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Predictability of threshold exceedances in dynamical systems

Tamás Bódai∗

Meteorological Institute, University of Hamburg, Grindelberg 5, 20144 Hamburg, Germany

Abstract

In a low-order model of the general circulation of the atmosphere we examine the predictability
of threshold exceedance events of certain observables. The likelihood of such binary events – the
cornerstone also for the categoric (as opposed to probabilistic) prediction of threshold exceedences
– is established from long time series of one or more observables of the same system. The predic-
tion skill is measured by a summary index of the ROC curve that relates the hit- and false alarm
rates. Our results for the examined systems suggest that exceedances of higher thresholds are more
predictable; or in other words: rare large magnitude, i.e., extreme, events are more predictable than
frequent typical events. We find this to hold provided that the bin size for binning time series data
is optimized, but not necessarily otherwise. This can be viewed as a confirmation of a counter-
intuitive (and seemingly contrafactual) statement that was previously formulated for more simple
autoregressive stochastic processes. However, we argue that for dynamical systems in general it
may be typical only, but not universally true. We argue that when there is a sufficient amount of
data depending on the precision of observation, the skill of a class of data-driven categoric predic-
tions of threshold exceedences approximates the skill of the analogous model-driven prediction,
assuming strictly no model errors. Therefore, stronger extremes in terms of higher threshold levels
are more predictable both in case of data- and model-driven prediction. Furthermore, we show that
a quantity commonly regarded as a measure of predictability, the finite-time maximal Lyapunov
exponent, does not correspond directly to the ROC-based measure of prediction skill when they
are viewed as functions of the prediction lead time and the threshold level. This points to the fact
that even if the Lyapunov exponent as an intrinsic property of the system, measuring the instability
of trajectories, determines predictability, it does that in a nontrivial manner.

Keywords: Extreme event, Data-driven prediction, Precursory structure, Prediction skill, ROC
curve, Finite-time Lyapunov exponent

1. Introduction

Extreme events have fundamental impor-
tance to life, as they are often associated with
survival and losses. – Extreme events to do

∗tamas.bodai@uni-hamburg.de, +49 40 42838 9205

with gains or amusement receive far less at-
tention in general, dissociated from individ-
ual events. Rare and large magnitude events
of interest arise in physical, technological, so-
cial, and other systems [1]. The classical the-
ory of extremes in uncorrelated sequences (or,
in sequences in which the auto-correlation is
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decaying sufficiently fast) [2, 3, 4] has a sta-
tistical orientation; it is not- and cannot be
concerned with prediction or with uncovering
mechanisms that can produce extremes; but it
is rather concerned with e.g. expected return
times, which can be useful in designing struc-
tures of a certain required life time, such as sea
walls [5].

Since Newton revolutionized science, it has
become a paradigm that predictions should
be based on validated models. These models
describing fluctuating phenomena often take
the form of a system of differential equations,
also referred to as a dynamical system. Since
the work of Lorenz it has become clear that
even though some phenomena can be modeled
quite accurately, they can be inherently un-
predictable because of their extreme sensitiv-
ity to initial conditions [6]. Such systems are
called chaotic, characterized by positive Lya-
punov exponents. This imposes a time hori-
zon on predictions; beyond that only statisti-
cal properties can be robustly estimated, which
is what classical extreme value theory is con-
cerned with. In contrast with that, in our anal-
ysis we consider prediction lead times shorter
than the decorrelation time in a time series.

In the context of model-based or model-
driven predictions (MDP) equivalent with ini-
tial value problems for deterministic differen-
tial equations, like e.g. a weather forecast, one
can often read that extremes are much harder
to predict. Unfortunately a systematic study
of the dependence of some appropriate predic-
tion skill score – or a measure of predictability
in a more general sense – of any model on the
magnitude of events is still lacking. Inaccu-
racy of the model may be an important factor
leading to such a dependence of its prediction
skill on the event magnitude, beside details of
its chaotic nature. In contrast, in pure data-
driven prediction (DDP), model errors are not
present, as the basis of the prediction (of any

kind) does not involve a model in the form
of equations or an algorithm, only observa-
tional/measurement data. Instead, beyond er-
rors in measuring the present conditions (as
with initial conditions for MDP), the predic-
tion is compromised by the finite size of the
data set. That is, the said virtue of DDP can
be exploited – when employing it in its pure
form – only if enough and good quality data
(with a high precision of observation and high
signal-to-noise ratio) is available [7].

One might expect that the slogan that ‘ex-
tremes in comparison with more moderate
events are harder to predict’ extends to DDP.
In fact, just the opposite has been reported
by Hallerberg and Kantz [8] for simple au-
toregressive processes at least, indifferently to
whether the probability distribution is expo-
nentially decaying or according to a power-
law, and also for some observational data [9]:
stronger events are easier to predict. This
counter-intuitive statement is based on a mea-
sure of prediction skill that derives from
the so-called receiver operating characteristic
(ROC) curve [10, 11] that takes into account
the true positives – meaning that an event is
correctly predicted to happen – as well as the
false negatives. Concerning rare events, such
a measure of prediction skill is regarded [12]
more meaningful than other proper [13] so-
called skill scores for probabilistic predictions
like the Brier or Ignorance scores. This is so,
because the ROC statistics has been viewed to
not depend on the relative frequency of events
(only that the accurate evaluation of the statis-
tics requires a sufficient number of events).
The latter characteristic is thought to allow for
the comparison of the ROC-predictability of
events between two situations where the events
have different frequency [12].

Whether the above statement [8] can be
maintained in case of more complex processes
has been an open question so far – addressed
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but not settled with a consensus. Recently
two studies [14, 15] have been published con-
cerning the predictability of extreme events
in dynamical systems with seemingly contra-
dictory results as to whether stronger events
are more predictable. Franzke [14] applied
the method set out in [10] to predict extreme
threshold exceedances in a systematically de-
rived stochastic dynamical system represent-
ing climate variability by the resolved (slow)
variable(s) and weather variability by noise in
place of the unresolved (fast) variable(s) [16].
He maintained the earlier statement [8] in this
case, measuring the prediction skill by the
ROC statistics, but on the basis of consider-
ing only two high threshold values. On the
other hand, Sterk et al. [15] considered a num-
ber of dynamical systems of various complex-
ity, and various physical observables. They
evaluated finite-time maximal Lyapunov ex-
ponents (FTMLE) of trajectories that lead to
extremes, and concluded that no generally ap-
plicable statements can be made, but the pre-
dictability of extremes depends on the system
(and so the attractor geometry) and on the ob-
servable in question, as well as the prediction
lead time. We emphasize that in their study the
authors did not take model errors into account.

To summarize the essence of the above re-
view, we can list three different views encoun-
tered in the literature regarding the predictabil-
ity of extremes:

(1) Stronger extremes are better predictable.

(2) Stronger extremes are less predictable.

(3) Stronger extremes can be better or less
predictable depending on various factors.

Without giving details, e.g. assumptions of
these statements, they seem to be contradic-
tory to each other. On this basis we set out the
following objectives for the present paper:

(i) Keeping to the assumption of (1), we
evaluate the predictability of peak-over-
threshold events measured by a ROC-
based quantity, using time series data
of finite length produced by the Lorenz-
84 model [17]. With an attention to
(3), we evaluate (i.a) the dependence
of predictability itself on various fac-
tors, and also what is more relevant
to the question: (i.b) the magnitude-
dependence of predictability – whether
increasing/decreasing or nonmonotonic –
depending on some of those same factors.

(ii) We argue for an analogy between a cer-
tain class of DDPs and MDP, and that
the latter is usually understood as some-
thing that below we will refer to as an
on-demand MDP, in which case any in-
put data belongs to a single time instant.
We believe this is an assumption of (2).
This objective (ii) is to reconcile (1) and
(2), suggesting that (2) can be true when
model errors are present, even if the pre-
dictability is measured by the same ROC-
based quantity as that assumed by (1).

(iii) For on-demand MDP and the analogous
DDP where the time of input is arbi-
trary, we will be able to carry out an
assessment of the lead time-dependence
of the predictability of what we will
call threshold-exceedance-in-an-interval
events in a straightforward manner. This
will turn out to have a bearing on the
magnitude-dependence of predictability.
This objective (iii) together with (i.b) are
to revisit point (1), possibly extending
that point from stochastic processes to dy-
namical systems.

(iv) However, to show that (3) does not nec-
essarily contradict (1), we recall that (3)
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was stated on the basis of measuring pre-
dictability by FTMLEs. This also as-
sumes an arbitrary input time on-demand
MDP or analogous DDP. Accordingly,
in the autonomous L84 we calculate the
FTMLEs of trajectories that lead to ex-
tremes, and compare their average to the
ROC-based measure of prediction skill –
looking for any qualitative mismatch.

To motivate our top objective (i) and (iii)
we remark that DDP is gaining increasing
prominence nowadays given that data is rela-
tively much more easily accessible than mod-
els. This is certainly the case with geophysical
phenomena that we are primarily interested in,
such as meteorology. Furthermore, perform-
ing predictions based on data can be far less
costly than those based on simulating com-
plex models, while the skill may not be much
worse [18].

Next we recapitulate the methodology of the
applied prediction scheme and the used ROC-
based measure of prediction skill. Lorenz’s
1984 model of global atmospheric circula-
tion, simulated to produce time series data for
the purpose of assessing the predictability of
threshold exeedance events, is also briefly de-
scribed. Subsequently, in Sec. 3, we present
our results on the dependence of predictabil-
ity on several factors, such as: the makeup
of the so-called precursory structure – made
use for a prediction – in terms of the observ-
ables involved, the prediction lead time, and
the magnitude of extreme events. These re-
sults pertaining to objectives (i) and (iii) are
summarized in a compact table format in Sec.
4 and discussed subsequently regarding objec-
tives (ii) and (iv). To close our presentation we
pose a few open questions for future research
into practical aspects of the prediction of ex-
tremes, which might potentially have theoreti-
cal ramifications. We provide in Appendices A

and B, respectively, the description of an algo-
rithm for finding the maximum of a function of
one variable and a definition of the finite-time
Lyapunov exponents.

2. Methodology

2.1. Prediction of threshold exceedances by
precursors

Our aim is to predict large excursions of
some (scalar) physical observable x, exceed-
ing a chosen threshold level x∗, before that ex-
ceedance happens. Figure 1 pictures the situa-
tion as the observable evolves continuously in
time, x = x(t), t ∈ R, occasionally exceeding
the threshold. We intend to examine situations
when x(t) is generated by a process that can
be described by an ordinary or stochastic dif-
ferential equation, examples of which for our
case study will be briefly described in Sec. 2.2.
When one does not have a validated model,
only the time series x(t), one can still perform
DDP; when the opposite is the case, one can
do MDP.

2.1.1. Formal setting
The following methodological description

regarding the prediction task closely fol-
lows [10]. It applies to DDP as well as MDP,
on which we comment in the end of this sec-
tion. We introduce a discrete-time binary
event variable:

χn =

{
1, x(tn) > x∗
0, x(tn) < x∗

(1)

where the times tn, n ∈ Z, belong to consec-
utive apexes, that is, local maxima or peaks,
of the continuous evolution of x for consecu-
tive values of n, and in general they are not
equally ‘spaced’. Thereby the continuous-time
evolution is discretized. (This can be viewed
as a restriction on generality, and it will be re-
laxed further below.) This approach is often
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Figure 1: Illustration of the prediction problem: given a continuous-time chaotic time series x(t) featuring apexes that
every so often overshoot a relatively high threshold x∗ (straight horizontal line), we want to predict these overshoots,
i.e., extreme events, at the time, say, of the immediately preceding apex. The time series shown was in fact generated
by simulating the Lorenz 84 model (9) with F = 8, and we plotted the first component of the solution x. The time
between two subsequent apexes above the threshold is called the return time tr of extremes.

referred to as the peak-over-threshold (POT)
approach. The prediction is based on a like-
wise discrete-time precursory structure xn ∈
RM of size M , whose different members, ob-
servables desirably related to x, may belong
to different times, e.g. tn−dm , preceding the
current time tn, specified by delays dm ∈ Z,
m = 1, . . . ,M . We call tn − tn−min(dm) > 0
the prediction lead time. Our binary prediction
for χn at tn−min(dm) is defined as:

χ̂n =

{
1, L(xn) > L∗
0, L(xn) < L∗

(2)

based on the likelihood function:

L(x) = Pχ|x(χ = 1,x) = P(x)/p(x). (3)

In the above P(x) = px|χ(x, χ = 1)Pχ(χ =
1) is the posterior probability density function
(PDF) of x, and p(x) is the ‘process’ PDF,
i.e., the basic PDF generated by the consid-
ered process1. Refer to the appendix of [19]

1The probability density px|χ(x, χ = 1) of x con-
ditioned on some realized value of χ is usually denoted

for an integral formulation of e.g. P(x) which
applies the Heaviside step function as a filter.
Note that Eq. (3) expresses Bayes’ theorem
relating the conditional probabilities: the like-
lihood and the posterior probability. Our pre-
diction χ̂n is controlled by a threshold L∗ ∈
[min(L),max(L)] of stringency on L. Note
that an actual choice is meant to be made as to
the applied value of L∗ in practice, for which
reason this kind of prediction is not probabilis-
tic, but we call it a categoric prediction.

Depending on L∗, the rate of true positives,
or the hit rate, i.e., the frequency of making
correct predictions, yields as follows:

H(L∗) =

∫
RM dVxP(x)H(L(x)− L∗)∫

RM dVxP(x)
. (4)

In the above dVx is a volume element in the
precursory space, and H(·) is the Heaviside

more simply as p(x|χ = 1), but we want to emphasize
that we consider a function of two variables. Also, it
would create ambiguity if the symbol p without a sub-
script was to be reused to denote another function, and
we prefer to reserve p for the process PDF.
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step function. Another measure of the over-
all goodness or skill of prediction is the false
alarm rate:

F (L∗) =

∫
RM dVx[p(x)− P(x)]H(L(x)− L∗)∫

RM dVx[p(x)− P(x)]
.

(5)
Clearly, one can achieve a very good hit rate
by reducing the stringency, but in fact [10] al-
ways at the price of an increased false alarm
rate. Figure 2 shows an example of how the
two measures of skill depend on the strin-
gency in terms of a parametric plot or curve
{(F (L∗), H(L∗))}, which is referred to as
the receiver operating characteristic (ROC)
curve. With the extremal choices, L∗ = 0 and
1, we have (F = 1, H = 1) and (F = 0, H =
0), respectively, i.e., the ROC curve stretches
from corner to corner. It is a diagonal straight
line with no prediction skill at all (over ran-
dom predictions χ̂ with P(χ̂ = 1) = L∗), and
situated above the diagonal with any skill. In
the same diagram another ROC curve is also
shown, to be referred to as P-ROC curve, ob-
tained by writing within the scope of the Heav-
iside function in the definitions (4), (5), and
also in (2), P instead of L and P∗ instead of
L∗. Note that P∗ ∈ [min(P),max(P)]. This
is based on the intuitive strategy, expressed
by the conditional probability px|χ(x, χ = 1),
that one looks at what happens before extreme
events. From Eq. (3) one can see that fol-
lowing this strategy the posterior PDF is just
the likelihood that such states lead to an ex-
treme event weighed by the relative frequency
of those states, whereby the ‘predictive po-
tential of relatively infrequent states is sup-
pressed’. It can be shown [10, 9] that as a
result of this the P-ROC curve will be al-
ways wholly underneath the L-ROC curve,
making this intuitive strategy inferior. Fur-
thermore, the L-ROC curve is always con-
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Figure 2: Example L- (above, blue) and P-ROC curves
(below, green) corresponding to the scenario of the au-
tonomous L84 in Fig. 1 when xn = xn−1 and x∗ = 1.8.
The distributions that these ROC curves derive from can
be seen in Fig. 3 drawn by the thin black line.

cave [11], while the P-ROC curve is not nec-
essarily concave. Besides, in accordance with
the above statement on the trade-off situa-
tion, FL(L∗), HL(L∗), FP(P∗), HP(P∗) are
all monotonic functions, and, therefore, so are
e.g. HL(FL) and HP(FP).

The ideal situation when extreme events
(χ = 1) and nonevents (χ = 0) can be pre-
dicted with certainty (χ̂ = χ) is represented
by the (F = 0, H = 1) corner in the ROC di-
agram. In this case no choice has to be made
on the applied stringency L∗. Clearly this is
possible only in case of the deterministic but
not the stochastic version of a model, and there
are further factors – to be demonstrated in Sec.
3 – that can compromise the prediction skill.
In the nonideal situation an optimal L∗ is to
be chosen. A unique optimum exists only in
terms of a single-objective optimization prob-
lem, defined by a scalar-valued cost function.
However, in our case the minimization of the
false alarm rate and the maximization of the
hit rate are both ‘valid’ objectives. It takes

6



a specific application to be possibly able to
define a scalar-valued cost function C(F,H).
For our general assessment of predictability
we choose to consider the intuitive measure:

D = min
L

(
√
F 2 + (H − 1)2), (6)

the distance of the ROC curve from the ideal
corner. With no prediction skill at all: D =√

2/2. Other summary statistics for the ROC
curve have also been defined, such as the area
under the curve [10], or the slope H ′F (F =
0) [8]. Unlike these two, the distanceD can be
associated to actual predictions specified by an
actual choice for L∗. We note that it is not triv-
ial to interpret what the comparison of D with
a proper skill score of probabilistic prediction
means.

2.1.2. Numerical issues
Perhaps the most obvious factor that com-

promises the prediction skill in the data-driven
framework is the finite size N of the data
set: {xn,xn}, n = 1, . . . , N . The distribu-
tions p(x), P(x), L(x) will be approximated
in our study by histograms {pb}, {Pb}, {Lb},
b = 1, . . . , B, of a certain uniform bin size
∆x ∈ RM ; different values of b can be as-
signed to the different bins by a sensible al-
gorithm. Let us denote by ∆x the unique lin-
ear bin size applied in all M dimensions af-
ter suitable nondimensionalization. Note that
in the coarse-grained situation {Lb} derives
from {pb} and {Pb} much the same way as
with the continuous functions according to Eq.
(3). With the discrete formulation of Eqs.
(4) and (5), accordingly, the ROC curve turns
into (the graph of) a staircase (function), given
by a set of discrete data points: {(Hb, Fb)},
b = 1, . . . , B, belonging to stringency levels
{L∗,b} = {Lb}:

Hb =

∑B
b′=1Pb′H(Lb′ − Lb)∑B

b′=1Pb′
(7)

Fb =

∑B
b′=1(pb′ − Pb′)H(Lb′ − Lb)

N −
∑B

b′=1Pb′
(8)

Note that in the above the histograms {pb} and
{Pb} do not need to be normalized; and e.g.
{Lb} and {Lb′}, b, b′ = 1, . . . , B, denote the
same set. Note also that if Lb does not-, then
neither do Hb and Fb change monotonically
with increasing b.

The above estimation of the measures of
skill is not conservative2, however, which is
to do with small histogram counts and associ-
ated statistical errors. An approach to fix this
problem is the following. The available data
is divided equally into ‘training’ and ‘evalu-
ation’ data sets. Then, the conservative esti-
mates are defined again by Eqs. (7) and (8),
but the different terms appearing in them are
associated with different data sets: {Lb} is de-
rived from the training data set, and {pb} and
{Pb} are derived from the evaluation data set.
Note that the latter requires the use of the same
grid forming the bins in case of the training
and evaluation data sets.

A further issue to do with small bin sizes
when many bins contain a single data point
is that the ‘ROC staircase’ can have an ex-
cessively large last step. This is so, because
bins that contain single data points tend to
have empty counterparts mutually between the
‘training’ and ‘evaluation’ data sets. This way
D >

√
2/2 can even be realized.

2By ‘conservative estimation of the skill’ we mean
that an overestimation of skill (e.g. D estimated to be
smaller than the true value) is excessively unlikely. This
entails an appropriate sign of the bias of the estimator,
and a standard deviation of the estimator much smaller
than the modulus of the bias.
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Too large bin sizes would of course also de-
teriorate the prediction skill. Therefore, there
should be an optimal bin size yielding (locally)
minimal D. Our numerical experience shows
that there is always, for any given prediction
lead time or threshold level x∗, a unique (glob-
ally) optimal uniform bin size defining the reg-
ular grid.

2.1.3. Relationship of data- and model-driven
predictability

We note finally that the above description of
evaluating predictability applies clearly to the
case of data-driven prediction. However, eval-
uating the model-driven predictability of bi-
nary exceedance events measured by the same
ROC-based measure of prediction skill can be
done in exactly the same way: by simulating
long trajectories of the model and by binning
the resulting time series data. This is more ob-
viously true when MDP is thought of in the
sense that the complete PDFs, p(x), P(x),
L(x), or rather the histograms, {pb}, {Pb},
{Lb}, are established preliminary to making
any predictions. We will refer to such an
MDP as an ‘archival’ MDP. Note that in this
sense any DDP is archival. The archival MDP
and the corresponding DDP differ only in that
in principle unlimited data is available to es-
tablish the PDFs for MDP. But MDP can be
thought of also in the sense that the model is
only simulated ‘on-demand’, to produce an en-
semble forecast from which the likelihood of a
threshold exceedance can be established. The
case of on-demand MDP corresponds to im-
posing a constraint on archival MDP or DDP,
namely that the components of the precursory
structure x of the archival MDP or DDP be-
long to the same time instant (dm = dm′ ,
m,m′ ∈ [1, ...,M ]), x thereby representing
the initial conditions for the on-demand MDP.
Note that it is allowed that x excludes some
variables that determine the considered phe-

nomenon (M < d, d being the dimension of
the phase space, as detailed in Appendix B);
the excluded variables can be initialized arbi-
trarily, or possibly as a random sample from a
probability distribution. We refer here to the
practice of stochastic parametrization of unre-
solved processes in weather forecast models.

As for the definition of the binary event in
case of on-demand MDP the following can
also be taken: in an event a chosen observ-
able exceeds a set threshold in a chosen fu-
ture time interval, defined by a leading win-
dow of width ∆T at a lead time T ahead of
the present time. Let us call this an event of
threshold exceedance in an interval (TEI event
in short). In contrast to considering the thresh-
old exceedance of apexes of the time evolu-
tion, i.e., POT events, here T can be set arbi-
trarily, not restricted to discrete values; accord-
ingly, χ(t) and x(t) are defined in continuous-
time. We will take this approach when assess-
ing predictability with respect to the prediction
lead time in Sec. 3.2.1.

The bin size ∆x for a DDP would in this
case correspond roughly to the precision δx of
measuring initial conditions for a MDP. (The
difference is that ∆x corresponds to averag-
ing of the distributions, e.g. L(x), over pre-
defined fixed bins, whereas δx corresponds
to a smoothing of the distribution: L̃(x̃) =∫
dxL(x)pe(x̃ − x), where δx can be thought

of as the standard deviation of the measure-
ment error distribution pe(x̃− x).) In order to
well-approximate the skill of MDP for a given
measurement precision, the time series has to
be long enough so that the likelihood for all
bins, even those which cover a relatively small
portion of the invariant measure of the attrac-
tor, is well-approximated on the first place.
That is, the ratio of the prediction skill of DDP
and that of MDP (with no model errors), which
is always smaller than unity, depends onN∆x.
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2.2. The model climate

We carry out the assessment of the pre-
dictability of extremes in a model of geophys-
ical relevance. It constitutes a nonlinear dy-
namical system featuring complex chaotic de-
terministic dynamics. Yet, it is simple enough
– involving just three scalar prognostic vari-
ables – to yield time series data relatively
inexpensively, and to allow for a more tan-
gible demonstration of some aspects of pre-
dictability. Our choice of a model, Lorenz’s
model of global atmospheric circulation (L84)
with standard parameter settings, reads as fol-
lows [17]:

ẋ = −y2 − z2 − x/4 + F/4,

ẏ = xy − 4xz − y + 1,

ż = xz + 4xy − z.
(9)

The model describes – in a very coarse man-
ner [20] – the meridional heat transport via
eddies, represented by principal mode ampli-
tudes y and z, given rise by the baroclininc
instability of the midlatitude jet, represented
by its average speed x. The instability oc-
curs for appropriate conditions defined by the
large scale meridional temperature gradient,
represented in the model by F , due to dif-
ferential heating between the equator and the
poles. The equations are nondimensionalized
with respect to time by the average damping
time of eddies, being about 5 days. This model
enjoys popularity in teaching [21, 6] as well as
theoretically oriented weather and climate re-
search [22, 23, 24, 25].

We will examine the autonomous dynam-
ics in perpetual winter conditions realized by,
say, F = 8, since this gives rise to chaotic
dynamics, which is nontrivial from the point
of view of predictability. Let us label the au-
tonomous dynamics/model by M1, as a syn-
onym of (9), when the forcing takes the above
indicated form. In order to assess the de-

pendence of predictability on intrinsic system
properties, according to objective (i.a), we will
consider also nonautonomous dynamics. It
is achieved by introducing some driving or
time-dependent forcing to the L84 system in
the form of F (t) = F0 + Ax̃(t), where the
fluctuating process (in a mathematical sense)
x̃(t) can be seen as an unresolved, i.e., physi-
cally not modeled, (physical) process. How-
ever, from the point of view of data-driven
predictability, as described in Sec. 2.1, au-
tonomous and nonautonomous systems are not
distinguished – the driving mimics additional
degrees of freedom of the system. We can rep-
resent additional degrees of freedom of com-
parable time scales to that of the resolved dy-
namics, τL84 ≈ 4, by a continuous smooth
chaotic process, such as the first component
of the classical Lorenz equations (L63): { ˙̃x =
τ−1σ(ỹ − x̃), ˙̃y = τ−1(ρx̃ − ỹ − x̃z̃), ˙̃z =
τ−1(−βz̃ + x̃ỹ)}, with an appropriate choice
for the time-scale-tuning parameter τ as fol-
lows. With the common choice for a chaotic
solution of the original (τ = 1) equations:
σ = 10, ρ = 28, β = 8/3, the time scale
of L63 is τL63 = 0.7. The latter is defined
by the crossover frequency in the power spec-
trum. Setting some other value for the time-
scale-tuning parameter we can achieve a new
time scale: ττL63. Therefore, a comparable
time scale can be achieved by τ = τL84/τL63.
However, it is not ττL63 that we want to set
equal to τL84. But rather, we regard the time
scale of the driving comparable or approxi-
mately equal to the intrinsic time scale when
L63 exerts maximal response of the driven L84
in terms of extremal behavior, measured e.g.
by either the kurtosis or a high quantile of
the distribution of x, as found in [24]. We
can call this a kind of resonance, and define
a time scale τ ′ such that it is unity in reso-
nance. Based on our finding reported in [24]
τ ′ ≈ 0.4τ . Note that τ ′ ≈ 2.3 > 1 when
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ττL63 = τL84. Beside the resonant τ ′ = 1 sce-
nario (M2) we will also consider one when the
driving is much faster than the model climate:
τ ′ = 1/4 (M3). Assuming an even larger time
scale separation between the resolved and un-
resolved processes one can apply an uncorre-
lated white noise (WN) driving: x̃(t) = ξ,∫ t
−∞ dtξ = Wt, where Wt is a Wiener process.

We label the resulting model by M4. We use
a coupling strength A = 0.025 in case of the
L63-driving, and an appropriate choice of A
in case of the WN-driving that gives the same
variance of the driving.

3. Results

In this paper we focus primarily on the pre-
dictability of threshold exceedances of the first
component x of the various L84 models M1-4,
whose symbol happens to coincide with that
of our generic observable x. We will consider
one other observable, and if it is not explicitly
said, we mean to speak about the main observ-
able x. Also, unless explicitly otherwise said,
figures for D are based on the L-ROC curve.

3.1. Predictability of peak-over-threshold
events

Histograms in this paper are constructed
from sets of about 5× 106 discrete data points
each, resulting from appropriately long sim-
ulations. For the following results we simu-
late the autonomous and L63-driven L84 (M1-
3) using Matlab’s ode45, which integrator
chooses the time step size h adaptively. This
is to make use of the event-handling capa-
bility of ode45 for the purpose of locating
smooth apexes of x(t). We employ the explicit
order 1.5 strong scheme described in [24] to
integrate M4 the WN-driven L84 with fixed
h = 0.01.

3.1.1. Dependence on the makeup of the pre-
cursory structure and on intrinsic prop-
erties the model

The most simple case of a discrete-time pre-
cursory structure is that of the previous peak
value of the observable whose threshold ex-
ceedances are to be predicted: xn = xn−1. The
two panels of Fig. 3 show the posterior PDF
and the likelihood function, respectively, rep-
resented by adequate histograms. The cases of
the autonomous, i.e., undriven, L84 (M1), and
the L63-driven L84 (M3) are shown in one di-
agram side-by-side. As expected, the driving
smooths out features of both distributions seen
in Fig. 3, however, contrary to expectations:
e.g. the likelihood (b) can be even enhanced by
driving (see for example 1.2 < xn−1 < 1.4).
Furthermore we point out that the relationship
given by Eq. (3) is manifested in the more
broad structures of the distribution of the like-
lihood as compared to that of the posterior
probability density. This is so because P(x)
tends to be peaked where p(x) is peaked. As
already mentioned in Sec. 2.1, this broadening
ought to be reflected in the relative positions
of the respective ROC curves. In fact the pair
of ROC curves in Fig. 2 belong to the present
prediction scenario considering M1.

It is an intuitive expectation that the pre-
dictability can be improved by relying on more
information by means of extending the precur-
sory structure. The most simple step in this di-
rection – in the realistic context when only one
variable is available or practical to observe –
is that beside the previous data point we mon-
itor also the one just before that, i.e., xn =
(xn−1, xn−2). The distributions for the same
scenarios as considered before in Fig. 3 are
displayed in Fig. 4. The bivariate distributions
are visualized by color plots; and beside the
distributions, on the left we also display scat-
ter plots of data points (but for a better visibil-
ity of features we plot fewer points than those
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Figure 3: Distributions of the likelihood L and posterior probability density P when xn = xn−1 and x∗ = 1.8.
The solid thin black line and thick gray line correspond, respectively, to models M1 and M3 defined in Sec. 2.2.
Corresponding ROC curves in case of M1 are shown in Fig. 2.

that the histograms are constructed from). In
the case of the autonomous L84 (M1) the scat-
ter plot [Fig. 4 (a)] reveals a fractal pattern
with a distinctive filamentary structure. This
could lead one to think that there is a one-to-
one or unique relationship between subsequent
pairs of (xn−1, xn−2), which is also called a
mapping or map [6]. This can be confirmed
by looking at the distribution of the likeli-
hood [Fig. 4 (b)], which takes on the maxi-
mum value of unity wherever the scatter plot
exhibits fractality. – Because of the unique-
ness, we have a deterministic rule to predict
the next value, and so we can tell with certainty
whether it will exceed the threshold. In regions
where a lack of clear fractality is observed,
e.g. around (xn−1, xn−2) = (1.4, 1.4), L < 1
consistently. The exhibited pattern of the scat-
ter plot can give the intuition that the lack of
uniqueness is a result of ‘looking at’ a curved
surface living in 3D ‘from a poor angle’ so that
the 2D view of some parts of the surface is ob-
structed by other parts of it. In other words,

the surface looks folded. In fact, Takens’ em-
bedding theorem [26] states that an attractor of
Hausdorff dimension D0 can (always) be em-
bedded by M > 2D0 number of delay vari-
ables. For us this means an unfolded appear-
ance. In our case D0 ≈ 1.6 [24], and so for
uniqueness we need maximum M = 4. This
does not ‘encourage’ us that we can have an
unobstructed 2D view, although neither does it
say that we cannot have. In fact, in our case
we can have such a view, to be described next.

Let us bear in mind that the discrete xn data
belong to apexes of the continuous x(t). In
these points ẋ = 0. We can use this fact in con-
junction with the first component of the equa-
tions of L84 (9) to determine that the apexes
are situated on the surface: y2 + z2 = −x/4 +
aF . This can be viewed as a Poincaré surface
of intersection that defines a slice of the attrac-
tor – the Poincaré section [6]. For any fixed
x we recognize the equation of a circle. That
is, the surface itself is locally conical, which
approximation applies well to the chaotic at-

11



tractor with F = 8 extending between about
[-0.5,2.5] wrt. x, as seen in Fig. 1. Such a sur-
face can be rectified on the plane spanned by
the azimuthal angle

φ = arctan(y/z), (10)

periodic in e.g. [0, 2π], and x. Therefore, there
exists a unique mapping between subsequent
pairs of (xn, φn). This allows for an unfolded
view of the Poincaré section, and so for the
prediction of the next apex with certainty. Ac-
cordingly, as seen in Fig. 4 (g), the scatter plot
exhibits fractality everywhere, and L = 1 (or
0) also everywhere [Fig. 4 (h)]. This certainty
is compromised in the numerics only by the
effect of coarse-graining, when {Lb} may be
less than unity due to the finite data set size.

By introducing a driving as defined in Sec.
2.2, the dimensionality of the problem in-
creases. Therefore, the same precursory struc-
ture of only two variables is inevitably insuffi-
cient for predictions with certainty. The exam-
ple of M3 shows that the scatter plot becomes
area-filling [Fig. 4 (d) and (j)], and we will
have distributions of the likelihood that take
on all values between 0 and 1 [Fig. 4 (e) and
(k)]. However, as long as the forcing strength
is moderate, the new features tend to develop
through a smearing of the original ones. Evi-
dently, this applies partially in our case.

ROC curves that derive from the distribu-
tions seen in Figs. 3 and 4 are shown in
Fig. 5. L-ROC curves are always above the
P-ROC curves, and the corresponding ROC
curves for undriven and driven versions of L84
have the same relation consistently. In particu-
lar, for the scenario of the undriven L84 when
xn = (xn−1, φn−1), the ROC curves approach
very near the ideal corner of certainty.

For the various scenarios considered the dis-
tances D (6) from the corner, as a summary
measure, is provided in Table 1. Besides the

scenarios treated in Fig. 5, data is provided
in the table also for several other scenarios as
follows. First off, we used white noise driv-
ing too. Unexpectedly, the predictability with
a single delay variable, xn = xn−1, is better for
this driven case than the undriven one. This is
unchanged even if we apply a smoothing to the
time series. Note that x of the WN-driven L84
(M4) is a red noise-like nonsmooth process.
An improvement of predictability by smooth-
ing is achieved only with larger precursory
structures (compare the values between round
brackets with the numbers just above each in
the said table). The effect of improved pre-
dictability having introduced a driving could
be due to a stabilization of the trajectory by
noise. However, instead of x, considering an-
other observable, namely, the total cyclonic ac-
tivity in the model,

r =
√
y2 + z2,

we do not observe the same effect; see Table
2, and note that the process of r, contrary to
that of x, is smooth. Therefore, the more likely
cause of the unexpected effect is that the ge-
ometry of the attractor is altered by noise in a
favorable manner, when the Poincaré section
‘looks’ less folded ‘in view of x’ (but not r).

Beside a fast (τ ′ = 1/4) L63-driving (M3)
we also considered a slower one with match-
ing time scales of driving and model climate,
i.e., τ ′ = 1 (M2). The rationale for this is that
we expect that the delay variables, with delay
times determined dominantly by the main sys-
tem, would be able to pick up more informa-
tion on the driving of a longer decorrelation
time. However, while this mechanism should
be at work, an improvement of predictability
is not registered, but on the contrary. This is
so also when using one more delay variable:
xn = (xn−1, xn−2, xn−3), or when considering
observable r. The likely cause of this is that, as
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Figure 4: Scatter plots (left) and distributions of the likelihood L (middle) and posterior probability density P (right).
In each diagram the color scale ranges from dark blue for 0 to dark red for the maximal density value, which is unity
for L for the presented scenarios, but various different values for P . We used x∗ = 1.8. The first and third (second
and fourth) row concern M1 (M3). The following correspondence between the labeled panels above and scenarios
labeled by boxed numbers in Table 1 and Fig. 5 stand, respectively: (b) 7 (c) 8 (e) 5 (f) 6 (h) 11 (i) 12 (k) 9 (l) 10.
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Figure 5: L- and P-ROC curves for scenarios speci-
fied in Table 1 marked with the corresponding numbers
framed in boxes.

a counter-effect, the trajectory is destabilized
by the driving more so with τ ′ = 1 than 1/4.

Beside – but not independent of – the issue
of the choice of the observables to make up the
precursory structure, we can make an interest-
ing observation to do with the size of the pre-
cursory structure too. Extending the two delay
variables with a third one (all of the same type)
did improve the predictability. However, it was
still not as good as with the shorter precursory
structure involving the azimuthal angle φ. This
is consistent with Takens’ embedding theorem,
as mentioned earlier.

3.1.2. Dependence on the event-magnitude
We evaluate now the dependence of pre-

dictability on the event-magnitude to achieve
our objective (i.b). That is, we construct

D(x∗), with computations for an array of sam-
ple points of x∗. The numerical value ofD(x∗)
does vary with the bin size ∆x. This varia-
tion has a single minimum in all cases checked
(and so we assume that this is always the case),
but these are different ∆xopt values for differ-
ent values of x∗. We intend to construct the
D(x∗) which is optimized for all values of x∗,
and this is what we regard as the ‘dependence
of predictability on the event-magnitude’. This
result is achieved by constructing the unopti-
mized D(x∗) for a range of ∆x (or B) val-
ues, and plot these curves in a single diagram.
The range of ∆x values should include the
optimal values belonging to all x∗’s. Then,
the lower envelope of these curves will rep-
resent the optimized D(x∗). In Fig. 6 this
construction is shown for M1, M3, M4, side-
by-side, considering the precursory structures
xn = (xn−1, xn−2) and xn = (xn−1, φn−1), φ
being defined by (10). For each model we see
a decreasing trend of D(x∗), but only for the
largest values of x∗ (from about 1.8), and only
on coarse scales of x∗, i.e., on smaller scales
of x∗ the variation of D(x∗) can be nonmono-
tonic3. In effect we have assessed the mono-
tonicity of the magnitude-dependence D(x∗)
depending on other factors, the precursory
structure and also the model, and we have
found a rather robust behavior.

Next we carry out a thought experiment rais-
ing continuously a horizontal line in the scatter
plots in the left column of Fig. 4. We mon-
itor for what xn−1 levels do new features en-
ter into- or features present exit from what is
above the line. The measure of points above
the line is in fact given by the denominator in

3A blowup approaching the largest value of x, and
so x∗, is due to the undersampling of the probability
distributions, and so it is to be disregarded. The under-
sampling does not show up for M1 because the tail of
the process PDF px(x∗), to be defined shortly below,
does not decay slowly like in the other models.
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Table 1: Summary measure for the ROC-statistics: the ‘distance’ D (6) from the ideal case of all events correctly
predicted without making any false alarms. The models M1-4 assessed are defined in Sec. 2.2. The threshold is the
same in all cases, that is, x∗ = 1.8. Histograms were constructed with B1/2 = 200 bins in all dimensions in the
respective ranges where data points are present; the ‘resolution’ that the B1/2 = 200 bins and the N ≈ 5× 106 data
points give is depicted in the middle and right columns of Fig. 4. The number of significant digits were determined
based on only two independent realizations. The figures in round brackets were obtained by a smoothing of the
nonsmooth white noise-driven time series over a moving window of width of a nondimensional time unit. The numbers
framed by boxes indicate the correspondence with results shown in Fig. 5.

Precursory
structure

M1 M2 M3 M4

P L P L P L P L

xn−1 0.414
4

0.359
3

0.480 0.409 0.490
2

0.410
1

0.390
(0.374)

0.357
(0.358)

(xn−1, xn−2) 0.062
8

0.027
7

0.278 0.217 0.265
6

0.197
5

0.527
(0.312)

0.320
(0.226)

(xn−1, φn−1) 0.0108
12

0.0054
11

0.1803 0.1116 0.1840
10

0.1114
9

0.2930
(0.206)

0.2587
(0.156)

(xn−1, xn−2, xn−3) 0.0177 0.0087 0.2456 0.1434 0.2257 0.1350 0.4917
(0.323)

0.2828
(0.189)

Table 2: Same as in Table 1 but with observable r of cyclonic activity, and r∗ = 1.8. The number of significant digits
is taken to be the same as in case of observable x, i.e., not based on a number of independent realizations.

Precursory
structure

M1 M2 M3 M4

P L P L P L P L

rn−1 0.475 0.329 0.513 0.368 0.503 0.354 0.599 0.420

(rn−1, rn−2) 0.054 0.025 0.192 0.123 0.171 0.098 0.288 0.181

(rn−1, rn−2, rn−3) 0.0150 0.0069 0.1667 0.0802 0.1433 0.0660 0.2829 0.1440
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Figure 6: Event magnitude-dependence of predictability of POT events. The thin black and gray lines depict the
dependence using the precursory structure (xn−1, xn−2) and (xn−1, φn−1), respectively, for models (a) M1, (b) M3
(result qualitatively representative of those for M2), (c) M4. In each scenario a bundle of curves belong toB1/2 = 50j,
j = 1, . . . , 8 number of bins in one dimension. The lower envelope of the bundle approximates the optimized D(x∗).
In panel (a) the optimal B1/2 is larger than 400 (and checked to be larger than even 1000), but we believe that the
same qualitative behavior persist up to the optimum. Dot markers on the curves mark out sample values of x∗. In
panel (b) the (rescaled) PDF of x is included for reference, depicted by the lowermost thick black line.

(4) as the integral of the posterior probability
density, which is nothing but Pχ(χ = 1), be-
cause

∫
RM dVxpx|χ(x, χ = 1) = 1. Consid-

ering the meaning of the event variable (1),
Pχ(χ = 1) as a function of the threshold
x∗ only is equivalent with the complementary
distribution function belonging to the process
PDF px(x∗) of one variable x∗ pertaining to
the observable of concern x. Therefore, what
we monitor in effect is the points or levels x∗
of discontinuities or fast changes of px(x∗).
The levels of the major discontinuities are dis-
cernible in Fig. 4. Note that in the unperturbed
L84 because of the quadratic tangency of the
filaments to horizontal lines, for increasing
x∗, before a discontinuous drop of the density
px(x∗), it actually increases. In the driven L84
there are no discontinuities, they are ‘washed
out’, but, as the lowermost curve in panel (b)
of Fig. 6 shows, the density px(x∗) features
strong nonmonotonicities at the levels of inter-
est. We observe that these levels coincide well
with the locations of ‘humps’ of D(x∗) in all

cases displayed in Fig. 6 (a) and (b). This sug-
gests that the behavior of D(x∗) is controlled
at least in part by px(x∗). This raises the ques-
tion whether the decay of px(x∗) is responsible
for the decreasing nature of D(x∗), at least in
the present situation. We will revisit this ques-
tion in Sec. 4.

3.2. Predictability of threshold-exceedance-
in-an-interval events

Here we attend to our objective (iii).

3.2.1. Dependence on the prediction lead time
Let us emphasize that when the precur-

sory space can embed the attractor – defining
an ideal precursory structure – the effect of
the destabilization of trajectories, mentioned
in Sec. 3.1.1, can influence data-driven pre-
dictability only in the practical sense of hav-
ing a finite trajectory length, i.e., finite data
set size. Because of the latter, a coarse-
graining is inevitable in constructing the his-
tograms. When establishing a correspondence
of DDP of POT events with on-demand MDP
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in terms of the Poincaré mapping (not the orig-
inal flow), the coarse-graining can be trans-
lated into terms of errors in measuring ini-
tial conditions/precursory observables4 of size
bounded from above by the histogram bin size.
In case of a chaotic trajectory the error in trac-
ing the trajectory forward in time grows ex-
ponentially fast (at least while the error is still
small). In MDP this manifests in the spreading
out of the ensemble. Fixing the ensemble size,
the evaluation of the likelihood of an event will
have a larger statistical error the more spread-
out the ensemble is. The latter would typ-
ically correspond to a longer prediction lead
time. The larger errors in estimating the like-
lihood should clearly precipitate in a deterio-
ration of the overall prediction skill. Because
of the correspondence, this deterioration car-
ries over to DDP. Note that when the attractor
cannot be embedded in the precursory space,
the instabilities of trajectories take effect also
ifN →∞, because some initial conditions are
randomly initialized.

In the situation with an ideal precursory
structure as discussed in Sec 3.1.1, the like-
lihood was evaluated to be nil or unity, or that
with a very good approximation, because the
prediction lead time was in fact limited by the
typical time scale of the system, given that
from one apex we intended to predict the next
one. We could evaluate the dependence of pre-
dictability on the lead time by looking further
than the next apex to predict. However, in-
stead of this exercise we prefer to map out the
predictability as a continuous function of the
prediction lead time instead of its discrete ad-

4For this point it does not matter whether the
Poincaré mapping can be constructed analytically to fa-
cilitate the on-demand MDP of POT events. In fact, it is
not possible in general even for the most simple chaotic
flows. In that case only archival MDP of POT events is
possible, whose skill, nevertheless, should be the same
as that of the hypothetical on-demand MDP.

vances. Our preference is partly due to the fact
that the discrete advances are not known ‘apri-
ori’, i.e., before integrating the system. That
is, next we examine the predictability of not
POT but TEI events.

In practice T , ∆T , and t can take values
that are integer multiples of the trajectory sam-
pling time, which latter is chosen small any-
way in order to secure good accuracy of trac-
ing out trajectories by numerical integration of
(9). In fact, for this exercise we use the classi-
cal Runge-Kutta algorithm/stochastic integra-
tor mentioned above in case of M1-3/M4 with
fixed h = 0.01, and we save the state in ev-
ery 5th time step (to make sure that there will
never be two trajectory points subsequent in
time in one bin); furthermore we apply ∆T =
2 × 5 × h. As for the precursory structure we
will take the triplet of the system state vari-
ables (x, y, z). Therefore, the threshold x∗,
the interval length ∆T , and the dynamics it-
self, determine an event volume in phase space.
We then generate data points for the tri-variate
histogram {Pb} by identifying trajectory sam-
ple points in the event volume and trace them
backward in time by T . We do this not on-
the-fly during the simulation, but as a postpro-
cessing of the pregenerated long time series
data produced by numerical integration. For
now we choose a bin size rather arbitrarily, and
by ‘predictability’ now we mean predictability
conditional to the fixed bin size, not the best
possible predictability – given a fixed data set
– as a result of some optimization.

The results of evaluating the predictability
in terms of the distance D for M1 and M4 are
displayed in Fig. 7. We can make a num-
ber of observations. First, the driven system
is less predictable, as expected. Second, the
predictability is declining in both cases with
increasing prediction lead time, as it should,
given the chaotic dynamics and the finite data
set size. We have checked that beyond the
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Figure 7: Predictability as a function of the prediction
lead time. The curve on top (blue) is obtained for M4,
and the other one (green) for M1. Histograms were con-
structed with B1/3 = 40 bins in all dimensions in the
respective ranges where data points are present.

range of T shown the curves approach the√
2/2 asymptote, belonging to a straight diag-

onal ROC curve, meaning no prediction skill
at all. This is also expected. Third, on shorter
scales D(T ) is not monotonic in either case,
unlike in the well-known case of an auto-
regressive AR(1) process of order one, studied
regarding data-driven predictability by Haller-
berg and Kantz [8]. In the case of L84 the
deterministic or autonomous part of its equa-
tions results in a chaotic dynamics which is
much more complex than the linear determin-
istic term of the AR(1). In particular, the de-
terministic term of AR(1) need to have a stabi-
lizing effect on the trajectories in order to have
a bounded dynamics, while, although on the
compact chaotic attractor of L84 trajectories
are bounded, they are unstable in a long-term
average sense measured by a positive Lya-
punov exponent. This instability can also de-
teriorate predictability, beside a stochastic part
if any. On short-terms, however, the determin-
istic trajectory can experience stable periods,
which periods are associated with the return
of skill admitted by the plateaus, or negative
slopes even, of D(T ).

3.3. Dependence on the event-magnitude
In comparison with the AR(1) process, a

further matter of interest is the dependence
of predictability on the threshold level. The
counterintuitive finding in case of AR(1) was
reported by Hallerberg and Kantz [8], namely,
that stronger extremes – indifferently to the
distribution that the process realizes – are more
predictable. The obvious question to ask is,
then, whether the latter holds also in case of
processes with a more complex deterministic
dynamics subjected (or not) to stochastic forc-
ing.

Figure 8 (a) and (b) show the predictabil-
ity as a function of the prediction lead time as
well as the threshold level for M1 and M4, re-
spectively. Firstly, the nonmonotonic nature of
D(T ) is prevalent on any fixed threshold level.
Secondly, we observe that while for some fixed
prediction lead times stronger events are more
predictable, i.e., D(x∗) is a decreasing func-
tion, it is just the opposite for some other T ’s.
That is, the above statement for AR(1) does
not seem to hold in general for more complex
dynamical systems.

However, Fig. 8 (b) of the noisy L84 ad-
mits values of D >

√
2/2, which should be

erroneous. In fact the reason for this error is
that the corresponding ROC curves or stair-
cases (not shown) do not extend to the corner
(1,1), or more precisely, they feature an exces-
sively large last step – for the reason stated
in the end of Sec. 2.1.2. This is so because
the back-traced data points from the event vol-
ume are spread out in relatively large domains
of the phase space due to the relatively large
prediction lead times and strong instabilities
(on average) of the trajectories. As also men-
tioned already, there is a unique optimal (uni-
form) bin size yielding a minimalD. We deter-
mined numerically this optimum for each sam-
ple combination of (T, x∗) separately. This
was done using a simple algorithm of maxi-
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Figure 8: Predictability in terms of D as a function of
the prediction lead time T and threshold level x∗. Re-
sults are shown for models M1 and M4 in panels (a)
and (b), respectively. Histograms were constructed with
B1/3 = 100 bins in all dimensions in the respective
ranges where data points are present. Notice the differ-
ent ranges of D shown.

mum finding detailed in Appendix A, which
is suitable for treating nonsmooth functions of
one variable. The result of this optimization
for M1 and M4 can be seen in Fig. 9 (a) and
(c), respectively. The surprising outcome with
the bin size optimization is that stronger events
are generally better predictable, reinstating the
rule found by Hallerberg and Kantz [8] for the
simple stochastic process of AR(1). Only in
case of M4 do we see an anomaly for very
high thresholds, which could well be the same
undersampling effect what was seen in Fig.
6. A further observation is that the nonmono-

tonic T -dependence is suppressed/gone almost
completely for M1/M4.

The optimal number of bins are shown in
Fig. 10. Comparing these diagrams with the
corresponding ones in Fig. 8 one can notice
that larger values of the unoptimized D corre-
spond to fewer and so larger optimal bins. The
reason for this is that in these situations the tra-
jectories are more unstable and therefore they
scatter in a larger volume, which ‘asks for’ in-
creasing the bin size in order to have a better
estimate of the likelihood in those bins.

Finally, we note that MDP cannot involve
such optimization; the bin size is determined
by the precision of observation only. Never-
theless, the unoptimized result in Fig. 8 does
not represent model-driven predictability ei-
ther, because in many bins there is an insuf-
ficient number of points for the evaluation of
the likelihood. For a given data set size the
likelihood can be well-approximated in most
bins with a bin size larger than the optimal one
for DDP. For the data set size in our analy-
sis we evaluate the model-driven predictabil-
ity as a function of the prediction lead time
T and the threshold level x∗ for a ‘hypothet-
ical’ observational precision that derives from
approximately the largest optimal bin size in
the considered ranges of T and x∗, taken to be
B1/3 = 25 bins in all three dimensions. The
interesting result is that also the model-driven
predictability is the better the stronger the ex-
tremes.

4. Summary and discussion

We examined the predictability of thresh-
old exceedance ‘extreme’ events in a simple
but chaotic continuous-time dynamical system
or ‘flow’. Given the nature of the problem,
namely, that extremes are rare, we chose an
arguably [12] appropriate measure of predic-
tion skill for assessing predictability: the ROC
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Table 3: Summary of how different factors/choices influence predictability measured by D (6). Where appropri-
ate, the mechanism is specified. Wherever not explicitly specified, the point applies to both POT and TEI events.
Whether a point applies to data- or model-driven prediction, or both, should be clear from the context. A posi-
tive/arbitrary/negative effect on predictability is denoted by the symbol ↑ / l / ↓. We denote the ceiling function by
d·e.

Factor/choice Effect/mechanism Support (proof/example)

0. L-ROC vs P-ROC ↑ L-ROC always better [10, 9]; Fig. 4 (b) vs (c), (e) vs (f), (h) vs (i), (k) vs
(l); Fig. 5

1. Makeup of the pre-
cursory structure (PS)
(assuming other factors
fixed)

1.1 Size of PS M
Extending PS with additional observable,
M ′ = M + 1:
↑ Always better

Embedding theorem [26]
Compare figures in Tables 1 and 2 (T1, T2), in each
column separately, row-wise [disregard row 3 (r3) of
T1].

1.2 Choice of observables

1.2.1 A PS of size M ≥ 1 can outperform another
PS of size M ′, 2dD0e ≥M ′ ≥ 1 no matter
M ′ > M

Compare r3 to r4 in T1, wrt. each column separately.

1.2.2 Fixing the size M ≤ 2dD0e, there are an
infinity of PSs with varying performance, and there
should be an optimal, best-performing, one. Ideal
case: precursory space can fully embed attractor.

Compare Fig. 4 (a) to (g) and (b) to (h); and r3 of T1
to other rows; and cases 11, 12 of Fig. 5 to other
cases in it.

2. Intrinsic properties of
the system, i.e., the sys-
tem itself. Therefore, the
listed properties change
‘in tandem’ in general.

Overall effect:
l Arbitrary, since at least one of the intrinsic
properties have an arbitrary contribution, and they
change in tandem.

In general the effects cannot be demonstrated in
isolation (see examples for 2.1.1, 2.2), only if one
property can be changed independently (see example
for 2.1.2).

2.1 Attractor

2.1.1 Larger dimension D0:
↓ The attractor would look more folded
Note that 2.1.1 is not a converse of 1.1, because
2.1.2-3, 2.2 changes along with 2.1.1.

Compare r1 to r2 and r3 to r4 in Fig. 4; and figures in
T1, T2 under M1 to M2-3 in each row separately.
Exception: M1 to M4 in r1 of T1, dominated by
other intrinsic factors

2.1.2 Geometry:
l Can enhance or suppress foldedness
2.1.3 Natural measure (probability distribution)
l Can enhance or suppress the significance of
foldedness

No such exception in T2 as in T1 wrt. 2.1.1, and note
that the changes in 2.2 and 2.1.1 between M1 and
M4 are the same. Note that it has no significance that
also the PSs for M1 and M4 are not the same.

2.2 Stronger instability of trajectories:
↓ Faster spread of ensemble of trajectories
Note: no effect only in case of N →∞ and when
PS fully embeds attractor in the same time

Compare M2 to M3 in T1 or T2. MLE of L63
increases for decreasing τ ′, but the impact on L84
wrt. either 2.1.2-3 or 2.2 clearly counters and
outweighs that (except for r1 in T1).

3. Data set size N (other
factors being arbitrarily
fixed)

Smaller N :
↓ Larger statistical errors in estimating L Intuitive statement not checked empirically

4. Precision of
measurement δx

Larger δx:
↓ Smoothing or coarser-graining in estimating L Intuitive statement not checked empirically

5. Bin size ∆x (N being
finite and fixed)

l An optimum ∆xopt exists, which might always be
unique. Our experience in all cases examined in numerics

6. Prediction lead time T
(only for TEI events)

Increasing T :
l Possibly nonmonotonic D(T )

Fig. 8

↓ Increasing D(T ) for ∆xopt Fig. 9 (a,c)

7. Event magnitude x∗

Increasing x∗:
POT events:
↑ lD(x∗) decreasing for highest thresholds on
coarse scales, but could be nonmonotonic on ‘fine’
scales even for ∆xopt

Fig. 6

TEI events:
l Possibly nonmonotonic D(x∗)

Fig. 8

↑ Decreasing D(x∗) for ∆xopt Fig. 9 (a,c)
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Figure 9: Predictability in terms of D as a function of the prediction lead time T and threshold level x∗. Results are
shown for models M1 and M4 in panels (a)-(b) and (c)-(d), respectively. The pair of panels in each column correspond
to panels (a) and (b) of Fig. 8 but (a), (c) having the histogram bin size [uniform wrt. one histogram but different
for each combination of (T, x∗)] optimized, and (b), (d) with B1/3 = 25 bins in all dimensions. Notice the different
ranges of D shown.

statistics, more specifically, a distance mea-
sure D from the ideal situation of having all
events successfully predicted without any false
alarms. According to our top objective (i)
and (iii) set out in the Introduction, we exam-
ined the dependence of predictability on vari-
ous factors. Our conclusions are collected in a
systematic form in Table 3 (T3); in the column
on the right we refer to our results presented
in this paper, and previous results reported by
others, to support the statements in the middle
column.

Among the factors we did not list the choice
of observable for x whose extremal values are

concerned. The reason for this is that we can-
not make a statement of general interest with
respect to this choice. The predictability of ex-
tremes concerning different observables x and
x′ can be compared only if we name condi-
tions that have to be satisfied in both cases.
Such a condition on the threshold levels x∗ and
x′∗ can hardly be given objectively; one possi-
bility is that the threshold level should belong
to the same quantile of the respective process
distributions p(x) and p(x′). However, this is
still a subjective condition. And since the pre-
dictability strongly depends on the threshold,
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Figure 10: Optimal number of bins (B1/3
opt ). Panels (a)

and (b) belong to (a) and (c) of Fig. 9. The colorbar
applies to both diagrams.

a comparison is hardly possible5.
Instead of merely the distance D, we can

compare the monotonicity or trend (increasing
or decreasing) ofD(x∗) andD(x′∗). This is the
difference between objectives (i.a) and (i.b).
The interesting finding in this regard is that
D(x∗) is monotonically decreasing concerning
TEI events – although only if the bin size of
histograms is optimized (see point/conclusion

5This argument can be applied also to the intrin-
sic properties, i.e., the choice of the system in general
(point 2 in T3). However, it can be of general interest
to compare the predictability with respect to the same
physical observable while only slightly changing the
system, e.g. by changing a parameter, or by consider-
ing different types of perturbations as illustrated by our
model choices M1-4.

7 (c7) in T3). Concerning POT events the
situation is somewhat more intricate, but on
coarse scales of the threshold level we ob-
serve the same behavior. It appears to be ro-
bust, being the same qualitatively for two dif-
ferent precursory structures and for all of M1-
4. Since we found this effect in an arbitrar-
ily chosen dynamical system, and with respect
to an arbitrarily chosen observable of it, we
suggest that it might be a rather typical be-
havior. This would be a nontrivial general-
ization of the same statement made by Haller-
berg and Kantz [8] concerning autoregressive
processes. A theoretical argument why this
should or rather should not be always true is
yet to be provided, however.

We point out that the above observation was
made in the special case, among other cases,
when the precursory space is identical to the
phase space. There was one case concerning
POT events (to do with the gray lines in Fig.
6), and another one concerning TEI events (see
e.g. Fig. 9). Therefore, the effect of folding
referred to under points 2.1.1-3 of T3 does not
take place. However, we have already seen ev-
idence that even in this case this is not the sta-
bility of trajectories (point 2.2 of T3) alone,
or not that measured by the average finite-time
maximal Lyapunov exponent 〈λ(T )〉 (defined
in Appendix B), that determines D: As seen
in Figs. 8 (a) and 9 (b), the bin size alone can
change the monotonicity or trend of D(x∗),
while 〈λ(T )(x∗)〉 is obviously unchanged. The
latter is shown in Fig. 11. This mismatch
is not a finite data set size numerical effect,
as lim∆x→0 limN→∞D = 1 with no (T, x∗)-
dependence that could match that of 〈λ(T )〉.
We might say rather that (assuming N → ∞
for DDP, or that we concern on-demand MDP)
∆x (or δx) controls the ‘filtering’ of intrin-
sic properties in determining D. We note that,
provided that ∆x > 0 (or δx > 0), a similar
filtering role can be played also by x∗. How-
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Figure 11: Predictability in terms of the average finite-
time maximal Lyapunov exponent 〈λ(T )〉 as a function
of the prediction lead time T and threshold level x∗,
corresponding to Fig. 8 (a). The exact correspondence
is established by averaging the FTMLEs over the event
volume of TEI events. The latter is defined in Sec.
3.2.1, and the corresponding average is formulated by
Eq. (14).

ever, some other role seems to be played by the
process PDF px(x∗) too (see Fig. 6 (b)). With
this, we believe to have reached our objective
(iv).

Advanced algorithms to bin data will be the
objective of our future research. In this re-
gard it is envisaged that a theory linking for-
mally some suitable measure of the instability
of trajectories etc. with the prediction skill in
terms of D could indicate the optimal grid in
a straightforward manner, rather than having
to find this grid by conducting a costly gen-
eral iterative optimization procedure. Further-
more, it is often the case that the data set is
very limited for pure data-driven prediction,
while some model, even if inaccurate at the
current stage of its development, is known.
In this case it would be most beneficial if a
combined data- and (archival or on-demand)
model-driven prediction technique could ex-
ploit fully the assets of data and model at hand.
We will concentrate efforts to develop such
techniques.

Finally we remark that point (2) of the Intro-
duction does seem to contradict our conclusion
(c7). This is so given that we argued in Sec.
2.1.1 – according to our objective (ii) – that
(c7) should apply also to model-driven predic-
tions. However, it might be crucial to assume
no model errors in order to reach (c7). This
assumption certainly never holds in practice,
and it might indeed lead to point (2) to hold.
Model errors can be easily modeled, say, by
taking M3 as the truth, and M4 as the model.
Another reason for the apparent contradiction
between (2) and (c7) may also be that they as-
sume different measures of prediction skill. In
order to possibly reach completely our objec-
tive (ii), we should- and we wish to examine
these issues in a separate work.
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Appendices
A. Algorithm for finding the approximate

global maximum of a nonsmooth func-
tion of one variable

The ROC-based measure of prediction skill
D is a discontinuous function of the linear bin
size ∆x due to the finite data set size N . Con-
versely, if there was infinite data available, it
would be a continuous function. We will as-
sume here that with finite N , D features a sin-
gle minimum. If a function is discontinuous
or nonsmooth, the Newton-Raphson algorithm
that relies on the derivative cannot be applied
to find a global minimum.

Instead of the bin size ∆x, we will spec-
ify the number B of bins (or B1/n along a
single dimension in the n-dimensional precur-
sory space) in the domain where data points
are found. Our experience is that, given the
data available, as specified in Sec. 2.2, and
the ranges of T and x∗ desired to be ex-
plored, the optimal number B1/3

opt of bins is
between, say, 6 and 200. One could evalu-
ate D for all intermediate integers to find the
one that gives the smallest D. However, one
can do better than that. The following algo-
rithm is applicable to smooth functions f(x)
possessing a single maximum, but also to dis-
continuous/nonsmooth or discrete approxima-
tions of such functions, provided that the root-
mean-square error of approximation is rela-
tively small (loosely speaking: smaller than
the ‘elevation of the maximum’). To start with,
we define five equally spaced values of the in-
dependent variable x ∈ R determined by the
choice for the smallest and largest values: xi,j ,
i = 1, . . . , 5, x2/3/4,j = (x1/1/3,j + x3/5/5,j)/2,
j being the iteration variable. (A rounding can
be applied if integer values of xi,j are accepted
only.) Initially we set x1,0 = 6 and x5,0 = 200.
Then in each iteration, j = 1, 2, . . . , we check

the following cases:

Case 1 maxi[f(xi,j)] = f(x3,j)→
x1,j+1 = x2,j, x5,j+1 = x4,j

Case 2 f(x3,j) > f(x2,j) & f(x4,j) >
f(x3,j)→
x1,j+1 = x3,j, x3,j+1 = x4,j

Case 3 f(x3,j) < f(x2,j) & f(x4,j) <
f(x3,j)→
x5,j+1 = x3,j, x3,j+1 = x2,j

Case 4 otherwise→
max[f(x)] ≈ x3,j

Case 4 is never encountered in case of a
smooth function featuring a single maximum,
and the iteration would go on indefinitely with-
out a stopping condition. Considering discon-
tinuous/nonsmooth or discrete approximants
of such functions the iteration is terminated in
finite time (j).

B. Finite-time Lyapunov exponent

A well-known measure of predictability
is the positive maximal Lyapunov exponent
(MLE), which approximates the average rate
of the exponential separation of very close tra-
jectories on a chaotic attractor [6]. Sterk et
al. [15] evaluated the finite-time version of this
measure to assess the predictability, with some
lead time T , of extreme events. We consider
here ‘apriori’ known nonautonomous dynam-
ical systems ẏ = f(y, t) in a d-dimensional
phase space with generic initial condition y0 =
y(y0, t = t0, t0) ∈ Rd, where y(·, ·, ·) denotes
the two-time evolution operator.

The spectrum of finite-time T Lyapunov ex-
ponents (FTLE) λ(T )

i can be defined in a pull-
back sense [27] as follows:
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λ
(T )
i = lim

t0→−∞

ln(s
1/2
i (t, t0))− ln(s

1/2
i (t− T, t0))

T
,

(11)
i = 1, . . . , d, where si(t, t0) : det(Y (t, t0) ·
Y T (t, t0) − sI) = 0 are the singular values of
the deformation gradient, Y = ∂y/∂y0, gov-
erned by the variational equation:

Ẏ =
∂f

∂y

∣∣∣∣
y(y0,t,t0)

· Y. (12)

The initial condition is not arbitrary but im-
plied as Y (y0, t0, t0) = I . Note that the LEs
are recovered as: λi = limT→∞ λ

(T )
i . We will

omit the index i to denote the MLE simply by
λ or λ(T ). Clearly, by λ(T )(t) the predictability
from the present time t − T of a trajectory at
the future time t is defined. Note that by the
inversion t = t(y, t0, y0) we have λ(T )(y, t,y0).

A summary statistics for this measure of
predictability can be defined, generalizing the
proposal of Sterk et al. [15], by an ensemble
average over parts of the pullback or snapshot
attractor [24] that realize extreme events in
terms of some physical observable x(y):

〈λ(T )(t)〉 =

∫
µ(y, t)dVyλ

(T )(y, t)×

H(x(y)− x∗),
(13)

where µ(y, t) is the natural measure supported
by the snapshot attractor [25]. Alternatively,
the average can be taken over parts of the snap-
shot attractor collecting the ensemble of trajec-
tories that would cross the threshold in a lead-
ing window of time of width ∆T at time t (TEI
events):

〈λ(T )(t)〉 =

∫
µ(y, t)dVyλ

(T )(y, t)×

H(x(y)− x∗)×
H(x∗ − x(y0(y, t, t−∆T ))),

(14)

where y0(y, t, t0) is obtained by the inversion
of the two-time evolution operator. The aver-
age FTLE or FTMLE 〈λ(T )〉 is dissimilar to D
in that it is not calculated from predicted data,
but rather it expresses an intrinsic property of
the system that determines predictability. Nev-
ertheless, we will compare figures obtained for
〈λ(T )〉 by (14) and D, at least in case of the au-
tonomous dynamics when the attractor is time-
invariant.
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[18] S. Siegert, J. Bröcker, H. Kantz, Skill of data

based predictions versus dynamical models –
case study on extreme temperature anomalies,
arXiv:1312.4323.

[19] S. Hallerberg, H. Kantz, Influence of the
event magnitude on the predictability of an
extreme event, Phys. Rev. E 77 (2008) 011108.
doi:10.1103/PhysRevE.77.011108.
URL http://link.aps.org/doi/10.
1103/PhysRevE.77.011108

[20] L. van Veen, Baroclinic flow and the lorenz-
84 model, International Journal of Bifurca-
tion and Chaos 13 (08) (2003) 2117–2139.
doi:10.1142/S0218127403007904.

[21] A. Provenzale, N. J. Balmford, Chaos and struc-
tures in geophysics and astrophysics (Woods Hole
lecture notes) (1999).
URL http://www.whoi.edu/
fileserver.do?id=21476&pt=10&
p=17353

[22] C. Masoller, A. S. Schifino, L. Romanelli,
Characterization of strange attractors of lorenz
model of general circulation of the atmosphere,
Chaos, Solitons & Fractals 6 (0) (1995) 357
– 366, complex Systems in Computational
Physics. doi:http://dx.doi.org/10.1016/0960-
0779(95)80041-E.
URL http://www.sciencedirect.
com/science/article/pii/
096007799580041E

[23] C. Nicolis, S. Vannitsem, J.-F. Royer, Short-range
predictability of the atmosphere: Mechanisms for
superexponential error growth, Quarterly Journal
of the Royal Meteorological Society 121 (523)
(1995) 705–722. doi:10.1002/qj.49712152312.
URL http://dx.doi.org/10.1002/qj.
49712152312
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