
Temperature and precipitation extremes in
century-long gridded observations, 
reanalyses, and atmospheric model 
simulations 
Article 

Published Version 

Donat, M. G., Alexander, L. V., Herold, N. and Dittus, A. 
ORCID: https://orcid.org/0000-0001-9598-6869 (2016) 
Temperature and precipitation extremes in century-long 
gridded observations, reanalyses, and atmospheric model 
simulations. Journal of Geophysical Research: Atmospheres, 
121 (19). 11,174-11,189. ISSN 2169-897X doi: 
10.1002/2016JD025480 Available at 
https://centaur.reading.ac.uk/72421/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .
Published version at: http://dx.doi.org/10.1002/2016JD025480 
To link to this article DOI: http://dx.doi.org/10.1002/2016JD025480 

Publisher: American Geophysical Union 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 

http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf


the End User Agreement  . 

www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 
Reading’s research outputs online

http://www.reading.ac.uk/centaur
http://centaur.reading.ac.uk/licence


Temperature and precipitation extremes in century-long
gridded observations, reanalyses, and atmospheric
model simulations
Markus G. Donat1, Lisa V. Alexander1, Nicholas Herold1, and Andrea J. Dittus2,3

1Climate Change Research Centre and ARC Centre of Excellence for Climate System Science, University of New SouthWales,
Sydney, New South Wales, Australia, 2School of Earth Sciences and ARC Centre of Excellence for Climate System Science,
University of Melbourne, Melbourne, Victoria, Australia, 3Now at School of Earth, Atmosphere and Environment, Monash
University, Clayton, Victoria, Australia

Abstract Knowledge about long-term changes in climate extremes is vital to better understand
multidecadal climate variability and long-term changes and to place today’s extreme events in a historical
context. While global changes in temperature and precipitation extremes since the midtwentieth century are
well studied, knowledge about century-scale changes is limited. This paper analyses a range of largely
independent observations-based data sets covering 1901–2010 for long-term changes and interannual
variability in daily scale temperature and precipitation extremes. We compare across data sets for consistency
to ascertain our confidence in century-scale changes in extremes. We find consistent warming trends in
temperature extremes globally and in most land areas over the past century. For precipitation extremes we
find global tendencies toward more intense rainfall throughout much of the twentieth century; however,
local changes are spatially more variable. While global time series of the different data sets agree well after
about 1950, they often show different changes during the first half of the twentieth century. In regions with
good observational coverage, gridded observations and reanalyses agree well throughout the entire past
century. Simulations with an atmospheric model suggest that ocean temperatures and sea ice may explain
up to about 50% of interannual variability in the global average of temperature extremes, and about 15%
in the global average of moderate precipitation extremes, but local correlations are mostly significant only in
low latitudes.

1. Introduction

Climate extremes often have severe impacts on different aspects of society, infrastructure, and ecosystems
[Intergovernmental Panel on Climate Change, 2012]. In a changing climate, it is important to know how
characteristics of extremes are changing, and will change in the future, to enable appropriate adaptation.
Relatively good observational data coverage, suitable to assess past changes in temperature and precipita-
tion extremes, exists over land since the midtwentieth century [Alexander et al., 2006; Donat et al., 2013a,
2013b]. These observations show widespread warming trends in temperature extremes, while changes in
precipitation extremes are spatially more heterogeneous.

However, going back in time prior to the midtwentieth century, reliable observations become sparse, and
little work has been done to assess changes in extremes on century time scales [Donat et al., 2013b]. The
knowledge of changes in extremes on longer time scales is important to understand decadal-scale variability
[e.g., Salinger, 2005; King et al., 2013], to consider recent extremes in a historical context [e.g., Donat et al.,
2013a], and also to evaluate climate models [e.g., Sillmann et al., 2013].

Several observations-based global data sets have recently become available that allow the investigation of
extremes over the past century. One is based on interpolated in situ observations (HadEX2) [Donat et al.,
2013b]. Others are reanalyses: dynamical atmospheric models that were constrained by observations of
the surface pressure, sea surface temperatures, and sea ice concentrations, in addition to increasing green-
house gas concentrations. These are the Twentieth Century Reanalysis by the National Oceanic and
Atmospheric Administration, hereafter 20CR [Compo et al., 2011], and the European Centre for Medium-
Range Weather Forecasts (ECMWF) atmospheric reanalysis of the twentieth century [Poli et al., 2016],
hereafter ERA-20C. In addition, ECMWF also provides an ensemble of simulations with the same atmospheric
model used for ERA-20C, only driven with monthly ocean surface temperatures and sea ice concentrations,
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but without assimilating variables related to atmospheric flow. This ensemble of ocean-driven simulations is
called ERA-20CM [Hersbach et al., 2015]. Note that both 20CR and ERA-20C use similar observational con-
straints from historical pressure records but different atmospheric models and assimilation systems and
are therefore only partly independent realizations of the past climate. Both data sets are, however, inde-
pendent from the HadEX2 gridded observations that are based on in situ temperature and precipitation
records.

A comprehensive comparison of climate extremes across several gridded observations and operational rea-
nalyses has shown that most state-of-the-art reanalyses are consistent with in situ-based data sets for the
most recent three decades when satellite data were available for assimilation into the atmospheric models
[Donat et al., 2014]. Good agreement between the ECMWF ERA-Interim reanalysis and observations during
the most recent three decades was also found in a regional evaluation of extreme temperatures specifically
over Europe [Cornes and Jones, 2013]. However, it is questionable if reanalyses are suitable for investigations
of long-term changes due to inhomogeneities in their input data [Thorne and Vose, 2010]. Regarding annual
average temperatures on a century-long time scale, the 20CR has previously been used to independently
confirm warming in global data sets of temperature observations over the 1901–2010 period [Compo et al.,
2013]. However, climate extremes often show a different behavior compared to average conditions
[Seneviratne et al., 2014], and it remains to be investigated how robust different estimates of extreme
climate conditions are between the independent long-term data sets.

The 20CR has previously been used to investigate changes in extremes but mostly on regional scales. For
example, long-term upward trends in European storminess have been found [Donat et al., 2011] but were
argued to be, at least in part, artifacts related to increasing density in the observational network used for
the assimilation of atmospheric flow [Krueger et al., 2013]. However,Wang et al. [2013] highlight consistency
in extreme pressure gradients between 20CR and observations over the NE Atlantic, and despite large inho-
mogeneities in the ensemblemean pressure fields, Pepler et al. [2016] showed that the full ensemble could be
used for a long-term assessment of midlatitude cyclone frequency on the east coast of Australia. For tempera-
ture extremes over North America, there is reasonably good agreement between 20CR and gridded station
observations throughout the entire twentieth century [Donat et al., 2016]. Temperature and precipitation
extremes on a global scale, however, have not been previously compared between century-long reanalyses
and data sets based on direct observations of temperature and precipitation.

In this study, we compare indices of extreme temperature and precipitation calculated from two century-long
reanalyses, 20CR and ERA-20C, with gridded extremes from the HadEX2 data set over the period 1901–2010.
Our aims are to (i) provide an assessment of century-scale changes and variability for different measures of
temperature and precipitation extremes. Further, based on the agreement between these independent data
sets, we will (ii) infer the robustness of our knowledge about changes in climate extremes over the past
century. By comparing observational extremes to atmospheric model simulations driven by ocean fields,
we (iii) also estimate to what extent interannual variability of extremes may be driven by ocean surface tem-
peratures and sea ice.

2. Data and Methods

In this study we consider a subset of the 27 indices recommended by the Expert Team on Climate Change
Detection and Indices (ETCCDI) to investigate different aspects of temperature and precipitation extremes
[Zhang et al., 2011]. These indices are calculated from daily maximum and minimum temperatures and total
daily precipitation amounts. Table 1 shows an overview of the indices that are discussed in this study.

HadEX2 provides global land-based gridded fields of the ETCCDI indices [Donat et al., 2013b]. It is based on a
network of several thousand high-quality meteorological stations. The annual extremes are first calculated at
each station location before the indices are interpolated on a global 3.75° × 2.5° longitude-latitude grid.
HadEX2 covers the period 1901 to 2010, but the spatial coverage is variable in time [Donat et al., 2013b].

20CR version 2 is a global reanalysis that assimilates hourly and synoptic barometric pressure observations,
monthly averaged sea surface temperature (SST), and sea ice concentration (SIC) fields into an atmospheric
circulation model, in addition to prescribing observed radiative forcings [Compo et al., 2011]. To account for
uncertainties in the sparse observational input data, an Ensemble Kalman Filter technique is used to produce
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an ensemble of 56 realizations. The 20CRv2 provides 1.875° × 1.9° horizontal resolution global gridded fields
for the period 1871 to 2010. The ETCCDI indices are calculated from daily gridded fields of daily maximum
and minimum temperature and daily precipitation amounts for each of the 56 ensemble members.

The ERA-20C is another global reanalysis that was produced by assimilating surface pressure and marine
wind observations into a numerical model of the atmosphere [Poli et al., 2016] and using SST and SIC fields
as boundary conditions. The ERA-20C was produced with the ECMWF Integrated Forecasting System (IFS) ver-
sion Cy38r1, at a horizontal resolution of approximately 1.25° (spectral truncation T159). Output fields were
downloaded from the ECMWF data server on a regular 1.5° × 1.5° grid. The ERA-20C covers the period 1900
to 2010. Global fields of daily maximum temperatures were calculated as the daily maximum of 6-hourly
instantaneous fields and daily minimum fields accordingly as the minimum of the 6-hourly values. Daily
precipitation totals from ERA-20C were provided as 24 h cumulates as a forecast variable. Unlike 20CR that
provided a relatively large ensemble to account for uncertainties in the observational fields, the final version
of ERA-20C was produced only as a single realization.

In addition to the ERA-20C reanalysis, ECMWF also provides an ensemble of simulations with the same IFS
model version Cy38r1, driven only by observational SST and SIC fields, but without assimilating pressure
and wind observations [Hersbach et al., 2015]. Hence, this ensemble follows a setup as used in the
Atmospheric Model Intercomparison Project (AMIP) [Gates, 1992]. ERA-20CM consists of 10 ensemble mem-
bers that were produced using different realizations of SST and SIC fields from the HadISST2 data set [Titchner
and Rayner, 2014]. Temperatures from ERA-20CM are 3-hourly instantaneous fields, and total precipitation
comes as 3-hourly accumulated values. Hence, daily maximum temperatures were calculated as the daily
maximum of the 3-hourly values and daily minimum temperatures as the minimum of 3-hourly values
accordingly. Daily precipitation totals were calculated as daily sums of the 3-hourly totals. We will hereafter
use the terms AMIP-style runs or AMIP ensemble to refer to the results based on ERA-20CM.

The ETCCDI climate extreme indices were calculated on the native grids of 20CR, ERA-20C, and ERA-20CM.
Prior to the analyses, however, the extreme indices from all data sets were regridded to the HadEX2 grid
which is the one with the coarsest resolution across all data sets used here. Regridding is necessary to mask
all data sets to the same spatial coverage when calculating global and regional average time series, for exam-
ple. Also, for calculating local correlations between data sets, the same grid was necessary.

Note that the order of operation to obtain the fields of annual extremes is different between the data sets.
While HadEX2 first calculates the extreme indices before gridding them, reanalyses and climate model
extremes are calculated from gridded daily fields. These different orders of operation can cause systematic
differences in the absolute values of some extreme measures [Donat et al., 2014; Avila et al., 2015].
Extremes calculated from daily grids, such as climate model and reanalysis data, are usually “less extreme”
compared to grids calculated from station extremes; i.e., lower absolute maximum values and higher mini-
mum values are expected in extremes from daily grids when compared to grids of station extremes. This
mainly affects indices based on absolute values, while indices based on relative thresholds (e.g., percentile

Table 1. Climate Extreme Indices Analyzed in This Study

ID Index Name Index Definition Unit

TXx Hottest day Annual maximum value of daily maximum temperature °C
TNx Warmest night Annual maximum value of daily minimum temperature °C
TXn Coldest day Annual minimum value of daily maximum temperature °C
TNn Coldest night Annual minimum value of daily minimum temperature °C
TN10p Cool nights Annual count when daily minimum temperature< 10th percentile days
TX10p Cool days Annual count when daily maximum temperature< 10th percentile days
TN90p Warm nights Annual count when daily minimum temperature> 90th percentile days
TX90p Warm days Annual count when daily maximum temperature> 90th percentile days
FD Frost days Annual count when daily minimum temperature< 0°C days
SU Summer days Annual count when daily maximum temperature> 25°C days
Rx1day Maximum 1 day precipitation amount Annual maximum 1 day precipitation mm
R10mm Number of heavy precipitation days Annual count when daily precipitation ≥ 10mm days
R95p Precipitation from very wet days Annual total precipitation from days> 95th percentile mm
CDD Consecutive dry days Maximum number of consecutive days when precipitation< 1mm days
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exceedance) generally are more robust across the different gridded data sets if calculated relative to their
own percentiles [Sillmann et al., 2014]. Also, while the order of operation issues have effects on the actual
values of extremes, interannual variability and long-term changes are generally less sensitive to these differ-
ences in calculating the global grids of extremes [Donat et al., 2014]. Therefore, we use anomalies from the
common climatological period 1961–1990 to intercompare the data sets.

We present analyses for the period 1901–2010, which is common to all data sets. Global average time series
for each index are calculated as area-weighted averages of local annual anomalies from the 1961–1990 clima-
tological mean. To minimize artifacts from variable spatial coverage that may lead to variability in the global
time series, we only use grid cells that have at least 90 years of valid data for the global average calculation.
This has the caveat that coverage contributing to the “global” time series is relatively limited, and in reality
this global time series mainly is an average of grid cells in North America, Europe, parts of Asia, and
Australia. Note that the spatial coverage varies for different indices in HadEX2. This is because the spatial cor-
relation structure of the underlying station data is taken into account when calculating the grids [Alexander
et al., 2006; Donat et al., 2013b]; indices with a larger decorrelation length scale have more grid cells with data
compared to indices with a shorter decorrelation length scale.

Difference maps are shown for averages of the climate extreme indices during the last 20 years (1991–2010)
relative to the first 20 years (1901–1920) and a period in the middle of the twentieth century (1951–1970),
when data already have a reasonable global coverage and before strongest warming occurred [see, e.g.,
Donat et al., 2013b].

We calculate Spearman rank correlations of global average and regional grid cell time series between the
different data sets to assess their agreement in the interannual variability of extremes. All time series were
detrended before calculating the correlations.

3. Results

We discuss results for some selected indices that represent extremes of temperature (cold and warm) and
precipitation (wet and dry). In order to avoid a large number of very similar figures for different indices, we
restrict ourselves to only showing one or two indices per subsection. Results from additional indices dis-
cussed are available as supporting information figures. Each of the following subsections contains a figure
of changes in an index representative for the frequency of extremes and a figure of an index representing
the intensity of extremes, respectively. Just for dry extremes there is only one index available in the suite
of ETCCDI indices, CDD, and this is a measure of duration.

3.1. Warm Extremes

Gridded observations (HadEX2) show that the frequency of warm days (TX90p) has increased over the past
century in most regions of the globe (Figure 1), with the exceptions of the warming hole over eastern
North America [Portmann et al., 2009; Misra et al., 2012] and the southern and western parts of South
America [Skansi et al., 2013]. Both reanalyses also seem to show some realization of a warming hole over
central or eastern North America. The 20CR, however, shows different patterns of change in several regions,
particularly in northern Eurasia, large parts of South America, and high latitudes of North America, where no
increases or even decreases of TX90p are found. The ERA-20C shows a reasonably similar spatial pattern of
change to HadEX2 (spatial correlation about 0.7), but warming is stronger than observed over large parts
of Eurasia. However, a small region of cooling in northeastern Asia when comparing the earliest and latest
20 year time slices indicates that ERA-20C simulates a large number of warm days in this region in the early
twentieth century. The AMIP ensemble shows warming in all land regions, and the global patterns of change
are more similar to the gridded observations than was the case for the two reanalyses (spatial correlation
about 0.8 for this index).

The global average time series (using only grid cells that are 90% complete in HadEX2) show significant
warming in all data sets since the middle of the twentieth century, with strongest warming occurring after
about 1975. There is, however, some spread between the different data sets. The 20CR shows the smallest
increase in warm days (about 11 days more in the early 2000s relative to the 1961–1990 climatology), and
ERA-20C shows the strongest increase (about +20 days).
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The different global average time series show good agreement back to around 1940 but diverge for
earlier decades. In particular, the two reanalyses that assimilate pressure observations (and thus large-scale
atmospheric flow) are warmer during the early twentieth century compared to gridded observations and
the AMIP simulations. This is mainly related to warmer conditions during early decades in high northern lati-
tudes, where maps of time slice differences (Figure 1, first row) did not show warming.

Temporal correlations between the different data sets are high throughout the 110 year investigation period.
Detrended global average time series from the two reanalyses show correlations of about 0.8 with HadEX2
(20CR: R=0.79, ERA-20C: R= 0.82). And even the AMIP ensemble mean shows a correlation of about 0.73 with
HadEX2, suggesting that interannual variability of warm extremes on a global scale is to a large extent driven
by ocean surface temperatures.

Local correlations between the reanalyses and gridded observations are highest (R> 0.7) in regions where
the observational network is dense and of relatively high quality, i.e., over North America, Eurasia, and
Australia (Figure 2). In contrast, the AMIP ensemble has low correlations (R< 0.4) with gridded observations
in these extratropical regions but moderate to high correlations (R> 0.6) in some low-latitude areas, particu-
larly South America and Africa. This shows that SST variability has the strongest influence on local tempera-
ture extremes in tropical and subtropical regions.

Figure 1. Regional and global changes in the number of warm days (TX90p). (first row) Time slice differences between the
most recent 20 year average (1991–2010) and the earliest 20 year average (1901–1920) of the analysis period. (second row)
Time slice differences between the most recent 20 year average (1991–2010) and a 20 year period in the midtwentieth
century (1951–1970). Difference maps are shown for (from left to right) HadEX2, 20CR ensemble mean, ERA-20C, and
ERA-20CM ensemble mean. Hatching indicates where local changes are significantly different from zero (Student’s t test,
p ≤ 0.05). S indicates the uncentered spatial correlation of the change patterns in 20CR, ERA-20C, and ERA-20CM with
the change pattern in HadEX2, only using grid cells for which HadEX2 changes could be calculated. (bottom) Global
average time series of the four data sets, only using grid cells that are near complete (90 years or more with valid data) in
HadEX2. Thin dashed lines show the annual values and bold solid lines the 21-point Gaussian filtered data. Blue and red
shaded areas represent the ensemble spread for 20CR and ERA-20CM, respectively. R indicates the temporal correlations of
the different detrended annual time series with detrended HadEX2.
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TX90p is a measure of rather moderate temperature extremes, as by definition about 36.5 days exceed the
90th percentile on average per year. We also consider a more “extreme”measure, the temperature of the hot-
test day of each year (TXx). Note that TX90p counts warm days throughout the entire year, whereas TXx
always occurs during the warm season. Difference patterns appear reasonably similar to changes in TX90p,
although the local cooling in 20CR between the early twentieth century and the most recent 20 year period

Figure 3. Regional and global changes in the hottest day of the year (TXx). For detailed description of the plot see Figure 1
caption.

Figure 2. Maps of local correlations between the different data sets for TX90p. The time series from each grid cell were
detrended prior to calculating correlations. Hatching indicates where correlations are significant (p ≤ 0.05).
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in high northern latitudes is even more pronounced for TXx (Figure 3). This suggests that the northern high-
latitude warm bias in 20CR in the early twentieth century is particularly strong during summer. The gridded
observations and reanalyses all show some areas where TXx did not increase over the past century (e.g., the
warming hole over the U.S. and some parts of South America). In contrast, the AMIP ensemble shows TXx
increases over all land areas. Spatial correlations with the gridded observations are substantially lower than
for TX90p.

All four data sets agree that global average TXx has increased since the middle of the twentieth century,
but time series show different behavior across the different data sets for the early decades. While ERA-20C
and the AMIP ensemble show increases throughout the entire twentieth century, 20CR in particular shows
higher global average TXx in the early twentieth century than in the early 2000s. The time slice difference
maps (Figure 3, first row) suggest that relatively high TXx in 20CR during the early decades occur mainly in
high northern latitudes. The gridded observations (HadEX2) also show high global average TXx in the
1930s. Note, however, that due to sparse observational coverage in early decades, the global time series
are dominated by Northern Hemisphere extratropics, which are known to have experienced relatively
warm climate conditions and hot summers during the 1930s [Bengtsson et al., 2004; Drinkwater, 2006;
Donat et al., 2016].

Correlations of the global average time series with the HadEX2 gridded observations are lower than for TX90p
but still moderately high: 0.64 for 20CR, 0.74 for ERA-20C, and 0.55 for the AMIP ensemble mean. Note that
TXx, defined as a block maximum, is noisier in nature than TX90p that counts the frequency of relatively mod-
erate extremes; therefore, lower correlations are to be expected.

Also, the local correlations between the different TXx data sets are about 0.1 lower than for TX90p (not
shown), but spatial patterns are similar in that highest local correlations between the reanalyses and gridded
observations are found over North America, Eurasia, and Australia. Local correlations between the AMIP

Figure 4. Regional and global changes in the number of cool nights (TN10p). For detailed description of the plot see
Figure 1 caption.
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ensemble mean and the data sets that make use of (some kind of) land-based observations are generally not
significant (p< 0.05).

Broadly similar characteristics to TX90p and TXx are also found for other measures of warm extremes, such as
frequency of warm nights (TN90p), temperature of the warmest night (TNx), or number of summer days (SU),
respectively (see supporting information Figures S1–S6).

3.2. Cold Extremes

The frequency of cool nights (TN10p) has decreased, consistent with warming, throughout the past century
in virtually all areas with observational coverage (Figure 4). Also, the century-long reanalyses show TN10p
decreases in most regions, although there are some regions with no warming signals over North America,
South America, and northern Asia. The AMIP ensemble shows changes toward less frequent cool nights over
all land areas. Spatial correlations of the change patterns with HadEX2 are moderate to high (ranging from
0.66 to 0.90) for both reanalyses and the ERA-20CM runs.

Also the global average time series show decreases in TN10p over the past century, and all data sets show
similar behavior over the most recent 50 years (decreases about 12 to 20 days). Again, the time series show
larger differences during the early twentieth century, with the two reanalyses data sets forming the upper
and the lower bounds. While 20CR shows on average about 20 more cool nights in the 1920s compared to
the 1961–1990 average, ERA-20C has global average TN10p more similar to the 1961–1990 average during
the early decades. This is related to relatively warm conditions (for the cool nights index) over North
America, southern South America, and northern Asia during the early twentieth century in ERA-20C.

Correlations between the data sets, as a measure of agreement in interannual variability, are moderately high
for the global average time series from the two reanalyses (20CR versus HadEX2: R=0.58; ERA-20C versus
HadEX2: R= 0.7) and also for the AMIP ensemble (R= 0.59). As with the warm extremes, local correlations
between gridded observations and reanalyses are highest in those extratropical regions with good observa-
tional coverage: up to about 0.8 over Europe and North America (Figure 5). Again, the AMIP ensemble shows
lower correlations with the other data sets in the extratropics but higher in low latitudes (up to about 0.5 to
0.8, depending on the specific combination of data sets).

The coldest night of the year (TNn), as a measure for a “more extreme” cold extreme, has warmed by more
than 2 K over the past century in large parts of Asia and North America (Figure 6). This pattern of strong regio-
nal warming is found in the gridded observations and the two century-long reanalyses. The AMIP ensemble
shows weaker regional warming in these areas; however, the warming signal is spatially smoother in this data
set, with almost all land areas showing warming between 1 and 2 K over the past century.

Figure 5. Maps of local correlations between the different data sets for TN10p. The time series from each grid cell were
detrended prior to calculating correlations. Hatching indicates where correlations are significant (p ≤ 0.05).
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On global average, 20CR shows lowest TNn values in the early twentieth century (about 2 K below the
1961–1990 average) and smallest increases during the most recent two decades but has the strongest
increase over the entire century (about 3 K). HadEX2 and ERA-20C increase by about 2.5 K on global average
over the twentieth century and ERA-20CM by about 2 K. Correlations between the reanalyses and HadEX2 are
again moderate to high (0.64 for 20CR and 0.81 for ERA-20C) but considerably lower between the AMIP
ensemble and HadEX2. As with warm extremes and TN10p, local correlations between the reanalyses and
gridded observations are highest (up to 0.8) over Europe and North America (not shown). The AMIP ensem-
ble, however, hardly shows any significant (p ≤ 0.05) local correlations with the other data sets.

Again, broadly similar results are found for other indices that measure aspects of cold extremes (shown as
supporting information figures), such as the frequency of cold days (TX10p, changes are similar to TN10p),
the coldest day of the year (TXn, changes are similar to TNn), or the frequency of frost days (FD).

3.3. Wet Extremes

The number of heavy precipitation days (R10mm) in gridded observations shows some increases in northern
Europe and central Eurasia over the past century and also in eastern North America and the east coast of
South America since the midtwentieth century (Figure 7). Increases in similar regions are also seen in the
century-long reanalyses, but these data sets having complete spatial coverage show the strongest changes
in the tropics. Both 20CR and ERA-20C show strong increases of about 10 days over the northern part of
South America, but change patterns over Africa are partly different between the two reanalyses. The 20CR
indicates a change toward less frequent heavy precipitation days in western central Africa over the past cen-
tury, while ERA-20C shows slight increases in this region but with a drying in the southeast of Africa. After the
midtwentieth century both reanalyses show increases in the western part of tropical Africa and decreases in
the eastern part but with different magnitudes. All data sets show changes toward more extreme precipita-
tion over parts of tropical Southeast Asia including Indonesia. Change patterns in the ERA-20CM ensemble
appear much smoother than in the other data sets that make use of land-based observations, and local
changes in the tropics are mostly of smaller magnitude than in the two reanalysis data sets. ERA-20CM shows

Figure 6. Regional and global changes in the coldest night of the year (TNn). For detailed description of the plot see
Figure 1 caption.
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some significant increases of about 2 to 4 days over the past century in northern Eurasia, South Asia, and tro-
pical parts of Africa. In general, spatial correlations between reanalyses/model simulations and gridded
observations are low (below 0.3).

Related to the finding that the frequency of precipitation extremes has increased in more regions than it has
decreased [e.g., Donat et al., 2013b;Westra et al., 2013], on average all data sets show R10mm increases over
the past century. However, the magnitude of increase is very different, ranging from about 1 day on global
average in ERA-20CM tomore than 3 days in ERA-20C. There aremoderate correlations of about 0.65 between
the detrended global time series from the reanalyses and gridded observations. Even the AMIP-style simula-
tions still show a significant correlation with the HadEX2 time series of about 0.4. Moderate correlations of up
to 0.6 to 0.7 between the gridded observations and reanalyses are also found locally over parts of North
America, Europe, and Australia (Figure 8).

All precipitation indices within any one data set show similar spatial patterns of change in that areas of
increase and decrease are very similar; however, comparing across different data sets, there is considerable
disagreement of change patterns. Therefore, the precipitation amount that falls on very wet days (R95p,
Figure 9) or the annual maximum 1day precipitation total (Rx1day, supporting information Figure S13)
shows increases in similar regions where also R10mm increases were found, and the same is true for
decreases, respectively. Consequently, the global averages from all data sets show increases also for these
extreme precipitation indices. And as with R10mm, these increases are strongest for ERA-20C and weakest
for ERA-20CM.

The temporal correlations between data sets become smaller for the indices that represent rarer and more
extreme precipitation measures. R95p still shows global average time series correlations of about 0.5
between the reanalyses and gridded observations (Figure 9), while for Rx1day these correlations are only
about 0.4 (supporting information Figure S13). These lower correlations are expected given the larger noise

Figure 7. Regional and global changes in heavy precipitation days (R10mm). For detailed description of the plot see
Figure 1 caption.
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related to indices that consider only one or few days per year. The correlations of ERA-20CM with HadEX2 are
generally close to zero for these more extreme precipitation indices. This means that these more extreme
precipitation indices cannot be explained by SST and sea ice variability on an interannual time scale, either
on global average (e.g., Figure 9) or locally (supporting information Figure S14).

Figure 9. Regional and global changes in precipitation from very wet days (R95p). For detailed description of the plot see
Figure 1 caption.

Figure 8. Maps of local correlations between the different data sets for R10mm. The time series from each grid cell were
detrended prior to calculating correlations. Hatching indicates where correlations are significant (p ≤ 0.05).
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3.4. Dry Extremes

Only one of the ETCCDI indices, Consecutive Dry Days (CDD), is available as a measure of dry extremes. While
on global average no significant changes are apparent (Figure 10), gridded station observations (HadEX2)
show CDD increases in southern Africa and along the west coasts of North and South America. Largely differ-
ent spatial patterns of change are found between the two reanalysis products. The 20CR also shows a strong
CDD increase in southern Africa (and most of the rest of the continent where HadEX2 does not have cover-
age) since the middle of the twentieth century, but ERA-20C mostly shows CDD decreases in these regions.
Conversely, ERA-20C reproduces the observed CDD increases along the west coast of the Americas, whereas
20CR shows CDD decreases in some of these regions. There is virtually no spatial correlation between the
change patterns from the different data sets.

The global average time series show correlations between 0.3 and 0.5, and moderately high (R> 0.5) local
correlations between gridded observations and reanalyses are mainly found over Europe (not shown as maps
look very similar to other precipitation indices, e.g., Figure 8). These regions, however, generally do not show
any significant changes over the past century. Based on the large disagreement in regional changes between
the different data sets, we can only have little to no confidence in local CDD changes over the past century,
and none of the data sets actually indicate changes on the global scale.

4. Summary and Discussion

We analyze long-term changes and interannual variability of temperature and precipitation extremes across
several observations-based data sets that cover the entire twentieth century. These data sets have different
levels of observational constraints and include gridded station observations, reanalyses driven by variables
related to large-scale atmospheric flow, SSTs and sea ice, and atmospheric model simulations only driven
by monthly SSTs and SICs.

Figure 10. Regional and global changes in consecutive dry days (CDD). For detailed description of the plot see Figure 1
caption.
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All data sets show that warm extremes have increased in frequency and intensity, while cold extremes have
decreased in frequency and intensity (consistent with increased temperature values) in most regions of the
globe throughout the past century. For most indices warming trends, on average, are strongest for the most
recent decades after about 1980. However, spatial details of change differ between data sets. In particular, the
two reanalyses, 20CR and ERA-20C, for some indices show relatively warm conditions in the first half of the
twentieth century in some regions, mainly in high northern latitudes. The ERA-20CM runs, in contrast, show
continuous warming over all land areas for all indices during the twentieth century. This suggests that the
warm biases in high northern latitudes in the reanalyses during earlier decades, which also have a clear
signature in the global average time series, may be related to the assimilation of pressure observations.

Precipitation indices on average show changes toward more frequent and more intense precipitation
extremes, related to the finding that the extremes are increasing in more regions of the globe than they
are decreasing. The spatial distribution of increasing and decreasing changes is more heterogeneous than
with extreme temperature changes. In particular, there is little agreement between the different data sets
in the spatial patterns of change. The only regions where all data sets seem to agree in showing changes
toward more extreme precipitation over the past century are northern Europe and central parts of Eurasia.
The analyses of long-term changes are, however, limited by sparse observational coverage in the early dec-
ades of the twentieth century. The two reanalyses and ERA-20CM also showmore frequent and more intense
extreme precipitation relative to the early twentieth century over the Amazon region and parts of tropical
Southeast Asia including Indonesia. However, no long-term precipitation observations are available for these
regions. The one index representing dry extremes does not indicate global changes, and regional changes
generally do not agree across the different data sets.

These analyses show that we have relatively high confidence in global-scale changes toward warmer
temperature extremes and more intense precipitation extremes, but the time series become increasingly
noisy (and changes are often less significant) at regional scales. This effect was shown to be related to internal
climate variability in climate model simulations [Deser et al., 2012; Donat, 2013; Fischer et al., 2013]. Our results
indicate that this feature of high confidence in global changes but stronger noise at regional scales is also
found in observations.

Comparing the ensemble of AMIP runs with data sets that make use of land-based observations, we find
moderate correlations of global land average time series for temperature extremes. These results suggest
that ocean temperatures may explain about 25% to 50% of the observed variability of warm and cold
extremes, at least using this specific atmospheric model from ECMWF. Local correlations, however, are mostly
only significant (p ≤ 0.05) in low latitudes, suggesting that the effect of SSTs on temperature extremes in the
extratropics is generally small. For moderate precipitation extremes that, on average, occur on several days
per year, the model simulations suggest that ocean temperatures and sea ice may explain up to 15% of
the interannual variability (correlation about 0.4) in the global average time series. For more extreme preci-
pitation extremes, however, no significant relationship regarding year-to-year variability could be found. It
is worth noting that the ERA-20C values often lie outside the range of the ERA-20CM ensemble, indicating
that the atmosphere-only model runs (i.e., without assimilating variables related to the atmospheric circula-
tion) may not capture the specific assimilated weather situations.

For most indices, there is reasonably good agreement in the global average time series from the different
data sets over the past 60–70 years, back to the midtwentieth century. But there are larger differences
between data sets in the earlier decades of the twentieth century. However, results also show higher correla-
tions of the (detrended) local time series over regions that have good observational coverage, such as North
America, Europe, parts of Asia, and Australia. Comparing the regional average time series shows that there is
also less spread between the different data sets during the first half of the twentieth century for these regions
as compared to the global average, for example. This shows that there is also better agreement between data
sets regarding century-scale changes in extremes for these regions with good observational coverage.

However, not all regions have good observational coverage. Reanalysis products, on the other hand, provide
complete coverage in space and time. This makes reanalyses interesting candidates as substitutes for the
real-world observations for regions where no in situ observations of temperature and precipitation extremes
are available. It is, however, questionable whether it is justifiable to use reanalyses to fill in information for
areas without reliable observations.
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Our results show that the reanalyses show generally good agreement with each other and with gridded
observations in regions where good observational networks are in place. They show, however, some different
patterns of change in regions without good observational coverage. Even over the past three decades, differ-
ent modern reanalyses that all also assimilate satellite observations show different change patterns, from
each other and compared to observations, for precipitation over Africa [Schmocker et al., 2015]. Therefore,
the analyzed changes in these regions seem to depend on the specific modeling and data assimilation
systems used, and the contrary results show that we are not able to make reliable estimates of change in
data-sparse areas. This shows that more long-term, high-quality observations are needed from areas with
poor coverage, in particular Africa, South America, and parts of Southeast Asia, to increase our confidence
in the changes for those regions, and also in long-term global changes.

It should also be noted that gridded observations themselves may be subject to a number of uncertainties
related to quality of the in situ data, the station network, and the gridding methods used [Hofstra et al.,
2008; Dunn et al., 2014; Gervais et al., 2014]. This means that HadEX2 should not be considered as “truth”
but rather as one possible realization. Therefore, the specific quantifications of interdata set agreement pre-
sented here may slightly differ for other methodological or structural choices in the data set production.
Previous attempts to quantify the uncertainties related to this data set suggest, however, that global results
are relatively robust, whereas uncertainties are largest at the grid box level [Dunn et al., 2014].

5. Conclusions

Based on generally good agreement between the different data sets, our results confirm that there is high
confidence that temperature extremes have seen warming on a global scale since the midtwentieth century
[Hartmann et al., 2013]. Due to the larger differences between data sets for the earlier twentieth century, our
confidence in earlier changes is lower. However, for most indices, and in particular for all indices of cold
extremes, the most recent decades show warmer conditions than in any previous decade on record, in all
data sets globally and in most regions. Therefore, we are also confident to state that cold extremes on a
global scale have become warmer and less frequent over the past century.

All data sets agree that precipitation extremes have intensified on global average over the past century, sug-
gesting that we can robustly conclude increasing precipitation extremes on the global scale over the past
century. However, there is mostly little agreement between the different data sets regarding specific regions
where precipitation extremes have intensified or weakened, so regional extreme precipitation changes over
the past century are generally not robust, apart from maybe northern Europe and some central parts of
midlatitudinal Eurasia where all data sets show tendencies toward more extreme precipitation over the past
century. Based on the analyses presented in this study, possible regional changes in dry extremes over the
past century are generally not robust, and none of the data sets indicates global changes in dry extremes.

More long-term and high-quality station observations of daily scale temperature and precipitation extremes
that extend back into the early twentieth century are needed from larger parts of Africa, South America, and
Southeast Asia for assessing century-long changes in these regions with some confidence.

Comparison between gridded observations and model simulations driven by observed SST and sea ice fields
suggests that up to about 50% of the interannual variability of temperature extremes, on global average, can
be explained by variations in these ocean variables. Regionally, these relationships are strongest in low
latitudes. To a lesser extent, moderate precipitation extremes also appear to be related to SST and sea ice
variability, but no significant relationship was found for the more extreme precipitation extremes. These esti-
mates of explained variability, however, are obtained from simulations with only one atmospheric model and
might be subject to biases in that specific model. Similar analyses should be performed for several different
models forced by ocean surface variability, as coordinated in the context of AMIP [Gates, 1992] or the Climate
of the Twentieth Century (Plus) projects [Scaife et al., 2008; Folland et al., 2014], for example. This will enable a
more systematic and more comprehensive understanding of interannual variability in extremes.
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