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Predictability of Fat-tailed Extremes

Tamás Bódai∗ and Christian Franzke†

We conjecture for a linear stochastic differential equation that the predictability of threshold
exceedances (I) improves with the event magnitude when the noise is a so-called correlated additive-
multiplicative (CAM) noise, no matter the nature of the stochastic innovations, and also improves
when (II) the noise is purely additive obeying a distribution that decays fast, i.e., not by a power-law,
and (III) deteriorates only when the additive noise distribution follows a power-law. The predictabil-
ity is measured by a summary index of the receiver operating characteristic (ROC) curve. We provide
support to our conjecture, to compliment reports in the existing literature on (II), by a set of case
studies. Calculations for the prediction skill are conducted in some cases by a direct numerical
time-series-data-driven approach, and in other cases by an analytical or semianalytical approach
developed here.
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I. INTRODUCTION

Extreme events in an observable are defined by some
authors [1] as states realised by a process which reflect
in such values of the observable that are distributed ap-
proximately by a power-law. It is usually the tail of the
marginal distribution associated with the observable in
question – what we will refer to as a process distribu-
tion – that follows a power-law. The reason for such a
focus on fat-tailed extremes [2] only is that other types
of events of the same rarity or frequency have a much
smaller magnitude. One can compare, for example, a so-
called standard Fréchet and a standard exponential ran-
dom variable (rv) in this regard [3, 4]. In other words,
fat-tailed extremes are more dangerous. For that reason
their predictability is of great practical interest. Fat-
tailed extremes commonly occur in natural or man-made
phenomena. Examples include rain fall, relative vorticity,
and stock market indices e.g. the DAX (German Stock
Index) returns [1, 5–7].

The predictability of fat-tailed extremes have been ad-
dressed in the past by several authors, to be discussed
next. One group of studies concern the predictability
of threshold exceedances in stochastic or deterministic
processes based on the so-called receiver operating char-
acteristic (ROC) curve (Sec. II B). These studies treat
fat-tailed extremes, but also other ones. One feature of
the predictability is shared by the models and observ-
ables studied thus far rather surprisingly without ex-
ception: larger magnitude events are better predictable.
This finding remains without an explanation up to now.
A collection of these studies is listed in Table I. Sepa-
rated by horizontal lines we also include studies that do
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not evaluate the prediction skill [8] or do not measure
the predictability based on the ROC curve [9, 10]. An-
other study [11] that measures predictability by a mean
squared error in terms of an ensemble forecast could fit
all slots of Table I as its statement on predictability is
based only on the process distribution, whether it is pro-
duced by a stochastic or a deterministic process. They
find that predictability deteriorates in the limit of the
highest thresholds for any of the Extreme Value Distri-
butions. However, even those studies that rely on the
ROC curve use different summary statistics or indices of
it, such as (find definitions in Sec. II C 2): the ‘initial’
slope [12]; the area under the curve [13]; or the distance
from perfect predictability [14], ROC-D in short; and
some [15, 16] does not even evaluate a summary index.

We note that the phrasing “larger magnitude events
are better predictable” suggests a nonasymptotic be-
haviour, and so it is somewhat imprecise. The more
precise formulation of the research question is the fol-
lowing. Assume that the asymptotic limit of the pre-
diction skill when increasing the threshold level beyond
any limit is nontrivial, i.e., the skill does not vanish, nor
does it become maximal, like in a deterministic system
with arbitrary amount, precision and accuracy of data,
and using ideal precursory variables that fully embed the
attractor [14]. In this case the question is whether the
limit is approached from above or below. In other words:
is the lowest-order term of an asymptotic expansion pos-
itive or negative? This meaning is implied implicitly by
the approach of [12]. Nevertheless, for convenience we
keep using the original phrasing too synonymously with
the latter more precise but also lengthier phrasing.

As listed in Table I, we are aware of two studies that
examine the predictability of fat-tailed extremes using
the ROC curve. The subject of neither of these studies is
a process that is defined explicitly by an equation. One of
them [12] considers a process that was defined implicitly
by a time series that was constructed from a time series
of a Gaussian AR(1) process as follows. They generated
an auxiliary time series consisting of independent realisa-
tions of a symmetrized Pareto rv (Sec. IV B). They then
replaced the n’th largest value of the original time series
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TABLE I. Studies on the predictability of extremes. Along the horizontal dimension we make distinction regarding the nature
of the laws governing the studied process; and along the vertical dimension we distinguish between processes whose marginal
or process distribution does or does not feature a fat tail.

Stochastic Deterministic

No fat tail

Gaussian AR(1) [12] Atmospheric dynamics [15]
Atmospheric dynamics [15] Lorenz 84 [14]

System of coupled FitzHugh-
Nagumo units [16]
Electronic circuits [8]
Geophysical models [9]

Fat tail
Rescaled Gaussian AR(1) [12]

-Social media [13]
Atmospheric dynamics [10]

with the n’th largest one from the auxiliary time series.
According to the authors such a process has a ‘step-wise
correlation factor’ (with a reference to the parameter of
a common AR(1) process) varying in time. They studied
this process only numerically. The other study [13] exam-
ined fat-tailed time series data to do with the attention
received by social media content or scientific publications.
For prediction they used the category of the content as
a precursor (Sec. II B). Concerning e.g. YouTube videos
categories may be: music, sport, cat fails, etc. They
found an improving predictability with the event magni-
tude, and explained it with the difference in the power
exponent governing the fat tails of the different distribu-
tions conditioned on the category (in our parlance the
conditional probability defined by eq. (21)). This is the
only theory explaining the said improving predictability
that we are aware of. However, it is applicable to a rather
specific problem only. A difference in the power exponent
seems to be possible for the banal reason that the distinct
content categories entail distinct processes.

For the first time regarding the predictability of ex-
tremes we will consider in this note an AR(1)-type pro-
cess that is driven by – instead of a additive Gaussian rv
as in case of the ‘common’ AR(1) – a fat-tailed so-called
α-stable or simply stable rv [17]. We will show that the
process distribution inherits the power exponent (1 + α)
of the noise distribution. We find for this process, the
first of its kind, that the predictability of threshold ex-
ceedances deteriorates with increasing threshold level, or,
the limit of the ROC-D is approached from below. This is
not in contradiction with the finding of [13], because the
probability distributions conditioned on different values
of the precursor of our choice all inherit the same power
exponent.

In search for a theory to explain this finding, we de-
velop an analytical approach (Sec. II C 2) to evaluate the
prediction skill as a function of the threshold level. Un-
fortunately we do not find it a productive way forward
in its generic form, and the finding remains unexplained.
However, a semianalytical (partially analytical) version
of our approach facilitates the evaluation of the predic-
tion skill with a high accuracy, for which reason asymp-

totic power-laws are confidently detected. Besides, this
is numerically much more efficient than the data-driven
direct numerical approach (Sec. II C 1).

Furthermore, we are able to disprove a few intuitive
propositions as to why the predictability might improve
or deteriorate with the event magnitude. It does not im-
prove – when it does – because of a decay of the process
distribution (Sec. III), nor does it necessarily deterio-
rate when the noise distribution is fat-tailed (Sec. V).
The existence of the variance of the noise distribution is
also not decisive (Sec. IV B). These falsifications can,
of course, be facilitated by a pertinent finding in a sin-
gle case each. But, our case studies, however systematic,
cannot imply in a mathematical sense ‘positive’ univer-
sal statements. Nevertheless, they compel us to make a
conjecture on the conditions of improving or deteriorat-
ing predictability. It is spelled out in terms of a Venn
diagram shown in Fig. 1.

II. METHODOLOGY

A. Examined processes

We examine processes that are governed by the fol-
lowing linear stochastic differential equation (in the Itô
form):

dx = (ax+ b)dt+ (cx+ d)dX, (1)

where dX is an infinitesimal increment of an ‘input’
stochastic process. We can write W in place of X for
the Wiener process, which is the integral of a Gaussian
white noise process. The process probability density dis-
tribution function (PDF) can be found by integrating
the Fokker-Planck (FP) equation [18] (for details see eq.
(5.13) on page 98 of [19]) as:

p(x) = N0
2e

2 ad−bc
c2(d+cx)

(d+ cx)2(1−a/c2)
, (2)

where N0 is a normalization constant. Since p as a proba-
bility is nonnegative, the lower boundary of the domain is
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FIG. 1. Schematic depiction of a conjecture on the pre-
dictability of threshold exceedances in the linear SDE (1).
Round shapes represent sets of models of certain properties
identified by capital letter codes, with matching colors or line
type of borders, as follows: P – the noise distribution features
a power-law tail; V – the variance of the noise distribution
does not exist; C – the noise is of the CAM-type (c 6= 0).
The rectangular shape is a representation of all possibilities
(except that b = 0). In each region defined by a unique com-
bination of these properties we put a + or − sign according to
whether the asymptotic limit of the predictability with ever-
increasing event magnitude is approached from above or be-
low. (Note that a larger value of the measure of predictability
measured by the ROC-D (17) means poorer predictability.)
In these regions a code stands for the section number where
a particular scenario is examined. The regions in color repre-
sent fat-tailed extremes.

−d/c. Also, for a well-posed problem we need ad−bc < 0,
when lim

x→−d/c
p(x) = 0, as it is∞ otherwise. Fixing b = 0

makes no restriction on the qualitative behaviour. Fur-
thermore, it is clear that for c 6= 0 this distribution fea-
tures a fat tail. The noise term (cx + d)dW in eq. (1)
is referred to by some authors [6, 10, 20] as the ‘corre-
lated additive-multiplicative’ (CAM) noise. In this pa-
per we will refer to processes in this form as P1-type
processes. The Wiener process W can be replaced by
the more generic Lévy process: dX = dL. The process
PDF in this case can be found by solving the fractional
Fokker-Planck (fFP) equation [21].

In the special case when only additive noise is retained,
c = 0, eq. (1) is known as the Ornstein-Uhlenbeck (OU)
equation. It can be shown [22] that by taking the limit
c → 0 in eq. (2), p(x) will take the specific form of the
normal distribution that is known to be the solution for
the OU equation. However, integrating the FP equation
with setting c = 0 beforehand will lead to a Gaussian
process PDF via a more straightforward calculation.

To achieve a fat-tailed process with simple additive
noise, the noise itself need to be fat-tailed. We will refer
to such processes as P2-type processes. As an alternative
way to solving the fFP equation, in order to show how

the fat tail of the noise is inherited, first we discretize
eq. (1). A discretized form can be obtained by applying
some stochastic integrator scheme [23]. A simple choice
is the Euler-Maruyama scheme, with which we have:

xn = xn−1 + (b+ axn−1)∆t+ (d+ cxn−1)
√

∆tξn−1. (3)

With c = 0 (which is assumed in the rest of this sub-
section, unless otherwise said), eq. (3) is known as the
auto-regressive model of order 1, AR(1) in short. If ξn−1
are realisations of an α-stable rv, then the xn’s are also
α-stable rv’s (with the difference that it is a correlated
sequence). For example, if pξ(ξ) = ps(ξ;α, β = 0, γξ, δ =
0), 0 < α ≤ 2, 0 < γξ is an unskewed (β = 0) α-
stable distribution, or in short ‘stable distribution’, then
p(x) = ps(x;α, β = 0, γx, δ = 0) is also an unskewed
stable distribution. The reason for this is that from eq.
(3) xn emerges as a weighted infinite sum of stable vari-
ables ξn, and that the stable distribution is a so-called
infinitely divisible distribution. Equations (1.8) of [17]
provide formulae for the parameters of a stable distribu-
tion of such a composed rv. From these it follows that
the tail behaviour of the noise PDF pξ(ξ) is inherited by
the process PDF p(x) in that they share the same stabil-
ity or shape parameter α. Furthermore, the process and
noise scale parameters have the following relation:

γx = γξ/
α
√

1− ϕα, (4)

where we introduced ϕ = 1 +a∆t. For stationarity |ϕ| <
1 is required.

In the special case of α = 2 the stable distribution is
a normal distribution, whose variance exists unlike any
other fat-tailed stable distribution (α < 2) and is given
by the scale parameter γ. Then, clearly, eq. (4) relates
the process and noise variances, which is a well-known
property of the OU process/Gaussian AR(1). It holds
exactly also if ξn obeys some other than the normal dis-
tribution whose variance exists. Furthermore, if ξn is a
stable rv, the observed or sample variances sx and sξ of
finite process and noise time series, respectively, obey not

eq. (4) but sx = sξ/
√

1− ϕ2.
When ϕ / 1, the Generalized Central Limit Theorem

(GCLT) implies that p(x) ≈ ps(x;α < 2, β = 0, γx, δ =
0) for any fat-tailed pξ(ξ) ∼ αξαm/ξα+1 symmetric around
ξ = 0, whose variance does not exist, where the relation-
ship between the scale parameter of the asymptotically
equivalent classical Pareto distribution (a paradigmatic
model for fat-tailed distributions) and γx we provide here
as:

γx =
ξm

α
√

(1− ϕα) sin(πα/2)Γ(α+ 1)/(πα)
. (5)

In the above we used the asymptotic behavior of a stable
distribution given by Theorem 1.12 of [17] and eq. (4).
Note that we have ϕ / 1, or more precisely 0 < 1−ϕ� 1,
when 0 < ∆t � −1/a. The latter means that the time
step size needs to be much smaller than the time scale of
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the linear deterministic part. In fact this is needed also
for the discrete-time process (3) to reproduce approxi-
mately the process PDF of the continuous-time process
(1). The latter is related to the weak convergence prop-
erties of the stochastic numerical integrator scheme [23].
Note, however, that for e.g. eq. (4) alone to hold no
condition on ϕ is imposed.

Note also that the situation when ϕ < 1 significantly
can be interpreted in a way that the discrete mapping
establishes a connection between states at times fur-
ther apart, say, some k multiple of ∆t, such as: xn =

ϕ̃kxn−k +
∑k
i=1 ϕ̃

i−1ξn−i, provided that b = c = 0. Even
if ϕ̃ / 1, ϕ = ϕ̃k < 1 significantly is possible for a large
enough k. This way we can conveniently examine the pre-
dictability depending on the prediction lead time. Such
a dependence in an SDE with a nonlinear deterministic
part has been found nontrivial, featuring a return of skill
and a reversal of the tendency of the predictability de-
pending the event magnitude [14]. However, we do not
expect such effects with a linear deterministic part con-
sidered here, and so did not make investigations in this
direction.

The lack of process skewness is due to the fact that
reversing the signs of xn−1 and the symmetrically dis-
tributed ξn−1, the same process equation will result in
−xn. Clearly, this is not the case when c 6= 0, which is
reflected in the generically skewed form under (2).

B. Prediction scheme and skill

Our aim is to predict large excursions of some (scalar)
physical observable x, exceeding a chosen threshold level
x∗, before that exceedance happens. Figure 2 pictures
the situation as the observable is sampled discretely in
time, xn = x(tn = n∆t), n ∈ Z, occasionally exceeding
the threshold.

The following methodological description regarding the
prediction task closely follows [14, 24]. We introduce a
binary event variable:

χn =

{
1, xn > x∗
0, xn < x∗

(6)

The prediction is based on a precursory structure xn ∈
RM of size M , whose different members, observables de-
sirably related to x, may belong to different times, e.g.
tn−dm , preceding the current time tn, specified by delays
dm ∈ Z, m = 1, . . . ,M . We call tn − tn−min(dm) > 0
the prediction lead time. Our binary prediction for χn
at tn−min(dm) is defined as:

χ̂n =

{
1, L(xn) > L∗
0, L(xn) < L∗

(7)

based on the likelihood function:

L(x) = Pχ|x(χ = 1,x) = P(x)/p(x). (8)

In the above P(x) = px|χ(x, χ = 1)Pχ(χ = 1) is the pos-
terior PDF of x, and p(x) is the process PDF in terms
of the precursory variables, i.e., the basic PDF gener-
ated by the considered process [25]. Refer to the ap-
pendix of [26] for an integral formulation of e.g. P(x)
which applies the Heaviside step function as a filter. Note
that Eq. (8) expresses Bayes’ theorem relating the con-
ditional probabilities: the likelihood and the posterior
probability. Our prediction χ̂n is controlled by a thresh-
old L∗ ∈ [min(L),max(L)] of stringency on L. Note that
an actual choice is meant to be made as to the applied
value of L∗ in practice, for which reason this kind of
prediction is not probabilistic, but we call it a categoric
prediction.

TABLE II. Realised and predicted threshold exceedance event
probabilities.

χ
1 0

χ̂
1 A B
0 C D

To quantify the prediction skill the rate of true posi-
tives, or the hit rate, i.e., the frequency of making correct
predictions, which depends on L∗, can be defined [27, 28]
as:

H(L∗) =
A
A+ C

, (9)

and the false alarm rate can be defined as:

F (L∗) =
B

B +D
. (10)

In the above A,B, C,D are the frequencies or probabili-
ties [29] of situations specified by different combinations
of χ and χ̂, which can be collected, following [28], in a
table format shown in Table II. These probabilities we
express by the following integrals:

A(L∗) =

∫
RM

dVxP(x)H(L(x)− L∗), (11)

B(L∗) =

∫
RM

dVx(p(x)− P(x))H(L(x)− L∗), (12)

C(L∗) =

∫
RM

dVxP(x)H(L∗ − L(x)), (13)

D(L∗) =

∫
RM

dVx(p(x)− P(x))H(L∗ − L(x)). (14)

In the above dVx is a volume element in the precursory
space; and H(·) is the Heaviside step function. Upon
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FIG. 2. Illustration of the prediction problem: given a discrete-time irregular time series xn that every so often overshoot a
relatively high threshold x∗ (straight horizontal line), we want to predict these overshoots, i.e., extreme events, at the time,
say, of the immediately preceding observation. The discrete data points are connected by straight lines to indicate their order
in time.

detailing A,B, C,D, the hit and false alarm rates take
the following forms:

H(L∗) =

∫
RM dVxP(x)H(L(x)− L∗)∫

RM dVxP(x)
, (15)

F (L∗) =

∫
RM dVx[p(x)− P(x)]H(L(x)− L∗)

1−
∫
RM dVxP(x)

, (16)

where only H(L(x)− L∗) appears.

A parametric plot or curve {(F (L∗), H(L∗))} is re-
ferred to as the receiver operating characteristic (ROC)
curve [30]. With the extremal choices, L∗ = 0 and 1, we
have (F = 1, H = 1) and (F = 0, H = 0), respectively,
i.e., the ROC curve stretches from corner to corner. It
is a diagonal straight line with no prediction skill at all
(over random predictions χ̂ with P(χ̂ = 1) = 1−L∗), and
situated above the diagonal with any skill.

The ideal situation when extreme events (χ = 1)
and nonevents (χ = 0) can be predicted with certainty
(χ̂ = χ) is represented by the (F = 0, H = 1) corner in
the ROC diagram. In this case no choice has to be made
on the applied stringency L∗. In the nonideal situation an
optimal L∗ is to be chosen. This is always the case when
the precursory space does not embed the attractor unam-
biguously, or, when the equations governing the process
feature randomness. A unique optimum exists only in
terms of a single-objective optimization problem, defined
by a scalar-valued cost function. However, in our case
the minimization of the false alarm rate and the max-
imization of the hit rate are both ‘valid’ objectives. It
takes a specific application to be possibly able to define
a scalar-valued cost function C(F,H). For our general
assessment of predictability we choose to consider the
intuitive measure:

Dopt = min
L∗

(
√
F 2 + (H − 1)2), (17)

the smallest or optimal distance of the ROC curve from
the ideal corner. With no prediction skill at all: Dopt =√

2/2. Other summary statistics for the ROC curve have
also been defined, such as the area under the curve [24], or
the slope H ′F (F = 0) [12]. Unlike these two, the distance
Dopt can be associated to actual predictions specified by
an actual choice Lopt∗ for L∗. We note that it is not trivial
to interpret what the comparison of Dopt with a proper
skill score of probabilistic prediction [24] means.

C. Evaluation of skill

1. Direct numerical approach

Perhaps the most obvious factor that compromises
data-driven prediction skill is the finite size N of the
data set: {xn,xn}, n = 1, . . . , N . The distributions p(x),
P(x), L(x) will be approximated in our study by his-
tograms {pb}, {Pb}, {Lb}, b = 1, . . . , B; different values
of b can be assigned to the different bins arbitrarily, it
serves only the purpose of identification. Note that in
the coarse-grained situation {Lb} derives from {pb} and
{Pb} much the same way as with the continuous func-
tions according to Eq. (8). With the discrete formula-
tion of Eqs. (15) and (16), accordingly, the ROC curve
turns into (the graph of) a staircase (function), given by
a set of discrete data points: {(Hb, Fb)}, b = 1, . . . , B,
belonging to stringency levels {L∗,b} = {Lb}:
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Hb =

∑B
b′=1 Pb′H̃(Lb′ − Lb)∑B

b′=1 Pb′
(18)

Fb =

∑B
b′=1(pb′ − Pb′)H̃(Lb′ − Lb)

N −
∑B
b′=1 Pb′

(19)

Note first that in the above the bin counts of the his-
tograms {pb} and {Pb} are assumed to be not normal-
ized (otherwise one should write 1 in place of N); and
e.g. {Lb} and {Lb′}, b, b′ = 1, . . . , B, denote the same
set. Second, if Lb does not’, then neither do Hb and Fb
change monotonically with increasing b. Third, H̃(·) de-
notes a Heaviside-like function with the only difference
that H̃(0) = 0 (not 1/2).

The above estimation of the measures of skill is not
conservative [31], which is to do with finite histogram bin
counts for P(x) and associated statistical errors. An ap-
proach to fix this problem is the following. The available
data is divided equally into ‘training’ and ‘evaluation’
data sets. Then, the conservative estimates are defined
again by Eqs. (18) and (19), but the different terms ap-
pearing in them are associated with different data sets:
{Lb} is derived from the training data set, and {pb} and
{Pb} are derived from the evaluation data set. Note that
the latter requires the use of the same grid forming the
bins in case of the training and evaluation data sets.

A further issue to do with small bin sizes when many
bins of P(x) contain a single data point is that the ‘ROC
staircase’ can have an excessively large last step. This is
so, because bins that contain single data points tend to
have empty counterparts mutually between the ‘training’
and ‘evaluation’ data sets. This way Dopt >

√
2/2 can

even be realised.
Too large bin sizes would of course also deteriorate the

prediction skill. Therefore, there should be an optimal
bin size yielding (locally) minimal Dopt. Our numeri-
cal experience shows that there is always, for any given
prediction lead time or threshold level x∗, a unique (glob-
ally) optimal uniform bin size. Beside a regular grid one
can also use e.g. an irregular grid such that the same
number N/B of data points fall in each bin. In this case
there is an optimal choice for N/B, and so for B.

We adopt the latter approach. The irregular high di-
mensional grid (when M > 1) can be created iteratively,
treating one dimension of the precursory variable space
at a time. We note that the grid, i.e., the configuration of
bins, depends on the order of precursory variables con-
sidered in the iterative process. We do not claim that
any of these grids is the optimal grid. That is a question
to be investigated elsewhere.

2. Analytical and Semianalytical approaches

To be able to describe a ‘mechanism’ that produces
some properties of Dopt(x∗), it would be desirable to con-
struct this functional relationship analytically. Next we

outline the formulae for this, considering processes gov-
erned by eq. (3), when the aim is to predict threshold
exceedances of xn based on a single precursory variable
xn = xn−1. Equations (8)-(16) indicate that we need two
things:

(i): The likelihood function L(x;x∗), and

(ii): the process PDF p(x).

The process PDF we have already discussed in Sec. II.
The likelihood function, on the other hand, we can write
for a scalar precursory variable as:

L(xn−1;x∗) =

∫ ∞
x∗

dxnpxn|xn−1
(xn, xn−1), (20)

in which the conditional probability can be written as:

pxn|xn−1
(xn, xn−1) =

N0(xn−1; ∆t)pξ(ξn−1(xn, xn−1; ∆t)).
(21)

upon expressing the noise variable ξn−1 =
ξn−1(xn, xn−1; ∆t) – whose distribution pξ(·) we
know – from the process equation (3) as:

ξn−1(xn, xn−1; ∆t) =

xn − xn−1 − (b+ axn−1)∆t

(d+ cxn−1)
√

∆t
.

(22)

In eq. (21) the normalization factor derives from the
following basic property of a conditional probability:∫ ∞

−∞
dxnpxn|xn−1

(xn, xn−1) =

N0(xn−1; ∆t)

(d+ cxn−1)
√

∆t
= 1.

(23)

The likelihood function can in fact be formulated,
thanks to the factorization of additive terms of
ξn−1(xn, xn−1; ∆t) wrt. xn and xn−1, by the noise cu-
mulative probability distribution function (CDF) as:

L(xn−1;x∗) = 1− Fξ(ξn−1(x∗, xn−1)), (24)

in which the normalization factor N0 does not appear.
The numerator of the expression for the hit rate under

(15), for example, can be written as:

A(x∗,L∗) =

∫ ∞
xL(x∗,L∗)

dxn−1L(xn−1;x∗)p(xn−1), (25)

where the lower limit of integration is found by solving

L(xL;x∗) = L∗ (26)

for xL. Then the shortest distance Dopt of the ROC
curve from perfect predictability in terms of an optimal
Lopt∗ can be obtained by solving the equation:

D′(Lopt∗ ) = 0. (27)
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The alternative summary index the area under the ROC
curve can be obtained by the integral:∫ 1

0

dL∗H(L∗)F ′(L∗); (28)

or the ‘initial’ slope of the ROC curve is:

S = lim
L∗→1

H ′(L∗)/F ′(L∗). (29)

We are not aware of a model of the form (3) for
which Dopt(x∗) can be obtained analytically, even ap-
proximately relying on the GCLT, avoiding the use of
stable noise variables whose PDF is in general not in
an analytic form. We have been able to obtain F (L∗)
and H(L∗) analytically in some cases, but with any at-
tempt using the software package Mathematica we failed
to carry out either (27) or (28). However, even if it was
possible, it is doubtful how much it could aid further
studies, as the expressions already for F (L∗) and H(L∗)
are extremely complicated. In this respect it is not much
help that the slope S (29) is a more simple quantity than
Dopt or AUC in that the latter require in addition ei-
ther solving a nonlinear equation or carrying out an in-
tegral. A further problem with S is that it could be
less informative too. For example, if the limiting ROC
curve as x∗ → ∞ is in the linear form of H = c1 + c2F ,
c1, c2 ∈ [0, 1], then the limit of S does not exist, and so
it could not indicate a nontrivial, less than perfect pre-
dictability as specified by c1 6= 1, c2 6= 0. This is in fact
the case with unskewed stable or symmetrized Pareto
noise distributions (and c = 0), as introduced in Sec. IV.

Even if a fully analytical treatment is not possible, the
direct numerical approach based on (long) time series
data (Sec. II C 1) is not the only alternative. We can
still make use of eqs. (20)-(27) etc. by evaluating them
numerically. We will refer to this in the following as
a semianalytical approach. With this approach we can
evaluate Dopt at a desired x∗. It turns out that a choice
of x∗ has its limits regarding the accuracy of calcula-
tions due to finite machine precision. What is important
is that a sufficiently large range of x∗ is considered in
which the asymptotic behaviour shows up, and if it is
a scaling behaviour, then an accurate estimation of the
scaling exponent be possible.

In our numerics Dopt (and Lopt∗ ) is found by Mat-
lab’s fminbnd (an approximate solution of eq. (27)) for
which D(x∗,L∗) is calculated by numerical integration
of expressions like (25) using Matlab’s integral for any
L∗ required by fminbnd and a readily fixed x∗. Equa-
tion (26) is solved numerically by Matlab’s fzero. We
note that the procedure is greatly expedited by using eq.
(24) avoiding the numerical integration of the conditional
probability (21) as dictated by (20). This is particularly
useful when considering stable rv’s of α for which the
stable distribution does not have an analytic form (as in
Sec. IV) but it has to be numerically computed by e.g.
Matlab’s makedist.

III. PROCESS DISTRIBUTION NOT DECISIVE

It could be thought that (i) a decaying Dopt(x∗), as
has been found in all the situations ever examined that
we are aware of and reported on in Sec. I, is due to
a decaying process distribution p(x), or, (ii) a reducing
frequency of events [32]. Or (iii) it could be thought
that an increasing Dopt(x∗) is due to some other prop-
erty of the process distribution alone again, e.g., a fat
tail (Frechét-type extreme value distribution [3, 4]). We
will demonstrate in this section that, in relation with
(iii), Dopt(x∗) can be decreasing even if the process dis-
tribution is fat-tailed (Sec. III A), and, in relation with
(i), it can be increasing even if the process distribution
is decaying (Sec. III A), or, in relation with (ii), if the
frequency of events is increasing (Sec. III B).

A. Two processes with identical process
distributions

First we give the examples of two processes which
feature the same process distribution, yet Dopt(x∗) ap-
proaches its limit value from above in one case and from
below in the other. This will indicate that something else
than the process distribution, precipitated in some likeli-
hood function, is also at work [33]. One of the processes
is a P2-type process, as introduced in Sec. II A, driven
by a stable rv of pξ(ξ) = ps(ξ;α = 1/2, β = 1, γξ, δξ).
The special case of α = 1/2 is called a Lévy distribution,
one of two stable distributions that take analytic forms
expressible by elementary functions:

pL(x;µ, γ) = ps(x;α = 1/2, β = 1, γ, δ = γ + µ) =

γ

2π

e−
γ

2(x−µ)

(x− µ)3/2
,

(30)

µ < x < ∞. Notice that the skewness parameter of this
stable distribution takes on its largest possible value, β =
1, so that the distribution looses the power-law tail on the
left and becomes even bounded on that side. Such a noise
produces a Lévy P2-type process distribution px(x) =
ps(x;α = 1/2, β = 1, γx = γξ/ α

√
1− ϕα, δx = δξ/(1−ϕ)),

as can be derived from eqs. (1.8) of [17].
We point out that the (analytic) process PDF (2) with

appropriate parameters is in the form of the Lévy dis-
tribution (30). The appropriate parameters we find to
be: a = 1/4, b = 0, c = 1, d = −1, with which µ = 1,
γ = 1. Therefore, in order to match the P1 and P2 Lévy
process distributions, for P2 with, say, ϕ = 1/2 we need

noise parameters: γξ = (1− 1/
√

2)2, δξ = 1/2.
For the described P1 and P2-type processes we see

Dopt(x∗) and the corresponding Lopt∗ (x∗) diagrams in
Figs. 3 and 4, respectively. In the same diagrams direct
numerical (Sec. II C 1) and semianalytical results (Sec.
II C 2) are plotted. They match rather closely. The differ-
ent diagrams of Dopt(x∗) are as forecast in the beginning

of this section. We note that in both cases Lopt∗ (x∗) are
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FIG. 3. Predictability of extremes in a P2-type process (Sec.
II A) using two different fat-tailed noise variables of power
exponent 3/2 both (see main text for details). One noise
variable is of a Lévy-type (blue and red curves with plus sing
+ and dot • markers, respectively), and the other one is of
a matching (see main text for details) Pareto-type (magenta
and green curves with circle ◦ and dot • markers, respec-
tively). The calculations were done both by a direct numer-
ical method (Sec. II C 1, red and green curves, N = 106,
B = 2 · 104) and by a semianalytical method (Sec. II C 2 blue
and magenta curves). A straight line of slope 1/2 is included
for reference.

vanishing according to power-laws. The power exponent
in Figs. 3 is measured to be about 1/2 and in Fig. 4
somewhat less, which suggests a connection with the sta-
bility parameter α = 1/2, possibly an exact one in the
former case. Because of the good quality of the power-
laws for the semianalytical results, we believe that the
results for Dopt(x∗) in the examined range of x∗ are ac-
curate, even if this can break down for larger x∗’s due to
finite machine precision. In case of the P2-type process,
a power-law asymptotic behaviour for Dopt(x∗) cannot
be established, because we do not know the presumably
nontrivial asymptotic limit lim

x∗→∞
Dopt(x∗).

In Fig. 3 we plotted results using – beside a sta-
ble rv – a Pareto rv too. The PDF of it can be given
by a (classical) Pareto distribution that is shifted ‘hor-
izontally’. This can be put in terms of the Generalized
Pareto Distribution which, beside a shape parameter k
and scale parameter σ, sports a location parameter µ too:
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FIG. 4. Predictability of extremes in a P1-type process (Sec.
II A) using two different noise variables of equal variance. One
noise variable is a Gaussian one (blue and red curves with
cross × and dot • markers, respectively), and the other one is
uniformly distributed (green curve with dot • markers). The
calculations were done both by a direct numerical method
(Sec. II C 1, red and green curves, N = 106, B = 2 · 104,
∆t = 10−2) and by a semianalytical method (Sec. II C 2, blue
curve). Straight lines of slope 1/2 are included in both panels
for reference.

pξ = pGP (ξ; k = 1/α, σ = ξm/α, µ), where we used

ξm = γx
α
√

(1− ϕα)(1 + β) sin(πα/2)Γ(α+ 1)/(πα).
(31)

Furthermore, in order to approximate the above de-
scribed Lévy process distribution most closely, we have
found empirically that the location parameter should be
µ ≈ 0.52. With this approximation the semianalyti-
cal Dopt(x∗) curve in Fig. 3 seems indistinguishable
from that for the exact model. This is to indicate that
Dopt(x∗) could in principle be obtained analytically, with
a very good approximation at least. However, our at-
tempt to do this have not been fruitful. As we referred
to this in Sec. II C 2, in this particular example the an-
alytical treatment stumbled at the last hurdle, trying to
solve eq. (27).

Upon this experience our idea was to use, instead of a
continuous precursory variable, a discrete one. With this
the ROC curve is not continuous but discrete, staircase-
like, and so no equation like (27) arises. For convenience,
we took the extreme case of a discrete precursory vari-
able: a binary one. Specifically:
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FIG. 5. Predictability of extremes in a P1-type process (Sec.
II A) using a uniformly distributed noise variable and a bi-
nary precursory variable (see main text for details). The cal-
culations were done both by a direct numerical method (Sec.
II C 1, red and blue curves with dot • markers, N = 106,
B = 2 · 104, ∆t = 10−2) and by a fully analytical method
(Sec. II C 2, thick solid green curve). The direct numerical
results have been repeated 2×20 times. For the red curves
the median defining the binary precursor (32) is estimated
from data, and for the blue curves the true value of it is used.
Discrete data points are connected by straight lines

xn =

{
2, xn−1 > x50%
1, xn−1 < x50%

(32)

where x50% denotes the median of the process PDF. The
Appendix details how the distance D is calculated ana-
lytically for a binary precursor. We were able to com-
plete this calculation for the P1-type process specified
in this subsection above. The resulting expressions are,
however, so complicated that it does not seem to be pro-
ductive to write them out here; we have not gained an
insight by them. Nevertheless, it is worthwhile to see the
graph of D(x∗) which we display in Fig. 5. Its tendency
is the opposite of that with the continuous precursor.
The lesson is thus that the much simpler precursor per-
forms much poorer, with even the qualitative behaviour
altered. Beside a lack of insight, the analytic treatment
fails to have an added value in this regard too. We note
that the analytic result is approximate, because we re-
placed the Gaussian rv by a uniform rv of unit variance.
However, the approximation should be good, as is indi-
cated by the closely matching red and green curves in
Fig. 4.

We would like to emphasize that while just above for
the P1-type process the predictability was deteriorating
for increasing thresholds because of the ‘weakness’ of the
precursor, further above for the P2-type process the de-
teriorating predictability (Fig 3) is down to a more fun-

damental reason, yet unknown. Also, ours is the first
report on a process for which deteriorating predictability
is found.

B. Predicting threshold nonexceedances

When we predict threshold nonexceedances, by rais-
ing the threshold x∗ we have more and more events.
One could expect that the predictability is improving,
or, changes in the opposite direction to that when pre-
dicting threshold exceedances. We show here that it is
not the case: Dopt(x∗) is the exact same for both ex-
ceedances and nonexceedances. Therefore, the mono-
tonicity of Dopt(x∗) is not due the monotonicity of the
process CDF, as ‘hypothesized’ above under (ii).

The table of realised and predicted nonexceedance
probabilities is given in Table III. It derives from Ta-
ble II observing that χ↓ = 1− χ↑ and χ̂↓ = 1− χ̂↑. The
downward directed arrow in e.g. χ↓ expresses that we
have an event when the data point is below the thresh-
old. Also, what was e.g. χ in Table II or definition (6)
we denoted here more distinctively as χ↑. From the truth
table we have the hit and false alarm rates, similarly to
eqs. (9) and (10), as:

H↓ =
D
D + B

= 1− F ↑, (33)

F ↓ =
C

A+ C
= 1−H↑ (34)

It is more convenient to consider the ‘miss rate’ M =
1−H instead of the hit rate H. With that we have

M↓ = F ↑, (35)

F ↓ = M↑. (36)

And the definition of the distance from perfect pre-
dictability (F,M) = (0, 0) also takes a more simple form:

D =
√
F 2 +M2. (37)

That is, the miss and false alarm rates both are to be
minimized. This reveals its similarity to the Brier skill
score [24]. But the main point is that since in eq. (37) F
and M play ‘symmetric roles’ in determining D, swap-
ping these quantities when we predict nonexceedances
instead of exceedances, as expressed by eqs. (35) and
(36), leaves D unchanged.

IV. PROPERTIES OF THE ADDITIVE NOISE
DISTRIBUTION

A. The influence of the power exponent

Our interest here is the dependence of predictability
on the power exponent characterizing the tail of the pro-
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TABLE III. Realised and predicted threshold nonexceedance
event probabilities.

χ↓

1 0

χ̂↓
1 D C
0 B A

cess PDF. It is given by the stability parameter α (more
precisely: α + 1) when we use a stable rv in a P2-type
process. Specifically, we consider unskewed stable dis-
tributions pξ(ξ) = ps(ξ;α, β = 0, γ = 1, δ = 0) and
ϕ = 1/2. In our parameter study we use the range
of values 0.7 + 0.1k, k = 0, 1, . . . , 13 for α. We carry
out computations following our semianalytical approach
(Sec. II C 2). For smaller values of α than 0.7 the proce-
dure tends to break down. The largest value is 2 yielding
a Gaussian distribution. For smaller values the peaked
middle part of the PDF are also Gaussian-like, but only
the tail follows a power-law. The crossover between these
two regimes shifts to the right for values closer and closer
to 2. We display the graphs of Dopt(x∗), one for each
sample value of α, in Fig. 6 (a). Our main observations
are the following. First, all curves approximate their re-
spective horizontal asymptotes, situated at some presum-
ably nontrivial levels, from below. This is similar to the
result shown in Fig. 3, presumably for the same (yet
unknown) reason. Second, the asymptotic predictability
(the elevation of the asymptote) is the better, the smaller
α is. Third, For some critical value of α a nonmonoticity
of Dopt(x∗) develops. It only vanishes for α = 2 when
the power-law tail vanishes shifting infinitely to the right.
For that value we recover the results reported in [12] for
the common Gaussian AR(1).

We also display in Fig. 6 (b) the optimal choice of the

threshold Lopt∗ (x∗) on the likelihood. Since for each pa-
rameter value it vanishes, it reveals the power-laws that
govern the respective tails. The slopes in a log-log di-
agram show that the power exponent is inherited from
the noise rv, although it is not α + 1 just α. This needs
further research which is beyond the scope of this paper.
In any case, this fact makes us believe that the semiana-
lytical calculations result in accurate Dopt estimates too.
One might guess that Dopt(x∗) decays to its limit value
governed by a power-law with the same exponent. On
this ground one might try to fit such a functional form
to the data and estimate the elevation of the asymptote.
We have not done this exercise, but we suspect that the
accuracy of such estimates depends on α.

We note that Dopt(x∗) are even functions and

Lopt∗ (x∗)− 1/2 are odd functions (but these are not visi-
ble in the log-log diagram). We can explain the ‘symme-
try’ of Dopt(x∗) by pointing out, on one hand, that Dopt

is the exact same for threshold exceedances and nonex-
ceedances (Sec. III B). On the other hand, the P2-type
process equation is satisfied by xn, xn−1, ξn−1 upon re-
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FIG. 6. Predictability of extremes in a P2-type process (Sec.
II A) using stable noise variables (see main text for details).
Sample values for α are 0.7+0.1k, k = 0, . . . , 13. The match-
ing curves of Dopt(x∗) and Lopt∗ (x∗) are color coded with
matching colors. The Lopt∗ (x∗) curves follow an order from
right to left for increasing values of α. Purple Dopt(x∗) curves
with circle ◦ markers are extended by evaluating Dopt using
the same seminalytical technique (Sec. II C 2) for more sam-
ple values of x∗ (diamond ♦ markers in magenta); and Dopt

is evaluated also based on long time series data (Sec. II C 1,
N = 106, B = 2 ·103) for a series of sample values of x∗ (cross
× markers in magenta). The close match of results by the
two independent methods gives confidence in these results.

versing their signs, and pξ(ξ) is symmetric.
To reveal the symmetry of Dopt(x∗) with direct numer-

ical computation, B needs to be carefully chosen (results
not shown), something that we do not yet fully under-
stand.

B. What if the variance exists?

We do now a similar exercise as in Sec. IV A but in-
stead of unskewed stable noise variables we use rv’s obey-
ing symmetrized Pareto distributions of the form:

psP (ξ;α, ξ̃m) =
αξ̃αm

(|ξ|+ ξ̃m)α+1
. (38)

As the expression tells, this distribution is created by
‘mirroring’ a (classical) Pareto distribution to ξ = 0 and
‘pulling’ both sides to ξ = 0 thereby ‘making them meet’.
It is straightforward to show that the asymptotic be-
haviour of the right tail of the symmetrized Pareto distri-
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bution can be described by a Pareto distribution whose
scale parameter (as appearing in eq. (5)) is:

ξm = ξ̃m/
α
√

2. (39)

For a series of sample values of α, fixing ξ̃m = 1, we
calculated by our direct numerical approach the curves
Dopt(x∗). Beyond those considered in Sec. IV A, we in-
clude values up to 3, for which the variances of the noise
and so the process PDFs exist. The results are displayed
in Fig. 7. The important difference as compared with
a stable noise variable is that no nonmonotonicity devel-
ops, and Dopt(x∗) is increasing for all values of α exam-
ined. This includes values for which the variance of the
distribution exists. Therefore, we can conclude that the
existence of the variance or the lack of it is not decisive
wrt. the monotonicity of Dopt(x∗), namely, whether pre-
dictability improves or not, respectively, with the event
magnitude. The difference between the results using sta-
ble and symmetrized Pareto rv’s for α = 2 is particularly
striking, which should have to do with the fact that with
a symmetrized Pareto noise the power-law tail does not
‘get infinitely marginalized’. This is an indication that
for deteriorating predictability what matters only is the
power-law tail of the additive noise.

For two sample values, α = 1 (circle ◦ marker) and
1.7 (diamond ♦ marker), similar results have been gener-
ated applying our semianalytical approach. The process
distribution was approximated by a stable distribution
based on the GCLT. The scale parameter of the stable
distribution was obtained by eq. (5) in which for ξm we
put the value obtained from eq. (39). While we see a con-
vergence for the smaller value of α, which already gives a
confidence in the results, the convergence is not ‘in sight’
for the larger value. This is clearly because in the latter
case the fact that ϕ < 1 significantly is felt more, and so
the GCLT implies for a symmetrized Pareto noise vari-
able a poorer approximation of the process distribution
and hence Dopt at the same x∗. Also, we notice that the
curve in question in Fig. 7 is monotonic while the cor-
responding one in Fig. 6 was not. We speculate that it
might be because the power-law scaling of the noise dis-
tribution (that determines the likelihood function via eq.
(24)) prevails for all values of x, not just asymptotically
like in case of the stable distribution.

V. NOISE DISTRIBUTION NOT DECISIVE

Let us consider a P1-type counterpart of the P2-type
process from Sec. IV B driven by a symmetrized Pareto
noise of tail index α = 3. It is specified by a = −1, b = 0,
c = 1, d = 1 in (2), yielding the process distribution:

p(x) = N0
2e−

2
1+x

(1 + x)4
. (40)
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FIG. 7. Predictability of extremes in a P2-type process (Sec.
II A) using symmetrized Pareto noise variables (see main text
for details). The calculations have been carried out by a di-
rect numerical approach (Sec. II C 1, N = 106, B = 2 · 103).
Sample values for α are 0.7 + 0.1k, k = 0, . . . , 23. The curves
follow an order from right to left for increasing values of α.
For two sample values, 1 (circle ◦ marker) and 1.7 (diamond
♦ marker), similar results are generated applying our semian-
alytical approach (Sec. II C 2).

We calculated the predictability for this both by the semi-
analytical and direct numerical approaches, whose results
are displayed in Fig. 8. They match very well; and show
an improving predictability with event magnitude. This
suggests that this behaviour might be robust against vari-
ations of the power exponent. It may be down only to
the CAM nature of the noise. However, we can ask the
question whether this behaviour ‘survives’ the replace-
ment of the Gaussian noise by a fat-tailed stable noise.
This is tested by our last exercise.

We used stable noise variables of a series of stability
parameter values, such as: α = 1 + 0.1k, k = 0, . . . , 10,
and also 1.95. The calculations are based on time series
data of equal size of N = 106 data points for each sam-
ple values. The reason for this is that we do not solve
the fFP eqation, and without that we do not know the
process distribution. Hence, we cannot employ our semi-
analytical technique. Each noise time series has a unit
observed variance. The results are displayed in Fig. 9.
We can see that the decaying nature of Dopt(x∗) survives.
At the highest thresholds examined we believe that these
are only statistical errors that mask the monotonic de-
cay. We back this up by examining, in two cases, two
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FIG. 8. Predictability of extremes in a P1-type process (Sec.
II A) using a Gaussian noise variable (see main text for de-
tails). Calculations are done both by the semianalytical (Sec.
II C 2, blue line with circle ◦ markers) and direct numerical
approaches (Sec. II C 1, red line with dot • markers, N = 106,
B = 2 · 104, ∆t = 10−2). Outliers in both diagrams indicate
that in that regime the algorithm has difficulties dealing with
fast-varying functions.

different choices of the number B of bins (N unchanged)
each case. With smaller B, which should result in larger
statistical errors than the larger B chosen (see the fig-
ure caption), the tail of Dopt(x∗) ‘picks up’ erroneously
sooner than with the larger B chosen.

VI. CONCLUSIONS

We conducted a set of case studies that disprove cat-
egorically a number of intuitive propositions on the pre-
dictability of threshold exceedances in a linear stochastic
differential equation (SDE). Neither any single property
of the noise distribution considered nor any single prop-
erty of the process distribution considered decides alone
whether the predictability is improving or deteriorating
with the event magnitude. But we conjecture that it is
determined by the noise only, as presented visually in Fig.
1: if the noise is additive, then predictability is down to
the noise distribution having a fat tail or not; and noise
presented in a correlated additive-multiplicative manner
to the SDE [34] determines alone the predictability to be
improving.

The authors of [10] have a similar conclusion regard-

-1 -0.5 0 0.5 1 1.5 2 2.5 3
x

*

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
o

p
t

-0.01 0 0.01
0.01

0.012

0.014

0.016

0.018

0.02

FIG. 9. Predictability of extremes in the same P1-type pro-
cess as in Fig. 8 but using stable noise variables (see main
text for details). Calculations are done only by the direct
numerical approach (Sec. II C 1, N = 106, ∆t = 10−2).
Sample values of the stability parameter values used are:
α = 1 + 0.1k, k = 0, . . . , 10, and also 1.95. These values of α
positively correlate with the peak height of the corresponding
curves. We chose B = 2 · 104, but for α = 1.6 and 2 we also
used B = 2 · 103. With a time series of length N = 106 these
give respectively N/B = 50 and 500 number of data points
in each bin. A blowup is needed to show features of some
curves.

ing the dominance of this property, but their conclusion
is opposing to ours in that they find the predictability
to be always worse with CAM noise. There is no contra-
diction, however, as these authors used a different mea-
sure of predictability, an anomaly correlation. It should
be noted that these authors did not concern the pre-
dictability of extremes only. A similar situation arose
with the verdicts of [9, 15] on the predictability of ex-
tremes. In [14] the two different measures of predictabil-
ity used in [9, 15] were evaluated for the same model and
observable demonstrating that the use of different mea-
sures can lead to different conclusions. We can conclude,
therefore, that predictability has to be evaluated either
comprehensively in terms of many different measures of
prediction skill, or, some thought should be given as to
what measures should not be used or rather preferred
concerning extremes.

Finally, we would like to point out that Table I col-
lecting studies on the predictability of extremes has an
empty slot. An asymptotic theory for extremes in de-
terministic dynamical systems excludes the possibility of
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fat tails concerning so-called physical observables; as the
chaotic attractor of a dissipative dynamical system is al-
ways compact, the extreme value distribution is always
bounded, therefore, it is of the Weibull-type [4, 35]. Nev-
ertheless, even deterministic dynamical systems can ex-
hibit distributions of observables governed approximately
by a power-law over finite ranges. Models of atmospheric
dynamics provide examples. The finite range power-
law scaling is faithfully reproduced by systematically de-
rived reduced stochastic models, thanks to nonlinearities
in their deterministic part [20] – unlike the linear eq.
(1) which exhibits an asymptotic fat tail as expressed
by (2). It remains to be seen what is the predictabil-
ity of extremes in such models, whether it is like our
finding for the CAM noise (Fig. 1), or the nonlinear-
ities can bring about qualitatively different behaviour.
Also, does the predictability of these models faithfully
represent that of the real atmosphere? Such a study ap-
pears relatively straightforward owing to the possibility
of employing the data-driven approach of evaluating pre-
dictability (Sec. II C 1). And finally, it would be desir-
able, possibly even practical, to underpin the emergence
of fat-tailed Fréchet-type extremes and their predictabil-
ity by a theory based on dynamical systems theory, pos-
sibly relating parameters of extreme value distributions,
such as a positive shape parameter, as well as measures
of predictability with dynamical characteristic numbers.
This can be envisaged as a nonasymptotic extension of
the currently existing theory [4, 35].
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APPENDIX: PREDICTION SKILL WITH A
DISCRETE PRECURSOR

Let us consider a discretization of the precursory vari-
able x by the binning of its space such that each bin

covers the same probability of occurrence. This can be
expressed for a scalar precursor x as:

xb = b, when x100 b−1
B % < x < x100 bB%, (41)

b = 1, . . . , B, in terms of regular quantiles satisfying
F (x100 bB%) = b/B. (The assignment xb = b is clearly

just symbolic.) This is the same how we proposed to
evaluate the prediction skill from time series data in Sec.
II C 1. For each bin we can calculate the average likeli-
hood:

Lb(x∗) =

∫ x
100 b

B
%

x
100 b−1

B
%

dxL(x, x∗)p(x)/B. (42)

The posterior probabilities are then Pb(x∗) = Lb(x∗)/B.
With these we can make use of the discrete formulations
(18) and (19) and express the hit and false alarm rates
as:

Hb =
〈Lb′H̃(Lb′ − Lb)〉b′

〈Lb′〉b′
, (43)

Fb =
〈(1− Lb′)H̃(Lb′ − Lb)〉b′

1− 〈Lb′〉b′
, (44)

where 〈·〉b′ denotes averaging wrt. index b′ = 1, . . . , B.
In the generic situation when the pb’s are not necessarily
equal, the formulation is still straightforward via aver-
aging the likelihood in bins and applying (18) and (19).
Find an alternative formulation in [13].

Considering a binary precursor, L2 > L1 when x∗ >
x50%, and we can write

H2 =
L2

L1 + L2
, (45)

F2 =
1− L2

2− (L1 + L2)
, (46)

which is the only nontrivial ‘step’ of the ROC ‘staircase’.
Hence, no nontrivial optimization, i.e., selection of the
maximal value, is needed to determine the prediction skill
in terms of D.
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