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Abstract Climate model simulations uniformly show drier and warmer summers in the Eurasian
midcontinent during the mid-Holocene, which is not consistent with paleoenvironmental observations.
The simulated climate results from a reduction in the zonal temperature gradient, which weakens westerly
flow and reduces moisture flux and precipitation in the midcontinent. As a result, sensible heating is favored
over evaporation and latent heating, resulting in substantial surface-driven atmospheric warming. Thus,
the discrepancy with the paleoenvironmental evidence arises initially from a problem in the simulated
circulation and is exacerbated by feedback from the land surface. This region is also drier and warmer than
indicated by observations in the preindustrial control simulations, and this bias arises in the same way: zonal
flow and hence moisture flux into the midcontinent are too weak, and feedback from the land surface results
in surface-driven warming. These analyses suggest the need to improve those aspects of climate models
that affect the strength of westerly circulation.

1. Introduction

The Coupled Model Intercomparison Project Phase 5/Palaeoclimate Modelling Intercomparison Project
Phase 3 (CMIP5/PMIP3) mid-Holocene simulations show drier conditions in the Eurasian midcontinent and
a significant increase in summer temperature; in contrast, paleoenvironmental data (including lake level,
vegetation and isotope records, and aeolian deposits) and quantitative climate reconstructions show that
the midcontinental extratropics were wetter than today and summers were cooler [Harrison et al., 2015].
Eurasian midcontinental aridity and warming has been a persistent feature of model simulations, already
present in atmosphere-only simulations [Yu and Harrison, 1996] and appearing more strongly in coupled
ocean-atmosphere simulations [e.g., Braconnot et al., 2007b; Wohlfahrt et al., 2008; Harrison et al., 2015]
and further exacerbated by vegetation feedback [Wohlfahrt et al., 2004]. The consistency among multiple
lines of paleoenvironmental evidence makes it unlikely that the mismatch reflects misinterpretation of the
data. Regional temperature biases in the CMIP5 twentieth century simulations have been linked to biases
in surface energy and water balances, with overprediction or underprediction of moisture fluxes and evapo-
transpiration leading to cold and warm temperature biases, respectively [Mueller and Seneviratne, 2014]. This
suggests that discrepancies in the simulation of mid-Holocene climates might have a similar cause. In this
paper, we investigate the processes involved in midcontinental climate changes in the CMIP5/PMIP3 simula-
tions in order to identify the underlying cause of the mismatch with observations.

2. Data and Methods

We have examined climate responses in the CMIP5/PMIP3 mid-Holocene (midHolocene) experiments,
expressed as anomalies relative to a preindustrial control (piControl) simulation. ThemidHolocene experiment
shows the response to changes in the seasonal and latitudinal distribution in insolation 6000 years ago, with
greenhouse gas concentrations at preindustrial levels (for details of the experimental design, see Braconnot
et al. [2012]). We use outputs from 14 models (see the supporting information for details) and use the data
reduction steps followed by Harrison et al. [2014]. Long-term monthly averages of temperature, energy bal-
ance, and circulation variables at each model grid cell were calculated based on the last 100 years of each
model simulation and bilinearly interpolated onto a common 2° × 2° grid for analysis. The “multimodel mean”
maps were produced by simple averaging of model outputs. Area-weighted averages of the key variables for
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each model were calculated for the Eurasian midcontinent land area between 40° to 60°N and 30° to 120°E.
We exclude one model (FGOALS-S2) from the multimodel average because it shows aberrant behavior com-
pared to the other members of the ensemble (see the supporting information).

There are no spatially explicit reconstructions of the full set of variables analyzed here for the interval corre-
sponding to the piControl simulation (circa 1850 Common Era (C.E.)). We therefore use National Centers for
Environmental Prediction-Department of Energy (NCEP-DOE) Reanalysis 2 data (hereafter NCEP [Kanamitsu
et al., 2002]) to investigate potential biases in the piControl simulations, a relatively common procedure for
such evaluations [e.g., Otterå et al., 2009; Wang et al., 2010; Perez-Sanz et al., 2014]. The NCEP data cover
the period from 1979 to 2016, and we created monthly averages of the appropriate variables based on the
period 1981 to 2010. The late twentieth/early 21st century is globally warmer than the interval around
1850 C.E., so these comparisons are indicative rather than diagnostic.

The mid-Holocene (MH) has been a major focus for paleoenvironmental and paleoclimate synthesis. We use
data from the Global Lake Status Database (GLSDB [Tarasov et al., 1994; Yu and Harrison, 1995; Harrison et al.,
1996; Tarasov et al., 1996; Yu et al., 2001]) and the BIOME 6000 [Harrison et al., 2017] database to document
regional water balance and vegetation cover (Figure 1). The GLSDB provides changes in lake status relative
to present at individual lake sites on the radiocarbon timescale; the age models for each site were converted
to calendar years (using the INTCAL13 calibration [Reimer et al., 2013]) in order to select information for
6000 years B.P. Lake status is an index of the water balance (precipitation minus evaporation) over the lake
and its catchment. Lake histories produced since the publication of the GLSDB have also been compiled
and are included in our analyses—see the supporting information for details [Bird et al., 2014; Boomer
et al., 2000; Chen et al., 2008; Chawchai et al., 2013; Chen et al., 2003; Ferronskii et al., 2003; Fowell et al.,
2003; Gasse et al., 1996; Grunert et al., 2000; Kong et al., 2007; Heinecke et al., 2016; Herzschuh et al., 2004;
Hodell et al., 1999; Huang et al., 2009, 2014; Jiang et al., 2007; Jiang and Liu, 2007; Li and Morrill, 2010; Li
et al., 2011, 2014a, 2014b; Long et al., 2012; Madsen et al., 2008; Mathis et al., 2012; Mingram et al., 2004;
Morinaga et al., 1993; Morrill et al., 2006; Pan et al., 2012; Peck et al., 2002; Penny et al., 1996; Prokopenko
et al., 2007; Rades et al., 2015; Ricketts et al., 2001; Schwanghart et al., 2008; Shen et al., 2005; Sheng et al.,
2017; Wang et al., 2017; Wang and Ji, 1995; Wünnemann et al., 2003, 2006; Xiao et al., 2008; Yang et al.,
2015; Zhang et al., 2004, 2014; Zhao et al., 2007, 2010, 2013; Zhou et al., 2015]. BIOME 6000 provides
pollen-based reconstructions of vegetation for the MH [Prentice et al., 2000; Bigelow et al., 2003], and the
reconstructions for Eurasia have been updated by Binney et al. [2017]. Changes between forest and nonforest
vegetation closely reflect water availability, except when CO2 is low [Prentice et al., 2017], and thus provide a
cross check on inferences drawn from lake status. Pollen data have also been widely used to reconstruct cli-
mate variables quantitatively. Here we use the compilation of Bartlein et al. [2011], which provides gridded
(2° × 2°) reconstructions of six climate variables expressed as anomalies from present-day observations
[New et al., 2002]; we use mean temperature of the warmest month (MTWA), mean annual precipitation
(MAP), and the Cramer and Prentice (1988) index of soil moisture availability (α).

3. Results and Discussion

There is substantial agreement in the spatial and seasonal expression of the sign of change in the simulated
climate variables across individual models (see the supporting information), which allows us to focus here on
the multimodel average responses. Mean annual precipitation (MAP) is reduced very little (the multimodel
area-weighted average is �0.02 mm d�1 in the belt between 40° and 60°N) over the Eurasian midcontinent
in the CMIP5/PMIP3 midHolocene simulations compared to the piControl (Figure 1), and this translates into a
similarly small reduction in both runoff (P � E) and soil moisture (as measured by α). Drier (than piControl)
conditions are most marked in the belt between 40° and 60°N. Summer temperature is significantly higher
than in the piControl (Figure 1): the multimodel area-weighted average increase in MTWA in the belt between
40° and 60°N is +2.1°C. In contrast, many lakes across the region were higher than today and vegetation data
indicate the persistence or even expansion of forests (Figure 1), both implying that the midcontinental region
was wetter than today. Paleoclimate reconstructions indicate that both MAP and α were higher than today
(Figure 1); the area-weighted average regional increase in precipitation is 120 ± 21 mm yr�1, and the area-
weighted increase in α is 0.024 ± 0.010 (where the uncertainties are the reconstruction standard errors)
[see Bartlein et al., 2011]. The reconstructions of MTWA are more heterogeneous (Figure 1), with some
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differences between simulated and reconstructed summer temperatures of up to 4°C at individual sites;
however, reconstructed summer temperatures averaged across the whole region are similar to those of
today (�0.06 ± 0.48°C). The midHolocene simulations therefore appear to be too dry and too warm relative
to the paleoclimatic observations.

Although generally dry, the region of interest has a distinct summer wet season, when soil moisture is replen-
ished by higher precipitation provided by increased moisture flux from westerly sources (see the supporting
information), and therefore, changes in the strength of the westerlies and the moisture flux are key for under-
standing changes in moisture. Moisture changes in turn contribute to temperature changes through the par-
titioning of net radiation into latent as opposed to sensible and substrate heating.

Figure 1. (left column) Long-term mean differences (midHoloceneminus piControl) of mean annual precipitation (MAP), the Cramer-Prentice index of soil moisture
availability (Alpha), mean temperature of the warmest month (MTWA), and precipitation minus evaporation (P � E), calculated as in Harrison et al. [2014], and (right
column) paleoclimatic reconstructions of mid-Holocene minus present values of MAP, Alpha, and MTWA [Bartlein et al., 2011], along with lake status and biome
change inferred differences in moisture (see data sources in the supporting information). The region of interest here (40° to 60°N and 30° to 120°E) is indicated by the
gray box in each panel.

Geophysical Research Letters 10.1002/2017GL074476
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As a result of the MH changes in the seaso-
nal and latitudinal patterns of insolation con-
sequent on the change in orbital forcing
(and in particular the substantial increase in
summer), the latitudinal temperature gradi-
ent in the Northern Hemisphere was less
steep than today during the winter
(November through April) but steeper than
today during summer (July to September;
Figure 2). The 500 hPa zonal index (a mea-
sure of the strength of westerly flow, calcu-
lated as the horizontal geopotential height
gradient or difference between 40° and 60°N,
over the longitudinal span 30° to 120°E),
shows considerable month-to-month and
model-to-model variability, but moisture flux
into the midcontinent is clearly reduced rela-
tive to piControl over the first half of the
year. Precipitation is lower than piControl
through May and little different afterward
(Figure 2). As a result of the reduction in
spring precipitation, soil moisture is not
replenished and is lower than piControl
throughout the summer (Figure 2). Although
this reduction in soil moisture would ordina-
rily be expected to limit evapotranspiration,
evapotranspiration (latent heat flux) is higher
in the midHolocene simulation compared to
piControl because of the higher summer inso-
lation. The excess energy is preferentially used
for sensible heating, resulting in much larger
increases in sensible than latent heat: in July,
7.1 versus 3.2 W m�2 respectively. The
increase in sensible heat flux results in
increased surface and atmospheric tempera-
ture. Comparison of the changes in air tem-
perature at different elevations (surface, 2 m,
850 hPa) confirms that summer warming is a
surface-driven phenomenon (see the support-
ing information). The effect of the positive
energy balance feedback on temperature is
strong enough to overwhelm the discernable,
though small, intermodel variability in circula-
tion and moisture.

Reconciliation of the simulated and recon-
structed MH temperatures in Eurasia would
require increased delivery of precipitation into
the midcontinent to offset the impact of the
strong positive energy balance feedback.
This would require the simulated westerly
flow and moisture flux to be stronger.
However, the simulated circulation in the
piControl would also need to be stronger to

Figure 2. Annual cycles of midHolocene minus piControl differ-
ences. The values shown are area-weighted averages for grid
points in the region 40° to 60°N and 30° to 120°E for the multimo-
del mean. The vertical bars extent to plus or minus one median
absolute deviation (MAD, a robust measure of model spread) either
side of the average. For clarity among the temperature curves,
these are shown only for surface (or “skin”) temperature (Tsurface).

Geophysical Research Letters 10.1002/2017GL074476
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be consistent with the impact of orbital
changes on the change in latitudinal
temperature gradients between the
midHolocene and piControl simulations.
Evaluation of the piControl simulations
against observations can show whether
this is feasible, i.e., whether there is evi-
dence to suggest that the simulated cir-
culation is weaker than observed and
this contributes to obvious biases in sur-
face climates in the midcontinent.

The latitudinal temperature gradient in
the piControl simulations (Figure 3) is
weaker than shown by NCEP during
most of the year, though slightly stron-
ger than the reanalysis in June and
July. The 500 hPa zonal index mirrors
this, being similar to NCEP in summer
and stronger than NCEP in winter. The
simulated strength of the westerly flow
is weaker than in the reanalysis, and
thus, moisture flux is reduced. The
piControl-simulated precipitation is
higher than observed in winter,
although the amount is very small (e.g.,
simulated rate 0.96 mm d�1 compared
to 0.68 mm d�1 in January), and much
lower than observed in summer (e.g.,
simulated rate 1.79 mm d�1 compared
to 2.74 mm d�1 in July). As in the
midHolocene case, the dry bias is exacer-
bated by the energy balance feedback:
soil moisture is generally lower than in
the reanalysis throughout the year,
latent heat is lower and sensible heating
higher than in the reanalysis. The
mechanisms that give rise to biases in
surface climates in the midHolocene
simulations are thus operating in the
piControl, and the circulation-related
variables are indeed weaker than in the
reanalysis. This discrepancy is particu-
larly noteworthy because the piControl
climate is globally colder than the
twentieth/21st centuries and the latitu-
dinal temperature gradient steeper,
and so a priori [Rind, 1998], the simu-
lated circulation should be stronger
than the NCEP reanalysis. These analyses
suggest that removing the circulation
bias under modern-day conditions
would lead to a better simulation of
MH climates in midcontinental Eurasia.

Figure 3. Annual cycles of piControl and NCEP reanalysis long-term
averages. The values shown are area-weighted averages for grid points
in the region 40° to 60°N and 30° to 120°E for the multimodel mean. The
NCEP values are plotted in gray for each variable. The uncertainties
shown extend to plus or minus two standard errors of the mean, based
on the interannual variability of the individual grid point values.

Geophysical Research Letters 10.1002/2017GL074476
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4. Conclusions and Implications

We have shown that the erroneous simulation of warmer and drier summers in Eurasia during the MH (rela-
tive to present) is ultimately caused by the weaker westerly circulation, which results in low precipitation in
early summer and is a precondition for the operation of strong positive energy balance feedbacks in driving
simulated temperature increases. Data-model comparisons of regional paleoclimates have often focused on
model benchmarking, i.e., diagnosis of the quantitative mismatch between simulated and observed climates
[e.g., Braconnot et al., 2007a;Wohlfahrt et al., 2008; Otto-Bliesner et al., 2009; Zhang et al., 2010; Braconnot et al.,
2012; Harrison et al., 2014; Schmidt et al., 2014;Mauri et al., 2014; Perez-Sanz et al., 2014]. Diagnosis of the pro-
cesses that contribute to model biases is less common but important in order to identify ways in which the
current generation of climate models could be improved. Several papers have shown that thermodynamic
responses in paleoclimate simulations are reasonable [e.g., Izumi et al., 2013, 2015], implying that regional
data-model mismatches are more likely to be due to problems with dynamics; our results are consistent with
this. Explanations for the poor simulation of European climate during the MH have also invoked circulation as
a major cause of the problem [Bonfils et al., 2004; Mauri et al., 2014]. However, in recent assessments [e.g.,
Randall et al., 2007; Flato et al., 2013] of the ability of state-of-the-art models to capture modern climates,
however, the major focus has been on storm track variability and extremes rather than evaluation of basic
circulation patterns. Our analyses suggest that even the basic circulation patterns are poorly captured.

In our analyses, we have compared reconstructions of surface climates to model outputs. We have not
attempted to diagnose atmospheric circulation directly. Although there have been some attempts to recon-
struct paleocirculation [e.g., Kohfeld et al., 2013], direct evidence for wind pathways, direction, and strength is
limited. In general, the aeolian landforms that provide direct evidence are difficult to date because of their
sedimentary composition. Furthermore, it is rarely possible to determine whether the formation of these
landforms reflects long-term mean wind conditions or sporadic and atypical winds. Oxygen isotope records
may ultimately hold more promise for the diagnosis of circulation changes [e.g., Herold and Lohmann, 2009;
Caley et al., 2014; Dietrich et al., 2013].

The long-term average differences in both circulation-related and surface energy balance variables, both sea-
sonally and in their spatial patterning, are remarkably similar across the suite of CMIP5/PMIP3 midHolocene
simulations. Such robustness in the simulated climate is often taken as a sign that the signal is correct, for
example, in the interpretation of future regional climate changes [e.g., Ciscar et al., 2011]. Indeed, the use
of the multimodel median as a basis for model ranking [e.g., Flato et al., 2013] is predicated on the idea that
similarity to other models is a criterion of value. There are multiple instances where the paleorecord shows
that a robust signal is nevertheless unrealistic [Harrison et al., 2015]. However, the example of midcontinental
Eurasia is an extreme case, because the simulations and the observations differ not only in magnitude but
also in sign.

In conclusion, the simulation of circulation needs to be improved in order to simulate midcontinental
Eurasian surface climates better, both in the mid-Holocene and under modern conditions. It is generally
assumed that increasing model resolution, through improving the representation of topography and land-
sea geography, will improve the simulation of circulation and atmospheric dynamics [Jung et al., 2012].
The paleorecord from the Eurasian midcontinent could play a crucial role in testing whether this is true.
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