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Quasi Kronecker products and a determinant formula

Titus Hilberdink
Department of Mathematics, University of Reading, Whiteknights,

PO Box 220, Reading RG6 6AX, UK; t.w.hilberdink@reading.ac.uk

Abstract

We introduce an extension of the Kronecker product for matrices which retains many of
the properties of the usual Kronecker product. As an application we study matrices over
divisor-closed sets with multiplicative entries, and show how these are quasi Kronecker prod-
ucts over the primes of simpler matrices. In particular this gives a formula for the determinant
of such matrices which combines and generalizes a number of previous results on Smith type
determinants.
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Introduction
In [5], inspired by a result of Codéca and Nair [2], it was shown that matrices with multiplicative
entries indexed over a divisor set D(k) = {d ∈ N : d|k} factorize as Kronecker (or tensor) products;
namely, for f : N2 → C multiplicative (as a function of two variables) and A = (f(m,n))m,n∈D(k),

A =
⊗
p|k

Ap

where Ap = (f(pi, pj))0≤i,j≤r and pr||k.1 Since Kronecker products satisfy many useful properties,
this makes is possible to deduce lots of information about A from the Ap like its eigenvalues, norm
and determinant.

It is natural to enquire what we can say more generally about matrices AS = (f(m,n))m,n∈S
for some finite set S ⊂ N, in particular when f is multiplicative. We find a natural condition
on S is that it should be divisor closed; i.e. n ∈ S implies d ∈ S whenever d|n. For example
S = {1, . . . , N}, which gives the usual N × N truncation, is divisor closed. Determinants of
matrices over divisor-closed sets have been discussed by many authors (see for example, [1], [3]),
after the well-known Smith determinant from 1876 [6].

We show in this more general setting that AS still factorizes over the primes in S as a type of
psuedo-Kronecker product. This more general Kronecker product still retains a number of useful
properties which we investigate here. In particular, we find linearity, commutativity and associa-
tivity are retained, even if multiplicativity fails. Furthermore, a neat formula for the determinant
(already found in [4] for S = {1, . . . , N}) and results on positive definiteness are obtained. As
a consequence, we find a formula for detAS whenever S is divisor-closed and f is multiplicative.
This generalises a number of earlier results concerning determinants of arithmetical matrices over
divisor-closed sets.

§1. Quasi Kronecker products
Let A = (aij) be an n × n matrix, B = (bij) an m ×m matrix, and l = (l1, . . . , ln) ∈ Nn where
max{l1, . . . , ln} = m. Let Brs = (bij)i≤r,j≤s denote the r × s truncation of B. If r = s we simply
write Br.Put L = l1 + · · ·+ ln. Define A⊗l B to be the L× L matrix given by the block matrix

A⊗l B = (aijBlilj )i,j≤n. (0.1)

1Here pr||k means, as usual, that pr|k but pr+1 6 |k.
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Example 1 With l = (3, 2),

(
1 2
3 4

)
⊗l

 a b c
d e f
g h i

 =


a b c 2a 2b
d e f 2d 2e
g h i 2g 2h
3a 3b 3c 4a 4b
3d 3e 3f 4d 4e

 .

Remarks 1

(a) If the li are constant, say li = m for all i, then A⊗lB reduces to A⊗B, the usual Kronecker
product.

(b) Note the asymmetrical nature of this generalised product whenever the li are not constant.
In the above example, the top left corners of A and B feature more prominently than the
bottom right.

(c) Since L = l1 + · · · + ln, we can call l = (l1, . . . , ln) a partition of L (of length n). If we let
L0 = 0 and Li = l1 + · · ·+ li for i = 1, . . . , n, then

(A⊗l B)uv = aijbu−Li−1,v−Lj−1
, (0.2)

where i, j ≤ n are the unique positive integers such that Li−1 < u ≤ Li and Lj−1 < v ≤ Lj .

(d) For X and Y of the same size, let us write X ∼= Y to mean X = P−1Y P for some permutation
matrix P . Note that A ⊗l B ∼= A ⊗l∗ B where l∗ = (l∗1, . . . , l

∗
n) is the permutation of l with

l∗1 ≥ · · · ≥ l∗n.

(e) We can view A ⊗l B as a ‘projection’ of A ⊗ B onto a smaller matrix. More precisely (and
using the same notation as above), there is a mn× L matrix P such that

A⊗l B = P ∗(A⊗B)P.

Indeed, with P = (pij)i≤mn,j≤L we have

pij = 1 if j = Lr−1 + s, i = m(r − 1)− Lr−1 + s for 1 ≤ r ≤ n and 1 ≤ s ≤ lr

and pij = 0 otherwise.

Equivalently, there exists a (diagonal) orthogonal projection Q such that

Q(A⊗B)Q ∼=
(
A⊗l B 0

0 0

)
.

Indeed Q = diag(d
(1)
1 , . . . , d

(1)
m , . . . , d

(n)
1 , . . . , d

(n)
m ) where

d(i)r =

{
1 if r ≤ li
0 if li < r ≤ m for i = 1, . . . , n.

For Example 1, we have Q = diag(1, 1, 1, 1, 1, 0).

1.1 Properties of the Kronecker product
The Kronecker product satisfies many properties as we see below (cf. [8]). For A,B,C of appro-
priate sizes:

(a) (λA)⊗B = A⊗ (λB) = λA⊗B;

(b) (A+B)⊗ C = A⊗ C +B ⊗ C; A⊗ (B + C) = A⊗B +A⊗ C;

(c) A⊗B = 0 if and only if A = 0 or B = 0;
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(d) If B ∼= C, then A⊗B ∼= A⊗ C;

(e) A⊗B ∼= B ⊗A;

(f) A⊗ (B ⊗ C) = (A⊗B)⊗ C;

(g) (A⊗B)(C ⊗D) = (AC)⊗ (BD);

(h) A,B symmetric/unitary/normal/positive definite impliesA⊗B symmetric/unitary/normal/positive
definite respectively;

(i) det(A⊗B) = (detA)m(detB)n if A is n× n and B is m×m;

(j) tr(A⊗B) = tr(A) tr(B);

(k) ‖A⊗B‖ = ‖A‖‖B‖ and ‖A⊗B‖2 = ‖A‖2‖B‖2; 2

(l) σ(A⊗B) = σ(A)σ(B), where σ(A) is the set of eigenvalues of A;

(m) Defining A⊕B = A⊗I+I⊗B to be the Kronecker sum of A and B, we have eA⊗eB = eA⊕B .
Also σ(A⊕B) = σ(A) + σ(B).

1.2 Properties of the Quasi Kronecker product
Here we investigate how the above properties (a) to (m) generalize. We shall find that (a), (b),
(e), (f), (i) and (j) all generalize directly or in some suitable sense, while for the other parts, only
less information can be salvaged. For example, in (k), equality is replaced by inequality. It would
be especially useful if (l) could be generalized in a suitable way.

Trivially, we find (a) and (b) continue to hold with ⊗ replaced by ⊗l. Part (c) fails; e.g. with
l = (3, 2)

(
0 2
3 4

)
⊗l

 0 0 0
0 0 0
0 0 1

 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .

Indeed, with the notation of (0.1), A⊗l B = 0 if and only if aijBlilj = 0 for all i, j ≤ n.
Part (d) is also false in general whenever l is not constant as can be readily shown. Thus

I2 ⊗(2,1) I2 = I3 but (
1 0
0 1

)
⊗(2,1)

(
0 1
1 0

)
=

 0 1 0
1 0 0
0 0 0

 (0.3)

which is not permutation similar to I3.

For (e) and (f), we have the following elegant generalizations which shows the role partitions
play. Since L = l1 + · · · + ln, we can regard l = (l1, . . . , ln) as a partition of L of length n. By
Remark 1(d), we may assume that the li decrease; as such l1 = m. Its conjugate partition is
l′ = (l′1, . . . , l

′
m) where l′r = #{j : lj ≥ r}. Note that l′1 = n. The conjugate partition is easiest to

visualize by a Ferrer’s diagram, which has each li as a sequence of horizontal dots. Transposing
the diagram (or viewing it vertically) gives the conjugate partition. For example, with l = (3, 2),
we have l′ = (2, 2, 1):

• • •
• • has dual

• •
• •
•

2Here ‖ · ‖ is the operator norm, i.e. ‖A‖ = sup‖x‖=1 ‖Ax‖ and ‖ · ‖2 is the Hilbert-Schmidt norm: for A =

(aij)i,j≤n, we have ‖A‖22 =
∑

i,j≤n |aij |2.
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Theorem 1
We have A ⊗l B ∼= B ⊗l′ A, where l′ is the conjugate partition of l. In particular, if l = l′, then
A⊗l B ∼= B ⊗l A.

We postpone the proof until after Theorem 5 as it follows from that proof.

Thus in example 1, we have l′ = (2, 2, 1) and we find

B ⊗l′ A =


a 2a b 2b c
3a 4a 3b 4b 3c
d 2d e 2e f
3d 4d 3e 4e 3f
g 2g h 2h i

 .

With P representing the permutation (4235); i.e.

P =


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0

 ,

we have P−1(A⊗l B)P = B ⊗l′ A.

Theorem 2
Given partitions k, l and square matrices A,B,C of appropriate sizes, there exist partitions k̃ and
l̃ dependent on k and l only such that

A⊗k (B ⊗l C) = (A⊗k̃ B)⊗l̃ C. (1.1)

Proof. We start with some notation. Let A be n × n and B be m ×m so that k = (k1, . . . , kn)
and l = (l1, . . . , lm). Put Ki = k1 + · · ·+ ki and Li = l1 + · · ·+ li with K = Kn and L = Lm. Also
write K0 = L0 = 0. The conditions imply that maxi ki = L and that the LHS matrix in (1.1) is
K ×K.

We define k̃ and l̃ in turn. First k̃ = (k̃1, . . . , k̃n) where k̃i is the unique k ∈ N such that
Lk−1 < ki ≤ Lk; i.e.

Lk̃i−1 < ki ≤ Lk̃i .

As for k, let K̃i = k̃1 + · · ·+ k̃i and K̃ = K̃n, with K̃0 = 0. Note that A⊗k̃ B is of size K̃.

Next we define l̃ = (l̃1, . . . , l̃K̃) where, for i = 1, . . . , n,

l̃K̃i−1+j
= lj for 1 ≤ j < k̃i, and l̃K̃i

= ki − Lk̃i−1.

As for l, let L̃i = l̃1 + · · ·+ l̃i and L̃0 = 0.
It follows in particular that

∑
K̃i−1<j≤K̃i

l̃j =

k̃i−1∑
j=1

lj + (ki − Lk̃i−1) = ki,

and, summing from i = 1 to r gives, for every r ≤ n,

L̃K̃r
=
∑
j≤K̃r

l̃j = Kr. (1.2)

Now using (0.2), we find that

(A⊗k (B ⊗l C))uv = aijbpqcu−Ki−1−Lp−1,v−Kj−1−Lq−1 , (1.3)

4



where i, j ≤ n and p, q ≤ m are the unique positive integers such that

Ki−1 < u ≤ Ki

Kj−1 < v ≤ Kj
and

Lp−1 < u−Ki−1 ≤ Lp
Lq−1 < v −Kj−1 ≤ Lq

.

In the same way,

((A⊗k̃ B)⊗l̃ C)uv = aijbr−K̃i−1,s−K̃j−1
cu−L̃r−1,v−L̃s−1

,

where r, s ≤ K̃ and i, j ≤ n are the unique positive integers such that

L̃r−1 < u ≤ L̃r
L̃s−1 < v ≤ L̃s

and
K̃i−1 < r ≤ K̃i

K̃j−1 < s ≤ K̃j
.

Write p = r − K̃i−1 and q = s − K̃j−1. Note that 1 ≤ p ≤ K̃i − K̃i−1 = k̃i ≤ m and similarly

1 ≤ q ≤ k̃j ≤ m. Then
((A⊗k̃ B)⊗l̃ C)uv = aijbpqcu−L̃r−1,v−L̃s−1

.

For this to equal (1.3) the c-entries have to match up; i.e. we have to show that

L̃r−1 = Ki−1 + Lp−1 and L̃s−1 = Kj−1 + Lq−1.

But

L̃r−1 = L̃K̃i−1
+ (l̃K̃i−1+1 + · · ·+ l̃r−1)

= Ki−1 + (l1 + · · ·+ lr−1−K̃i−1
) (by (1.2) and since r − 1 < K̃i)

= Ki−1 + Lr−1−K̃i−1
= Ki−1 + Lp−1,

as p = r − K̃i−1. In exactly the same way L̃s−1 = Kj−1 + Lq−1. The result follows.
�

Example 2 First we illustrate how to find k̃ and l̃ from k and l.
Let k = (8, 12, 3, 2, 5) and l = (4, 3, 3, 2). Line up the numbers 8,12,3,2,5 from k and see how

many of the li (i.e. 4,3,3,2) are needed to add up to each ki with the last term adjusted to give ki
exactly, as follows:

8︷︸︸︷
431︸︷︷︸
3

12︷︸︸︷
4332︸︷︷︸

4

3︷︸︸︷
3︸︷︷︸
1

2︷︸︸︷
2︸︷︷︸
1

5︷︸︸︷
41︸︷︷︸
2

.

The numbers needed are given at the bottom and give k̃, while l̃ is found by the middle line. Thus
k̃ = (3, 4, 1, 1, 2) and l̃ = (4, 3, 1, 4, 3, 3, 2, 3, 2, 4, 1).

For an illustration of the associative property, we take smaller partitions.(
a b
c d

)
⊗(4,1)

((
x y
z w

)
⊗(2,2)

(
λ µ
σ τ

))
=

((
a b
c d

)
⊗(2,1)

(
x y
z w

))
⊗(2,2,1)

(
λ µ
σ τ

)
with both sides equalling 

axλ axµ ayλ ayµ bxλ
axσ axτ ayσ ayτ bxσ
azλ azµ awλ awµ bzλ
azσ azτ awσ awτ bzσ
cxλ cxµ cyλ cyµ dxλ

 .

For (g), we find it is false. Indeed, (A⊗l I)(B ⊗l I) 6= AB ⊗l I. Take l = (2, 1) and

A =

(
a b
c d

)
B =

(
x y
z w

)
.
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Then

AB ⊗l I − (A⊗l I)(B ⊗l I) =

 0 0 0
0 bz 0
0 0 0

 .

Furthermore, each of A⊗l B, (A⊗l I)(I ⊗l B) and (I ⊗l B)(A⊗l I) are all different.
Part (h): trivially we retain the implication A,B symmetric (or Hermitian) implies A ⊗l B

symmetric (or Hermitian) but (h) fails for unitary/normal matrices. Example (0.3) shows that it
fails for unitary A,B while the example

(
1 1
−1 1

)
⊗(2,1)

(
1 1
−1 1

)
=

 1 1 1
−1 1 −1
−1 −1 1

 = C,

say, has C∗C 6= CC∗ although the matrices on the left are normal. For positive definite A,B we
have the following:

Theorem 3
We have A,B ≥ 0 =⇒ A⊗l B ≥ 0 and A,B > 0 =⇒ A⊗l B > 0.

Proof. We know that A,B ≥ 0 implies A⊗B ≥ 0. But A⊗l B is a principal submatrix of A⊗B.
Thus by Theorem 7.2 of [8], A⊗l B ≥ 0. The same argument also holds for strict inequality.

�

For part (i), we have the following result, which was proved in [4]:

Proposition A ([4], Proposition 4.4)
Suppose that l = (l1, . . . , ln) with l1 ≥ · · · ≥ ln. Then

det(A⊗l B) =

n∏
r=1

(detAr)
lr−lr+1 detBlr ,

where Ar = (aij)i,j≤r is the r × r truncation of A and ln+1 = 0.

Part (j) generalizes similarly as

tr(A⊗l B) =

n∑
r=1

(tr(Ar)− tr(Ar−1))tr(Blr ) =

n∑
r=1

tr(Ar)(tr(Blr )− tr(Blr+1
)),

as can be seen by direct calculation. (Here A0 = 0.)

Remarks 2

(a) Proposition A shows that A ⊗l B is invertible if and only if Ar (if lr > lr+1) and Blr are
invertible for each r. In particular, this shows that the existence of A−1 and B−1 is necessary
for A⊗l B to be invertible but (in general) it is not sufficient (see (0.3)).

(b) Note that in the generalizations of (i) and (j), the determinant and trace of A ⊗l B can be
expressed in terms of the Ar and Blr . This is not true for tr((A⊗l B)2). For example,

(
1 1
1 1

)
⊗(2,1)

(
0 x
1 y

)
=

 0 x 0
1 y 1
0 x 0

 = C,

say. Then tr(C2) = 4x+ y2, while tr(B2
1) = 0 and tr(B2

2) = 2x+ y2 which is not a function
of 4x+ y2.

6



The above example also shows‖A⊗lB‖2 cannot be expressed in terms of the ‖Ar‖2 and ‖Blr‖2
as can be readily verified. On the other hand, for this norm and the usual operator norm we do
have the following which may be seen as a generalization of (k):

Theorem 4
Let A and B be square matrices of size n and m respectively. Then ‖A ⊗l B‖2 ≤ ‖A‖2‖B‖2 and
‖A⊗l B‖ ≤ ‖A‖‖B‖. Furthermore, equality occurs in the former if and only if

aijbrs = 0 for all i, j ≤ n whenever li < r ≤ m or lj < s ≤ m, (1.5)

in which case ‖A⊗l B‖ = ‖A‖‖B‖.

Proof. The first inequality follows by a straightforward computation and using ‖A ⊗ B‖2 =
‖A‖2‖B‖2:

‖A⊗l B‖22 =
∑
i,j≤n

|aij |2‖Bli,lj‖22 =
∑
i,j≤n

|aij |2
∑
r ≤ li
s ≤ lj

|brs|2 ≤
∑
i,j≤n

|aij |2
∑
r,s≤m

|brs|2 = ‖A⊗B‖22.

From this it is immediate that equality holds if and only if (1.5) holds.
For the second inequality, we have, for some orthogonal diagonal projection matrix Q,

‖A⊗l B‖ =

∥∥∥∥( A⊗l B 0

0 0

)∥∥∥∥ = ‖Q(A⊗B)Q‖ ≤ ‖Q‖‖A⊗B‖‖Q‖ = ‖A‖‖B‖,

since ‖Q‖ = 1.

Suppose now (1.5) holds. Consider (A⊗B)x = y where

x =

 x1
...
xn

 and xi =


x
(1)
i
...

x
(m)
i


and similarly for y. Then

‖(A⊗B)x‖2 =

n∑
i=1

‖yi‖2 =

n∑
i=1

m∑
r=1

|y(r)i |
2.

But

y
(r)
i =

n∑
j=1

m∑
s=1

aijbrsx
(s)
j =

n∑
j=1

lj∑
s=1

aijbrsx
(s)
j .

Thus, without loss of generality, we may take x
(s)
j = 0 for s > lj . Let

x̃ =

 x̃1
...
x̃n

 where x̃i =


x
(1)
i
...

x
(li)
i

 .

As such ‖x̃‖ = ‖x‖ and ‖(A⊗B)x‖ = ‖(A⊗l B)x̃‖ ≤ ‖A⊗l B‖‖x̃‖; i.e. ‖A⊗l B‖ ≥ ‖A⊗B‖ and
the result follows.

�

For example with l = (3, 2) and A =

(
x y
z w

)
and B =

 a b c
d e f
g h i

 we see that (1.5) holds

if A,B are one of the forms(
x y
z w

)
,

 a b 0
d e 0
0 0 0

;

(
x y
0 0

)
,

 a b 0
d e 0
g h 0

;

(
x 0
z 0

)
,

 a b c
d e f
0 0 0

 .

7



For part (l) we find there is no obvious relation between σ(A⊗lB) and the spectra of truncation
of A and B. This is no doubt due to the failure of the multiplicative property (g).

In the case when A or B is triangular, we can find the spectrum of A ⊗l B easily. Suppose A
is upper-triangular. Then

det(λIL −A⊗l B) = det

 λIl1 − a11Bl1 ∗
. . .

0 λIln − annBln

 =

n∏
i=1

det(λIli − aiiBli).

It follows that λ ∈ σ(A⊗l B) if and only if det(λIli − aiiBli) = 0 for some i; i.e. λ ∈ σ(aiiBli) for
some i. Thus, in this case

σ(A⊗l B) =

n⋃
i=1

σ(aiiBli) =

n⋃
i=1

(
σ(Ai) \ σ(Ai−1)

)
σ(Bli). (1.6)

But (1.6) is false more generally. For example,

(
1 µ
µ 1

)
has eigenvalues 1 ± µ and

(
1 1
1 1

)
has eigenvalues 0, 2, but

σ
(( 1 µ

µ 1

)
⊗(2,1)

(
1 1
1 1

))
=
{

0, 32 ±
√

2µ2 + 1
4

}
.

For (m), we need to generalize the notion of a Kronecker sum. For A, B and l as before, define
the Quasi Kronecker sum by

A⊕l B = A⊗l Im + In ⊗l B.

As a consequence of Theorems 1 and 2, we have A⊕lB ∼= B⊕l′A and A⊕k (B⊕lC) = (A⊕k̃B)⊕l̃C
(using the notation from Theorem 2). Thus for some permutation matrix P ,

A⊕l B = A⊗l Im + In ⊗l B = P−1(Im ⊗l′ A)P + P−1(B ⊗l′ In)P

= P−1(Im ⊗l′ A+B ⊗l′ In)P = P−1(B ⊕l′ A)P,

while, with A,B,C of size n,m, r respectively, we have

A⊕k (B ⊕l C) = A⊗k IL + In ⊗k (B ⊗l Ir + Im ⊗l C)

= A⊗k (Im ⊗l Ir) + In ⊗k (B ⊗l Ir) + In ⊗k (Im ⊗l C) (by Remark 1(e))

= (A⊗k̃ Im)⊗l̃ Ir + (In ⊗k̃ B)⊗l̃ Ir + (In ⊗k̃ Im)⊗l̃ C (by Theorem 2)

= (A⊕k̃ B)⊗l̃ Ir + IK̃ ⊗l̃ C (where K̃ = k̃1 + · · ·+ k̃m)

= (A⊕k̃ B)⊕l̃ C.

We find that part (m) is false; i.e.
eA⊕lB 6= eA ⊗l eB

in general. For we can find invertible C and D such that C ⊗l D is not invertible. But we may
write C = eA and D = eB for some A and B, while C ⊗l D is not even an exponential.

For an explicit example, let a = iπ
2 and put A =

(
a 0
0 0

)
and B =

(
−a a
a −a

)
. Then, with

l = (2, 1), we have

eA ⊗l eB =

 0 1 0
1 0 0
0 0 0

 while eA⊕lB =

 0 1 0
1 0 0
0 0 −i

 .
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Part (m) is even false for Hermitian A and B. Take A =

(
a b
b a

)
and B =

(
c d
d c

)
where b, d 6= 0. We omit the details. Furthermore, with A,B as such and l = (2, 1), we have
σ(A⊕l B) = {a+ c, a+ c±

√
b2 + d2} while σ(A) = {a± b} and σ(B) = {c± d}, and there is no

obvious relation between these.

§2. Divisor closed sets
Let S ⊂ N be finite and divisor closed; i.e. if n ∈ S and d|n then d ∈ S. For p ∈ S (p prime), let
k = kp be the largest power of p in S; i.e. pk ∈ S but pk+1 6∈ S. We can partition S as follows:

S = S0 ∪ pS1 ∪ · · · ∪ pkSk, (2.1)

where each Sr contains no multiplies of p. Note that S0 = {n ∈ S : p6 |n} and more generally3

prSr = {n ∈ S : pr‖n}. As such,
(i) each Sr is divisor closed,
(ii) Sr′ ⊂ Sr for r′ ≥ r, and
(iii) |S0|+ · · ·+ |Sk| = |S|.

To see (i) let n ∈ Sr and d|n. Then prn ∈ S and p6 |n. As S is divisor-closed, prd ∈ S also.
Since p6 |d it follows that d ∈ Sr. For (ii), let n ∈ Sr′ . Then pr

′
n ∈ S. As S is divisor closed, we

must have prn ∈ S; i.e. n ∈ Sr. Part (iii) follows from (2.1).

For example, S = D(m) = {d ∈ N : d|m} is divisor closed. For each p|m, say pk||m, we have
Sr = D(m/pk) and so |Sr| = τ(m/pk) for each r = 0, . . . , k.

Sometimes we shall write k = kp and Sr = S
(p)
r to highlight the dependence on p.

2.1 Matrices over divisor closed sets
For a divisor closed set S and A = (aij), we write AS = (aij)i,j∈S . If p prime, we write

Ãp = (aprps)0≤r,s≤k where pk is the largest power of p in S; i.e. Ãp = ATp
where Tp = {1, p, . . . , pk}.

From [5], we see that if S is of the form D(k) and aij is multiplicative (in two variables), then AS
is a Kronecker product over the primes in S; namely AS = ⊗p∈SÃp. We generalize this to any
divisor closed set using the notion of quasi Kronecker product.

We recall that a function f : N2 → C is multiplicative if f is not identically zero and

f(m1n1,m2n2) = f(m1,m2)f(n1, n2)

if (m1m2, n1n2) = 1. (See [7] for a survey of multiplicative functions of two or more variables.)

Theorem 5
Let S ⊂ N be finite and divisor closed, and let A = (f(m,n))m,n≥1 where f is multiplicative (of
two variables). Let p ∈ S be prime and define S0, . . . , Sk as above. Then

AS ∼= Ãp ⊗l AS0 , (2.2)

where l = (|S0|, . . . , |Sk|).

Proof. Order the rows and columns of A along elements of S0, . . . Sk. The block corresponding to
prSr, p

sSs has mnth-entry (where m ∈ Sr, n ∈ Ss)

f(prm, psn) = f(pr, ps)f(m,n)

by multiplicativity of f . Hence

AS ∼=
(
f(pr, ps)(f(m,n))m∈Sr,n∈Ss

)
0≤r,s≤k

= Ãp ⊗l AS0
.

3Here, pr‖n means, as usual, pr|n but pr+1 6 |n.
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�

As an immediate consequence of this and Theorem 3, we see that Ãp > 0 for all p ∈ S implies
AS > 0.

Remark 3. Since S0 is again divisor closed, we can apply Theorem 5 to AS0 ; i.e. for a prime
q ∈ S0, we have AS0

∼= Ãq ⊗k AS00 for suitable k and S00. But we cannot (in general) conclude
that

AS ∼= Ãp ⊗l (Ãq ⊗k AS00
)

due to the failure of (d) for quasi Kronecker products.

Proof of Theorem 1. We are now in a position to prove Theorem 1. Let A = (aij)i,j≤n, B =
(bij)i,j≤m and l = (l1, . . . , ln) with l1 = m. It is clearly sufficient to prove the result when
a11, b11 6= 0. By rescaling, we may assume that a11 = b11 = 1. The idea is to identify A and B
with some matrices of the form Ã2 and Ã3 derived from some matrix AS where S is a suitable
divisor closed subset of {2r3s : r, s ≥ 0}.

We choose S to be the (divisor closed) set

S = {2r−13q : 1 ≤ r ≤ n, 0 ≤ q < lr}.

Thus Sr−1 = {3q : 0 ≤ q < lr} and |Sr−1| = lr for r = 1, . . . , n. Let f : N2 → C be multiplicative
and defined at the prime powers by

f(2i−1, 2j−1) = aij for 1 ≤ i, j ≤ n, f(3i−1, 3j−1) = bij for 1 ≤ i, j ≤ m,

and f(pi, pj) = 0 in all other cases. As such, A = Ã2 and B = Ã3. We have the partitions

S =

n−1⋃
r=0

2rSr =

m−1⋃
q=0

3qTq,

where Tq = {2r−1 : r ≥ 1 and 2r−13q ∈ S}. Theorem 5 with p = 2 says

AS ∼= A⊗l B,

where l = (|S0|, . . . , |Sn−1|). On the other hand, applying Theorem 5 with p = 3 gives

AS ∼= B ⊗l′ A,

where l′ = (|T0|, . . . , |Tm−1|). As |S| = |S0| + · · · + |Sn−1| = |T0| + · · · + |Tm−1| = L say, both l
and l′ are partitions of L. We need to show they are conjugate. This involves showing that

|Ti| = #{r ≥ 0 : |Sr| ≥ i+ 1} for i = 0, 1, . . . ,m− 1.

Since S is divisor closed and its elements are only products of powers of 2 and 3, we see that
|Sr| = #{j ≥ 0 : 2r3j ∈ S}. Thus |Sr| ≥ i+ 1 if and only if 2r3i ∈ S; i.e.

#{r ≥ 0 : |Sr| ≥ i+ 1} = #{r ≥ 0 : 2r3i ∈ S}.

But this equals |Ti|.
�

2.2 A determinant formula
Applying Proposition A to Theorem 5 leads to a formula for the determinant of AS . This gener-

alizes both Theorem 1 from [2] where S = D(N) and f(m,n) = h((m,n))
mn with h multiplicative and

Theorem 3.1/3.2 from [4] where S = {1, . . . , N} and f(m,n) = F (mn ) with F multiplicative on Q+.
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Theorem 6
Let S ⊂ N be finite and divisor closed, and let AS = (f(m,n))m,n∈S where f is multiplicative.

Then, with Ãp, S
(p)
r and kp as in (2.1) and in Section 2.1, we have

detAS =
∏
p∈S

kp∏
r=1

(
det(Ãp)r+1

)|S(p)
r |−|S

(p)
r+1|

.

(Here (Ãp)r+1 is the (r + 1)× (r + 1) truncation of Ãp and |S(p)
kp+1| = 0.)

Proof. Let p ∈ S. Apply the determinant formula of Proposition A to (2.2). Thus, with lr = |S(p)
r−1|,

detAS = det(Ãp ⊗l AS(p)
0

) =

kp+1∏
r=1

(det(Ãp)r)
lr−lr+1 det(A

S
(p)
0

)lr .

Since (Ãp)1 = (1), the r = 1 term may be dropped, so

detAS =

kp∏
r=1

(det(Ãp)r+1)|S
(p)
r |−|S

(p)
r+1| ·

kp+1∏
r=1

det(A
S

(p)
0

)lr .

Note that the determinant on the right has no terms with f(pr, ps). Since both sides are just
polynomials in all these variables, we can factor out the first term on the right above for each
p ∈ S. Thus the result follows.

�

With a little extra work we see this result also contains the determinant formula in Theorem
2 from [1]. There, the matrix is of the form (g([m,n]))m,n∈S with S divisor closed and g mul-
tiplicative, where [m,n] is the LCM of m and n. Writing f(m,n) = g([m,n]), we see that f is
multiplicative and the matrix is just AS .

Now (Ãp)r+1 = (g(pmax{i,j}))0≤i,j≤r which has determinant4 g(pr)
∏r
m=1(g(pm−1) − g(pm)).

Applying Theorem 6 and manipulating the formula then leads to the formula in [1].

As a special case of Theorem 6, suppose S has only squarefree elements. Then kp = 1 for all
p ∈ S. Hence

detAS =
∏
p∈S

(f(p, p)− f(p, 1)f(1, p))Np ,

where Np = |S(p)
1 | = #{n ∈ S : p|n}.
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