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Abstract We prove the inf-sup stability of a discontinuous Galerkin scheme for sec-
ond order elliptic operators in (unbalanced) mesh-dependent norms for quasi-uniform
meshes for all spatial dimensions. This results in a priori error bounds in these norms.
As an application we examine some problems with rough source term where the solu-
tion can not be characterised as a weak solution and show quasi-optimal error control.

Keywords Discontinuous Galerkin methods • Inf-sup condition • Rough problem
data

Mathematics Subject Classification 65N12 • 65N30

1 Introduction

Discontinuous Galerkin (dG) methods are a popular family of non-conforming �nite
element-type approximation schemes for partial differential equations (PDEs) involv-
ing discontinuous approximation spaces. In the context of elliptic problems their
inception can be traced back to the 1970s [5,21]; see also [1] for an accessible overview
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1534 E. H. Georgoulis, T. Pryer

and history of these methods for second order problems. For higher order problems,
for example the (nonlinear) biharmonic problem, dG methods are a useful alternative
to using C1-conforming elements whose derivation and implementation can become
very complicated [5,13,23].

Inf-sup conditions form one part of the Banach�Ne�cas�Babu�ka condition which
guarantees the well-posedness of a given variational problem. In this note, we shall
describe an analytical framework to examine the stability of dG approximations for L2
and H2-like mesh-dependent norms. This is in keeping with the spirit of [3,4], where for
continuous �nite element methods the authors prove equivalent results for second and
fourth order problems respectively. The present approach, however, is quite different
and results in inf-sup stability for both L2- and H2-like mesh-dependent norms under
the assumption that the underlying mesh is quasi-uniform.

The analysis presented utilises a new H2-conforming reconstruction operator, based
on Hsieh�Clough�Tocher-type C1 reconstructions. Such reconstructions, based on
nodal averaging, are used for the proof of a posteriori bounds for non-conforming meth-
ods for elliptic [7,13,18,24] and hyperbolic problems [12,16]. The new reconstruction
operators presented below enjoys certain orthogonality properties; in particular, they
are adjoint orthogonal to the underlying Hsieh�Clough�Tocher space and maintain
the same stability bounds as the H2-conforming reconstruction from [13].

The argument is quite general and allows the derivation of inf-sup stability results
whenever the numerical scheme has a well posed discrete adjoint (dual) problem over
an appropriately constructed non-conforming �nite element space. This is contrary to
the Aubin�Nitsche L2 duality argument whereby it is the underlying partial differential
operator itself that requires the well posedness of the adjoint continuous problem.

The use of these recovery operators is not limited to an a posteriori setting, indeed,
they have been used to quantify inconsistencies appearing in standard interior penalty
methods when the exact solution is not H2(�) [17]. This allows for quasi optimal a
priori bounds for elliptic problems under minimal regularity up to data oscillation.
Fundamentally the assumption in this analysis is that the singularity arises from the
geometry of the domain rather than through the problem data itself. Our analysis allows
us to show quasi-optimal L2 convergence to problems that have rough problem data. To
showcase the result we study the convergence of a method posed for an elliptic problem
whose source term is not H�1 in both 1 and 2 spatial dimensions. In this case the Aubin�
Nitsche, and indeed the standard treatment of Galerkin methods, are not applicable.

The note is set out as follows: In Sect. 2 we introduce the problem and present the
analysis cumulating in inf-sup stability for problems with smooth data. In Sect. 3 we
examine a particular problem with rough data and prove quasi-optimal convergence
in this case. In addition we give some numerical validation of the method.

2 Problem set up and discretisation

To highlight the main steps of the present developments in this area, we consider
the Poisson problem with homogeneous Dirichlet boundary conditions. Let � � Rd

be an open convex domain and consider the problem: given f � L2(�) �nd u �
H2(�) � H1

0(�), such that
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Analysis of dG methods in mesh-dependent norms 1535

�

�
�u • �v dx =

�

�
f v dx � v � H1

0(�). (1)

We consider T to be a conforming triangulation of �, namely, T is a �nite family
of sets such that

(1) K � T implies K is an open simplex (segment for d = 1, triangle for d = 2,
tetrahedron for d = 3),

(2) for any K , J � T we have that K � J is a full lower-dimensional simplex (i.e.,
it is either �, a vertex, an edge, a face, or the whole of K and J ) of both K and
J and

(3)
�

K�T K = �.

The shape regularity constant of T is de�ned as the number

µ(T ) := inf
K�T

�K

hK
, (2)

where �K is the radius of the largest ball contained inside K and hK is the diameter
of K . An indexed family of triangulations {T n}n is called shape regular if

µ := inf
n

µ(T n) > 0. (3)

Further, we de�ne h : � � R to be the piecewise constant meshsize function of T
given by

h(x) := max
K	x

hK .

In addition if
maxK�T hK

minK�T hK

 Cqu, (4)

we call T quasiuniform. If an entire indexed family of triangulations satisfy (4), we
call it a quasiuniform family. In what follows we shall assume that all triangulations
are shape-regular and quasiuniform.

We let E be the skeleton (set of common interfaces) of the triangulation T and
say e � E if e is on the interior of � and e � �� if e lies on the boundary �� and
set he to be the diameter of e. We also de�ne the �broken� gradient �h , Laplacian
�h and Hessian D2

h to be de�ned element-wise by �hw|K = �w, �hw|K = �w,
D2

hw|K = D2w for all K � T , respectively, for respectively smooth functions on the
interior of K ,

We let Pk(T ) denote the space of piecewise polynomials of degree k over the
triangulation T , and introduce the finite element space V := Pk(T ) to be the usual
space of discontinuous piecewise polynomial functions of degree k. We de�ne average
operators for arbitrary scalar functions v and vectors v over an edge e shared by
elements K1 and K2 as {{ v }}= 1

2
�
v|K1 + v|K2

�
, {{ v }}= 1

2
�
v|K1 + v|K2

�
and jump

operators as � v� = v|K1 nK1 + v|K2 nK2 , � v� = v|K1 • nK1 + v|K2 • nK2 . Note that
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1536 E. H. Georgoulis, T. Pryer

on the boundary of the domain �� the jump and average operators are de�ned as
{{ v }}

���
��

:= v, {{ v }}
���
��

:= v, � v�
���
��

:= vn, � v�
���
��

:= v • n,

Definition 2.1 (Mesh dependent norms) We introduce the mesh dependent L2 �, H1-
and H2-norms to be

�wh�2
0,h := �wh�2

L2(�) + �h3/2 {{ �wh }} �2
L2(E���) + �h1/2 � wh � �2

L2(E���)

�wh�2
1,h := ��hwh�2

L2(�) + �h�1/2 � wh � �2
L2(E���)

�wh�2
2,h := ��hwh�2

L2(�) + �h�1/2 � �wh � �2
L2(E) + �h�3/2 �wh � �2

L2(E���). (5)

Note for wh � V in view of scaling each mesh dependent norm is equaivalent to the
continuous counterpart, that is �wh�0,h  �wh�L2(�) for example.

Consider the interior penalty (IP) discretisation of (1), to �nd uh � V such that

A h(uh, vh) = � f, vh� � vh � V, (6)

where

A h(uh, vh) =
�

�
�huh • �hvh dx �

�

E���
� uh � • {{ �vh }} + � vh � • {{ �uh }} ds

+
�

E���

�0

h
� uh � • � vh � ds +

�

E
�1h � �uh � • � �vh � ds, (7)

where �0 > 0, �1 � 0 represent penalty parameters. Note that a standard choice is to
take �1 = 0. The choice �1 �= 0 results in a class of stabilised dG methods [8].

Proposition 2.2 (Continuity and coercivity of A h(•, •) [1,11, c.f.]) For �1 � 0 and
�0 large enough and any uh, vh � V the bilinear form A h(•, •) satisfies

A h(uh, uh) � C�uh�2
1,h (8)

A h(uh, vh) 
 C�uh�1,h�vh�1,h . (9)

Lax-Milgram Theorem guarantees a unique solution to the problem (7). Also, since
u � H2(�), the bilinear form is consistent, hence, Strang’s Lemma yields quasioptimal
convergence of the method in the �•�1,h norm:

�u � uh�1,h 
 C inf
wh�V

�u � wh�1,h . (10)

Conforming reconstruction operators The key tool in the proof of the inf-sup
condition is the notion of reconstruction operators. It is commonplace in the a posteri-
ori analysis of nonconforming schemes to make use of such operators. A simple, quite
general methodology for the construction of reconstruction operators is to use an aver-
aging interpolation operator into an H2-conforming �nite element space. For example
a C1 Hsieh�Clough�Tocher (HCT) macro-element conforming space for H2 confor-
mity [6,13,25, c.f.]. Another option is the use of Argyris-type reconstructions [6].
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Analysis of dG methods in mesh-dependent norms 1537

uh E 2(uh )

HCT-reconstruction

Fig. 1 The P4 Hsieh�Clough�Tocher-type macro-element, as a H2(�)-conforming reconstruction to the
quadratic Lagrange element. Here the large, blue circles represent degrees of freedom associated to a
function evaluation, the small, red circles represent those associated to full derivative evaluation and the
arrows a normal derivative evaluation

Example 2.3 (Construction of the HCT(4) space for d = 2) Since the HCT spaces are
an integral part of our analysis, we will illustrate the construction of the HCT(4) space
for d = 2, over triangles, noting that for d = 1, we can simply consider families of
cubic splines, while for d = 3 corresponding constructions are possible [19, Ch. 18].
Consider a triangle K that is partitioned in 3 subtriangles, {Ki }3

i=1 by connecting each
of the vertices to the barycentre as illustrated in Fig. 1. We then take

HCT(4) :=
�
� � C1(K ) : u|Ki � P4(Ki ) for i = 1, 2, 3

�
. (11)

The dimension of P4(Ki ) is 15. It can then be veri�ed that, upon enforcing continuity
of functions and their derivatives across the subtriangulation edges for the degrees of
freedom depicted in Fig. 1, the dimension of the HCT(4) space is 21 and those degrees
of freedom and unisolvent.

For the general construction of the macro-element HCT(r) space for simplicial and
box-type elements, we refer to [10,19,22].

Definition 2.4 (H2(�)-reconstructions) An example of H2(�) reconstruction opera-
tor E2(uh) of k-th order Lagrange elements is de�ned as follows. Let x be a degree
of freedom of the H2-conforming space HCT(k + 2) consisting of HCT-type macro-
elements of degree k + 2, and let 	Kx be the set of all elements sharing the degree of
freedom x. Then, the reconstruction at that speci�c degree of freedom is given by

E2(uh)(x) =
1

card(	Kx)




K�	Kx

uh |K (x). (12)

For the case k = 2, the associated degrees of freedom are illustrated in Fig. 1. Notice
that the degrees of freedom of the reconstruction are a superset of those of the original
�nite element. This is due to the lack of existence of a conforming H2(�) subspace
in V for low k; for instance, the existence of an H2(�)-conforming space requires
k � 5 in two dimensions (Argyris space). Corresponding reconstructions for higher
polynomial degrees have been considered in [6,13], for instance.

Even though the HCT(k + 2) space contains functions that are not polynomial,
it does include Pk+2(K ) and hence the HCT(k + 2) interpolant preserves Pk+2(K )
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1538 E. H. Georgoulis, T. Pryer

functions, hence by Bramble-Hilbert the HCT(k +2) space has quasi-optimal approx-
imability.

We refer also to the discussion in [13], regarding reconstructions of box-type k-th
order Lagrange elements into HCT(k + 2).

Lemma 2.5 (Reconstruction bounds [13, Lem 3.1]) For d = 1, 2, the HCT(k + 2)
reconstruction operator E2 : V � H2(�) satisifies the following bound for all
uh � V:

�E2(uh) � uh�2
1,h 
 C

�
�h1/2 ��uh � �2

L2(E) + �h�1/2 � uh � �2
L2(E)

�
, (13)

with the constant C > 0 independent of uh and of h.

Remark 2.6 Lemma 2.5 is proven in [13] for d = 2. For d = 1, we can recover into
cubic or quartic splines and the proof is completely analogous. The proof for d = 3
using one of the trivariate C1-elements with nodal and normal derivative degrees of
freedom presented in [19] is conjectured to follow along the same lines to the proof
of [13, Lem 3.1].

Using this HCT(k + 2)-reconstruction, we can construct a further HCT(k + 2)-
reconstruction admitting the same bounds, but also satisfying an adjoint orthogonality
property.

Definition 2.7 (HCT (k + 2)-Ritz reconstruction) We de�ne the Hsieh�Clough�
Tocher H2(�)-conforming Ritz reconstruction operator ER : V � HCT(k + 2)
such that
�

�
�ER (uh) •�v dx =

�

�
�huh •�v dx �

�

E���
� uh � •�v ds �v � HCT(k +2).

(14)

Lemma 2.8 (Properties of ER ) The HCT(k + 2)-Ritz reconstruction is well-defined
and satisfies the orthogonality condition:

�

�

�
uh � ER (uh)

�
�v = 0 �v � HCT(k + 2). (15)

In addition, for � = 0, 1, 2, we have




K�T

���ER (uh) � uh

���
2

H�(K )

 C

�
�h3/2�� � �uh � �2

L2(E) + �h1/2�� � uh � �2
L2(E)

�
,

(16)
for C > 0 constants, independent of uh and of h.

Proof Fixing uh � V, ER (uh) is well-de�ned. Indeed, setting v = ER (uh) in (14),
along with a standard inverse estimate, we deduce

��ER (uh)�L2(�) 
 C�uh�1,h,
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Analysis of dG methods in mesh-dependent norms 1539

for C > 0 independent of uh . The orthogonality condition follows from integrating
both sides of (14) by parts.

To see (16) we note that

�ER (uh) � uh�2
1,h 
 CA h

�
ER (uh) � uh, ER (uh) � uh

�

= CA h

�
ER (uh) � uh, E2(uh) � uh

�


 C�ER (uh) � uh�1,h�E2(uh) � uh�1,h . (17)

Notice that in order to invoke coercivity of A h over W (h)we must choose�0 larger than
if we merely required coercivity over V since, as already mentioned in Example 2.4,
W (h) contains piecewise polynomials two degrees higher than V. Using the properties
of E2(uh) from Lemma 2.5 shows the claim for � = 1. The result for � = 2 follows
by an inverse inequality.

For � = 0 we use a duality argument. Take z � H2(�) � H1
0(�) as the solution of

the dual problem
� �z = ER (uh) � uh; (18)

then

�ER (uh) � uh�2
L2(�) =

�

�
��z

�
ER (uh) � uh

�
dx

=
�

�
�(�z � �z)

�
ER (uh) � uh

�
ds �z � HCT(k + 2),

(19)

in view of the orthogonality property (15). Integrating by parts we see

�ER (uh) � uh�2
L2(�) =

�

�
(�z � �z) •

�
�ER (uh) � �huh

�
dx

+
�

E
{{ �z � �z }} • � uh � ds


 �h�1(�z � �z)�L2(�)�h(�ER (uh) � �huh)�L2(�)

+�h�1/2 {{ �z � �z }} �L2(E)�h1/2 � uh � �L2(E). (20)

The result follows using the approximability of the HCT(k + 2) space [9] that can be
inferred through the dimensional analysis in De�nition 2.3 and the regularity of the
dual problem, speci�cally

�h�1(�z � �z)�L2(�) + �h�1/2 {{ �z � �z }} �L2(E) 
 C |z|H2(�)


 C�ER (uh) � uh�L2(�),
(21)

thereby concluding the proof. ��
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1540 E. H. Georgoulis, T. Pryer

Theorem 2.9 (inf�sup stability over W (h)) For polynomial degree k � 2 there exists
a 	h > 0, depending on the quasiuniformity constant Cqu, such that, when �0, �1 are
chosen large enough, we have for all wh � V

sup
v�W (h)

A h(wh,v)
�v�0,h

� 	h�wh�2,h, (22)

where W (h) := V + HCT(k + 2).

Proof The proof consists of two steps. We �rst show for a given wh � V that there
exists a v � W (h) such that

A h(wh,v) � C(min
x��

h)2�wh�2
2,h (23)

and that
�v�L2(�) 
 C(max

x��
h)2�wh�2,h, (24)

which, along with the quasi-uniformity assumption on the mesh, yields the inf-sup
condition (22).

Firstly note that, after an integration by parts, the IP method (7) can be written as

A h(wh, vh) =
�

�
��hwhvh dx +

�

E
� �wh � {{ vh }} ds �

�

E���
� wh � {{ �vh }} ds

+
�

E���

�0

h
� wh � • � vh � ds +

�

E
�1h � �wh � • � �vh � ds. (25)

Upon settingv = wh � ER (wh)��h2�hwh , for some parameter � � R to be chosen
below, we compute

A h(wh,v) = ��h�hwh�2
L2(�) + �1�h1/2 � �wh � �2

L2(E ) + �0�h�1/2 � wh � �2
L2(E ���)

�
�

�
�hwh

�
wh � ER (wh)

�
dx

+
�

E
� �wh � {{ wh �ER (wh) }} ds�

�

E ���
� wh � • {{ �

�
wh �ER (wh)

�
}} ds

��
�

E
h2 � �wh � {{ �wh }} ds + �

�

E ���
h2 � wh � • {{ ��wh }} ds

���1

�

E
h3 � �wh � � ��wh � ds � �0�

�

E ���
h � wh � • � �wh � ds.

(26)

The orthogonality property of the HCT(k + 2)-Ritz reconstruction (15) yields
�

�
��hwh

�
wh � ER (wh)

�
dx =

�

�

�
�ER (wh) � �hwh

��
wh � ER (wh)

�
dx .

(27)
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Analysis of dG methods in mesh-dependent norms 1541

Repeated use of the Cauchy�Schwarz inequality, therefore, gives

A h(wh,v) � ��h�hwh�2
L2(�) + �1�h1/2 � �wh � �2

L2(E) + �0�h�1/2 �wh � �2
L2(E���)

��h
�
�hwh � �ER (wh)

�
�L2(�)�h�1

�
wh � ER (wh)

�
�L2(�)

��h1/2 � �wh � �L2(E)�h�1/2 {{ wh � ER (wh) }} �L2(E)

��h�1/2 � wh � �L2(E���)�h1/2 {{ �wh � �ER (wh) }} �L2(E���)

���h1/2 � �wh � �L2(E)�h3/2 {{ �wh }} �L2(E)

���h�1/2 � wh � �L2(E���)�h5/2 {{ ��wh }} �L2(E���)

� �1��h1/2 � �wh � �L2(E)�h5/2 � ��wh � �L2(E)

� �0��h�1/2 � wh � �L2(E���)�h3/2 ��wh � �L2(E���)

=: ��h�hwh�2
L2(�) + �1�h1/2 � �wh � �2

L2(E)

+ �0�h�1/2 � wh � �2
L2(E���) �

7


i=1

I i . (28)

We proceed to bound each of the terms I i individually. Note that in view of scaling
and inverse inequalities we have for any wh � V:

�{{ wh }} �L2(e) 
 C1�h�1/2wh�L2( flK1� flK2) (29)

�{{ �wh }} �L2(e) 
 C2�h�3/2wh�L2( flK1� flK2) (30)

for any edge/face e := flK1 � flK2 � E , and elements K1, K2 � T , with C1, C2
depending only on the mesh-regularity and shape-regularity constants.

For I 1, in view of Lemma 2.8, we have

I 1 
 C3

�
�h1/2 � �wh � �2

L2(E) + �h�1/2 � wh � �2
L2(E)

�
, (31)

with constant C3 > 0 being the maximum of all constants in (16) for all �.
For I 2, (29) and Lemma 2.8 yield

I 2 
 C1C1/2
3 �h1/2 � �wh � �L2(E)

�
�h1/2 � �wh � �2

L2(E) + �h�1/2 � wh � �2
L2(E)

�1/2


 C2
1C3�h1/2 � �wh � �2

L2(E) +
C2

1C3

2
�h�1/2 � wh � �2

L2(E). (32)

For I 3, (30) and Lemma 2.8 yield

I 3 
 C2C1/2
3 �h�1/2 � wh � �L2(E���)

�
�h1/2 � �wh � �2

L2(E) + �h�1/2 � wh � �2
L2(E)

�1/2



C2

2C3

2
�h1/2 � �wh � �L2(E���) + C2

2C3�h�1/2 � wh � �L2(E). (33)
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1542 E. H. Georgoulis, T. Pryer

For I 4, we have

I 4 
 C1��h1/2 � �wh � �L2(E)�h�wh�L2(�) 
 
4��h�wh�2
L2(�)

+
C2

1�
4
4

�h1/2 � �wh � �2
L2(E), (34)

for any 
4 > 0, while for I 5, we get

I 5 
 C2��h�1/2 � wh � �L2(E���)�h�wh�L2(�) 
 
5��h�wh�2
L2(�)

+
C2

2�
4
5

�h�1/2 � wh � �2
L2(E���). (35)

for any 
5 > 0; similarly for I 6 and for any 
6 > 0, we have

I 6 
 C2�1��h1/2 � �wh � �L2(E)�h�wh�L2(�) 
 
6��h�wh�2
L2(�)

+
C2

2� 2
1 �

4
6
�h1/2 � �wh � �2

L2(E). (36)

Finally, the last term I 7 can be bounded as follows:

I 7 
 C1�0��h�1/2 � wh � �L2(E���)�h�hwh�L2(�) 
 
7��h�hwh�2
L2(�)

+
C2

1� 2
0 �

4
7
�h�1/2 � wh � �2

L2(E���), (37)

for any 
7 > 0.
Collecting the results (31)�(37) and substituting this into (28) we deduce

A h(wh,v) � �h�hwh�2
L2(�)�

�
1 � 
4 � 
5 � 
6 � 
7

�

+�h1/2 � �wh � �2
L2(E)

�
�1 � C3 � C2

1C3 �
C2

2C2
3

2
�

C2
1�

4
4
�

C2
2� 2

1 �
4
6

�

+�h�1/2 �wh � �2
L2(E��)

�
�0�C3�

C2
1C3

2
�C2

2C3 �
C2

2�
4
5

�
C2

1� 2
0 �

4
7

�
.

(38)

To arrive to (23), we can choose 
4 = 
5 = 
6 = 
7 = 1
5 , � = (max

�
� 2

0 , � 2
1
�
)�1 and

�0 and �1 large enough.
For (24), we use Lemma 2.8 to see that

�v�L2(�) 
 �wh � ER (wh)�L2(�) + ��h2�hwh�L2(�) 
 C�h2wh�2,h, (39)

which, together with the quasiuniformity of the meshes, completes the proof. ��
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Lemma 2.10 (Stability of the Ritz projection) Let R : W (h) � V denote the A h(•, •)
orthogonal projector into V. Then, for w � W (h), there exists a C > 0, independent
of h but possibly dependent on the quasiuniformity constant, Cqu, such that

�Rw�L2(�) 
 C
�

max
x��

h��w�L2(�) + �w�L2(�)

�

 C�w�L2(�). (40)

Proof Let g � W (h) be the solution to the discrete dual problem such that

A h(v,g) = �Rw,v� �v � W (h). (41)

Note that this is well posed owing to coercivity as long as the penalty parameters
are tuned to account for the fact that W (h) contains piecewise polynomials over the
subpartition two degrees higher than V itself. Then, we have

�Rw�2
L2(�) = �Rw � w, Rw� + �w, Rw�

= A h(Rw � w,g) + �w, Rw� . (42)

Let � : H1(�) � V � H1
0(�) a suitable projection with optimal approximation

properties. Then

�Rw�2
L2(�) = A h(Rw � w,g � �g) + �w, Rw�


 �h(Rw � w)�1,h�h�1(g � �g)�1,h + �w�L2(�)�Rw�L2(�), (43)

through the continuity of A h(•, •). From the optimal approximation properties of the
projection/interpolant �, we have

�h�1(g � �g)�2
1,h 
 Cqu �C�g�2

2,h, (44)

and, using the discrete regularity ofg induced by the inf-sup condition in Theorem 2.9

	h�g�2,h 
 sup
v�W (h)

A h(g,v)
�v�0,h

= sup
v�W (h)

�Rw,v�
�v�0,h


 C�Rw�L2(�). (45)

Hence we see that

�Rw�2
L2(�) 
 C

�
�h(Rw � w)�1,h�Rw�L2(�) + �w�L2(�)�Rw�L2(�)

�


 C
�
�hw�1,h�Rw�L2(�) + �w�L2(�)�Rw�L2(�)

�
, (46)

in view of the quasi-best approximation in �•�1,h from (10). The conclusion follows
from standard inverse inequalities. ��

Theorem 2.11 (inf�sup stability over V) For polynomial degree k � 2 there exists
a 	h > 0, independent of h, but dependent on Cqu such that, when �0, �1 � 1 are
chosen as in Theorem 2.9, we have for all wh � V
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sup
vh�V

A h(wh, vh)
�vh�2,h

� 	h�wh�0,h . (47)

Proof To show (47) we �x wh and let � � V be the solution of the dual problem

A h(,�) =
�

�
wh dx �  � V. (48)

Following the same arguments as in the proof of Theorem 2.9, it is clear that there
exists a C > 0 such that

Ch2���2
2,h 
 A h(�,v) , (49)

where v := � � ER (�) � �h2�h�. Now it is clear that

�v�L2(�)���2,h 
 Ch2���2
2,h 
 CA h(�,v) , (50)

and hence in view of Lemma 2.10 we have, with R denoting the A h orthogonal
projector into V, that

�Rv�L2(�) 
 Cmax
x��

h
�
��v�L2(�) + �v�L2(�)

�

 C�v�L2(�), (51)

through inverse inequalities. Hence

�Rv�L2(�)���2,h 
 C�v�L2(�)���2,h . (52)

Now arguing as in the Proof of Theorem 2.9, and noting the constant will now depend
on Cqu , we may show that

�v�L2(�) 
 C�h2��2,h . (53)

Combining the previous two inequalities yields

�Rv�L2(�)���2,h 
 C�h��2
2,h 
 CA h(�,v) = CA h(�, Rv) , (54)

concluding the proof. ��

Corollary 2.12 (Convergence) Let u solve (1) and uh � V be the interior penalty
approximation from (7), then, under the assumptions of Theorem 2.11,

�u � uh�0,h 

�

1 +
CB

	h

�
inf

wh�V
�u � wh�0,h +

1
	h

sup
vh�V

A h(uh � u, vh)
�vh�2,h

, (55)

where 	h is the discrete inf-sup constant and CB is the continuity constant. If u �
Hk+1(�) for k � 2 the following a priori bound holds:

�u � uh�0,h + �h(u � uh)�1,h + �h2(u � uh)�2,h 
 Chk+1 |u|k+1 . (56)
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Proof Using the inf-sup condition from Theorem 2.11 we see for all wh � V

	h�wh � uh�0,h 
 sup
vh�V

A h(wh � uh, vh)
�vh�2,h


 sup
vh�V

A h(wh � u, vh)
�vh�2,h

+ sup
vh�V

A h(u � uh, vh)
�vh�2,h

. (57)

Now using the natural continuity bound

A h(u � wh, vh) 
 CB�u � wh�0,h�vh�2,h (58)

we see
�wh � uh�0,h 


CB

	h
�u � wh�0,h +

1
	h

sup
vh�V

A h(u � uh, vh)
�vh�2,h

. (59)

Hence, in view of the triangle inequality

�u � uh�0,h 

�

1 +
CB

	h

�
�u � wh�0,h +

1
	h

sup
vh�V

A h(u � uh, vh)
�vh�2,h

. (60)

The bound (55) follows since wh was arbitrary and (56) follows from the best approx-
imation of V. ��

3 Applications to problems with rough data

In this section we examine some problems of the form

��u = f in �
u = 0 on �� (61)

where f may be as rough as H�2(�)\ H�1(�) and so, u � L2(�)\ H1(�). This means
that the problem (75) cannot be characterised through a weak formulation, rather an
ultra weak formulation, whereby we seek u � L2(�) such that

�

�
�u�v dx = � f | v�H�2(�)×H2

0(�) � v � H2
0(�), (62)

and the right hand side of (62) is understood as a duality pairing. In this setting standard
tools pertaining to the analysis of Galerkin methods may not apply, for example the
Aubin�Nitsche duality argument.

However, the stabilised IP method is still well de�ned and the inf-sup condition
still holds. Indeed, we de�ne the modi�ed IP method: seek uh � V such that

A h(uh, vh) =
�

f | ER
0 (vh)

�

H�2(�)×H2
0(�)

� vh � V, (63)
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where E2
0 : V � H2

0 (�) is the modi�cation of E2 recovering onto H2
0 (�) which is

constructed by setting to zero all the degrees of freedom on ��. We note that Lemma
2.5 still holds verbatim when E2 is replaced by E2

0 . The nonstandard de�nition of
the right-hand side allows us to make sense of extremely rough source terms [15] by
interpreting the right-hand side a a duality pairing. Correspondingly, we also denote
by ER

0 the recovery given by De�nition 2.7 when E2 is replaced by E2
0 . Also, we note

that Lemma 2.8 holds for ER
0 also.

Since the inf-sup condition given in Theorem 2.11 is a condition only on the operator
itself, the best approximation result given in Corollary 2.12 holds true. The only
uncertainty with the bound is the behaviour of the inconsistency term. The control of
this term is the main motivation in the nonstandard de�nition of the right hand side
of (63).

Theorem 3.1 (quasi-optimal error control for problems with rough data) Let u �
L2(�) solve (62) and uh � V be the approximation defined through (63), then

�u�uh�L2(�) 
 C inf
wh�V

�
�u�wh�L2(�)+�h3/2 � �wh � �L2(E)+�h1/2 � wh � �L2(E)

�
.

(64)

Proof The proof takes some inspiration from that of [17], where inconsistency terms
arise from the fact that the solution of an elliptic problem may only lie in H1(�), for
which the operator A h(u, vh) may not be well de�ned. Here, the situation is more
involved, since the solution u � L2(�)\ H1(�).

Using the inf-sup condition from Theorem 2.11 we have

	h�wh � uh�0,h 
 sup
vh�V

A h(wh � uh, vh)
�vh�2,h

. (65)

Now, by adding and subtracting appropriate terms and using (62) and (63), we see

A h(wh�uh, vh) = A h

�
wh, ER

0 (vh)
�

+
�

�
u�ER

0 (vh) dx+A h

�
wh, vh � ER

0 (vh)
�

= A h

�
wh, ER

0 (vh)
�

+
�

�
u�ER

0 (vh) dx

+ A h

�
wh � E2

0(vh), vh � ER
0 (vh)

�
(66)

by the orthogonality properties of ER
0 (wh) given in (14). Now we may use that

�

�
u�ER

0 (vh) dx + A h

�
wh, ER

0 (vh)
�


 C�u � wh�L2(�)��ER
0 (vh)�L2(�)


 C�u � wh�L2(�)�vh�2,h, (67)

through the stability of ER (vh).

123



Analysis of dG methods in mesh-dependent norms 1547

Finally, using the approximation properties of ER
0 (•) and E2

0(•) we see

A h

�
wh � E2

0(wh), vh � ER
0 (vh)

�


 C�wh � E2
0(wh)�1,h�vh � ER

0 (vh)�1,h


 C
�
�h3/2 � �wh � �L2(E) + �h1/2 � wh � �L2(E)

�
�vh�2,h . (68)

Substituting (67) and (68) into (66) we have

A h(wh � uh, vh)


 C
�
�u � wh�L2(�) + �h3/2 � �wh � �L2(E) + �h1/2 � wh � �L2(E)

�
�vh�2,h, (69)

and hence

�u � uh�L2(�) 
 �u � wh�L2(�) + �uh � wh�L2(�)


 �u � wh�L2(�) + �uh � wh�0,h


 C
�
�u � wh�L2(�) + �h3/2 � �wh � �L2(E) + �h1/2 � wh � �L2(E)

�
,

(70)

as required. ��

3.1 Numerical experiments

The implementation of all the numerical experiments was performed in Matlabfi

on a laptop computer with a 2.3GHz Intel i7 processor and 16 GB of RAM. All
computations took less than 2min on this machine.

3.1.1 Test 1: an one-dimensional example

We begin by assessing the method (63) for d = 1. We set � = (0, 1) and consider the
problem of �nding u such that

� u�� = ��
flx in �

u = 0 on ��, (71)

where ��
flx denotes the distributional derivative of the Dirac distribution at a point

flx � �. This one-dimensional problem was a motivating example in the classical
work of Babu�ka and Osborn [3]; this computation is included here as a tribute to that
inspiring work.

For this problem we can even characterise a distributional solution, indeed we have
that

u(x) =

�
�x when x < flx
1 � x when x > flx,

(72)
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solves (75). If we assume that flx does not lie on the skeleton of the triangulation we
can de�ne our approximation as seeking uh � V such that

A h(uh, vh) = ER
0 (vh)�( flx) � vh � V. (73)

Using Theorem 3.1 we are able to show this approximation satis�es the a priori bound

�u � uh�L2(�) 
 Ch1/2�
 � 
 > 0, (74)

since � flx � H�s(�) for all s > 1/2.
We �x k = 2 and solve (73) over a sequence of uniform meshes in 1d with h =

1/2, 1/4, . . . , 1/1024. We take flx = 1/2 +
�

2/100000 as to not align it with the
nodes of the mesh. In Fig. 2 we show the numerical approximation over the �nest
mesh along with the experimental order of convergence.

3.1.2 Test 2: d = 2 with a Dirac source term at a point

We now take � = B(0, 1), the open ball of radius 1 centred at the origin, and consider
the problem of �nding u such that

��u = �0 in �
u = 0 on ��. (75)

The exact solution u is the fundamental solution of Laplace�s problem

u(x) = �
1

2�
log(|x|), (76)

for which we have u � L2(�)\ H1(�).

Fig. 2 In this experiment we test the L2 convergence of the interior penality method to approximate the
distributional solution (72). Notice the error converges approximately like O(h1/2). a The IP approximation.
b Error and the experimental order of convergence
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Fig. 3 We test the L2-norm convergence of the method (80) to approximate the fundamental solution of
Laplace�s problem (76). The error converges approximately like O(h). a The IP approximation. b Error and
the experimental order of convergence

We de�ne our approximation as seeking uh � V such that

A h(uh, vh) = ER
0 (vh)( flx) � vh � V, (77)

and, under the assumptions of Theorem 3.1, we are able to show that this approximation
sati�es the a priori bound

�u � uh�L2(�) 
 Ch1�
 � 
 > 0. (78)

This is in agreement with the results of [2] for conforming �nite elements applied to
this problem.

We �x k = 2 and solve (80) over a sequence of unstructured, quasiuniform trian-
gulations of B(0, 1). For the coarsest mesh we have h � 0.13 and for the most �ne
h � 0.0019. In Fig. 3, we show the numerical approximation over the �nest mesh
along with the error measured in the L2-norm and its convergence history. We remark,
that the boundary approximation by straight-faced elements is not detrimental to the
convergence rate in this case as the error is measured in the L2-norm.

3.2 Test 3: d = 2, rough source terms defined over an one-dimensional manifold

We now test the proposed method on a more complicated problem, whereby, we set
� = (0, 1)2 and consider the problem of �nding u such that

� �u = ��M +(1 � �) �x�M in �
u = 0 on ��, (79)

where � � {0, 1} and M := {(x, y) : |x � 1/2| < 1/4 and y = 1/2 or x =
1/2 and |y � 1/2| < 1/4} is an one-dimensional manifold. When � = 1, we have
u � H1(�), whereas when � = 0, we have u � L2(�)\ H1(�).
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Fig. 4 The approximations to the solution of (79) produced by (80) for two different values of �. The two
dark regions on the right plot depict jump discontinuity. a � = 1. b � = 0

We seek uh � V such that

A h(uh, vh) = �ER
0 (vh)( flx) +(1 � �) �x ER

0 (vh)( flx) � vh � V, flx � M . (80)

We �x k = 2 and solve (80) over a uniform, criss-cross triangulation of � with
h � 0.015. In Fig. 4 we show the numerical approximation over this mesh for both
values of �.

We conclude this exposition by noticing that, since the singularity in all tests were
isolated, adaptive approximations should be able to recover best approximation. This
motivates the extension of this analysis from the quite restrictive quasiuniform meshes
to those that allow for some grading. Note the recent work [14] where, using a posteriori
localisation techniques, analagous inf-sup results for the classical interior penalty dG
scheme have been proven over meshes satisfying a mesh variation condition.
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