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Gaining a better understanding of rare weather events is a major research challenge and of crucial re-
levance for societal preparedness in the face of a changing climate. The main focus of previous studies
has been to apply a range of relatively distinct methodologies to constrain changes in the odds of those
events, including both parametric statistics (extreme value theory, EVT) and empirical approaches based
on large numbers of dynamical model simulations.

In this study, the applicability of EVT in the context of probabilistic event attribution is explored and
potential combinations of both methodological frameworks are investigated. In particular, this study
compares empirical return time estimates derived from a large model ensemble with parametric in-
ferences from the same data set in order to assess whether statements made about events in the tails are
similar. Our analysis is illustrated using a case study of cold extremes and heavy rainfall in winter 2013/
14 in Europe (focussing on two regions: North-West Russia and the Iberian Peninsula) for a present-day
(including ‘anthropogenic’ influences) and an alternative ‘non-industrial’ climate scenario.

We show that parametric inferences made about rare ‘extremes’ can differ considerably from esti-
mates based on large ensembles. This highlights the importance of an appropriate choice of block and
sample sizes for parametric inferences of the tails of climatological variables. For example, inferences
based on annual extremes of daily variables are often insufficient to characterize rare events due to small
sample sizes (i.e. with return periods >100 years). Hence, we illustrate how a combination of large
numerical simulations with EVT might enable a more objective assessment of EVT parameters, such as
block and sample size, for any given variable, region and return period of interest.

By combining both methodologies, our case study reveals that a distinct warming of cold extremes in
winter has occurred throughout Europe in the ‘anthropogenic’ relative to the non-industrial climates for
given sea surface temperatures in winter 2013/14. Moreover, heavy rainfall events have become sig-
nificantly more frequent and more pronounced in North and North-East Europe, while other regions
demonstrate no discernible changes.

In conclusion, our study shows that EVT and empirical estimates based on numerical simulations can
indeed be used to productively inform each other, for instance to derive appropriate EVT parameters for
short observational time series. Further, the combination of ensemble simulations with EVT allows us to
significantly reduce the number of simulations needed for statements about the tails.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

meteorological events and potential changes in the odds of their
occurrence in a warming climate (Seneviratne et al., 2012; Zhang

It is a major scientific challenge to better understand extreme et al,, 2014). This is due to a number of reasons, including limita-
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tions of the observational record to capture rare extreme events,
and issues of data availability and quality. Moreover, structural and
parametric model uncertainties, as well as the proverbial chaotic
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nature of weather (Lorenz, 1963) hinder any straightforward at-
tribution of causality between climatic drivers and any particular
extreme weather event.

To overcome these difficulties, many scientific studies use ei-
ther one of the following approaches:

First, extreme value theory (EVT) has been developed to provide
a means to model the tails of statistical distributions based on
mathematical theory (Coles et al., 2001). Such an analysis allows
statistical statements to be made based on parametric extreme
value distributions (see Wigley, 2009, for illustrative examples).
For example, scientific assessments have been made to investigate
trends in temperature and precipitation extremes in the 21st
century in atmosphere-ocean coupled models (Kharin and Zwiers,
2000; Kharin et al., 2007, 2013), allowing the estimation of return
levels and their associated statistical uncertainties. Further illus-
trative applications of the (univariate) EVT framework elucidate
causes for geophysical extremes, such as the connection between
atmospheric modes of variability and cold extremes (Sillmann
et al., 2011). However although EVT is increasingly used in cli-
matological studies to constrain the odds of rare events (Katz,
2010), including extensions to account for non-stationarity, mul-
tivariate and spatial extremes (see Ghil et al., 2011, for a review),
Katz et al. (2013) argues that its full potential has not yet been
tapped for many geophysical applications.

Second, an alternative approach to improve the understanding
of extremes and their changing odds in a non-stationary climate
has been to deploy very large ensembles of dynamical models,
namely probabilistic event attribution (PEA, Stone and Allen, 2005;
Allen, 2003). This methodology is used extensively to sample rare
events and subsequently estimate their probabilities under dif-
ferent climate forcing scenarios (Stott et al., 2004; Otto et al., 2012;
Massey et al., 2014). The latter often serves to estimate the an-
thropogenic contribution (fraction of attributable risk) to changes
in the meteorological risk of present-day weather and climate
extremes (Allen, 2003; Stott et al, 2013; Bindoff et al., 2013;
Christidis et al., 2013). Importantly, an assessment of this type
addresses the odds of specific extreme weather events — often
those that had happened in a particular year such as droughts,
heat waves or cold spells (Herring et al., 2014). Notable extensions
to the PEA methodology include the attempt to account for more
impact-related variables, for instance through a coupling with
hydrological models to assess floods (Pall et al., 2011). None-
theless, PEA assessments are typically based on rather data-in-
tensive empirical estimates of return times, and rely to a large
extent on dynamical model simulations.

Our study addresses the following research questions:

1. Is the statistical framework of EVT applicable in the context of a
probabilistic assessment of extreme events? Accordingly, can
both methodological frameworks be productively combined to
inform each other?

2. Using a combined methodology, how have meteorological ex-
tremes at daily time scales in the European winter of 2013/14
changed relative to a pre-industrial climate?

Based on our first research question, we envision an application
in which both methodological frameworks could inform each
other in order to (a) derive insights about appropriate parameter
choices (i.e. required sample and block sizes) for the application of
statistical models based on EVT for the meteorological character-
istics of any variable or region of interest; and (b) given informed
parameter choices, how many numerical simulations are actually
needed to estimate a given ‘target return period’ to a satisfactory
degree of accuracy?

Hence, our study details a joint assessment of both methodol-
ogies and evaluates whether statements made about the tails of

meteorological variables such as temperature and precipitation are
comparable. This methodological comparison might serve as a
starting point to reconcile the two statistical frameworks for cli-
matological applications, i.e. to inform each other about relevant
parameter choices (EVT) or the number of samples needed to es-
timate a specific return level. To illustrate this comparison and to
address the second research question, a large ensemble of atmo-
sphere-only regional climate simulations for the European 2013/14
winter season is investigated as a case study along with a ‘non-
industrial’ climate scenario of winter 2013/14 (i.e. with anthro-
pogenic forcings removed Schaller et al., 2014, see Section 2).

The particular season of interest, winter 2013/14 in Europe,
provides an interesting case study, because it came along with
exceptionally mild temperatures, severe storm depressions, both
winter dryness and heavy precipitation on regional to sub-con-
tinental scales. Significant but diverse societal impacts were as-
sociated with those events, for instance exceptionally early vege-
tation greening and a reduction of fossil fuel consumption for
heating due to the absence of severe frosts in some regions.!
Seasonal temperatures ranked among the highest ever recorded in
a range of countries according to national weather services (e.g.
Austria, Denmark, France, Germany, the Netherlands, Norway,
Poland, Slovakia, Switzerland, and the UK, e.g. Fig. 1, Deutscher
Wetterdienst, 2014). When it comes to seasonal rainfall anomalies,
a remarkable east-west divide persisted over most of the winter,
where central and south-eastern parts of the continent received
exceptionally low rainfall, whereas its most western stretches,
such as Ireland and the UK, experienced a record wet season
(Huntingford et al., 2014, Fig. 1). These remarkable patterns re-
sulted from a synoptic situation with many storm depressions that
moved along the English Channel, over the British Isles and into
the North Sea, hence advecting warm air into Central and East
European regions, and causing rainfall and severe winds in Britain
and along the Atlantic coast. This synoptic situation is also re-
flected by seasonal geopotential height anomalies (Fig. 1), which
were strongly negative over the North Atlantic and the British
Isles, whereas positive anomalies prevailed over Eastern Europe
(see Huntingford et al., 2014 for a more detailed discussion).

This study's analysis focuses on cold temperature and heavy
rainfall extremes, which allows us to state how the odds of oc-
currence of extremes in these two variables have changed be-
tween a ‘non-industrial’ climate and the contemporary winter
climate in 2013/14. These two variables provide a good case study,
because we expect temperature to be relatively spatially coherent,
and precipitation to be somewhat noisier both in space and time.
We illustrate our methodological approach as well as the attri-
bution analysis for two spatially averaged regions, North-West
Russia and the Iberian Peninsula, as well as for the entire European
model domain.

In Section 2, we describe the experimental setup, evaluate and
bias-adjust the regional climate model and outline the statistical
methodology to estimate return times. In Section 3, we first out-
line the results of the methodological comparison (EVT vs. em-
pirical return time estimates), and discuss related issues such as
parameter choices for a potential combination of both methodol-
ogies. Second, the illustrative attribution case study of winter
minimum temperatures and precipitation is presented. Lastly, we
draw some conclusions about the applicability of EVT based return
time estimates in the context of probabilistic event attribution
(Section 4).

1 http://www.pecad.fas.usda.gov/highlights/2014/03/EU_12march2014/
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Fig. 1. Synoptic analysis of DJF 2013/14 in Europe: seasonal temperature anomalies (top left), SST anomalies (top right), anomalies in cumulative rainfall (bottom left), and
geopotential height anomalies (bottom right). Temperature and precipitation data were taken from E-OBS, SSTs and geopotential height anomalies were calculated from
ERA-Interim (reference period: 1981-2010). The study regions over Spain and Russia are drawn as rectangular boxes.

2. Materials and methods

Model structure and experiment setup. In this study, we analyze
large ensemble simulations of the HadAM3P atmosphere-only,
global circulation model with an embedded, identically for-
mulated regional model for Europe (HadRM3P), which has been
used extensively elsewhere (Jones, 2004; Massey et al., 2014). The
global (nested regional) models are run with a spatial resolution of
1.875° x 1.25° (0.44° x 0.44°) on a rotated grid identical to the
EURO-CORDEX region,> with 19 vertical levels and a temporal
resolution of 15 (5) min (Massey et al., 2014). The model is based
on the atmospheric component of the HadCM3 general circulation
model (see Pope et al., 2000 for a full description) with improve-
ments with respect to the calculation of clouds and convection,
and a more realistic coupling of vegetated surfaces with the soil
(Massey et al., 2014). Since atmosphere-only simulations were
conducted, observed sea surface temperatures (SSTs) and sea ice
fractions for the observed period (DJF 2013/2014) are provided to
the model from the Operational Sea Surface Temperature and Sea
Ice Analysis (OSTIA) dataset (Stark et al., 2007; Donlon et al., 2012).
Further model drivers include the observed atmospheric compo-
sition (CO,, CH4, N,O, halocarbons and ozone), natural and an-
thropogenic emissions of different sulfur species, and solar
anomalies (see Massey et al., 2014 for a more detailed description

2 http://www.euro-cordex.net/About-Euro-Cordex.1864.0.html

and evaluation of the modelling framework). Initial conditions are
perturbed in the global circulation model on 1st December for
each ensemble member (ibid.).

As observed SST patterns from ‘the world that might have been’
(i.e. the ‘non-industrial’ scenario) in the absence of anthropogenic
emissions are not known precisely, estimates are made using some
of the state-of-the-art coupled ocean-atmosphere models taken
from the Coupled Model Intercomparison Project, phase 5 (CMIP5,
Taylor et al., 2012). Eleven of these models have run ‘natural for-
cings only’ simulations of the historical climate, and these are
subtracted from the ‘all forcings’ simulations to obtain an estimate
for the change in the SSTs (hereafter, delta SSTs). The differencing
is performed on climatological monthly means over the last dec-
ade available, i.e. 1996-2005. The delta SSTs are then used to
change the observed SSTs accordingly. To sample uncertainty, we
use these different CMIP5 models which cover the main modelling
groups from around the world (see Schaller et al., 2014, for de-
tails). All non-anthropogenic forcings such as aerosols, volcanoes
and the solar cycle are kept constant in both scenarios.

The large model ensemble investigated in this paper is derived
through the weather@home framework, in which citizen scientists
donate idle computer time in order to perform computationally
intensive calculations in a distributed manner. This approach
provided model ensemble simulations for 13,260 DJF periods in an
industrial world and 22,129 for the non-industrial case, using the
variety of different SST reconstructions. Data preprocessing
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Table 1
Regions used in this study and their geographical boundaries.

Region Eastern Western Southern Northern
boundary (°E) boundary (°E) boundary (°N) boundary (°N)

Spain -8 -1 39 43

NW Russia 32 39 53 59

consists of regridding the regional model ensembles to a regular
0.5° grid over Europe, using a second order conservative remap-
ping scheme (Jones, 1999). Subsequently, a meteorological sanity
check is conducted, in which all ensemble members with me-
teorologically implausible values are removed, before we validate
our model and analyze the ensemble’s statistics of extremes (see
below). We derive both 1-day spatial averages over selected re-
gions and 5-day grid-based averages for minimum temperatures
and heavy precipitation, where both aggregation steps are com-
puted on the original gridded time series. Two regions were
chosen to represent different European climates with pre-
dominantly maritime/Mediterranean (Spain) and continental
(North-West Russia) influences (Table 1). The grid-based Eur-
opean-scale analysis is noisier due to a lower level of aggregation,
but nevertheless provides valuable spatially explicit details. Due to
model spinup time, the first two weeks of December are dis-
regarded, after which it was checked that no remainder spinup
effects are detectable.

Model validation and bias adjustment: A high-quality grid-based
European land-only observational data set in 0.5° resolution
(EOBS, version 10.0, Haylock et al., 2008) is used in order to
quantify biases in simulated meteorological variables and to con-
duct a simple synoptic assessment for winter 2013/14 (Fig. 1).
Since our ensemble is based on the SST patterns of one winter
season, an assessment of model performance would not be re-
presentative based on the ensemble alone. Hence, we use 50
randomly chosen ensemble members per year (i.e. 1300 model
years in daily resolution) for the winter seasons from 1986 to 2010
from an identical model setup (Massey et al., 2014) for the purpose
of validation. Differences in statistical distributions are assessed
graphically by quantile-quantile plots. The spread of the ensemble
is illustrated similar to Massey et al. (2014) by appending ran-
domly chosen ensemble members without replacement in order
to derive 50 winter time series for each of the years 1986-2010
(see Fig. 1 in Supplementary Information, S1).

The model's winter simulations of daily temperature show re-
latively good agreement with the distribution of daily minimum
temperatures in E-OBS in both regions, although with a slight cold
bias over NW Russia. For the whole European domain, larger
biases are observed in Scandinavia, and towards the southern
margins of the regional model domain (S1). Nonetheless, it can be
noted that the regional model performs better in simulating
temperatures in winter as compared to summer (Massey et al.,
2014). Hence, we conclude that our model simulates temperatures
to a reasonable degree, and this also holds for percentiles rela-
tively far away from the mean (Fig. 1, S1).

Precipitation simulations do not always agree favourably with
observations. Considerable wet biases towards the upper tails of
the distributions of daily rainfall over the two regions remain, as
well as for most grid cells throughout Europe (S1). Here, we use a
very simple bias adjustment methodology to account for this bias.
Due to the obvious positivity constraint, an additive correction of
biases, which is often applied to climatic variables such as tem-
perature (Hempel et al., 2013; Sippel and Otto, 2014), is not fea-
sible for precipitation. Hence, we determine a multiplicative cor-
rection factor similar to Hempel et al. (2013), which quantifies
biases in the 97.5th percentile:

¢ = OBSg750n
MODg; 5 M

Subsequently, daily rainfall values are scaled by c, which re-
moves some of the biases in the high percentiles. Although using a
single percentile is a somewhat subjective choice, we argue that it
is relatively robust with respect to the observations, since in the
period used for model validation (DJF 1986-2010), the 97.5th
percentile corresponds approximately to the 50th largest value,
hence a relatively robust sample. This simple multiplicative ad-
justment yields a better match of simulated and observed rainfall
amounts also in higher quantiles, without any invasive changes to
the distribution. Importantly however, scaling the absolute values
with an adjustment factor does not affect any relative changes
between fitted extreme value distributions.

Further, it is important to note that an acceptable simulation of
daily precipitation statistics does not warrant satisfying simulation
at monthly or seasonal time scales. For an evaluation and discus-
sion for model performance at monthly time scales, we refer the
interested reader to Massey et al. (2014). Moreover, while we ac-
knowledge that the resolution of the regional model is too coarse
to resolve local convection or thunderstorm-related activity, Fig. 1,
S1 demonstrates that the distribution of daily rainfall events in the
model agrees broadly with the observations for both regions, in-
cluding its tails (S1).

Statistical estimates of return periods: The primary objective of
this study is to compare statistical inferences for the tails of me-
teorological variables based on EVT with empirical return time
estimates. The ensemble simulations are conducted for one season
only (DJF 2013/14 in a ‘natural’ and ‘anthropogenic’ scenario),
hence stationarity for the EVT based estimates of the tails is as-
sumed. Further, we fit generalized extreme value (GEV) distribu-
tions of the form (Coles et al., 2001)

-(1/&)
G@) = exp[—[l etz ”] ]

i @)
to a sample of 1-day (5-day) minimum temperatures and max-
imum cumulative rainfall events for each simulated winter season
for each area-averaged region (grid cell). Here, 4, ¢ and & denote
the location, scale and shape parameter of the GEV distribution,
respectively. Unless otherwise stated, confidence intervals re-
presenting 5-95% parametric uncertainty are given based on the
normality of the GEV parameter estimates (Coles et al., 2001). To
address the influence of GEV parameter choice (block and sample
size) on the return time estimates (Section 3), we resample the
large ensemble to derive different block and sample sizes for
various return time estimates. This procedure is iteratively re-
peated for each parameter combination in order to derive resam-
pling based 5-95% confidence intervals for return time estimates
that are comparable to the empirical estimates.

For the analysis of rare winter extremes, a resampling strategy
is used in order to avoid biases associated with an extrapolation
from 1-yr extremes to several hundred year return level extremes
(see Section 3), which might also entail a very different dynamical
structure of the atmospheric circulation in the real world. There-
fore, 10-yr block extremes are drawn from the large sample by a
random selection of ten ensemble members, from which only the
most extreme value is retained. This procedure is repeated 200
times (for both regions and for each CMIP5 model's SST re-
construction) to derive a statistical distribution of 10-year block
extremes, which is subsequently used to fit a GEV distribution as
specified above.

Throughout our analysis, a Generalized Maximum Likelihood Es-
timation (GMLE) approach is used for fitting the parametric model to
the data (Martins and Stedinger, 2000), which is conducted using the
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extRemes software package (Gilleland and Katz, 2011). We also tested
the GEV parameter estimation using the L-moment and MLE meth-
ods: these were found to yield estimates very similar to the GMLE
method that we employ here. All statistical analysis is performed in
the R statistical environment (R Development Core Team, 2008) using
the add-on packages ‘boot’ and ‘ADGofTest’. A guide to the here-de-
ployed resampling strategy, including an illustration of the effects of
parameter choices on return time estimates (Section 3.1) is provided
in the Supplementary Information.

Empirical return time estimates are constructed by plotting the
sorted values of the ensemble against its rank. To assess un-
certainty of this empirical estimate, we derive bootstrapped un-
certainty intervals (5-95%) by resampling (n=5000 ensemble
members, R=1000 times).

Evaluation of fitted extreme value distributions: The parametric
fits are evaluated in a three-fold approach:

First, we use adjusted mean residual life plots (Coles et al.,
2001) in order to test whether the exceedance of any threshold u
yields an approximately linear scaling of the ‘residual means’ (i.e.
the average of the values exceeding the threshold u). This concept
is frequently used to determine an appropriate threshold for peak
over threshold models with prior declustering of extremes. It can
be shown that the residual means follow a linear function of the
threshold, if the peak over threshold model is appropriate (Coles
et al., 2001, p. 79). Here, this idea is slightly modified, and we plot
the ‘mean residual life’ of the seasonal block maxima, thus it could
be seen similar to a seasonal declustering approach (i.e. assuming
that any two extreme events in one season are not independent).
Present non-linearities in these plots might indicate that extreme
events are subject to different physical/dynamical climatic re-
gimes, and will be further discussed/evaluated below.

Second, each fitted GEV (both regional and grid cell based) is
tested for its goodness of fit using a parametric Anderson-Darling
(AD) test based on a significance level of a=5%. We chose the AD
test over a Kolmogorov-Smirnov (KS) test used in earlier studies
(Kharin et al., 2007), because it is more sensitive to the tails of the
distribution by implementing a weight function instead of a
maximum distance approach such as the KS test.

Lastly, in order to evaluate deviations of the fitted GEV dis-
tributions from the empirical large ensemble for rare events in the
tails (Section 3.1), we adopt a somewhat ad hoc but practically
useful definition of ‘biases’ (see Fig. 2 and associated discussion):
since our focus is on ‘rare events’, we determine the maximum
absolute difference in return levels in the interval of 100-1000
years (i.e. 99th to 99.9th percentile) between the fitted GEV's and
the empirical return levels of the large ensemble, using monotonic
Hermite spline interpolation to derive a continuous curve for the
latter. To compare the biases in GEV fits from the empirical en-
semble with the ‘expected biases’ inherent in any GEV model for a
given block size (Section 3.1), we simulate a large number of
random values from the fitted extreme value distributions for each
region. Subsequently, we determine the distance (‘bias’, as defined
above) between GEV fits from this data using each block size of
interest from a ‘large empirical GEV sample’ (n=15 000). Hence,
these artificial simulations mimic the comparison between the
empirical ensemble and GEV fits with different block sizes. The
uncertainty of an empirical estimate of the tail is tested by re-
sampling from a known GEV model (S2), the variance of which
becomes large for very high return periods.

3. Results and discussion
In this section, we first test a combination of stationary EVT

analysis with a large ensemble of numerical simulations and
present a systematic evaluation of the parameter choices in EVT-

based assessments regarding its effects on return time estimates
for meteorological variables (Section 3.1, an illustrative guide is
available as Supplementary Material). Subsequently, we analyze
changes in cold temperature and heavy precipitation extremes in
winter 2013/14 relative to a pre-industrial scenario in the large
ensemble simulation using extreme value theory (Section 3.2).

3.1. Combining extreme value analysis with large ensemble
simulations

A comparison of the fitted GEV distributions based on re-
sampled sub-ensembles with the empirical estimate of the tail for
the NW Russia region is presented in Fig. 2 (top), including a
stationary GEV fit to the E-OBS observations for illustrative pur-
poses only (1951-2014, black dots and line).>

The methodological comparison reveals that GEV-based in-
ferences with large block sizes (e.g. 10-yr return periods, Fig. 2,
top, dark-blue/dark-red line and shading) agree well with the
empirical estimate (circles). However, inferences made for shorter
return periods (e.g. 1-yr events: orange/light blue) overestimate
(minimum temperatures) or underestimate (maximum rainfall)
return levels of rare events (e.g. 100+ year return levels). This
analysis is presented in for the NW Russia region, and occurs si-
milarly over Spain (S2), although less pronounced. These differ-
ences are important to consider, because a relatively large pro-
portion of the GEV's fitted to resampled sub-ensembles (n=1000,
annual block extremes) is not rejected by a statistical Goodness-of-
Fit test,* and could thus be misinterpreted if only a small ensemble
were available. However, these differences in the inferences about
the tails can be readily detected in the mean residual life plots, for
example in the NW Russia region (Fig. 2, middle) with a non-linear
breakpoint approximately around the median (marked as 50th
percentile, corresponding to 2-yr return events). Hence, extreme
value statistics of seasonal minimum daily temperatures or pre-
cipitation might not be ‘rare enough’ in order to satisfactorily
constrain events that are located far in the tails. This could po-
tentially lead to notorious biases in statistical models, which are
most pronounced for large return periods (i.e. 99th to 99.9th
percentile in this case) if the chosen block size is too small.
Comparing these biases with biases in the tails for independent
and identically GEV-distributed artificial data (see Section 2 for a
detailed description of the resampling strategy to obtain these
‘expected biases in the tails’) for any given block size shows that
for large enough block sizes these biases are reduced (Fig. 2).
Hence, although the ultimate reason for non-adequate statistical
model fits for rare events are limited sample and block sizes
(Fisher and Tippett, 1928; Coles et al., 2001), characteristics of
climatological variables such as serial correlation, climatic varia-
bility and noise, or potential dynamic regime changes under ex-
treme conditions might considerably amplify these deviations.

The illustrative example highlights that the choice of block size
is critical in climatological applications of EVT. To further and more
systematically investigate this issue, we conducted a range of re-
sampling experiments to assess the influence of parameter choice
on an EVT-based estimation of climatological events in the ex-
treme tails. Those parameter choices are inherently a trade-off
between bias (short block size) and variance (due to small sample
sizes for large blocks Coles et al., 2001), which is illustrated in

3 However, it should be kept in mind that the observations are based on a 63-
year period, including potential non-stationarities and cover a variety of synoptic
conditions, whereas the model ensemble is run conditional on 2013/14 SST's.

4 Based on the AD-test, the proportion of the null hypothesis not rejected is for
the anthropogenic (natural) ensemble: 41% (30%) NW Russia, 100% (100%) Spain
(minimum temperatures), and 99% (98%) NW Russia, 99% (100%) Spain (heavy
rainfall).
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reader is referred to the web version of this paper.)

Fig. 3 for two different return times (20 and 1000-years) in NW
Russia. We note that from a practical perspective, for example for
the analysis of relatively short observational time series, the choice
of block size depends not only on the available sample size and
climatological variable of interest, but also on the ‘target return
time’ upon which a statement should be made (Fig. 3, see also
tabulated values in S2, and the ‘code tutorial’ provided as Sup-
plementary Material). To this end, it is interesting to note that
these biases require careful consideration if, for example, statis-
tical models are derived based on annual extremes of daily vari-
ables, which is widely being done (see for example: Coles et al.,
2001). On the other hand however, GEV-based inferences with
larger block sizes allow us to derive very consistent statements for
high return intervals, for which a reduced number of ensemble
simulations are already sufficient (e.g. compare GEV-based in-
ference with an ensemble of size n=1000 in Fig. 3 with the em-
pirical estimate, n=13 260).

At this point, a couple of cautionary remarks might be appro-
priate. First, it should be noted that in this paper we investigate

the simplest case of an application of EVT: daily extremes de-
termined from seasonal blocks under stationary conditions (i.e.
Winter 2013/14 under anthropogenic or natural forcing condi-
tions). Hence, it should be stressed that EVT can also be applied
under non-stationary conditions (Kharin and Zwiers, 2000; Kharin
et al.,, 2007, 2013) and with covariates accounting for additional
information (see for example Sillmann et al., 2011). Furthermore,
peak-over-threshold models constitute an important alternative to
modelling block maxima with GEV's (Coles et al., 2001); a detailed
investigation of this in terms of informed parameter choices based
on ensemble simulations could be a topic for future study.
Second, as we are concerned here about the statistics of rare
events, and thus the dynamical structure of such events is not
investigated. In Europe, such rare events might be related to re-
levant modes of atmospheric variability, such as for example the
North Atlantic Oscillation (NAO) (Sillmann et al., 2011). Therefore,
our analysis and estimation of return periods of extremes is con-
ditional on sea surface temperature patterns that were present in
winter 2013/14 in the Euro-Atlantic region with the NAO being in
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its positive phase (Huntingford et al., 2014).

Third, it should be pointed out that an analysis of rare events is
inherently uncertain. In this paper, we are addressing statistical
(Section 3.1) and scenario reconstruction uncertainties (Section
3.2). Hence, possibly large uncertainties that might stem from the
models’ (imperfect) structure or parametrization are not examined
here, although an attempt was made to implicitly account for such
issues using the empirical bias correction for precipitation (Section
2).

To summarize, our analysis reveals that seasonal block ex-
tremes in an ensemble of regional model simulations of daily
meteorological variables might not be robust enough to infer
statistical statements on the odds of particularly rare events of
both temperature and precipitation. A resampling scheme is
shown to improve the fits to the tails based on larger than annual
block sizes. Therefore, the combination of a large number of dy-
namical model simulations with statistical extreme value models
might enable a more informed selection of parameter choices for
EVT-based inferences. In return, EVT-based estimates might point
at the number of numerical simulations needed to adequately
constrain a given return period of interest (Fig. 3). Hence, we
conclude that for climatological applications both methodologies
might benefit from a statistical setup in which EVT and large nu-
merical simulations inform each other, for example to choose EVT
parameters for the analysis of relatively short observational time
series.

3.2. The anthropogenic influence on European minimum tempera-
tures and precipitation in winter 2013/14

In this subsection, we present and discuss how climatic chan-
ges between the counterfactual scenario and the present might
have altered the odds of cold extremes and heavy precipitation as
an application of the extreme value analysis outlined above. We
also illustrate for two regions how uncertainties in the

reconstruction of a counterfactual past might induce uncertainties
in attribution statements. Finally, we discuss our results in the
context of changes in extremes throughout Europe.

Temperatures: In a winter season such as DJF2013/14 in Europe,
minimum temperatures have warmed significantly and unambi-
guously in both study regions (Fig. 4, S3) and throughout Europe
(S4). For example, the location parameter of GEV distributions
fitted to 10-yr resampled minimum temperatures in NW Russia
has shifted significantly under all scenarios (Fig. 4). However, the
reconstruction of a ‘non-industrial world’ scenario induces con-
siderable uncertainties, with a warming of roughly two and four
degrees at the lower and upper end, respectively, of the CMIP5
models used for reconstruction (Fig. 4). Hence, scenario un-
certainties are larger in magnitude than statistical uncertainties
resulting from fitting statistical models in this type of study. Fur-
thermore, the decreasing odds of extremely cold temperatures in
the two regions studied in this paper seem to a very large pro-
portion caused by a shift in the location parameter of the GEV,
rather than by changes in the scale or shape of the distribution
(S4). In fact, none of the different SST reconstructions shows a
significant change in scale or shape in any region under study (not
shown), and computing GEV parameters over each grid cell of the
European model domain yields only minor and largely non-sig-
nificant changes in the shape and scale parameters of seasonal
cold extremes (S4). This finding indicates that the year-to-year
variability of seasonal cold extremes (around the shifting mean)
has not changed markedly in our model, though the interpretation
of individual GEV parameters is to be made with caution (Gille-
land, pers. comm.).

Nonetheless, testing different assumptions about potential chan-
ges in the scale and shape of the tails is a highly topical issue in cli-
matology — not least because recent findings point at a decreasing
temperature variability at the sub-seasonal scale in northern latitudes
(Screen, 2014). Consequently, we further investigate this issue in our
model ensemble with a focus on the tails. To do so, we compare the
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present-day warming relative to the pre-industrial scenario in winter
maximum temperatures with the warming in the coldest winter
temperatures (i.e. a ‘differential warming of winter temperature ex-
tremes’ is defined as the difference between the warming in the
warmest and coldest winter temperatures expressed through 100-

year return levels). To this end, we find a clear, spatially coherent and
widely significant pattern (Fig. 5): in large areas of North and Central
Europe, cold extremes have warmed considerably stronger than
warm extremes. Only in the Mediterranean region and towards the
eastern edges of our model domain this pattern is not as clearly
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pronounced. This finding is qualitatively consistent with previous
studies that have shown that daily minimum temperatures (nights)
are warming faster than maximum temperatures (days) in observa-
tions (Alexander et al., 2006; Donat et al., 2013) and that sub-seasonal
temperature variability in northern latitudes is decreasing (Screen,
2014), both of which might contribute to the differential warming
seen here. Mechanisms behind the day-night asymmetry might in-
deed include stronger night-time effects of increased greenhouse gas
forcing, whereas changes in sub-seasonal variability in northern lati-
tudes might be driven by the Arctic amplification, i.e. temperatures of
northerly winds might have warmed faster than southerly winds over
the last decades (Screen, 2014). Disentangling these effects is not the
focus of this paper, but would provide an interesting topic for further
study.

In brief, our analysis suggests that cold and warm temperatures
extremes have warmed considerably since pre-industrial times,
but the upper and the lower (extreme) tail might indeed warm at
different rates. However, our present analysis does not show any
evidence that the year-to-year variability of seasonal cold tem-
perature extremes has changed.

Precipitation: When it comes to wintertime heavy rainfall
events, changes between the ‘non-industrial’ (NAT) and anthro-
pogenic (ANT) scenarios are less pronounced and vary among re-
gions and the CMIP5 models used for reconstructing the SST
patterns. We find a significant shift towards stronger heavy pre-
cipitation events in NW Russia (Fig. 4, bottom), whereas in Spain
no significant overall changes are shown by our model (S3).
Moreover, the counterfactual world reconstructions clearly show

that scenario uncertainty is large when it comes to heavy rainfall:
in NW Russia all except one SST reconstructions for the ‘non-in-
dustrial’ scenario lead to a significant increase in the location
parameter, however results for Spain show the sign of the location
parameter to differ between SST estimates leading to an overall
small but non-significant increase in the location parameter. Like
the results for temperature, we also observe that the scale and
shape parameters are not changing significantly across the studied
regions.

To understand further, we derived GEV fits for heavy pre-
cipitation for each grid cell of the European model domain (S5).
Most attribution studies conducted to date have been looking at
regional averages, mainly because spatial (or temporal) aggrega-
tion reduces the level of noise. Although we acknowledge that this
type of spatially explicit analysis presented here might involve
considerable uncertainties, particularly as local features such as
processes on a sub-grid cell scale might not be well-represented in
the model, we argue that the figure presented in S5 allows us to
identify European regions that show a spatially coherent signal of
human-induced changes in 100-year return levels of daily rainfall.
Whilst the overall pixel-based signal is much noisier and does not
point at strongly pronounced changes in extreme winter rainfall in
Central or Southern Europe, we are able to identify regions in
North and North-East Europe that exhibit a spatially coherent
signal of increasing 100-yr return levels (Fig. 5). Here again, those
changes can be attributed to a shift in the location parameter of
the GEV, rather than changes in scale or shape (S5). In conclusion,
we find clear indications that winter rainfall extremes are chan-
ging in parts of North Europe, whilst in southern regions, parti-
cularly in the Mediterranean no clear statement can be made at
present. Although the mechanisms behind intensified extreme
rainfall are still debated (O'Gorman and Schneider, 2009), they can
be conceptualized as a subtle interplay between thermodynamical
effects (i.e. the amount of moisture held within a fixed volume of
air, described by the well-known Clausius-Clapeyron relationship,
e.g. Held and Soden, 2006) and large-scale atmospheric dynamics
in a warming climate (Emori and Brown, 2005). Nonetheless, our
results in European regions agree qualitatively well with previous
findings of intensified daily rainfall in model simulations for the
mid-high latitudes, and relatively minor changes in the extreme
percentiles over the Mediterranean (Pall et al., 2007). Likewise,
Westra et al. (2013) show that maximum precipitation events at
daily time scales are becoming more intense in the observational
record for most stations globally, with least pronounced changes
occurring in drier sub-tropical regions, such as the Mediterranean.

4. Conclusion

In this study we examined two commonly used techniques for
assessing the odds of extreme weather events in a changing cli-
mate. The purpose of which was to test if using statistical in-
ferences on relatively small sample sizes (as is common in ob-
servational studies) would give quantitatively similar results to
using large sample sizes of the simulated climate (as is used in
complementary experiments, e.g. Stott et al., 2004; Otto et al,
2012). When it comes to attribution statements it is important to
account for such potential differences, because statements are
often based on the evaluation of relatively subtle changes in the
tails. The analysis is then used to understand how the lower and
(upper) tails of temperature (rainfall) distributions change under
anthropogenic climate change in a European winter season.

We show that for some regions of Europe, the definition of
what counts as ‘extreme’ data can drastically change how the
extreme value distribution (in this case the GEV) is fitted. In some
cases, for instance winter temperatures over NW Russia, the GEV
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model based on an annual block size does not fit well to empirical
estimates of the tails from thousands of ensemble members of a
climate simulation. The reason for the observed disparity may well
be because of different dynamic regimes under very extreme
meteorological conditions that do not occur in every seasonal si-
mulation. As such, a careful choice of parameters is crucial when
using EVT for understanding extreme events, especially if small
sample sizes akin to observational data are used. We argue that
large ensemble simulations might offer a route to test the ro-
bustness of such parameter choices for any particular variable or
region of interest. Further, a combination of GEV-based inference
with ensemble simulations allows us to reduce the number of
required simulations substantially for estimating high return per-
iods. For example, we show that when analysing extreme tem-
peratures over Russia, a statement regarding the 1000-year return
period can be made by fitting an extreme value distribution to a
sample size of 1000 years, whereas empirical estimates would
require an order of magnitude larger sample size. Similar conclu-
sions can be drawn for Spain.

Using the refined resampling technique for understanding rare
extremes and with respect to the case study of the unusual winter
2013/14, we find a widespread warming pattern throughout Eur-
ope, which led to a reduction of return periods of very cold winter
days (as derived from seasonal minima). This is accompanied by an
increase in warm winter anomalies both in frequency and mag-
nitude throughout the model domain. Crucially, the observed
warming of daily winter temperature minima is larger than the
maxima, showing an asymmetry in the changes in extremes. Fi-
nally, predominantly northern parts of Europe show significant
increases in unusually extreme daily rainfall events, emphasizing
the importance of considering extreme events on a regional basis.
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