models exhibit trend

magnitudes consistent with observations in Asia. The

models underestimate the magnitude of the trends over

North America; however, there is a clear difference

emerging between the different scenarios, indicating a

likely anthropogenic influence on this component that is

underestimated in the models. Over Australia, the

simulations do not exhibit any trend, consistent with no

trend in the observations. In all Northern Hemisphere

regions, stronger trends are found for the histor-

icalGHG simulations than the historical (all-forcing)

simulations. These results for the heavy precipitation

component are more similar to those for the tempera-

ture components than for the other precipitation

components. This is perhaps unsurprising, since ther-

modynamic arguments suggest that globally averaged

changes in daily precipitation extremes should increase

FIG. 8. As in Fig. 4, but for the wet and dry day component.

1 DECEMBER 2016 D I TTUS ET AL . 8295



at a faster rate than increases in total precipitation,

which are energetically constrained (e.g., Westra et al.

2013; Kharin et al. 2013), although there are regional

differences (e.g., Donat et al. 2016b). It is therefore ex-

pected that the heavy precipitation component, which is

derived from daily precipitation extremes, should in-

crease faster than extremes in total annual precipitation

or wet and dry days.

As discussed in Dittus et al. (2015), the different

components can be combined to form the EmCEI. This

is achieved by averaging the five components. However,

as noted in Dittus et al. (2015), the interpretation of the

EmCEI can be somewhat difficult as a result of com-

bining five different components. Herewe briefly discuss

the attribution results for the EmCEI.

There are very few differences in the simulated

EmCEI trendmagnitudes between the different regions.

A significant positive trend is found for the historical

simulations in all regions, largely stemming from the

temperature components (Fig. 9). The simulated his-

torical trends underestimate the observed trends in all

regions in the multimodel mean, although individual

models are consistent with observations in all regions

except Europe. Given this is the average of the five

components, the trends are likely underestimated be-

cause of the models being unable to accurately re-

produce the measured trends in the total precipitation

and wet and dry day components. There are no trends in

the natural runs or the observations, and substantially

larger trends in the GHG simulations than in the his-

torical simulations. We expect that the differences

between the historical and historicalGHG simulations

are primarily due to the sulfate aerosol forcing included

in the historical simulations, although natural and other

anthropogenic forcings may also contribute to these

differences. In Dittus et al. (2015), we argued that the

combination of components may be useful for detection

and attribution because of an enhanced trend-to-noise

ratio compared to each individual component. This

conclusion that the combined EmCEI has a higher

signal-to-noise ratio than the individual components is

true for most regions in observations. However, because

of the models’ underestimate of the observed trends in

two precipitation components, this conclusion does not

hold in general for the models.

5. Concluding remarks

In this study, we use the EmCEI introduced in Dittus

et al. (2015) to assess the respective roles of natural and

anthropogenic forcings in driving changes in the area

affected by temperature and precipitation extremes

across four continental and one hemispheric region.

This method is computationally efficient, and through

investigating fractions of area above percentile thresh-

olds determined separately for observations and each

model, the effect of model biases is reduced. Further-

more, studies have shown advantages to adopting a

spatial perspective when analyzing extremes; for ex-

ample, spatial aggregation reduces the effects of

gridbox-level noise and leads tomore robust projections

of extremes (e.g., Fischer et al. 2013). Here, we show

FIG. 9. As in Fig. 4, but for the EmCEI.
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that a clear anthropogenic signal is present in the tem-

perature components in all regions. For the maximum

temperature component, the model-simulated histori-

cal trends are consistent with observed trends in all re-

gions except North America, and inconsistent with the

natural simulations. Over North America as a whole,

there is no trend in the gridded observations for this

component although a significant trend is found using

the ERA-20C reanalysis. The trends in the historical

simulations are of similar magnitude to the reanalysis

and inconsistent with the gridded observations. For the

minimum temperature component, the historical sim-

ulations are consistent with observations in North

America and Australia, while for Europe and Asia this

is dependent on the time period considered. Over the

period 1951–2005, whereas there is a positive trend in all

historical simulations, the magnitude of the trend is too

low compared to the observations. This emphasizes the

sensitivity of model evaluation and attribution state-

ments to decadal variability in the observed record. The

influence of modes of variability such as the Pacific

decadal oscillation and Arctic Oscillation and associ-

ated choice of reference period on attribution state-

ments was pointed out by Kim et al. (2016). In these

regions (Europe and Asia), the magnitude of the trends

in the historicalGHG simulations is closer to the ob-

servations than for the historical simulations, suggesting

that the models underestimate the anthropogenic

forced response. The models are unable to simulate the

observed trends in the total precipitation and wet and

dry day components, although simulated trends are

comparable with observations in regions with no or low

trends in observations (e.g., Asia and Australia). There

is evidence that climatemodels are at least partially able

to replicate the observed increase in the areas experi-

encing ‘‘much above average’’ contribution of heavy

precipitation to total precipitation across the Northern

Hemisphere, and that part of this increase in area is due

to anthropogenic effects. Our results are consistent with

previous studies that find an anthropogenic contribu-

tion to temperature extremes globally (e.g., Christidis

et al. 2005; Min et al. 2013) and precipitation extremes

in Northern Hemisphere land areas (Min et al. 2011;

Zhang et al. 2013). Our study has been able to extend

the attribution analysis to measures of the spatial extent

for different types of temperature and precipitation

extremes and to most of the continents with sufficient

observational data. The areas for which we find an an-

thropogenic contribution further correspond to the

areas where King et al. (2015) find that the time of an-

thropogenic emergence for temperature and pre-

cipitation extremes has occurred or will occur in the

near future. Note that our analysis focused on the causes

of long-term trends, and did not investigate the causes

of decadal variability, for which natural forcing may be

important (e.g., Christidis et al. 2011; Kim et al. 2016).

In conclusion, the models are able to simulate the

magnitude of decadal variability in the EmCEI and its

components. The trends in the modeled temperature

components indicate an increase in area experiencing a

much above average number of warm days and nights,

and a decrease in the area experiencing a much above

average number of cold days. This increase cannot be

reproduced by the natural simulations, indicating the

role of anthropogenic forcing on these components. The

simulated trends in the area experiencing a much above

average annual precipitation amount and number of wet

and dry days cannot reproduce the observed trends.

However, a majority of models are able to reproduce the

increasing area experiencing an extreme proportion of total

rainfall from heavy rainfall in historical simulations for the

Northern Hemisphere regions. This work provides the

model evaluation basis for possible further work investi-

gating future projections using the EmCEI framework.
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