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ABSTRACT
This paper describes a novel method to incorporate significantly time-lagged data into a sequential variational data
assimilation framework. The proposed method can assimilate data that appear many assimilation window lengths in the
future, providing a mechanism to gradually dynamically adjust the model towards those data. The method avoids the
need for an adjoint model, significantly reducing computational requirements compared to standard four-dimensional
variational assimilation. Simulation studies are used to test the assimilation methodology in a variety of situations. The
use of lagged covariances is shown to provide robust improvements to the assimilation quality, particularly if data at
multiple lags are used to influence the cost function in each window. The methodology developed can be used to improve
contemporary global reanalyses by incorporating time-lagged observations that may otherwise not be exploited to their
full potential.

Keywords: long-window data assimilation, lagged covariances, reanalysis

1. Introduction

The process of data assimilation has been used to produce many
atmospheric and oceanic reanalyses. A variety of data assimila-
tion techniques are employed operationally, such as variational
minimisation (Talagrand and Courtier, 1987), ensemble-based
methods (Evensen and van Leeuwen, 2000; Bishop et al., 2001)
and hybrid approaches (Fairbairn et al., 2014; Goodliff et al.,
2015). A feature common to many of these methods is the parti-
tioning of the observational data into a sequence of assimilation
time windows. The estimated state trajectory, known as the anal-
ysis (xa), is then produced by running the assimilation procedure
sequentially through the windows. The analysis in a particular
window is determined by optimally combining the observations
within that window and the initial guess, or background (xb),
coming from the analysis in the previous window.

In operational global reanalyses of oceanic and atmospheric
data, the length of the assimilation window typically ranges from
6 h (for atmospheric reanalyses) to 10 days (for ocean reanaly-
ses). In general, a longer window enables more observations to
be consistently analysed together, which reduces initialisation
shocks and requires fewer computationally expensive assimila-
tion steps. On the other hand, the chaotic nature of the ocean
and atmosphere means the determination of an accurate solution
with long time windows is more challenging. For example, in
four-dimensional variational assimilation (4DVar) the tangent

∗Corresponding author. e-mail: c.m.thomas@reading.ac.uk

linear model must be computed at each time step through the
window when performing the minimisation, and a long window
may mean that the linearised background state does not remain
valid.

Various methods have been developed to allow longer win-
dows to be used, such as quasi-static variational assimilation
(Pires et al., 1996; Swanson et al., 1998). Overlapping time
windows (Sugiura et al., 2008; Köhl, 2015) can also help to
overcome the tendency of the sequential procedure to lead to dis-
continuities between each long window. The Kalman smoother
(Ménard and Daley, 1996) runs both forward and backward in
time through each window and permits longer windows to be
used. The Kalman smoother is equivalent to weak constraint
4DVar, which allows for model error (Fisher et al., 2005).

The use of long-window 4DVar in high-resolution atmospheric
and oceanic reanalyses is extremely expensive. The aim of this
paper is instead to adapt a conventional sequential short
window assimilation approach by introducing additional
‘outside-window’ data, for use in particular situations where the
time-lagged covariance relationships to the outside-window data
are fairly robust and state-independent. In particular, we aim to
use current data to influence model fields at a much earlier time
in order to achieve a smoother state which is more consistent
with observations.

Ultimately the methods developed here are targeted at reanaly-
sis applications for which short-window assimilation techniques
are already in operational use and the incorporation of informa-
tion from observations on time scales that significantly exceed
the length of the assimilation window would be beneficial.
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2 C. M. THOMAS AND K. HAINES

The paper is organised as follows. Section 2 contains a de-
scription of the methodology and Section 3 presents simulation
studies. Conclusions are given in Section 4.

2. Methodology

This section describes the procedure by which lagged data can be
introduced into an assimilation framework. The standard method
of variational assimilation is introduced in Section 2.1. The
development of lagged covariance relationships and the use of
these relationships to assimilate outside-window data is
described in Section 2.2. Finally, the form of the observation
error covariance matrix used in the lagged data assimilation is
described in Section 2.3.

2.1. Standard variational assimilation

Incremental variational assimilation proceeds by determining
the increments (δx) that must be added to the background in
order to minimise the cost function

J (δx) = Jb(δx) + Jo(δx) (1)

where the two terms on the right-hand side are the background
and observation cost functions, respectively. In the formulation
considered here the increments are determined at time t0, the
start of the window. In 4DVar the two cost function terms take
the form

Jb(δx) = 1

2
δxTB−1δx, (2)

Jo(δx) = 1

2

K∑
i=1

[
yi − Hi (Mi (x

0
b)) − Hi Mi δx

]T

R−1
i

×
[
yi − Hi (Mi (x

0
b)) − Hi Mi δx

]

≡ 1

2

K∑
i=1

[
di − Hi Mi δx

]T

R−1
i

[
di − Hi Mi δx

]
(3)

where B is the background error covariance matrix and yi are
vectors of ‘within-window’ observations with error covariance
matrices Ri located at times ti ; there are K such observation
times. The non-linear forward model operator Mi transforms
a state from time t0 to ti , and Hi is the observation operator
that transforms the model state into observation space at ti . The
matrices Mi and Hi are the tangent linear versions of these
operators. The background at t0 is denoted x0

b.
Throughout the assimilation window the model is linearised

around the trajectory of the background state. The innovation
vector di is the offset between the observations and the back-
ground at ti . The formulation presented above is ‘strong con-
straint’ 4DVar for which there is no model error term.

The adjoint of Mi is required to minimise the 4DVar cost func-
tion. The 3DVar approximation assumes that each observation
is valid at the same time, usually the centre of the window, thus
dispensing with Mi altogether. The 3DVar-FGAT (First Guess
at Appropriate Time) version only assumes that the innovations
di are valid at the same time, thus replacing the linearised adjoint
Mi with I in Equation 3. The 3DVar-FGAT method is commonly
used in several operational assimilation centres, especially for
ocean data assimilation (Balmaseda et al., 2013; Waters et al.,
2015; Jackson et al., 2016).

Once the increments have been determined, the analysis xa

is produced by adding the increments to the background state.
Incremental analysis update (Bloom et al., 1996) (IAU) is com-
monly used to spread the influence of the increments through the
window in order to produce a smoother analysis trajectory. The
value of the analysis at the end of the current window is used to
initialise the background state at the start of the next window.

2.2. Two-stage assimilation using lagged covariances

When considering outside-window data we introduce the addi-
tional innovation vector q, defined in relation to an initial prede-
termined trajectory xI. The notation q distinguishes the outside-
window innovations from their within-window equivalents d.
The determination of xI, which must span the entire timescale
across which the lagged covariances are to be used, is the first of
two stages in the proposed methodology. Here, we will define xI
to be the initial analysis trajectory produced by a 3DVar-FGAT
reanalysis, obtained without incorporating the outside-window
data.

We wish to determine the final analysis state xa by adding an
increment vector δxI to the trajectory xI. To do this requires the
outside-window innovations

q = y − H(xI) (4)

to be calculated, where y is the outside-window data and H is the
relevant observation operator. The innovations are calculated at
all times at which outside-window data occur.

The standard linear regression relationship (e.g. McCullagh
and Nelder (1989)) between the increments δxI and the innova-
tions q at a given time lag gives the expected value

〈q〉 = Cqx C−1
xx δxI

≡ ZδxI (5)

where Cqx is the lagged covariance matrix between q and δxI,
and Cxx is the autocovariance of the increment vector. The ma-
trix Z is assumed to be state-independent and may, for example,
be determined using a long model run or an ensemble of short
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USING LAGGED COVARIANCES IN DATA ASSIMILATION 3

model runs. Here we consider the case of a long model run.
This run is used to produce sample matrices, denoted Q and δX,
which cover the spatial domains corresponding to q and δxI,
respectively, and are sampled at many time points. Ordinary least
squares can be used to estimate Z by minimising the squared �2

norm of the residuals

Z = arg min
a

||Q − aδX||22. (6)

The minimisation can be performed using methods such as sin-
gular value decomposition (SVD), which is numerically more
stable than calculating C−1

xx , particularly if the system has a large
number of spatial points.

Given Z and the measured values of q it is then possible to
calculate the most desirable value of δxI by introducing the new
cost function term:

Jc(δxI) = 1

2
[q − 〈q〉]T S−1 [q − 〈q〉]

= 1

2
[q − ZδxI]

T S−1 [q − ZδxI] (7)

where S is the error covariance matrix of the outside-window
data, discussed further in Section 2.3.

In the second stage of the assimilation the total cost function
is modified to include the lagged covariance term, which for
consistency must be expressed as a function of δx:

J(δx) = Jo(δx) + Jb(δx) + Jc(δx) (8)

where δx is the increment required relative to the background
state in the second run, xb. In general xb can be sampled from the
background trajectory at any time in the assimilation window as
long as the lag relative to the outside-window data is valid and
xI is sampled at the same temporal point within the window. The
value of δxI is in general different to δx because xb follows a
different trajectory to xI. This discrepancy can be accounted for
by centring around xb:

Jc(δx) = 1

2
[q − Z(δx + �xb)]T S−1 [q − Z(δx + �xb)]

= 1

2

[
q′ − Zδx

]T S−1 [
q′ − Zδx

]
(9)

where the background offset and modified innovations are, re-
spectively,

�xb ≡ xb − xI, (10)

q′ ≡ q − Z�xb. (11)

In this form the Jc term can be easily included in preexisting
operational data assimilation algorithms. In the context of this
paper the Jo and Jb terms in Equation 8 take the same form as
in the first assimilation stage. The total cost function is solved
using the 3DVar-FGAT assumptions and IAU is then used to
produce xa.

The background offset �xbwill vary through time during
the assimilation run. In the limit in which Jc has no effect,
�xb will be zero at all times. If q′ becomes zero during the
second assimilation stage then the first and second assimilation
trajectories are offset such that Jc does not influence the second
trajectory further.

The modified innovations (Equation 11) will influence the
increments in all assimilation windows which appear at appro-
priate lags relative to the outside-window data. The most general
form of the lagged covariance term is thus

Jc(δx) = 1

2

L∑
l=1

[
q′

l − Zlδx
]T S−1

l

[
q′

l − Zlδx
]
, (12)

where the sum runs over the L sets of observations, each of
which appears at its appropriate lag. The quantity Sl is the error
covariance matrix of the set of observations at lag l. The Jc

term is very similar to the Jo term except the product Hi Mi
is replaced by Zl . The Zl matrix can therefore be thought of
as a linearised observation operator which relates the current
model state to significantly time-lagged data. The adjoint of the
tangent linear model is not required in Jc, which significantly
reduces the computing requirements. Furthermore the Z matrices
can be precomputed prior to performing the assimilation. The
summation in Equation 12 assumes that the error covariances
between observations at different lags are exactly zero, but this
could be extended to account for cross-lag correlations.

A schematic of the assimilation method is shown in Fig. 1.
The situation for which the outside-window data influence the
increments in two successive assimilation windows is shown.

2.3. Observation error covariance matrix

The error covariance matrix of the outside-window observations
at lag l, Sl , has two contributions. The first is from R, the error
covariance of the observations themselves; this independent of
the particular lag chosen. The second contribution is due to the
error inherent in the model used to determine the matrix Zl ; if this
error is large, the value of Zlδx in the Jc term will be inaccurate.
The error is potentially lag-dependent and can be estimated using
a second long model run which is assumed to represent the truth.
This run is sampled many times producing the vectors Q′ and
δX′, which are analogous to Q and δX sampled from the first
run. The matrix of offsets between the true values of Q′ and
those predicted from δX′ at lag l is
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4 C. M. THOMAS AND K. HAINES

Fig. 1. The proposed method to incorporate lagged covariances for the case in which future data influence the current assimilation trajectory.
The thin burgundy line indicates the analysis produced in the first assimilation run (xI), the dashed blue line indicates the background in the second
assimilation run (xb) and the thick orange line indicates the analysis in the second assimilation run (xa). The innovations between the future data
and H(xI) (the model state transformed into observation space) are denoted q1,2 and are separated from the start of the current assimilation window
by lags �t1,2. The innovations, together with the matrices Z(�t1,2), are used to influence the increments (δx) at the start of the current window.
The difference between the first and second assimilation runs at this point (�xb) must be considered when determining xa. The dashed extensions to
�t1,2 indicate the lags that were used for the assimilation in the previous window, for which the corresponding Z may be different.

εl ≡ Q′ − ZlδX′. (13)

The resultant error covariance matrix is

Ul ≡ 1

NL − 1
εlε

T
l (14)

where NL is the total number of points sampled. The total error
covariance matrix used in the Jc term at lag l is therefore

Sl = R + Ul . (15)

The Ul term accounts for the accuracy of the matrix Zl in relating
the current model state to significantly time-lagged data. If the
assumption of state independent covariances is violated (due to
e.g. non-stationarity) the Ul term will be large, ensuring the Jc

term is downweighted and does not bias the overall minimisa-
tion.

3. Simulation study

A simulation study is performed to test the lagged covariance
assimilation methodology. The simulation models are described
in Section 3.1 and results are given in Section 3.2.

3.1. Simulation models

Two models are used to test the lagged assimilation methodol-
ogy. The first describes linear advection on a periodic domain,
with governing equation

∂C

∂t
+ u

∂C

∂z
= 0 (16)

where C is the dependent variable, t is time, z is the spatial
coordinate and u is a constant speed.

For this model the two-stage assimilation procedure is used
to determine the best-fit increments in Nw = 100 sequential
windows. At both stages the cost function is minimised using
the Newton conjugate gradient algorithm. The model domain is
discretised in both space and time. Each assimilation window
consists of Nt = 1000 time steps of length δt = 0.01 unit. The
spatial domain is divided into Nz = 100 equally-spaced points,
with adjacent points separated by δz = 1 unit. The model state
vector is denoted x and consists of the values of C at each point
on the spatial domain.

A ‘true’ model is defined and used to both generate observa-
tions and to evaluate the performance of the assimilation pro-
cedure. At the start of the assimilation, the true model is the
sinusoid

C(0, z) = A sin

{
2π

Nzδz
(−z + φ)

}
(17)

where the amplitude A = 1.0 and the phase φ = 0. In all
subsequent time steps the system is evolved through time using
the Lax–Wendroff method (LeVeque, 1992) with speed u = 1.0.

The second model used is the ‘Lorenz 96’ system (Lorenz and
Emanuel, 1998). This system occurs on a periodic domain and
has governing equation
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USING LAGGED COVARIANCES IN DATA ASSIMILATION 5

dC(zk)

dt
= C(zk−1)

(
C(zk+1) − C(zk−2)

) − C(zk) + F

(18)

where C is the dependent variable, zk is the spatial coordinate
with index 1 ≤ k ≤ 40 and F is a forcing parameter which
governs the extent to which chaos plays a role in the evolution
of the system.

The two assimilation stages for the linear advective system are
described in Sections 3.1.1 and 3.1.2. The two-stage assimilation
of the Lorenz 96 system is set up in a similar way to that for
the linear advective system, substituting the model parameters
where appropriate. An ensemble of 100 assimilation runs is
generated, using different data in each case. This enables the
magnitude of any improvement to be determined more robustly
than just using one realisation of the simulation.

3.1.1. First assimilation stage. The within-window obser-
vations are generated at one spatial point (z = 0) and every
100 model time steps, such that there are 10 observations per
window. The observations are perturbed by adding noise drawn
from a Gaussian distribution of mean 0 and variance 0.05. These
within-window observations are assimilated using the 3DVar-
FGAT method in order to produce the trajectory xI.

The forward model used in the assimilation is chosen to be
slightly different from the true model, in order to emulate the
imperfect knowledge inherent in an operational assimilation; the
forward model has amplitude Ab = 1.1, phase φb = −2δz, and
speed ub = 1.1. The incorrect amplitude and phase produce a
non-zero error in the initial state, whereas the incorrect speed
governs the evolution of the system through the entire assimila-
tion period. The forward model is used in three contexts: the first
is in the variational assimilation itself, the second is to estimate
the background error covariance matrix B, and the third is to
determine the Z matrices as described in Section 2.2.

Once the increments have been determined, the IAU proce-
dure is used to smooth the analysis as follows. The analysis at the
first time step, x0

a , is equal to x0
b + w0δx, where w0 is a weight

whose form is described below. The analysis at subsequent time
steps is

xk
a = M(xk−1

a ) + wkδx, k ∈ [1, Nt ] (19)

where M is the operator that translates a model state from one
time step to the next. The weights wk are equal to 1/Nt at all
time steps, which applies the increments evenly throughout the
assimilation window.

3.1.2. Second assimilation stage. The outside-window ob-
servations are located at z = 90 and influence increments located
at a different region of the spatial domain (z ∈ [15, 65]). The
time series of outside-window data is generated by adding noise

drawn from a Gaussian distribution with mean 0 and variance
0.001 to the true model. The variance used is smaller than for the
within-window observations in order to clearly demonstrate the
benefit of the lagged methodology. In Section 3.2.3 it is shown
that a larger variance does not affect the conclusions. The ob-
servation operator H is trivial because the observation locations
coincide with the model grid; the outside-window innovations
q are therefore equal to the difference between the observations
and model at the relevant spatial and temporal locations. Each
outside-window observation influences the entire spatial range
of the increments at the appropriate lag(s).

For simplicity, the outside-window data appear every 10 time
units and the lags used are all integer multiples of 10 time units.
The outside-window observations are therefore 10 times more
temporally sparse than the within-window observations, which
compensates to some extent for the lower error variance on the
former. The second stage of the assimilation is only run on the
first Nw − lmax assimilation windows, where lmax is the largest
lag considered. The outside-window data which affect these
windows are located at times between the minimum lag, lmin,
and Nw inclusive. These choices, illustrated in Fig. 2, ensure
that the increments in each sequential assimilation window are
influenced by the same amount of data at the same set of lags.

The Z matrices are determined by running the forward model
for many time steps and performing the regression in Equation 6
for each lag. In the simple system considered in this study, the two
largest singular values of Z produced in the SVD procedure are
found to explain essentially all of the total variance, independent
of the lag. The spatial patterns associated with these values are
retained and the remainder are discarded in order to reduce the
influence of any residual noise.

3.2. Results

In this section, various simulation configurations are tested in
order to verify the robustness of the method. The metric used
to evaluate the success of the assimilation is the mean absolute
error between the analysis and the truth (xt) across all spatial and
temporal points covered by the second stage of the assimilation:

μ ≡ 1

Nz Nt (Nw − lmax)

Nw−lmax∑
i=1

Nz∑
j=1

Nt∑
k=1

|xi, j,k
a − xi, j,k

t |,

(20)

where the superscripts on xa and xt indicate the assimilation
window, spatial point and time point, respectively. This metric is
determined for both stages of the assimilation and the two values
are consequently denoted μ1,2, where the subscript indicates
the relevant stage. It is particularly interesting to study the ratio
between the metric obtained in the two stages:
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6 C. M. THOMAS AND K. HAINES

Fig. 2. The times spanned by the outside-window data and the assimilation trajectories in the simulation study. The first assimilation stage, which
produces the trajectory xI (thin burgundy line), spans Nw assimilation windows (indicated on the x-axis). The outside window data (black points) span
times between lmin and Nw and are generated at the start of each window. The second assimilation stage spans times between 1 and Nw − lmax and
produces the trajectory xa (thick orange line). In each window the outside-window data between lmin and lmax in the future influence the trajectory.

Table 1. Mean and standard deviation of the assimilation metric fμ
for different scenarios. The metric and scenarios are described in the
text.

Scenario fμ

A 0.83 ± 0.05
B 0.53 ± 0.04
C 0.71 ± 0.08
D 0.157 ± 0.003
E 0.67 ± 0.11
F 0.90 ± 0.01
G 0.75 ± 0.04
H 0.60 ± 0.03
I 0.56 ± 0.04
J 0.89 ± 0.12

fμ ≡ μ2

μ1
. (21)

The closer fμ is to zero the more beneficial influence has been
brought by the lagged covariances. If fμ is greater than one it
indicates the use of lagged covariances has been detrimental.

The following subsections describe the scenarios, labelled A–
J, in detail. For each scenario, the mean and standard deviation
of fμ obtained in the ensemble of 100 assimilation runs are
presented in Table 1. In each scenario, at least one parameter of
the assimilation is varied. The results included in the table have
been chosen based on a reasonable variation of the parameter(s)
in question. Each subsection also contains tests of wider ranges
of parameters, exploring more fully the strengths and limitations
of the two-stage procedure.

3.2.1. Assimilation with single lag (A). In the first configu-
ration, denoted A, each outside-window observation influences
just one set of increments at a single lag in one assimilation
window. The lag separating the observations and increments is
chosen to be eight multiples of the assimilation window length,

i.e. 80 time units; the second stage of the assimilation therefore
spans 920 time units. The metric fμ is slightly lower than unity,
indicating the methodology has been moderately successful.
The combination of the dynamics of the forecast and the extra
information from the outside-window observations has led to a
more physically consistent analysis state.

3.2.2. Assimilation with multiple lags (B). In scenario B,
outside-window data at lags of 10–80 time units (in steps of
10) are used to influence the increments in each window. Each
outside-window observation therefore influences the increments
spanning z ∈ [15, 65] in eight sequential windows; the incre-
ments influenced change as the procedure steps through the
assimilation windows.

A large improvement in the value of fμ is found relative to
scenario A because each observation is used to influence more
than one set of increments and the trajectory corresponding to
the Jc cost function term is smoothed through time.

Figure 3 shows the values of Z at each lag, restricted to the spa-
tial domain of the increments influenced by the outside-window
data. The diagonal pattern of the largest positive covariances
(the orange regions) can be explained by considering the speed
of advection; shorter lags have a stronger influence closer to the
innovation location (z = 90).

The differences between the results of the first and second
assimilation stages and the truth for one realisation of scenario
B are shown in Fig. 4. Figure 5 shows the time evolution of
the deviations from the truth for both assimilation stages at
z = 25. A clear improvement can be seen after the second
stage.

Additional results for different numbers of lags are shown in
Fig. 6. When k lags are used the observations appear at [80, …,
80 − 10(k − 1)] time units relative to the increments that they
influence. Adding more lags consistently improves the success
of the method. Due to the significant benefit observed compared
to just using data at one lag, all subsequent scenarios use data
located at lags 10–80 in steps of 10 units.
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USING LAGGED COVARIANCES IN DATA ASSIMILATION 7

Fig. 3. Values of Z as a function of spatial coordinate (z) and lag (in multiples of 10 time units). Lags from 10–80 time units are considered and the
z-values are restricted to the spatial domain of the increments influenced by the outside-window data. The dashed lines show the full spatial extent
of the domain and the vertical line marks z = 90.

Fig. 4. The difference between (left) the initial assimilation and the truth (right) the second assimilation and the truth for one realisation of scenario
B. The spatial location of the within-window data is indicated on the left-hand plot. On the right-hand plot the locations of the outside-window
innovations, and the increments that they influence, are shown.
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8 C. M. THOMAS AND K. HAINES

Fig. 5. Time evolution of deviations between the truth and the (dashed blue line) first (thick orange line) second assimilation trajectory at z = 25
for one realisation of scenario B.

Fig. 6. The dependence of the metric fμ on the number of lags used
in the assimilation.

3.2.3. Increased uncertainty on outside-window data (C).
The default error variance of the outside-window data is 0.001. In
order to check whether this is making the method unrealistically
effective, the variance is increased to 0.05, which is the same as
the variance of the within-window data. This scenario is labelled
C and, while fμ is not as small as in scenario B, an improvement
over the first assimilation stage is still observed. Figure 7 shows
the results for a variety of values of the error variance on the
outside-window data. As expected, the improvement over the
first stage diminishes when this variance is larger.

3.2.4. No within-window observations (D). Although the
within-window observations greatly improve the accuracy of the
analysis produced by the first assimilation run, it is not essential
to include them in these studies. In scenario D the within-window
observations are omitted entirely from the minimisation; in other
words the cost function term Jo(δx) is excluded from Eqs. 1

Fig. 7. The dependence of the metric fμ on the error variance of the
outside-window observations.

and 8. The first assimilation trajectory and the truth differ by
values spanning approximately ±2, which reflects the fact that
the trajectory follows exactly that of the forward model. The
metric fμ is close to zero, indicating a substantial improvement
over the first stage has been achieved by including the lagged
data. The differences between the results of the first and second
assimilation stages and the truth for one realisation of scenario
D are shown in Fig. 8.

3.2.5. Model deficiencies (E, F, G). It is important to check
to what extent the methodology is affected by deficiencies in
the models used (i.e. the forward model and the model used to
determine Z). In the results shown above, the parameters of the
forward model are already slightly different to the truth, and the
method is successful. Three scenarios with further differences
between these models, and between the models and the truth,
are considered.
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USING LAGGED COVARIANCES IN DATA ASSIMILATION 9

Fig. 8. The difference between (left) the initial assimilation and the truth (right) the second assimilation and the truth for one realisation of scenario
D. On the right-hand plot the locations of the outside-window innovations, and the increments that they influence, are shown. The quantities on the
left-hand plot extend to approximately ±2.

Fig. 9. The dependence of the metric fμ on the error variance of the
serially correlated outside-window observations.

In the first scenario, E, the outside-window noise is generated
as an AR(1) procedure with variance 0.001. The important fea-
ture of this scenario is that there is serial correlation present in
the observations that is not present in the forward model. The
results are degraded relative to scenario B but there is still an
improvement moving from the first to the second assimilation,

Fig. 10. The dependence of the metric fμ on the stochastic variance
of the long model run used to determine the Z matrices.

indicating the procedure is robust. Figure 9 shows results for
which the same serial correlation is used but the errors are
larger. As the variances increase the results degrade relatively
more quickly than the equivalents in scenario C, and for larger
variances the second stage has a detrimental effect. A detailed
description of methods that compensate for serially correlated
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10 C. M. THOMAS AND K. HAINES

Fig. 11. The dependence of the metric fμ on the parameters of the
long model run used to determine the Z matrices. In each case, both the
amplitude and speed of the model are set to the same value.

Fig. 12. The dependence of the metric fμ on the number of
consecutive outside-window observations which are averaged together.

errors is beyond the scope of this paper, but relevant techniques
can be found in e.g. Brockwell and Davis (2002).

The next two scenarios involve changes to the long model run
which is used to determine Z. In scenario F a stochastic term is
added to the long model run. A quantity drawn from a Gaussian
distribution of mean 0 and variance 0.0001 is added to each
spatial point before evolving the model to the next time step.
The resulting Z matrices are therefore different to the defaults.
The use of different stochastic variances is shown in Fig. 10; as
this variance increases, the quality of the assimilation decreases.

In scenario G the parameters of the long model run, which
by default are equal to those of the forward model, are altered;
the amplitude changes from 1.1 to 1.2, and the speed from 1.1 to
1.2. These parameters are different to those used in both the truth
and the forward model. In each scenario the metric fμ indicates
that there is an improvement from the first to the second stage of

Fig. 13. The dependence of the metric fμ on the stochastic speed
variance.

Fig. 14. The dependence of the metric fμ on the ‘Lorenz 96’ model
forcing parameter.

assimilation, but the improvement is not as large as that seen in
scenario B. The results for several sets of parameters are shown
in Fig. 11; in each case, both the amplitude and speed of the
model are set to the same value. A larger parameter space could
be explored but these numbers are reasonably illustrative.

These results, which include several values of fμ greater than
one, show the importance of using a good model to determine
Z; if the parameters are very different to those of the truth or the
forward model, the assimilation procedure will not be reliable.
Part of the reason for the degradation in this case is the fact that
eight lags are used; the Z matrices for longer lags are determined
after the model has run for longer and therefore developed larger
errors. If a single lag of 10 time units is used the second stage
of the assimilation still results in an improvement over the first.
If the amplitude and speed of the long model run are both set
to 1.0, the true value, the second assimilation stage is the most
successful.
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USING LAGGED COVARIANCES IN DATA ASSIMILATION 11

In general, if Z is determined with less accuracy then a degra-
dation in the results occurs, and dynamical consistency between
the forward model and the model used to determine Z is ben-
eficial, even if they both differ from the true model. It is im-
portant to note that the use of data at multiple lags is usu-
ally useful in these cases; if observations at just one lag are
used, the metric is potentially much worse. The modification
of the model parameters in scenarios F and G is similar to the
techniques known as Stochastically Perturbed Parameterisations
and Stochastically Perturbed Parameterisation Tendencies (e.g.
Ollinaho et al. (2016)), although those techniques are usually
employed for different purposes.

3.2.6. Lower-frequency observations (H). In scenario H
every consecutive group of three outside-window innovations
(spanning 30 time units) is averaged to produce one value which
is then used in three sequential assimilation windows. This em-
ulates a situation in which the outside-window observations are
measured on timescales longer than the length of the assimilation
window. The lags used still span 10–80 time units in steps of
10 units. The result is degraded compared to scenario B but a
positive influence of the time-lagged data is still clearly seen.
The results for several different averaging periods are shown in
Fig. 12. The longer the averaging period, the worse the results;
this is to be expected because the averaged outside-window data
correspond less accurately to the truth.

3.2.7. Chaotic systems (I, J). It is important to investigate the
success of the proposed method with systems exhibiting various
degrees of chaos and stochastic noise. Such effects are prominent
in the ocean and atmosphere as a result of, e.g., turbulence and
emulating them will provide some level of understanding of how
viable the method is in operational contexts.

Two scenarios are used to test the success of the lagged as-
similation method under chaotic conditions. The first scenario,
labelled I, uses the linear advective system. In Scenario F a
stochastic term added to the model state of this system was
investigated. It is also possible to consider a stochastic speed
as follows. A random speed is generated at each spatial point
before evolving to the next time step. The speed is drawn from
a Gaussian distribution with mean equal to the relevant value
(i.e. u or ub) and variance 0.09. The metric fμ indicates an
improvement from the first to the second stage. The results for
several larger variances are shown in Fig. 13. As the stochastic
variance increases the improvement lessens, but these results
show that in principle the method is able to handle turbulent
conditions.

In scenario J the Lorenz 96 system is used to simulate systems
with varying levels of chaos. The forcing parameter F is initially
set to a low value (2) in order to limit the chaotic behaviour. In this
regime, the system behaves similarly to the linear advective case
and the two-stage assimilation is therefore relatively successful.

The method is tested by gradually increasing F in order to
produce more chaotic conditions. The results for several values
of F shown in Fig. 14. As the amount of chaos increases the
effectiveness of the assimilation is reduced until eventually the
second assimilation stage produces no improvement over the
first.

This scenario demonstrates the importance of including Ul
(Equation 14) in the Sl matrix (Equation 15) when assimilating
into systems with large amounts of turbulence. If Ul is not
included, the results of scenario J are significantly degraded
when using larger values of F . For example, when F = 8
the value of fμ is 1.00 ± 0.01 when Ul is included in Sl but
1.19 ± 0.02 if Ul is omitted. These results illustrate how the Ul
term accounts for the accuracy of the matrix Zl in relating the
current model state to time-lagged data.

4. Conclusions

In this paper, we have presented a method to incorporate data at
significant time lags into a sequential variational data assimila-
tion framework. The method uses state covariances determined
from a model, rather than error covariances, and is performed in
two stages. In the first stage a standard variational assimilation,
without the lagged data, is performed. The second stage incor-
porates the lagged data into the first trajectory by including an
additional term in the cost function.

The proposed methodology has been tested using simulation
studies, considering several scenarios with a simple advective
system that emulates features of contemporary large-scale oper-
ational weather and climate reanalyses. In all cases the method
was shown to provide an improvement over the standard 3DVar-
FGAT assimilation (except when the model used to determine
the Z matrices is very inaccurate). The use of model dynamics to
calculate the lagged covariances, and the additional information
from the outside-window data, together produce a more consis-
tent analysis state. Even if the observation term Jo is removed
(i.e. only lagged data are used, as in scenario D), the method has
been shown to still be effective.

The use of multiple lags to influence each set of increments
is found to be beneficial. Including multiple lags at once will
provide greater dynamical consistency through time. Using each
observation to influence multiple increments around the trajec-
tory xI is similar in concept to the propagation of the increments
throughout the assimilation window that occurs in standard vari-
ational assimilation.

Lorenc and Payne (2007) discusses the use of optimal regular-
isation to estimate the mean and variability of the time-evolution
of a model in the context of numerical weather prediction. Par-
allels can be drawn between that technique and the methodology
presented in this paper; Equation 18 of Lorenc and Payne (2007)
is similar to our Equation 5.

In scenarios E, F and G the model used to calculate Z is
perturbed in various ways and each time the method is able
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12 C. M. THOMAS AND K. HAINES

to cope with the changes. Dynamical consistency between the
forward model and the model used to determine Z is important,
however; if the two models are too different, the fit result is
highly degraded. The use of data at multiple lags then provides
important stability if the underlying model contains errors; ad-
ditionally, shorter lags enable less time for the model errors to
develop and result in more accurate results. The choice of lags
in an operational reanalysis should be based on both of these
factors.

In scenarios I and J the methodology was tested on models
with varying levels of stochastic noise and chaos in order to
simulate the turbulence which occurs in real-world systems.
The success of the methodology is reduced with larger levels
of turbulence. The method introduced in this paper is targeted
towards exploiting signals which recur robustly on long time
scales, and if no such signal exists then the method will not be
successful. As shown in scenario J, however, the inclusion of
the term Ul (Equation 14) in the expression of the error variance
for time-lagged observations, Sl (Equation 15), accounts for the
error in the forward observation operator Zl when a chaotic
system is used for simulation.

The SVD method used to determine Z can be used to inform
the choice of lags and the spatial extent covered. When applied
to the matrix δX, the SVD method produces a set of spatial
patterns and associated time series (Bretherton et al., 1992). Both
the variance explained by the patterns and the correlation of the
time series with Q can be used to select the lags and the spatial
extent covered by δX. Although there is some freedom to make
this selection, the Ul term in Sl accounts for errors in the linear
forward observation operator for time-lagged observations and
permits proper weights for outside-window innovations to be
determined even for a suboptimal choice of lags.

The methodology described in this paper can be used in current
reanalyses that use sequential variational data assimilation and
for which long-window methods are computationally unfeasible.
There are several processes, particularly in the ocean, that are
known to involve teleconnections on multi-year time scales; as
an example, the Atlantic Meridional Overturning Circulation is
thought to exhibit significant time-lagged correlations with high-
latitude density anomalies (Polo et al., 2014). The exploitation of
such teleconnections would be desirable to improve the model
state estimate. The time-lagged method described here should
be effective at assimilating these data through high-latitude den-
sity increments requiring only small adjustments to the current
operational 3DVar-FGAT assimilation apparatus.
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