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Abstract Recent work has shown that the sharpness of the extratropical tropopause declines with
lead time in numerical weather prediction models, indicating an imbalance between processes acting to
sharpen and smooth the tropopause. In this study the systematic effects of processes contributing to the
tropopause sharpness are investigated using daily initialized forecasts run with the Met Office Unified Model
over a three-month winter period. Artificial tracers, each forced by the potential vorticity tendency due
to a different model process, are used to separate the effects of such processes. The advection scheme
is shown to result in an exponential decay of tropopause sharpness toward a finite value at short lead
times with a time scale of 20–24 h. The systematic effect of nonconservative processes is to sharpen the
tropopause, consistent with previous case studies. The decay of tropopause sharpness due to the advection
scheme is stronger than the sharpening effect of nonconservative processes leading to a systematic decline
in tropopause sharpness with forecast lead time. The systematic forecast errors in tropopause level potential
vorticity are comparable to the integrated tendencies of the parametrized physical processes suggesting
that the systematic error in tropopause sharpness could be significantly reduced through realistic
adjustments to the model parametrization schemes.

1. Introduction

A distinct feature of the extratropical atmosphere is the sharp contrast between the troposphere and the
stratosphere: the tropopause. The thermal tropopause is defined as the height at which the vertical lapse
rate transitions from tropospheric values to stratospheric values. Composites of radiosonde data in height
relative to the thermal tropopause show a shallow static stability maximum above the tropopause known
as the tropopause inversion layer (TIL) (Birner et al., 2002) emphasizing that the vertical transition in lapse
rate is sharp. The dynamical tropopause defines the boundary between the troposphere and stratosphere as
a value of Ertel potential vorticity (PV) between the tropospheric values and stratospheric values. Since PV
is conserved for adiabatic and frictionless motion (Ertel, 1942), the dynamical tropopause emphasizes that
the tropopause behaves almost like a material surface with exchange of mass between the stratosphere and
troposphere only enabled by diabatic processes (including small-scale mixing).

Since both potential temperature (𝜃) and PV are conserved for adiabatic and frictionless motion, the
large-scale dynamics of the midlatitude atmosphere are compactly described by maps of PV on isentropic
(constant 𝜃) surfaces (Hoskins et al., 1985) where the tropopause is seen as a narrow region of strong isen-
tropic gradients of PV separating the high-PV stratospheric air and the low-PV tropospheric air. The strong
isentropic PV gradient at the tropopause, coinciding with the midlatitude jet, acts as a waveguide for Rossby
waves (Hoskins & Ambrizzi, 1993; Martius et al., 2010). Rossby waves can be an important source of predictabil-
ity in medium-range forecasting (Grazzini & Vitart, 2015) and are crucial to accurately represent longer time
scale processes (Palmer et al., 2008).

The isentropic tropopause PV gradient decreases systematically with forecast lead time in current numerical
weather prediction (NWP) models (Gray et al., 2014). Rossby wave propagation depends on to the isentropic
PV gradient: a weaker tropopause PV gradient both reduces jet speed and weakens the upstream propagation
rate of Rossby waves. Harvey et al. (2016) showed that the two effects cancel at first order, but at second order
the reduction in jet speed is greater, giving a net reduction in phase speed. They estimated that the smoother
isentropic PV gradients seen in NWP forecasts compared to analyses would produce a phase error in Rossby
waves of 400 km over 5 days.
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The reduction of the tropopause PV gradient with forecast lead time indicates that there is a net imbalance in
the processes modifying the tropopause PV gradient. The purpose of this study is to quantify the systematic
effects of different processes within an NWP model contributing to the tropopause PV gradient and so provide
a method for model developers to link systematic forecast errors with the physical processes responsible.
The systematic difference between forecasts and analyses is equivalent to the systematic imbalance between
model processes at short lead times, and attributing tendencies to individual model processes can give insight
into the origin of model imbalances (Klinker & Sardeshmukh, 1992; Rodwell & Palmer, 2007). In this study we
are interested in the “initial tendencies” contributing to the tropopause PV gradient; however, a limitation of
the initial tendencies method is the potential for advection to dominate the tendencies due to the Eulerian
frame. Hence, artificial tracers, described as PV tracers, are used to accumulate tendencies of PV from individual
model processes in a Lagrangian frame. PV tracers allow us to better quantify the integrated effect of different
processes on PV following air masses, following the method of Davis et al. (1993) and Saffin et al. (2016).

The structure of this paper is as follows. A brief review of the key processes affecting the tropopause sharpness
is given in section 2. The setup of the forecasts analyzed including the online integration of PV tracers is given
in section 3 as well as an objective definition of ridges and troughs used in compositing the forecasts. Section 4
describes the results. The key conclusions and discussion of results are presented in section 5.

2. Processes Affecting Tropopause Sharpness

From previous studies, three key processes affecting tropopause sharpness have been identified: vortex strip-
ping, radiative cooling, and latent heating-enhanced ascent (i.e., warm conveyor belts (WCBs)) have significant
effects on the midlatitude tropopause. In this study the relative contributions of these processes are quantified
using daily forecasts over a winter season.

Vortex stripping describes a process in which sharp gradients in vorticity are generated from an ini-
tially smooth vorticity distribution in two-dimensional fluids (Legras & Dritschel, 1993). Using an isentropic
single-layer quasi-geostrophic model, Ambaum (1997) showed that the two-dimensional vortex stripping
motion of baroclinic eddies is the essential process for forming and maintaining a sharp tropopause PV
gradient. Results of three-dimensional simulations have shown that layerwise horizontal vortex stripping in
isentropic layers can also result in sharp vertical PV gradients (Haynes et al., 2001) and a TIL (Son & Polvani,
2007; Wang & Geller, 2016). The general action of vortex stripping can be described as air being stirred on
either side of the tropopause without stirring across the tropopause which acts as a transport barrier. We
can approximately consider that the stirring results in a three-component fluid on an isentrope with high-PV
stratospheric air around the poles and low-PV tropospheric air equatorward, separated by a region of interme-
diate PV: the tropopause. The regions of intermediate PV are drawn away from the tropopause by the eddies
on either side of the tropopause. The intermediate PV is then stretched out into filaments. As the filaments
stretch out they are broken up by small-scale mixing and gradually dissipated. The result is that the PV gradi-
ent at the tropopause has been enhanced by removing the intermediate PV air and bringing high- and low-PV
air closer together. At longer time scales small-scale mixing will eventually dominate resulting in a uniform PV
distribution; a key process for maintaining the tropopause sharpness in idealized simulations is the inclusion
of a thermal relaxation toward a state with a smooth equator-to-pole PV gradient, as an idealized represen-
tation of other diabatic processes, which acts to maintain the contrast between the high-PV stratospheric air
and the low-PV tropospheric air. The result is a dynamical equilibrium between thermal relaxation and vortex
stripping (Ambaum, 1997; Haynes et al., 2001).

The effects of diabatic processes on the tropopause are more complicated than thermal relaxation: Forster
and Wirth (2000) showed that radiative cooling could directly enhance the PV contrast across filaments of PV
provided the vorticity was sufficiently large, and Randel et al. (2007) showed that radiative cooling provides
a significant contribution to the strength of the TIL. The dominant contribution to the direct effect of radi-
ation on the tropopause is long-wave cooling from water vapor (Ferreira et al., 2016; Forster & Wirth, 2000):
the moister troposphere cools more rapidly than the drier stratosphere with the most efficient cooling just
below the dry layer resulting in a gradient of diabatic heating and positive PV tendencies across the humid-
ity gradient. The presence of clouds will modify the profile of radiation and, as a result, the PV tendencies.
The addition of clouds below the tropopause acts to focus the maxima in radiative cooling at the cloud top
(Cau et al., 2005), resulting in a sharper gradient in diabatic heating rate and a stronger and more localized
dipole of PV tendencies, positive above the cloud and negative below.
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Latent heating in WCBs has been shown to affect the tropopause. WCBs are air streams associated with extra-
tropical cyclones which transport air upward and poleward (Harrold, 1973). A WCB airstream can be identified
as a coherent ensemble of trajectories ascending 600 hPa in 48 h following Wernli and Davies (1997). WCBs
transport moist low-PV air from the boundary layer to the upper troposphere (Wernli & Davies, 1997) and
the outflow can have large impacts on the tropopause and subsequent Rossby wave propagation (Grams
et al., 2010; Riemer & Jones, 2011). Latent heating has a large effect on WCB evolution: air parcels typically
experience a net heating of ≈20 K (Madonna et al., 2014b) mainly associated with condensation at low lev-
els and depositional growth of snow at upper levels (Joos & Wernli, 2012). Schemm et al. (2013) showed
that a dry simulation produced a weaker WCB and as a result slower development of a downstream cyclone
when compared with a moist simulation. In terms of PV, air parcels experience positive PV tendencies below
the maximum in latent heating rates and negative PV tendencies above. WCB climatologies have found the
net change in PV between the inflow and outflow of WCB trajectories to be close to zero (Madonna et al.,
2014b). Methven (2015) used a Kelvin’s circulation argument to outline the conditions under which the PV of
the inflow is expected to match that of the outflow.

Chagnon et al. (2013) showed that the combined effect of long-wave radiation and WCBs gave a dipole of
diabatically generated PV that enhanced the tropopause PV gradient. Chagnon et al. (2013) also argued that
the transport of moisture by the WCB would enhance the effects of long-wave radiation. Kunkel et al. (2016)
showed similar results for the TIL: long-wave radiation strengthened the TIL and transport of moisture to the
tropopause results in a more rapid formation of the TIL. However, these results are limited to case studies
(Chagnon & Gray, 2015; Chagnon et al., 2013) and idealized simulations (Kunkel et al., 2016). This study
instead quantifies the systematic effects of physical processes on the tropopause over a season of forecasts
with an NWP model.

3. Methods

The data analyzed in this paper are from a set of forecasts run with the NAE (North Atlantic and European)
configuration of the Met Office Unified Model (MetUM) version 7.3 (section 3.1). The online integration of PV
tracers with the MetUM is described in section 3.2. The data output from the forecasts has been composited
separately for ridges and troughs; a new diagnostic for ridges and troughs is described in section 3.3.

3.1. Forecasts With the MetUM
The Met Office Unified Model (MetUM) is an operational NWP model. The dynamical core of the MetUM
version used here approximates a two-time level, semiimplicit, semi-Lagrangian solution to the nonhydro-
static, deep atmosphere equations (Davies et al., 2005). The variables in the MetUM are placed on a C-grid
(Arakawa & Lamb, 1977) with Charney-Phillips staggering in the vertical (Charney & Phillips, 1953) using a
terrain-following, height-based, coordinate that gradually flattens at higher altitudes (Davies et al., 2005). The
MetUM contains various parametrizations to account for physical processes that are either not resolved or not
represented within the dynamical core: radiation (Edwards & Slingo, 1995); microphysics (Wilson & Ballard,
1999); orographic (Webster et al., 2003) and nonorographic (Scaife et al., 2002) gravity wave drag, convection
(Gregory & Rowntree, 1990), and turbulent mixing (Lock et al., 2000).

A forecast was initialized for each day in the three-month winter period from 1 November 2013 to 31 January
2014 (a total of 92 forecasts). The forecasts were run using the limited area NAE configuration (see Figure 1
for domain extent). The period was chosen to use the most recent available analyses for the NAE configu-
ration. The Met Office phased out operational use of the NAE domain beyond January 2014 which is why
we have used November instead of February for our “winter” season. The NAE domain has 0.11∘ horizon-
tal grid spacing and uses a rotated pole to center the domain on the equator giving an approximately
uniform, 12 km grid spacing. We use 70 nonuniformly spaced vertical model levels up to 80 km with a
5 min time step. The initial conditions used are from operational NAE analyses, and boundary conditions
are given by operational runs of the global model for the same start time using the method described
in Davies (2014). Each forecast was initialized at 00 UTC and run for 2.5 days to give an overlap between
forecasts.

3.2. PV Tracers
A set of PV tracers were integrated online with each of the forecasts to quantify the effects of the various
processes in the MetUM. The method is based on Davis et al. (1993) and was first applied to the MetUM
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Figure 1. The background state on the 2 PVU surface used to diagnose ridges and troughs for the 3 month forecast
period. (a) 𝜙e(𝜃, q = 2); gray shows the range of values with highlighted lines showing the first time step of each month.
(b) The evolution of 𝜃b(𝜙, q = 2). (c) 𝜃(𝜆, 𝜙, q = 2) for the first forecast at 24 h lead time. (d) 𝜃′ from equation (8):
anomaly of Figure 1c relative to the background state with 𝜃′ = 0 highlighted by the bold line. The white regions in
Figures 1c and 1d show the mask on 𝜃(𝜆, 𝜙, q = 2)> 340 K.

by Gray (2006). The method works by partitioning and integrating PV. Following an air parcel, PV is modified
by diabatic and frictional processes

Dq
Dt

= 1
𝜌
𝜻 ⋅ ∇�̇� + 1

𝜌
∇�̇� ⋅ ∇ × F, (1)

where q = 1
𝜌
𝜻 ⋅ ∇𝜃 is Ertel PV (Ertel, 1942), 𝜌 is density, 𝜻 is the absolute vorticity vector, �̇� is the diabatic

heating tendency, and F is friction. The general method is to integrate the tendency of PV along trajectories
over a forecast interval T

∫
t0+T

t0

Dq
Dt

dt = ∫
t0+T

t0

Sdt, (2)

where t0 is the forecast start time and S represents the right-hand side of equation (1), which can be
partitioned by process (S =

∑
Si) resulting in a set of PV tracers (

∑
qi) where

qi = ∫
t0+T

t0

Sidt. (3)

In the MetUM the PV tendencies are derived from the parametrization schemes resulting in a set of physics
tracers (

∑
qphys): short-wave radiation (qsw), long-wave radiation (qlw), microphysics (qmic), gravity wave drag

(qgwd), convection (qcon), and turbulent mixing (qtm). There is also a term for “cloud rebalancing”; however, this
is not shown in later composites as it is negligible. For the initial conditions, an advection-only PV tracer (qadv)
is set equal to the full PV with all other tracers set to zero. This initiation is also applied in the lateral boundaries
of the limited area domain at every time step. Every time step each PV tracer is incremented by its respective
PV tendency (zero for qadv) and advected by the semi-Lagrangian advection scheme of the model.

The “dynamics-tracer inconsistency” diagnostic (𝜀I) of Saffin et al. (2016) is also included. The dynamics-tracer
inconsistency quantifies the difference between the PV tendency diagnosed by the dynamical core and
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the PV tendency diagnosed by tracer advection of PV. In a single time step there will be a change in PV due
to the dynamical core modifying prognostic variables

Δqdyn = q(X(1)) − q(X(0)), (4)

where q(⋅) represents a calculation of PV from the prognostic variables in the model at the start of the time
step (X(0)) and after the dynamics terms are calculated (X(1)). We can also calculate a change in PV due to tracer
advection

Δqtracer = q(X(0))d − q(X(0)), (5)

where the subscript d denotes evolution at departure points in the MetUM’s semi-Lagrangian method (i.e.,
tracer advection). The difference between these two changes gives

Δ𝜀I = Δqdyn − Δqtracer = q(X(1)) − q(X(0))d. (6)

This difference is calculated at every time step and accumulated as an additional tracer (𝜀I) in the same way as
the physics tracers (i.e., equation (3). Saffin et al. (2016) showed that 𝜀I is an important component of a model
PV budget which can be desirable to minimize (e.g., Whitehead et al., 2015); however, exact conservation of
PV is not necessarily a desirable property of a dynamical core because the cascade to smaller scales will be
blocked at the grid scale (Thuburn, 2008).

The final result is a budget for the Lagrangian change in PV

q − qadv =
∑

qphys + 𝜀I + 𝜀r , (7)

where 𝜀r is calculated as a residual. The residual is a result of advecting multiple PV tracers with an imperfect
advection scheme as well as any missing terms when summing increments over a time step. The resid-
ual was shown to be more than an order of magnitude smaller than the dominant physics PV tracers by
Saffin et al. (2016).

3.3. Objective Definition of Ridges and Troughs
The results in this study are tropopause-relative composites produced over ridges and troughs separately.
The expectation is that there will be significant differences in the behavior of physical processes in ridges and
troughs. For example, we might expect stronger effects of radiation in troughs due to a lower tropopause
meaning more moist and cloudy air below the tropopause (e.g., Cavallo & Hakim, 2009), whereas we might
associate ridges more with the strongly ascending WCB outflows. There are also differences in the structure
of ridges and troughs purely due to the balanced dynamics (Wirth, 2001). In this section a new diagnostic
approach for dividing regions into ridges and troughs is described.

The diagnostic extends Gray et al. (2014) where the position of the tropopause is compared with an “equiv-
alent latitude” (to be defined below). Gray et al. (2014) identify the location of the tropopause with a single
contour of PV on 320 K: anywhere the contour is poleward of its equivalent latitude is a ridge and anywhere
the contour is equatorward is a trough. Hoskins and Berrisford (1988) introduced maps of 𝜃 on the tropopause
as a useful overview of multiple isentropic PV maps, where a value of 2 potential vorticity unit (PVU)
(1 PVU = 10−6 m2 s−1 K kg−1 (Hoskins et al., 1985)) is typically used to define the tropopause. An isopleth of
PV on a 𝜃 surface is the same as an isopleth of 𝜃 on a PV surface; therefore, a map of 𝜃 on the 2 PVU surface is
equivalent to identifying the 2 PVU tropopause on every isentrope that intersects it. An exception is that the
2 PVU surface can fold so that the 2 PVU surface can be crossed multiple times on a vertical profile above some
geographical locations. At any geographical location where the PV surface is folded we choose the highest
value of 𝜃. Ridges and troughs are then defined as anomalies of 𝜃 on the 2 PVU surface relative to a zonally
symmetric background state

𝜃′ = 𝜃(𝜆, 𝜙, q = 2) − 𝜃b(𝜙, q = 2), (8)

where 𝜃(𝜆, 𝜙, q = 2) is the forecast 𝜃 as a function of longitude (𝜆) and latitude (𝜙) on the 2 PVU surface (q = 2)
and 𝜃b(𝜙, q = 2) is a zonally symmetric background state. A grid point is defined as being in a ridge or trough
by a positive or negative value of 𝜃′, respectively.

The background state used here is defined by adiabatic rearrangement of PV to a zonally symmetric state
(Methven & Berrisford, 2015): for each PV contour on each isentropic surface an equivalent latitude (𝜙e) is
defined as the latitude circle that encloses the same mass and circulation as the PV contour in the full (3-D)
state. The method of Methvan and Berrisford (2015) calculates a set of equivalent latitudes as a function of PV
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value on isentropic surfaces 𝜙e(𝜃, q) at 6-hourly intervals from ERA-Interim data (Dee et al., 2011). Figure 1a
shows the range of 𝜙e(𝜃, q = 2) for the 3 month forecast period with the first time step of each month
overplotted to highlight the instantaneous structure.

In the midlatitudes, the equivalent latitude of the 2 PVU surface decreases monotonically going to higher
𝜃 surfaces (Figure 1a). In this region a poleward displacement of the 2 PVU surface can be unambiguously
associated with a positive 𝜃 anomaly (negative for an equatorward displacement). The exception is at the
340–350 K range corresponding to the subtropical jet: at the subtropical jet, the background state 2 PVU
surface can be folded so that 𝜃b(𝜙, q = 2) is multivalued. Chagnon and Gray (2015) noted that the dipole
of diabatically generated PV across the 2 PVU surface was not robust in subtropical regions which is consis-
tent with the tropopause equatorward of the subtropical jet not being well defined as a constant PV surface
(Wilcox et al., 2012); therefore, regions where the forecast 𝜃(𝜆, 𝜙, q = 2) is greater than 340 K are excluded
from the diagnostics calculated here. The background state 𝜃b(𝜙, q = 2, t) is then calculated by finding the 𝜃

that satisfies 𝜙e(𝜃, q = 2) = 𝜙 by linear interpolation. In the case of multiple 𝜃 values, the value of 𝜃 less than
340 K is taken. Figure 1b shows 𝜃b(𝜙, q = 2, t). Note that there is no time averaging but that 𝜃b(𝜙, q = 2, t) is
inherently slowly varying.

Figure 1c shows 𝜃(𝜆, 𝜙, q = 2) from the first forecast at 24 h lead time, and Figure 1d shows the anomaly
relative to the background state. Ridges and troughs are defined by the sign of the anomaly in Figure 1d
(positive and negative, respectively). The advantage of this diagnostic is that it has allowed identification of
ridges and troughs on a limited area domain even if it is much smaller than the scale of Rossby wave activity.
The white regions in Figures 1c and 1d show the mask applied at 𝜃 > 340 K to ignore subtropical air masses. We
find that there are occasionally regions of negative or near-zero PV in the stratosphere associated with gravity
wave breaking that cause the tropopause to be diagnosed too high; the mask on 𝜃 > 340 K is also useful for
excluding these points.

4. Results

In this section the results from the winter season forecasts are presented. Composites of PV and PV tracer
diagnostics relative to the tropopause are presented in section 4.1. In section 4.2 the tropopause-relative com-
posites are used to quantify the evolution of tropopause sharpness with lead time and the contributions of
different processes to tropopause sharpness. In the following sections the results from the first two sections
are explained in terms of different processes: advection by the model winds (section 4.3), dynamics-tracer
inconsistency (section 4.4), and parametrized physical processes (section 4.5).

4.1. Tropopause-Relative Composites
The novel method that led to the discovery of the TIL by Birner et al. (2002) was compositing radiosonde pro-
files relative to the diagnosed thermal tropopause. The composites in this study are produced in a coordinate
relative to the dynamical tropopause, defined as the 2 PVU surface,

z̃ = z − z(q = 2). (9)

The approach is similar to Cavallo and Hakim (2009) who used a coordinate of pressure relative to the
tropopause to composite PV tendencies in tropopause polar vortices. The composites are produced using the
following method:

1. For each forecast, at each lead time
a. Calculate the height of the 2 PVU surface using linear interpolation from PV on model levels. For any

columns with multiple heights for the 2 PVU surface (i.e., folded tropopause), the highest position is
taken.

b. Linearly interpolate each variable to height levels relative to the dynamical tropopause (z̃). The levels
are taken every 0.2 km up to ±2 km from the tropopause. Note that this resolution is sharper than the
vertical model grid spacing which decreases from 400 m at 6 km to 600 m at 12.5 km.

c. Calculate the area-weighted mean of each variable on each tropopause-relative level over areas
diagnosed as ridges and troughs separately.

2. Calculate the mean and standard error of each diagnostic over the set of forecasts.

The compositing method above is then repeated taking z̃ relative to the 2 PVU surface of the advection-only
PV tracer (qadv = 2) rather than q = 2 in equation (9). Repeating the composites relative to each surface (q = 2
and qadv = 2) allows us to systematically quantify how much nonconservative processes act on either side
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Figure 2. PV as a function of vertical distance from the 2 PVU surface in (a–c) ridges and (d–f ) troughs. Lines show
the mean, and error bars show the standard error on the mean for the 92 forecasts at 24 h lead time. Figures 2a and 2d
show the forecast minus analysis values for PV (q) and the advection-only PV tracer (qadv). Figures 2b and 2e show
the difference (q−qadv) and the contributing processes: parametrized physical processes (

∑
qphys), dynamics-tracer

inconsistency (𝜀I), and a residual (𝜀r). The faint lines show composites relative to the advection-only PV tracer (qadv = 2)
for 𝜀I and

∑
qphys. Figures 2e and 2f show the contributions to

∑
qphys from the individual physics tracers: short-wave

radiation (qsw), long-wave radiation (qlw), microphysics (qmic), gravity wave drag (qgwd), convection (qcon), and turbulent
mixing (qtm).

of the tropopause (the composites are the same) or directly influence stratosphere-troposphere exchange
by separating the two surfaces (the composites are different). This can be seen if we consider some non-
conservative process producing negative PV tendencies initially above the tropopause. In this case, initially
stratospheric air (q> 2) can become tropospheric (q < 2) such that the diagnosed position of the q = 2 sur-
face has moved above the negative PV tendencies but the position of the qadv = 2 surface is unchanged. The
opposite can occur for positive PV tendencies initially below the tropopause with the position of the q = 2
surface moving below the positive PV tendencies. Over many of these situations we would diagnose posi-
tive PV tendencies systematically above the q = 2 surface but below the qadv = 2 surface and negative PV
tendencies systematically below the q = 2 surface but above the qadv = 2 surface. Therefore, a composite
over many cases would diagnose dipoles across the q = 2 and qadv = 2 surfaces of opposite sign; however,
since the q = 2 surface has moved this does not necessarily imply any change in the diagnosed PV gradient
across the q = 2 surface; only that mass is being exchanged between the troposphere and stratosphere. This
would not be the case for positive PV tendencies above the tropopause or negative PV tendencies below the
tropopause because they would not directly move the q = 2 surface and therefore have a direct effect on
the PV gradient. This is also true of PV tendencies occurring near the tropopause that are too weak to directly
move the q = 2 surface. In these cases, the composites relative to q = 2 and qadv = 2 would be the same and
imply a direct effect on the tropopause PV gradient.

Figure 2 shows the tropopause-relative composites over ridges (a–c) and troughs (d–f ) at 24 h lead time.
Figures 2a and 2d show PV and qadv as the difference between the 24 h forecasts and the verifying analyses for
each forecast. The profile of PV in Figure 2 is thus the systematic forecast error. There is a systematic decrease
in PV above the 2 PVU surface relative to analyses but comparatively little change in the troposphere (the error
is zero at the tropopause because q = 2 by definition). The systematic errors in PV can be contrasted with qadv

which reduces above the tropopause and increases below the tropopause relative to the analyses (Figures 2a
and 2d). The difference between PV and qadv is the “net effect of nonconservative processes” (q − qadv)
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which was shown to enhance the tropopause PV gradient by Chagnon et al. (2013). The tendency of q − qadv

is systematically positive in the stratosphere and negative in the troposphere (Figures 2b and 2e) consistent
with the case studies from Chagnon and Gray (2015) and Chagnon et al. (2013). The effects of nonconservative
processes are also of similar magnitude to the systematic forecast errors.

The PV tracers partition q−qadv (equation (7) into parametrized physical processes (
∑

qphys), dynamics-tracer
inconsistency (𝜀I), and a residual (𝜀r). Figures 2b and 2e show that the residual is small with approximately zero
systematic effect allowing us to focus on the remaining terms. The combined effect of parametrized physical
processes (

∑
qphys) is to produce a dipole in PV tendencies with positive PV tendencies in the stratosphere and

negative PV tendencies in the troposphere and approximately zero net change at the 2 PVU surface, consistent
with the findings of Chagnon and Gray (2015) and Chagnon et al. (2013) from individual case studies. The
dipole is similar when composited relative to qadv = 2, albeit weaker, showing that the parametrized physical
processes are acting to directly enhance the tropopause PV gradient rather than change the height of the
tropopause. The partitioning of

∑
qphys into individual physical processes (Figures 2c and 2f) is discussed in

section 4.5.

The dynamics-tracer inconsistency (𝜀I) shows net negative tendencies at tropopause level in ridges and
troughs (Figures 2b and 2e) although there are positive PV tendencies around 1 km above the tropopause
which are more pronounced in ridges than in troughs. The negative peak is slightly below q = 2, but above
qadv = 2, which indicates that, unlike the parametrized physical processes, the main effect of 𝜀I is to directly
separate the two surfaces (qadv = 2 and q = 2). This does not explain why 𝜀I is most negative at the tropopause
which is discussed in section 4.4.

4.2. Tropopause PV Contrast
To quantify the effects of different physical processes on the reduction in isentropic PV gradient seen in (Gray
et al., 2014), we can calculate the vertical tropopause PV contrast of the variables in Figure 2 over a fixed
distance. The vertical gradient of PV will be much larger than the isentropic PV gradient due to the typical slope
of the tropopause; therefore, we quantify the PV contrast over a fixed vertical distance which is proportional
to the isentropic contrast over a larger fixed horizontal distance if the tropopause slope is assumed to be
constant. From the tropopause-relative means, the tropopause PV contrast for each variable is calculated as
the difference between the average of points 1 km above and below the tropopause. As with the previous
composites, the mean and standard error are then calculated over the 92 forecasts.

Figure 3 shows the tropopause PV contrast as a function of lead time for each of the variables in Figure 2. There
is a reduction in PV contrast with lead time (Figures 3a and 3d) consistent with the reduction in isentropic PV
gradient found by Gray et al. (2014). The reduction in PV contrast is stronger in ridges than in troughs.

The contrast in qadv decreases more rapidly than for PV because it is not being maintained by diabatic pro-
cesses: the parametrized physical processes produce a net increase in the tropopause PV contrast with lead
time in ridges and troughs (Figures 3b and 3e). The contribution of individual physical processes (Figures 3c
and 3f) is discussed in section 4.5. The diagnosed contribution of 𝜀I to the tropopause PV contrast is less clear,
showing an increased contrast relative to q = 2 and a reduced contrast relative to qadv = 2. This is because, as
stated in the previous section, 𝜀I is acting to directly separate the two surfaces.

4.3. Tracer Advection
The evolution of qadv is a result of advection by the resolved winds of the model using the semi-Lagrangian
scheme of the MetUM. Conservative tracer advection results in a continuous cascade of features to smaller
scales. Horizontal and vertical length scales in tracers decrease exponentially at the same rate (Haynes &
Anglade, 1997) giving an exponential increase in tracer gradients. The difference here is that implicit numeri-
cal diffusion takes over as length scales approach the grid scale, and we are calculating the PV contrast over a
fixed length scale. Diffusive processes act most rapidly at small scales and slowly at large scales. The contrast
in qadv decreases as features cascade to smaller scales where diffusion reduces the extrema.

The decrease of the contrast in qadv is the opposite to that expected from vortex stripping (see section 2). The
reason for this different behavior is that there is a dynamical equilibrium between sharpening by intermittent
stripping events and a continuous smoothing of the tropopause. A model with consistent initial conditions
would be initialized in the dynamic equilibrium state of the model climate, and the net effects of processes
sharpening and smoothing the tropopause would cancel out over many forecasts, giving a constant PV
gradient as a function of lead time. In the idealized simulations of Ambaum (1997) and Haynes et al. (2001)
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Figure 3. The same variables as in Figure 2 but showing the tropopause PV contrast as a function of lead time
calculated as the difference between points up to 1 km above and 1 km below 2 PVU. PV and the advection-only PV
tracer are shown as absolute values rather than forecast minus analysis.

the diabatic processes contribute to a smoothing of the tropopause and so an advection-only PV tracer initial-
ized in the dynamic equilibrium state would show a net sharpening of the tropopause on short time scales. In
our simulations diabatic processes directly sharpen the tropopause so the net effect of the advection scheme
must be to smooth the tropopause. Also, we start from an analysis in which gradients are sharper than can be
maintained by the free-running model.

The net result of the tracer advection is that the contrast of qadv as a function of lead time (T) exponentially
decays from an initial contrast Δqadv(0), to a reduced contrast, Δqadv(∞)

Δqadv(T) = Δqadv(∞) + [Δqadv(0) − Δqadv(∞)]e−
T
𝜏 , (10)

where 𝜏 is the decay time scale. Although the termΔqadv(∞) is obtained by fitting equation (10) to the forecast
data, it cannot be a long-time limit for a passive tracer because a tracer will eventually become well mixed as
diffusive effects dominate.

The parameters in equation (10) have been calculated by fitting equation (10) to the evolution of Δqadv(T)
using scipy.optimize.curve_fit (Jones et al., 2001). Figure 4 shows an example of this fit for Δqadv(T) in ridges.
The solid black line is the same as the dashed line in Figure 3a, and the gray line shows Δqadv calculated from
composites relative to qadv = 2 rather than relative to q = 2. The evolution of Δqadv relative to qadv = 2 is
shown because the evolution can only be a result of the tracer advection scheme, even in the presence of
nonconservative processes. The circles in Figure 4a show the fit of equation (10). Note that the first data point
has been excluded from the fit leaving Δqadv(0) as a derived parameter. This was done because the first 6 h
deviates slightly from an exponential decay. This can be seen from the fitted points: in the first 6 h Δqadv

decreases more rapidly relative to q = 2 and slightly less rapidly relative to qadv = 2 compared to what would
be predicted from the following exponential decay. The estimate of Δqadv(0) is not very sensitive to ignoring
the first data point; however, the derived time scale is sensitive to overfitting to the first data point giving an
overestimation of the time scale relative to q = 2 and an underestimation of the time scale relative to qadv = 2.

The fit of equation (10) is repeated for multiple vertical length scales by calculating Δqadv only from points
up to ±z̃: Figure 4b shows the derived time scale. The time scale appears to be constant at small vertical
scales because we approach the vertical level spacing of the model which reduces from 400 m at 6 km to
600 m at 12.5 km altitude. Approaching the scale of the vertical resolution, the time scale increases in ridges
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Figure 4. Fitting of equation (10) to the decay of Δqadv in the forecasts. (a) Δqadv in ridges (circles show fit). (b) The
derived time scale from equation (10) for varying vertical scales. The key in Figure 4b applies to both plots.

and decreases in troughs. It is unclear why the time scale in ridges and troughs should have the opposite
behavior as a function of vertical scale; however, the time scale does approach a similar value of 20–24 h in
ridges and troughs.

4.4. Dynamics-Tracer Inconsistency
The dynamics-tracer inconsistency quantifies the difference between nonconservation of PV resulting from
the dynamical core and nonconservation associated with the tracer advection scheme. Saffin et al. (2016)
showed that local tendencies of dynamics-tracer inconsistency were dominated by nonconservation of PV
by the dynamical core; however, this result does not necessarily generalize to the integrated tendencies over
many forecasts so it is important to diagnose the underlying processes.

Figure 5. Dynamics-tracer inconsistency as a function of forecast lead time in (a and c) ridges and (b and d) troughs.
Values shown are the mean from the 3 months of forecasts when composited relative to the 2 PVU surface of PV
(Figures 5a and 5b) and the 2 PVU surface of the advection-only PV tracer (Figures 5c and 5d).
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Figure 5 shows the tropopause-relative mean of the dynamics-tracer inconsistency as a function of lead time.
Figures 5a and 5b show composites relative to q = 2, and Figures 5c and 5d show composites relative to
qadv = 2. There is a dipole of positive and negative tendencies centered slightly above q = 2 suggesting a
raising and sharpening of the tropopause. However, the peak in negative tendencies is shifted upward when
composited relative to qadv = 2, as well as net positive tendencies appearing below qadv = 2 in ridges, as
a result of the two surfaces (qadv = 2 and q = 2) being separated by dynamics-tracer inconsistency rather
than directly affecting the tropopause PV gradient (see section 4.1). The positive tendencies have saturated
at short lead times which may explain the discrepancy in behavior of Δqadv over the first 6 h in Figure 4. This
rapid saturation can also be seen for the diagnosed effect of dynamics-tracer inconsistency on the PV contrast
in ridges (Figure 3b).

At longer lead times the dynamics-tracer inconsistency becomes increasingly negative which is more pro-
nounced in troughs. A possible explanation for the net negative tendencies of the dynamics-tracer inconsis-
tency is that it results from dissipation as part of the vortex stripping process: as filaments of PV are drawn
away from the tropopause the dynamical core dissipates the PV filament faster than tracer advection giving
negative tendencies in the filament. Negative PV tendencies are consistent with a downward diabatic trans-
port of mass by dilution of PV substance (Haynes & McIntyre, 1987). This is consistent with the isentropic map
of 𝜀I shown in Saffin et al. (2016) (their Figure 2c) where net negative tendencies are seen in the troughs where
q = 2 is displaced from qadv = 2.

4.5. Parametrized Physical Processes
The combined effect of parametrized physical processes is to produce a dipole in PV tendencies with positive
PV tendencies in the stratosphere and negative PV tendencies in the troposphere and zero net change at the
2 PVU surface (Figures 2b and 2e), but this dipole is much weaker in ridges than troughs. These processes are
now considered separately.

The largest contribution to the PV tendencies comes from the long-wave radiation which produces net posi-
tive PV tendencies at the tropopause and is about twice as strong in troughs as in ridges (Figures 2c and 2f).
Since the long-wave radiation is dependent on the humidity contrast and the absolute vorticity (Forster &
Wirth, 2000), the stronger magnitude in troughs would be expected. Figure 6 shows variables from the anal-
yses as a function of distance from the 2 PVU tropopause in ridges and troughs. Both the contrast in specific
humidity (Figure 6a) and the magnitude of the vertical component of the absolute vorticity (Figure 6b) are
approximately twice as strong in troughs as in ridges.

The contrast of the long-wave radiation PV tracer across the tropopause is also much stronger in troughs than
ridges (Figures 3c and 3f) which is due to the net PV tendencies being more symmetric across the tropopause
in ridges than in troughs (Figures 2c and 3f). The asymmetry of the net PV tendencies in troughs is likely due to
the increased amount of clouds in troughs compared to ridges (Figures 6c and 6d). As described in section 2,
cloud top cooling results in a sharp spike in diabatic cooling and, as a result, a dipole of PV tendencies. When
composited over many clouds with varying distance from the tropopause, this will show an enhanced gradi-
ent. Cavallo and Hakim (2009) showed that cloud top cooling was a key process for intensifying tropopause
polar vortices. The composites of PV tendencies relative to tropopause polar vortices from Cavallo and Hakim
(2009) (their Figure 9) show similar tendencies to those seen for our composite over troughs (Figure 2) with
net positive tendencies across the tropopause and negative tendencies further below the tropopause.

Short-wave radiation produces negative PV tendencies above the tropopause (Figures 2c and 2f) which act
to reduce the PV gradient with a clear diurnal cycle visible (Figures 3c and 3f) since we are using a limited
area domain. In both ridges and troughs, short-wave radiation reduces the PV gradient during the daytime
by producing negative tendencies in PV above the tropopause. Negative PV tendencies indicate a negative
heating gradient in the lower stratosphere which is most likely due to the variation in water vapor. Radiative
heating due to ozone might be expected to have a large effect as positive PV tendencies below a heating
maxima. Strongly positive values of the short-wave radiation PV tracer are seen at higher altitudes but too far
from the tropopause to affect the composites in Figures 2 and 3.

The microphysics PV tracer shows a net negative PV accumulation below the tropopause in both ridges and
troughs (Figures 3c and 3f), consistent with the negative PV tendencies from ascent above the maxima in
latent heating. The association of the turbulent-mixing PV tracer to vertical transport is less clear. Chagnon
et al. (2013) associated negative values of the turbulent-mixing PV tracer with transport of tracer from the
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Figure 6. The mean of variables as a function of distance from the 2 PVU tropopause in ridges and troughs from the
analyses used in this study. (a) Specific humidity, (b) vertical component of absolute vorticity, (c) mass fraction of cloud
liquid, and (d) mass fraction of cloud ice.

boundary layer by a WCB. Ventilation of the boundary layer is dominated by WCBs (Sinclair et al., 2008) so
we might expect to see a signature of WCB transport to the tropopause in the turbulent-mixing PV tracer;
however, we see an effect at short lead times, so it is important to distinguish between the effects of
parametrized mixing at the tropopause levels and long-range transport from the boundary layer.

The diagnosed impact of processes related to WCBs depends on the length of the forecast. Figures 7a and 7b
show the tropopause-relative mean of the microphysics PV tracer as a function of lead time. The microphysics
PV tracer shows net negative values in both ridges and troughs at short lead times because we are sampling
air in the region of negative PV tendencies above the latent heating maxima. At longer lead times ridges and
troughs show quite different behavior: in ridges the values of the microphysics PV tracer are consistently nega-
tive, whereas in troughs the negative values of the microphysics PV tracer are gradually replaced with positive
values. This is because the outflow of WCBs, where the net change in PV will be negative or zero, is typically
associated with ridges whereas in troughs, where the tropopause is lower, we will be compositing over air
masses that are still ascending or have been affected by latent heating that is not associated with WCBs.

The turbulent-mixing parametrization is having a systematic effect on the tropopause within the first 6 h
in both ridges and troughs which is unlikely to be from WCBs (Figures 7c and 7d). The strongest negative
tendencies are just below tropopause level and near zero further below indicating that they are not being
advected from lower levels. There is a small hint of negative tendencies increasing from lower levels with lead
time, but the dominant process is turbulent mixing at tropopause levels.

Convection has almost zero effect in ridges but shows net negative tendencies in troughs. This makes sense
since the tropopause is lower in troughs, and so we expect stronger convective transport in troughs. The
reverse is true for gravity wave drag with roughly net zero effect in troughs (Figure 2f ) and a net positive in
ridges (Figure 2c); however, this net positive is small and could be an artifact of large negative tendencies
from gravity wave drag causing the tropopause to be diagnosed too high which is then masked out in the
composites (section 3.3).
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Figure 7. (a and b) Microphysics and (c and d) turbulent-mixing PV tracers as a function of forecast lead time in ridges
(Figures 7a and 7c) and troughs (Figures 7b and 7d). Values shown are the mean from the 3 months of forecasts relative
to the 2 PVU surface.

5. Conclusions

Gray et al. (2014) showed that the tropopause PV gradient reduces with forecast lead time in NWP models;
however, the source of model error remained unclear. In this study the systematic effects of individual model
processes in maintaining the sharpness of the extratropical tropopause have been quantified by integrat-
ing PV tracers over a set of 92 forecasts with the MetUM. Since PV is conserved for adiabatic and frictionless
flow (Ertel, 1942), PV tracers can accumulate tendencies of PV from individual model processes following the
resolved flow which can be advantageous when compared to calculating Eulerian initial tendencies (Klinker
& Sardeshmukh, 1992; Rodwell & Palmer, 2007) by avoiding large cancellations due to advection as will be
the case near the tropopause. This study demonstrates that PV tracers can be a useful alternative to the initial
tendencies method for quantifying the systematic behavior of individual model processes.

Composites of PV tracers have been produced relative to the 2 PVU tropopause separately for ridges and
troughs, diagnosed as anomalies of 𝜃 on the 2 PVU tropopause. Rossby waves are associated with meridional
displacements of PV contours on isentropic surfaces which can be associated with an anomaly of 𝜃 on the
2 PVU tropopause.

The key results from this study are

1. The vertical PV contrast across the tropopause reduces relative to analyses with forecast lead time consistent
with a smoothing of the isentropic PV gradient (Gray et al., 2014).

2. On the time scales of the forecasts, the advection scheme of the model gives an exponential decay of the
tropopause PV contrast to a finite value with a time scale of 20–24 h.

3. A key component of the PV budget is the dynamics-tracer inconsistency which quantifies the difference
between the evolution of PV in the dynamical core and the evolution of PV through tracer advection (Saffin
et al., 2016).

a. The locations of the maxima in dynamics-tracer inconsistency are different when composited relative
to the 2 PVU surface of the advection-only PV tracer rather than PV indicating that dynamics-tracer
inconsistency is having a direct effect on mass transport across the tropopause causing the q = 2 and
qadv = 2 surfaces to separate.
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b. The dynamics-tracer inconsistency shows net negative tendencies near the tropopause level indicat-
ing a net transfer of mass from the stratosphere to the troposphere. This is consistent with numer-
ical mixing removing small-scale stratospheric filaments and could be related to vortex stripping
(Ambaum, 1997).

4. Parametrized physical processes act to sharpen the tropopause by producing a dipole in PV tenden-
cies across the tropopause with near-zero net tendency at the tropopause, consistent with the results of
Chagnon and Gray (2015) and Chagnon et al. (2013) from individual case studies.

a. Radiative cooling produces net positive tendencies across and above the tropopause due to the gra-
dient of water vapor across the tropopause. The stronger water vapor gradient and absolute vorticity
in troughs compared to ridges result in a stronger net positive PV tendency. The positive PV tenden-
cies due to radiative cooling have a stronger gradient across the tropopause in troughs than in ridges
which can be explained by the increased frequency of clouds acting to sharpen the vertical cooling
gradient (Cau et al., 2005).

b. The microphysics PV tracer accumulates negative PV below the tropopause at short lead times
associated with latent heating in WCBs.

c. The turbulent-mixing PV tracer accumulates negative PV at the tropopause and positive PV above the
tropopause. At short lead times the majority of the turbulent-mixing PV tracer seen at tropopause
levels accumulates locally rather than by the long-range transport from the boundary layer seen at
longer time scales.

The open question now is what changes should be made to NWP models to improve the representation of
the tropopause PV gradient? The work in this paper provides a framework for testing such changes. We have
used a limited area domain to give a resolution comparable to current global models at a lower computational
cost; however, the inflow of air from the lateral boundaries results in an uncertainty in the behavior of the
tropopause as the PV tracers cannot trace air prior to inflow. The recommendation for repeating this analysis
to investigate model changes would be to use a global model but fewer forecasts.

An obvious first step would be to investigate changing model resolution. Gray et al. (2014) showed a reduc-
tion of PV gradient in day 10 of the European Centre for Medium-Range Weather Forecasts (ECMWF) forecasts
associated with a reduction in the horizontal resolution of the model. In this study we have shown a less
dramatic reduction in tropopause sharpness than Gray et al. (2014) which is most likely because we have a
higher-resolution limited area domain (0.11∘) here compared to a range between 0.28 and 1.4∘ for the fore-
casts analyzed by Gray et al. (2014). It would be useful to know if the model is accurately representing poorly
resolved mixing processes. Varying the resolution of the forecasts should help identify errors arising from non-
conservation of PV by the dynamical core and parametrized turbulence, both of which have been to shown
to be important processes at tropopause levels.

We have shown that the magnitude of the systematic forecast error is comparable to the tendencies due to
the parametrized physical processes so it is plausible that realistic modifications to the model parametrization
schemes could significantly reduce the error rather than more difficult measures such as increasing resolution
or redesigning the dynamical core. It would be expected that modifying the microphysics and/or convection
schemes to enhance the latent heating-driven ascent in WCBs would have a large impact on the tropopause.
It is useful to consider how changes to WCBs would affect the PV tracers. The simplest effect would be to
directly enhance the negative PV tendencies below the tropopause at short lead times. Increased transport of
moisture and cloud formation at tropopause levels would also modify the response of radiative tendencies.
We did not find any significant errors in forecast of water vapor or clouds near the tropopause when compared
with analyses (not shown) which suggests that the WCB transport in the forecasts is adequate; however, this
raises the question of how much we trust the analyses. ECMWF analyses have been shown to have a moist
bias in the lower stratosphere (Dyroff et al., 2015) and the ERA-Interim reanalyses have been shown to have
insufficient cloud and a low cloud top bias in WCBs (Hawcroft et al., 2016). It is possible that an initial bias in
the analyses is maintained through the forecasts leading to an underestimation of the effects of WCBs and
long-wave radiation on the tropopause.

It is useful to associate systematic differences between forecasts and analyses with observations which is dif-
ficult for PV. The strength of the TIL (Birner et al., 2002) is a useful measure of tropopause sharpness that can
be obtained from observations. It is notable that studies on the processes affecting the TIL find similar results
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to studies on the processes affecting the tropopause PV gradient (e.g., Chagnon et al., 2013; Kunkel et al.,
2016). Since static stability is proportional to the vertical gradient in 𝜃, we would expect a region of enhanced
static stability above the tropopause to be associated with a positive PV anomaly and a stronger PV gradient.
Pilch Kedzierski et al. (2016) showed that, without data assimilation, the TIL region in the ECMWF NWP model
tends toward a weaker static stability which is probably associated with the decline in PV gradient shown by
Gray et al. (2014); however, further work is needed to associate these two features. The recent North Atlantic
Waveguide and Downstream Impact Experiment field campaign also provides an opportunity to compare
observations and analyses of tropopause structure.

Acronyms

NWP Numerical weather prediction
MetUM Met Office Unified Model

PV Potential vorticity
PVU Potential vorticity units

TIL Tropopause inversion layer
WCB Warm conveyor belt
NAE North Atlantic European (model configuration)

Notation

𝜽 Potential temperature
q PV

qadv Advection-only PV tracer
qlw Long-wave radiation PV tracer
qsw Short-wave radiation PV tracer

qmic Microphysics PV tracer
qgwd Gravity wave drag PV tracer
qcon Convection PV tracer
qtm Turbulent-mixing PV tracer
𝜺I Dynamics-tracer inconsistency
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