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ABSTRACT

The heliospheric magnetic field is of pivotal importance in solar and space physics. The field

is rooted in the Sun’s photosphere, where it has been observed for many years. Global maps

of the solar magnetic field based on full disk magnetograms are commonly used as boundary

conditions for coronal and solar wind models. Two primary observational constraints on the

models are (1) the open field regions in the model should approximately correspond to coronal

holes observed in emission, and (2) the magnitude of the open magnetic flux in the model

should match that inferred from in situ spacecraft measurements. In this study, we calculate

both MHD and PFSS solutions using fourteen different magnetic maps produced from five

different types of observatory magnetograms, for the time period surrounding July, 2010. We

have found that for all of the model/map combinations, models that have coronal hole areas

close to observations underestimate the interplanetary magnetic flux, or, conversely, for models

to match the interplanetary flux, the modeled open field regions are larger than coronal holes

observed in EUV emission. In an alternative approach, we estimate the open magnetic flux en-

tirely from solar observations by combining automatically detected coronal holes for Carrington

rotation 2098 with observatory synoptic magnetic maps. This approach also underestimates

the interplanetary magnetic flux. Our results imply that either typical observatory maps un-

derestimate the Sun’s magnetic flux, or a significant portion of the open magnetic flux is not

rooted in regions that are obviously dark in EUV and X-ray emission.

Subject headings: Sun: corona — Sun: magnetic fields — Sun: heliosphere — methods: nu-

merical — methods: data analysis
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1. Introduction

The “open” magnetic field is that portion of the Sun’s magnetic field that extends out into the helio-

sphere and becomes the interplanetary magnetic field (IMF). Open fields play a crucial role in heliophysics

as the main driver of geomagnetic activity. They also determine where solar energetic particles propagate

and shield the solar system from galactic cosmic rays. In the standard paradigm of coronal structure

(e.g., Mackay & Yeates 2012; Priest 2014), the open magnetic field originates primarily in coronal holes

(CHs), regions of low intensity emission in EUV and X-rays (Bohlin 1977; Zirker 1977). The regions that

are magnetically closed trap the coronal plasma and give rise to the streamer belt that is prominent in

coronagraph and eclipse images (e.g., Wang et al. 1997; Linker et al. 1999; Pasachoff et al. 2009; Rušin

et al. 2010). While important questions remain (e.g., what is the source of the slow solar wind? Kilpua

et al. 2016), this picture accounts for many coronal and interplanetary observations.

The IMF has been measured in situ for many years. Ulysses measurements demonstrated that the

magnitude of the radial IMF is nearly independent of heliographic latitude (Smith & Balogh 1995, 2008),

implying that currents in the heliosphere are primarily confined to the heliospheric current sheet (HCS)

and that the field is nearly potential everywhere else. The consequence of these measurements is that the

open magnetic flux of the Sun can be inferred from suitably averaged single point in situ measurements of

the radial IMF (e.g., Owens et al. 2008a)

The solar magnetic field has also been observed for over four decades, primarily in the photosphere.

Global magnetic maps are developed from full-disk magnetograms of the line-of-sight (LOS) photospheric

magnetic field (inferred from the Zeeman splitting of measured spectral lines) and are available from

ground and space-based observatories. Using such maps as input, steady-state models have been successful

in reproducing key spatial features of the large-scale corona and inner heliosphere, such as the location

of CHs, the streamer belt, and the HCS. The complexity of models can range from potential field source

surface (PFSS) models to magnetohydrodynamic (MHD) models with realistic energy transport and sub-

grid scale descriptions of heating and acceleration. While the range of physical values that can be predicted

depends on the details of the model, two basic properties can be predicted by all models: the magnitude

of the open magnetic flux, and the open field regions at the solar surface.

If the basic paradigm of coronal structure is correct, then the magnitude of the open magnetic flux

predicted by the combination of a coronal model and an observatory map should match that inferred from

in situ spacecraft measurements. Specifically, the open magnetic flux (Φopen) predicted by a coronal model

can be expressed as a radial magnetic field strength at 1 AU (Astronomical Unit):

|Br1AU | =
|Φopen|
4πr21AU

=
1

4π

(
Rub
r1AU

)2 ∫ 4π

0
|Br(Rub, θ, φ)|dΩ, (1)

where r1AU = 215 solar radii (RS) and Rub is the upper boundary of the coronal calculation. For PFSS

models, Rub is the source surface radius (RSS), and for MHD models it is the upper radial boundary. The

value of |Br1AU | should be approximately equal to the average value of |Br| measured by 1 AU spacecraft

(|BrIMF |). In practice, this should be the average value over at least a solar rotation, as interplanetary

magnetic fields fluctuate considerably, and observatory maps are built up over the rotation. We would

expect this approach to work reasonably well near solar minimum, when the recurrent patterns of coronal

holes and fast solar wind streams (Zirker 1977; Luhmann et al. 2009; Abramenko et al. 2010) show that

the large-scale underlying structure of the corona often varies slowly. Accuracy could be more problematic

near solar maximum, when the Sun’s magnetic flux is rapidly evolving.

Using Eq. (1), Wang & Sheeley (1995) computed |Br1AU | for over two decades (1970-1993), using
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PFSS models (with RSS = 2.5RS). They found that PFSS models using Wilcox Solar Observatory (WSO)

magnetic maps could roughly match |BrIMF |, but only if they used a latitude-dependent saturation fac-

tor derived for the Mount Wilson Observatory (MWO) magnetograph (Ulrich 1992). The MWO factor

multiplies low-latitude fields by a factor of nearly 4.5. (The factor for the full disk is 4.5-2.5sin2(ρ), where

ρ is the center-to-limb angle. Ulrich et al. 2009 updated this to 4.15-2.82sin2(ρ).) This choice was con-

troversial (Riley 2007; Riley et al. 2014). Svalgaard et al. (1978), studying the performance of the WSO

magnetograph, derived a constant saturation factor of 1.8 (later revised to 1.85). Wang & Sheeley (1995)

based their argument primarily on the much better match they obtained with 1 AU measurements when

using the MWO factor; when using the factor actually derived for the WSO instrument, the open flux was

generally underestimated. Riley (2007) took an alternative view and suggested that if the constant WSO

factor was used, the missing flux could be accounted for by the contribution of CMEs. Wang & Sheeley

(2015) revisited this topic and argued that the CME flux was insufficient to account for the open flux if

the WSO derived factor is used, and that WSO maps with the original MWO correction factor and the

additional flux estimated to be carried by CMEs provided the best match to interplanetary observations.

If the WSO maps corrected with the MWO factor accurately represent the solar magnetic field, we

would expect that models using data from other magnetographs would independently be able to predict

|BrIMF |. While not widely emphasized, a range of models/observatory maps are generally underestimat-

ing |BrIMF | and/or |BIMF |. For example, Owens et al. (2008b) found that both the WSA-Enlil and

MAS-Enlil models using National Solar Observatory (NSO) Kitt Peak data consistently underestimated

|BrIMF | away from stream interfaces from 1995-2002. The models were the empirical Wang-Sheeley-Arge

(WSA) model (Arge et al. 2003) coupled with the Enlil Heliospheric MHD model (Odstrcil 2003) and the

Magnetohydrodynamic Algorithm outside a Sphere (MAS) MHD model, also coupled with Enlil. These

models are elements of CORHEL (Corona-Heliosphere, Riley et al. 2012). Stevens et al. (2012) found that

CORHEL (utilizing MAS and several different observatory maps) systematically underestimated |BrIMF |
measured at Ulysses. Jian et al. (2015) compared several model/observatory map combinations available

at the Community Coordinated Modeling Center (CCMC) and found regular underestimates of |BIMF |.
These issues have led to ad hoc correction factors being applied to input magnetic fields in order to obtain

a better match. The WSA-Enlil model is frequently run using the polarity of Br from the WSA model, and

the magnitude replaced empirically (McGregor et al. 2011). Linker et al. (2016) showed that PFSS models

computed daily using maps from the Air Force Data Assimilative Photospheric flux Transport (ADAPT)

model (Arge et al. 2010; Hickmann et al. 2015), generated with the assimilation of NSO SOLIS (Synoptic

Optical Long-Term Investigation of the Sun) Vector Spectromagnetograph (VSM) magnetograms, could

capture the large variation in open magnetic flux seen in OMNI in situ measurements from 2003 to 2008 -

if the map values were multiplied by 1.5. Simulations of the corona and solar wind with the Space Weather

Modeling Framework (SWMF) (Tóth et al. 2005) have scaled input maps by factors of 2-4 to improve

model-observational comparisons (Cohen et al. 2007; Jin et al. 2012; Oran et al. 2015).

There could be many reasons why various model/map combinations are producing underestimates

of |BrIMF |, and model parameters can generally be adjusted to open more magnetic flux and increase

the value of |Br1AU | (Stevens et al. 2012). For example, a PFSS model can be made to increase |Br1AU |
by lowering RSS (Lee et al. 2011). However, there is another observational constraint on the models -

the predicted open field regions should match CHs observed in emission. While such comparisons have

generally been qualitative, the advent of automated CH detection algorithms (Henney & Harvey 2005;

Scholl & Habbal 2008; Krista & Gallagher 2009; Lowder et al. 2014; Verbeeck et al. 2014; Boucheron et al.

2016; Caplan et al. 2016) opens the door for more objective comparisons.
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Lowder et al. (2014) performed a comprehensive study of open flux from automatically detected CHs

for the 1996-2013 time period, using data from the Solar and Heliospheric Observatory (SOHO) Extreme

Ultraviolet Imaging Telescope (EIT), the Solar Terrestrial Relations Observatory (STEREO) Extreme

Ultraviolet Imager (EUVI), and the Solar Dynamics Observatory (SDO) Atmospheric Imaging Assembly

(AIA) to detect CHs. They noted the higher quality of EUVI and AIA images relative to EIT increases

the detection of CHs. They also compared the results to PFSS solutions computed with WSO. Lowder

et al. (2017) extended this study to investigate the latitude dependence of CHs and contrast the differing

behavior of cycle 23 and cycle 24. We discuss the relationship of our results to Lowder et al. (2014, 2017)

in section 3.

In this paper, we investigate the open magnetic flux for the time period surrounding July 7-8, 2010

(during Carrington Rotation 2098, June 16–July 13, 2010), employing magnetic maps developed from

several instruments and using different map assembly techniques, and computing both PFSS and MHD

models. In section 2, we show that the comparison of the predicted open field regions with CHs observed in

emission, and the predicted |Br1AU | with in situ spacecraft measurements, together, are powerful constraints

on the models and the magnetic maps used to derive the boundary conditions. We find that no model/map

combination can match the inferred |BrIMF | unless the area of their open field regions exceed the CH areas

inferred from EUV emission (derived from the automated CH detection scheme described by Caplan et al.

2016). In section 3, we use identified CH boundaries and observatory maps to derive observation-based

estimates of the open flux in the corona, and show that these also fall well below the the inferred |BrIMF |.
In section 4, we employ our CH detection technique on the emission predicted by the MHD model, and

show that it captures a large fraction of the open field regions and magnetic flux. Section 5 discusses the

implications of our results.

2. Comparison of Maps and Models

Despite their widespread use for not only scientific, but space weather operational purposes (Pizzo

et al. 2011), magnetic maps from different observatories may agree qualitatively but often disagree quanti-

tatively (Riley et al. 2014). In practice, magnetic maps are made using a variety of methods with differing

assumptions. To better understand how these differences translate into physical solutions, as well as how

“poor” maps may affect coronal and solar wind model results, a campaign event was organized for the

SHINE 2016 workshop. Prior to the workshop, several global magnetic maps were produced for the same

time period using different instruments and different methods, and models were then computed using

boundary conditions derived from these maps.

Full sun maps based on five different observatory magnetogram products were created and supplied

for the workshop: NSO VSM line-of-sight (LOS), NSO Global Oscillation Network Group (GONG) LOS,

SOHO Michelson Doppler Imager (MDI) LOS, SDO Helioseismic and Magnetic Imager (HMI) LOS, and

SDO HMI vector. Here we distinguish between two types of magnetic maps created from magnetograms:

Diachronic and Synchronic.

Diachronic maps (commonly referred to as synoptic maps) are constructed by projecting full disk

magnetograms onto the Carrington (latitude, longitude) frame over the course of a solar rotation. The

construction usually involves the averaging of new magnetograms with earlier data such that each longitude

of the map is heavily weighted by the magnetogram(s) taken when that longitude was at disk center. These

maps are the typical product provided by most observatories.
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Synchronic maps attempt to approximate the Sun’s surface magnetic field at a particular time. This

is obviously difficult, as magnetograms are only observed along the Sun-Earth line at the present time.

Synchronic maps can be constructed simply by inserting a magnetogram from the current date/time into

a diachronic map, or, in more advanced approaches, by assimilating magnetograms into a flux transport

model that evolves the magnetic field on the unobserved portions of the Sun with known flow and dif-

fusion patterns. In addition to using diachronic maps from the above observatories, synchronic maps

were constructed using the ADAPT model (based on NSO VSM magnetograms) and the LMSAL Evolving

Surface-Flux Assimilation Model (ESFAM, Schrijver & DeRosa 2003, based on SOHO MDI magnetograms)

as well as daily updated synoptic maps for GONG, SDO HMI, SOHO MDI, and NSO VSM (referred to

as NSO VSM near real time). Three different maps from the ADAPT model were used, each a sample

realization of an ensemble of twelve, differing by the following: One map included a far-side detection of

active region (AR) 11087 observed with GONG helioseismic acoustic holography on July 1 (Arge et al.

2013), a second map with this same AR included but with the polarity reversed, and a third map included

no far-side AR information. The LMSAL and daily updated maps correspond to 07/08/2010, the ADAPT

maps 07/07/2010. In total, fourteen maps for this time period were used in the results presented in this

paper; further details about the maps can be found in the Appendix. While the maps were supplied in

differing formats and resolutions, we processed all of them as uniformly as feasible (see Appendix) prior

to performing the model calculations. PFSS calculations with RSS = 2.0 and RSS = 2.5 were performed

for all maps (additional PFSS models were computed for the VSM). The PFSS are computed numerically

on a nonuniform 151 × 301 × 602 (r, θ, φ) spherical mesh using finite differences and a preconditioned

conjugate gradient method (Caplan et al. 2017). Thermodynamic MHD models using MAS/CORHEL

(Lionello et al. 2009) were computed on a nonuniform 181 × 251 × 602 mesh covering a domain from

1 − 30RS for selected maps, using the same heating and acceleration parameters for each model. The

MHD results do not depend on the position of the outer boundary, as long as it placed well

beyond the MHD fast mode critical point (occurring at about 10−12RS for these simulations).

The solutions were integrated for two days of simulated time until an approximately steady

configuration was obtained. For the MHD results, slight differences were obtained for the

open flux (shown in Table 1, where it was computed using Eq. 1) depending on the method

used for computation. For example, when the open magnetic flux is computed on the lower

boundary (integrating magnetic flux from all field lines that reach the upper boundary), the

value obtained is ∼1% less than Table 1; this is due to the presence of a small amount of

disconnected flux at some locations in the simulated heliospheric current sheet. Computing

the open flux via Eq. (1) but using r = 18.9RS (above the critical point but below the upper

boundary) results in ∼3% larger open flux than Table 1; this is due to the presence of long,

closed fields that might eventually reach the upper boundary if the calculation were relaxed

even longer. None of these differences were significant for the results presented here.

As discussed in the introduction, all models can be compared with two basic observations: (1) open

field areas, as deduced from CH detection, and (2) the approximate open magnetic flux in the heliosphere,

as estimated from in situ spacecraft measurements. For (1), we take advantage of a recently-developed

database of synchronic EUV and automatically detected CH boundaries (Caplan et al. 2016) that is publicly

available (www.predsci.com/chd). This provides a digital representation of the CHs that can be compared

quantitatively with models. The data sources are the STEREO EUVI 195Å and SDO AIA 193Å images.

Caplan et al. (2016) describe the techniques used to construct synchronic EUV maps from these images

that approximate the view from disk center and a single instrument for all locations, as well as the CH

detection method. Figure 1(a) shows a synchronic EUV map for 7/8/2010 and Figure 1(b) shows the
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corresponding CH detection. The total CH area detected was 7.5 × 1021cm2 (this excludes the region

that was not observed by the STEREO or SDO spacecraft, seen as a blue swath in Figures 1(a-b)). We

refer to this as the “observed” area, but it is important to remember that all CH detection algorithms

have adjustable parameters, and the area may depend on these. Figure 1(c) shows the open field regions

from an example map/model combination (the MHD model using the ADAPT map with the farside AR

included), calculated by tracing field lines from the solar surface and marking cells as open (black) if they

reach the upper boundary and closed (white) if they return to the solar surface. Comparing Figure 1(c)

with Figures 1 1(a)-(b), we see that the model produces a larger CH area than was detected in EUV. The

results for all of map/model combinations are described below.

To estimate the average interplanetary |BrIMF | during this time period, we obtained one-hour averaged

OMNI in situ measurements of Br and computed the absolute value. Figure 1(d) shows the 1-hour data

(black), a 1-day running average (red), a 7-day average (green), and a Carrington rotation average (blue),

for an 80 day period (5/30-8/18/2010). The average value during the plotted interval is 2.19 nT (nano

Tesla); the average for CR2098 alone is 2.07 nT. However, these values could be an overestimate of the

interplanetary magnetic flux. Lockwood et al. (2009) argued that kinematic effects can create longitudinal

structures in the solar wind where the IMF folds back on itself (Crooker et al. 2004), and this can lead

to an ”over-counting” of magnetic flux from |BrIMF | measurements (Owens et al. 2013). These inverted

magnetic structures show the signature of an HCS crossing (Br reverses sign) but suprathermal electrons

travel radially inward along the field (typically, these electrons travel outward along open field lines). To

account for this effect, we examined the 27 day time period for CR2098 in ACE measurements and found

88 hours of inverted magnetic flux. Removing this flux drops the average of |BrIMF | for this time period

from 2.07nT to 1.69nT. We also obtained the daily averaged Br from OMNI for the same time period as

shown in Figure 1(d) and found the average of |BrIMF | to be 1.67nT. This latter estimate is likely to be

low, because at a daily time-averaging interval, Br measured near the HCS will tend to cancel, reducing

the value. Using these three different estimation methods, we conclude that the average interplanetary

magnetic flux for this time period corresponds to a value of |BrIMF | between 1.7 and 2.2nT.

Table 1 summarizes the results for all of the map/model combinations, and their comparison with ob-

servations. The first column of the table identifies the map, column 2 lists the unsigned magnetic flux for

the entire map (= R2
S

∫ 4π
0 |Br(RS , θ, φ)|dΩ), and column 3 shows the integrated magnetic flux within 25◦ of

the pole expressed as an average radial field strength (= (R2
S/An)

∫ 2π
0

∫ 5π/36
0 Br(RS , θ, φ) sin θdθdφ,

north; = (R2
S/As)

∫ 2π
0

∫ π
31π/36Br(RS , θ, φ) sin θdθdφ, south; An = As = R2

S

∫ 2π
0

∫ 5π/36
0 sin θdθdφ = 0.187πR2

S).

Column 4 identifies the model calculations performed for each map. Column 5 shows the integrated open

field area (disregarding the region not observed by SDO and the STEREOs) for each map/model; in paren-

thesis is the difference between this area and the CH area deduced from observed emission. This simple

metric generally underestimates the discrepancies between two CH maps, because disagreements (to much

open area in one region, too little in another) can cancel. However, it is sufficient for our purposes here,

as we are primarily interested in constraining how much open flux can be produced by a map/model while

still remaining consistent with emission observations. Column 6 shows the equivalent open flux (|Br1AU |
, computed from eq. 1) for each map/model. While all of the maps/models approximate the global solar

magnetic field for the same time period, considerable variability in the results is seen.

The striking result from Table 1 is that for all MHD map/models and all PFSS map/models with

RSS = 2.0 & 2.5, |Br1AU | falls well below the observed range of |BrIMF | (1.7-2.2nT). The RSS = 2.5 PFSS

models clearly underestimate both the open field area and |BrIMF |, implying that the magnetic field is

opening much lower in the corona during this time period. The open field areas of the RSS = 2.0 PFSS
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1 2 3 4 5 6

Magnetic Map Unsigned

Flux

(1022 Mx)

Average Po-

lar Field (G)

South/North

Model Open Field

Area

(difference)

(1021cm2)

Open Flux (Br
at 1 AU, nT)

Observed 7.6 (EUV) 1.7-2.2 (OMNI)

ADAPT, Far Side 17.9 3.1 (S) PFSS, 2.5RSS 5.8 (-1.8) 0.75

(NSO VSM -2.6 (N) PFSS, 2.0RSS 6.9 (-0.7) 0.94

magnetograms) MHD 8.9 (+1.3) 1.35

ADAPT, Far Side, 17.6 3.1 (S) PFSS, 2.5RSS 6.3 (-1.3) 0.82

AR polarity reversed -2.6 (N) PFSS, 2.0RSS 7.4 (-0.2) 1.03

MHD 8.7 (+1.1) 1.33

ADAPT, No Far Side 14.8 3.1 (S) PFSS, 2.5RSS 6.1 (-1.5) 0.76

-2.6 (N) PFSS, 2.0RSS 7.1 (-0.5) 0.94

MHD 9.3 (+1.7) 1.28

GONG Daily 11.4 2.6 (S) PFSS, 2.5RSS 6.0 (-1.6) 0.62

Synoptic -2.4 (N) PFSS, 2.0RSS 7.0 (-0.6) 0.75

GONG Synoptic 11.3 2.6 (S) PFSS, 2.5RSS 6.3 (-1.3) 0.64

-2.4 (N) PFSS, 2.0RSS 7.3 (-0.3) 0.77

HMI LOS 12.9 2.8 (S) PFSS, 2.5RSS 5.8 (-1.8) 0.66

Daily Updated -2.7 (N) PFSS, 2.0RSS 6.7 (-0.9) 0.79

HMI LOS Synoptic 13.9 2.9 (S) PFSS, 2.5RSS 5.4 (-2.2) 0.65

-2.7 (N) PFSS, 2.0RSS 6.3 (-1.3) 0.79

HMI Vector Synoptic 15.1 3.5 (S) PFSS, 2.5RSS 5.4 (-2.2) 0.80

-3.7 (N) PFSS, 2.0RSS 6.3 (-1.3) 0.96

LMSAL ESFAM 13.2 3.9 (S) PFSS, 2.5RSS 4.3 (-3.3) 0.64

(MDI magnetograms) -2.4 (N) PFSS, 2.0RSS 5.3 (-2.3) 0.78

MHD 7.8 (+0.2) 1.12

MDI Daily updated 18.4 3.5 (S) PFSS, 2.5RSS 4.8 (-2.8) 0.75

-3.2 (N) PFSS, 2.0RSS 5.7 (-1.9) 0.92

MDI Synoptic 18.2 3.3 (S) PFSS, 2.5RSS 5.1 (-2.5) 0.73

-3.2 (N) PFSS, 2.0RSS 5.9 (-1.7) 0.90

VSM Synoptic 16.3 3.4 (S) PFSS, 2.5RSS 5.5 (-2.1) 0.79

-3.3 (N) PFSS, 2.0RSS 6.4 (-1.2) 0.96

PFSS, 1.4RSS 10.7 (+3.1) 1.60

PFSS, 1.3RSS 12.8 (+5.2) 1.91

VSM Synoptic 17.8 3.3 (S) PFSS, 2.5RSS 5.3 (-2.3) 0.83

(extrapolated polar -3.7 (N) PFSS, 2.0RSS 6.2 (-1.4) 1.01

fields) MHD 7.9 (+0.3) 1.38

VSM Near Real Time 16.3 3.1 (N) PFSS, 2.5RSS 5.4 (-2.2) 0.77

-3.5 (S) PFSS, 2.0RSS 6.4 (-1.2) 0.95

Table 1: Summary of results from all of the model/map combinations.
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models are generally much closer to (but smaller than) the observed CH area, but their values for |Br1AU |
are still much smaller than |BrIMF |. The MHD model |Br1AU | values come closest to |BrIMF |, but the open

field areas all exceed the observed CH area. The greater opening of flux is not an inherent property of MHD,

but rather is related to the model parameters, such as the heating model. While the relationship between

field opening and model parameters is more complex in MHD than in PFSS (the field does not open at one

height, and the length scale of heating deposition is as important as the magnitude in determining coronal

structure), increasing the open flux produced by the model generally requires increasing the open field

area, just as with the PFSS. The introduction of shear and/or twist in a model can also cause

more flux to open (e.g., Riley et al. 2006; Edwards et al. 2015), but this will also increase

the open field area predicted by the model.

We can ask the question, for a given map, how large an area has to be opened in order to match

|Br1AU |? The answer is shown in the table entry for VSM synoptic. Using the PFSS model and lowering

RSS to 1.4RS , the model yields |Br1AU | =1.60nT, which still falls outside the observed range for |Br1AU |,
and the open field area is now 41% greater than observed. Further lowering RSS to 1.3RS , we obtain

|Br1AU | = 1.91nT. This value now falls in the observed range but the open field area is 68% greater

than observed. Figure 2 shows the open field regions for the four PFSS models computed using the VSM

synoptic map (RSS = 2.5, 2.0, 1.4, 1.3RS) The RSS = 2.0RS case (Figure 2(b)) appears visually closest

to the CHs in the synchronic (Figure 1(a-b) and diachronic (Figure 3(a-b)) EUV map/detections. The

RSS = 1.4 and 1.3RS models (Figure 2(c-d)) are visually inconsistent with the EUV maps and detections.

No map/model combination is consistent with our two constraints.

3. An Observation-derived Estimate of Open Flux

Our digital CH database allows us to estimate the open magnetic flux directly from solar observations.

We can calculate the open flux for a given magnetic map by overlaying the CH map over the magnetic

map and integrating the magnetic flux in each hole individually. To obtain an estimate of the average

open magnetic flux over a solar rotation, the time sequences of the CH observations should approximately

correspond to the timing of the magnetic observations. Therefore, the most straightforward approach is to

use diachronic maps provided by observatories for the magnetic data, and to develop a diachronic CH map

coincident with the magnetic maps. We developed such a map from our EUV/CH database by weighting

each synchronic map with a longitudinal Gaussian centered on the (Earth based) Carrington longitude at

the time of the map. We chose a Gaussian full-width-half-max value of one degree, and the weighted maps

were combined to create the final synoptic map. This was done independently for the EUV and CH maps.

Because of the weighting, the weighted EUV/CH map data originates mostly from the AIA instrument

but, due to the nature of the merged synchronic maps, there is some contribution from STEREO A/B

data near the polar regions that are unobserved by AIA.

The resulting EUV map is shown in Figure 3(a), and the CH detections from this map are shown in

Figure 3(b). Figure 3(c) shows the NSO VSM diachronic map for Br at the photosphere. The overlaying

of (b) on (c) yields Figure 3(d), a map of the magnetic field in each CH for this time period.

Using the method shown in Figure 3, we calculated the open flux using detected CHs in Figure 3(b)

and the five diachronic observatory maps described in section 2. The results are summarized in Table 2.

The second column of the table shows the unsigned magnetic flux in all of the CHs for the different maps.

The third column of Table 2 is computed by integrating the signed flux in each CH individually, then
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adding the absolute value of each of these together. The percentage of this flux compared to the unsigned

flux (column 2) is shown in paranthesis. Our CH detection technique relies only on EUV measurements

and does not use the magnetic flux; the close match between the signed and unsigned flux indicates that

the technique is indeed identifying predominantly unipolar regions as CHs. A check on the technique is

shown in column 4 of Table 2. Unlike the case for the models, the total flux from the positive and negative

detected CHs is not guaranteed to balance, if, for example, some CHs are missed by the technique. The

relatively low flux balance error (sum of all the signed fluxes divided by the unsigned flux) shows that the

detected CHs have nearly equal amounts of positive and negative flux. Column 5 of the table shows the

predicted |BrIMF | computed from column 3. For all of the maps, the open flux predicted to arise from the

CHs is well below that inferred from in situ measurements.

1 2 3 4 5

Observatory Map Total Unsigned

Flux in all CHs

(1022 Mx)

Total Open Flux

in all CHs (1022 Mx)

(% of unsigned flux)

Flux Balance

Error

Open Flux

(Br at 1

AU, nT)

GONG synoptic 1.91 1.89 (99.0%) 3.6% 0.67

HMI LOS synoptic 2.09 2.01 (96.2%) 2.9% 0.71

HMI Vector synoptic 2.56 2.47 (96.5%) 5.8% 0.88

MDI synoptic 2.49 2.38 (95.6%) 5.6% 0.85

VSM synoptic 2.55 2.51 (98.4%) 5.7% 0.89

Table 2: Open fluxes computed using observed coronal holes and five diachronic maps.

Lowder et al. (2014, 2017) used automated CH detection to compute magnetic flux in coronal holes

over many years, including this time period. There are significant differences between our method and

theirs; Lowder et al. (2014)’s CH detection uses a single threshold on partitioned subarrays of EUV images,

and incorporates magnetic field observations (relative unipolarity of regions). They compute the unsigned

flux in CHs over the whole Sun. We perform substantially more processing of the EUV images (e.g.,

correcting for limb-brightening) prior to CH detection, allowing the use of a global two-threshold method

(Caplan et al. 2016). We compute the signed fluxes in each CH individually, which is much less sensitive

to map resolution than the unsigned flux. Lowder et al. (2014)’s detected CHs appear to be larger at low

latitude for CR2098 (Figure 10 of their paper) than in our method; comparison of the EUV map with

the CH for this rotation indicates that at least some of the areas they identify as CH are more consistent

with quiet Sun. Nevertheless, their values for the open flux during this time period (∼2×1022 Mx) are

approximately consistent with ours. Lowder et al. (2017) also estimated the interplanetary open flux from

OMNI measurements. While they do not describe the averaging technique used to obtain the interplanetary

open flux, the values they obtain are greater by a factor of 2 or more than the open flux they estimate from

CHs for much of cycle 23 and all of cycle 24, including the time period studied here. Their result suggests

that the underestimate in open magnetic flux we have identified for this time period is a pervasive issue.

4. Coronal Hole Detection Applied to Simulated Emission

Given that the regions identified as CHs in emission apparently cannot account for the measured

interplanetary flux for this time period, it is important to assess how well the CH detection method

identifies CHs and their corresponding open flux. The thermodynamic MHD model allows us to simulate
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emission as it would be observed in different instruments (Lionello et al. 2009). As the true open field

regions and open magnetic flux for the model are known, we tested the detection technique, by applying it

to simulated emission from the MHD model that used the NSO VSM CR2098 map as a boundary condition.

To perform the test, we computed the simulated emission using radial lines of sight at each pixel,

as this roughly matches the way the diachronic CH map of Figure 3(a) (heavily weighted by disk center

observations) was calculated; however, the use of radial lines of sight is likely to make the detection of

CHs at high latitudes more accurate then in the case of real STEREO/SDO observations. The parameters

for the CH detection used on the synchronic EUV maps were optimized for the emission levels in the

STEREO/SDO data in the 2010-2014 time period. The emission in the MHD model differs quantitatively

from the actual Sun, so for our detection test, we optimized the detection parameters for the simulated

emission.

We note that visually the dark emission regions in the simulation (Figure 4a) are similar to the observed

(Figure 3a) but generally larger. Figure 4(b) shows the CH regions from the simulation identified by the

CH detection method, and Figure 4(c) shows the magnetic flux identified as open. The CH area detected

in Figure 4(b) is 8.53 × 1021cm2 and the absolute value of the signed flux in Figure 4(c) is 3.42 × 1022

Mx. Comparing these values with the true open field region area from the model (8.82× 1021cm2, shown

in Figure 4(d)) and the true open flux (3.87× 1022 Mx, shown in Figure 4(e)), we find that the detection

technique accounts for 96.8% of the CH area and 88.4% of the flux. At least for the case of the model,

under-detection of CHs in emission results in missing a relatively small fraction of the open flux. Further

tests of our detection technique using simulated emission are planned for the future.

It is interesting to note that while the CH detection method underestimated CH area by only 3.2%,

this translated into a much larger open flux error (11.6%). The reason for this can be seen by comparing

Figure 4(c) and (e). Some localized, strong concentrations of magnetic flux in mid-latitude regions are

either missing or not fully captured by the CH detection. These flux concentrations originate in open fields

emanating from the edges of active regions. This could perhaps give clues to where the missing open flux

resides, as we discuss in the following conclusions section.

5. Conclusions

We surveyed fourteen magnetic maps created from five different magnetogram products representing

the time period surrounding early July, 2010, computing solutions with PFSS and MHD models. As this

time period occurred early in cycle 24, the Sun’s magnetic flux was evolving relatively slowly and the

coronal configuration was near minimum. Therefore, we would expect the standard paradigm of coronal

structure to hold and that the open magnetic flux would primarily arise from polar coronal holes and

their equatorial extensions. However, we found that all of the model/map combinations underestimate the

interplanetary magnetic flux for this time period (inferred under the assumption that this can be estimated

from OMNI in situ measurements), unless the open field regions of the model exceed the CH area that

is inferred from EUV emission. When we used the detected CH areas together with observatory maps

(bypassing the requirement of a model), all cases underestimated the interplanetary flux by close to a

factor of two or more.

There are two broad categories of resolutions for this underestimate of the open flux: (1) Either the

observatory maps are underestimating the magnetic flux, or (2) a significant portion of the open magnetic

flux is not rooted in regions that are dark in emission. While (1) could be occurring on large portions of the
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solar surface for all of the observatories, it seems unlikely. The maps employed in this study incorporate

magnetograms that were derived from instruments measuring different formation lines, and detecting the

field at different depths in the photosphere; why all of these different instruments would underestimate the

field is unclear. On the other hand, the poles of the Sun are poorly observed, and it is possible that the

polar magnetic flux could be significantly underestimated near solar minimum, as implied by Hinode Solar

Optical Telescope observations (Tsuneta et al. 2008). Tsuneta et al. (2008) estimated that the concentrated

kilogauss patches that they observed would give the equivalent flux of a 10 G field over the region 20◦ from

the pole; integrating the polar field from the NSO VSM synoptic map for that time period (3/16/2007,

CR2054) yields ∼6 G. A similar underestimate in the polar fields for the time period studied here might

account for the missing flux. Future Solar Orbiter observations in the later part of the mission (when the

spacecraft is well out of the ecliptic plane) could provide a more definitive view of the contribution of polar

fields to the interplanetary magnetic flux.

At this point, possibilities in category (2) are speculative, and at least to some degree depart from

the standard paradigm. They could range from issues with CH detection to invocations of time-dependent

effects. An example of the first possibility would be active regions contributing more open flux, but where

the footpoints are obscured by bright emission (requiring a vastly greater contribution than was found

in our model test shown in Figure 4). The latter case could be related to the possibly dynamic

origin of the slow solar wind, a subject of considerable controversy (e.g., Abbo et al. 2016).

A particular example is the S-web model (Antiochos et al. 2011; Linker et al. 2011; Titov et al. 2011),

which argues that an important portion of the slow wind arises from interchange reconnection between

closed and open fields (Fisk et al. 1998). If this is the case, then perhaps the regions bounding coronal

holes contains significant amounts of open field intermixed with closed field and are not dark in emission.

Demonstration of this effect in emission by a model/simulation would be a first step towards investigating

the viability of this idea.

We note that the excess flux produced by CMEs cannot by itself resolve the open flux problem.

CMEs are believed to contain magnetic flux connected back to the Sun at both ends (as evidenced by

counterstreaming electrons, Gosling et al. 1987). These long field lines behave just like open field lines in

terms of EUV emission close to the Sun and their footpoints would presumably be dark; some other reason

would need to be invoked as to why they could be embedded in bright regions. If there were large amounts

of disconnected flux in the heliosphere, it could account for the missing flux. While this doesn’t seem

to be directly ruled out by present observations, it is generally considered unlikely (Crooker &

Pagel 2008).

In closing, we note that we have focused on the issues of accounting for the open flux for a single,

well-observed time period. We believe these discrepancies are likely to be ubiquitous, and so should be

investigated further, perhaps with more coordinated observing time periods. The comparison of different

CH detection techniques for periods of interest (particularly during the 2010-2014 time period, with EUV

coverage of nearly the entire Sun from the STEREO and SDO spacecraft) could be especially useful.
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NSF’s XSEDE and NASA’s NAS. We thank Xudong Sun of Stanford for providing polar filling for the

HMI and MDI maps. We also wish to acknowledge the SHINE 2016 workshop, which was the genesis of

this collaboration.
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A. Map Processing

The maps provided for the SHINE 2016 workshop specified Br at the photosphere with differing

resolution and format, but we adopted a standard pipeline for processing and preparing them for model

input. The NSO GONG and NSO SOLIS VSM CR2098 synoptic maps were supplied as standard prod-

ucts from the NSO web site (http://gong.nso.edu/ and http://solis.nso.edu/index.html), as was the NSO

VSM near-real-time map and the GONG daily map; all were provided at 180×360 resolution (sine-

latitude vs. longitude). The SOHO MDI CR2098 synoptic map was obtained from the Stanford web-

site (http://sun.stanford.edu/synop/) at 1080×3600 sine-latitude vs. longitude. The SDO HMI LOS and

vector synoptic maps were supplied by Stanford at 1440×3600 sine-latitude vs. longitude, similar to the

products available at the Joint Science Operations Center (JSOC; http://jsoc.stanford.edu/), except the

polar fields were filled by the technique described by Sun et al. (2011), updated for HMI maps (Sun et al.,

in preparation). The creation of full-sun HMI vector maps, including the disambiguation of the transverse

field, is described by Liu et al. (2017). The MDI daily map was also supplied at 1440×3600 sine-latitude

vs. longitude resolution, while the HMI daily map was supplied at 180×360 latitude vs. longitude; both

used the same polar filling technique as the synoptic HMI maps. The ADAPT and ESFAM maps were

provided at 180×360 resolution latitude vs longitude resolution. We note that for the ADAPT and ES-

FAM models, the polar fields are not assimilated from magnetograms but arise from the flux transport

calculation over many rotations. For all of the LOS maps, Br was calculated from the LOS field under the

frequently applied assumption that the field is predominantly radial at the depth that it is measured in

the photosphere (Wang & Sheeley 1992). For the HMI vector map, Br was provided directly.

Each map was re-interpolated to a uniform, 300× 600 grid in latitude/Carrington longitude using an

integral (flux) preserving interpolation scheme, including the supplied polar field values. The VSM Near

Real Time map had missing polar values, and these were corrected using our pole fitting/filling algorithm,

which replaces data within 23 degrees of each pole using an extrapolation based on data between 23 and

40 degrees of the pole (Linker et al. 2013). In addition, we also developed an alternative VSM CR2098

synoptic map (VSM synoptic extrapolated polar fields in Table 1) using pole fitting. After interpolation,

all maps were flux-balanced to enforce ∇·B = 0 using a multiplicative factor and then smoothed to match

the final grid resolution. The smoothing was done by advancing a standard diffusion operator over the

sphere such that the final diffused length scale was approximately the equatorial cell size. To safely ensure

smoothness near the pole (within 30 degrees), the diffusion coefficient slowly increases by a factor of two

at the pole.

All of the maps used in this paper, as well as the results shown in all of the figures, will be available

upon publication at http://www.predsci.com/open flux problem.
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Fig. 1.— (a) Synchronic EUV map for July 8, 2010 at 18:00, compiled from STEREO A & B EUVI

195Å and SDO AIA 193Å images. The magenta lines show the coronal hole detections. The sector near

270◦, indicated by the blue swath, was not observed. (b) The detected coronal holes (black regions) from

(a). (c) Open field regions (black) from a thermodynamic MHD model with boundary derived from an

ADAPT map. The unobserved region is indicated with cyan dashed lines. (d) OMNI in situ measurements

of Br for 80 days surrounding the time period of interest. A 1-hour running average of |Br| (black line),

1-day running average (red), 7-day (green) and Carrington rotation average (blue) are shown.
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Fig. 2.— Open field regions (black) for four PFSS models using the NSO VSM CR2098 map for the

boundary condition. (a) RSS = 2.5RS . (b) RSS = 2.0RS . (c) RSS = 1.4RS . (d) RSS = 1.3RS .
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(c)
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(d)

Fig. 3.— (a) Diachronic EUV map for CR2098 (6/16-7/13/2010), constructed predominantly from AIA

193Å images, plotted as sine(latitude) vs. longitude (b) Corresponding CH detections for (a), plotted in

the same format. (c) Br at the photosphere derived from the LOS field, for data from the NSO VSM for

this Carrington rotation. (d) The magnetic field in the CH, obtained by overlaying (b) with (c).
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Fig. 4.— (a) Simulated AIA 193Å map from the thermodynamic MHD model using the NSO VSM CR2098

map for the boundary condition. This map is used to test the CH detection method. (b) The CHs (black

regions) identified when the CH detection method is applied to the simulated data. (c) The magnetic field

in the CH, obtained by overlaying (b) with the NSO VSM map (as was done in Figure 3). (d) The true

open field regions for the model. (e) The true open magnetic field in the model.


