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Biases in climate model simulations introduce biases in subsequent impact
simulations. Therefore, bias correction methods are operationally used to post-
process regional climate projections. However many problems have been iden-
tified, and some researchers question the very basis of the approach. Here we
demonstrate that a typical cross-validation is unable to identify improper use of
bias correction. Several examples show the limited ability of bias correction to
correct and to downscale variability, and demonstrate that bias correction can
cause implausible climate change signals. Bias correction cannot overcome major
model errors, and naive application might result in ill-informed adaptation de-
cisions. We conclude with a list of recommendations and suggestions for future
research to reduce, post-process, and cope with climate model biases.



18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

a4

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Climate scientists are confronted with a growing pressure to support adaptation decisions
and face the dilemma of operationalising what is still foundational research®?. The models
often used to inform adaptation decisions - global coupled atmosphere ocean general circu-
lation models (GCMs), potentially downscaled with regional climate models (RCMs) - have
horizontal resolutions often far coarser than those demanded, and suffer from substantial bi-
ases®*. To reduce biases and to overcome the scale gap between the numerical model grid and
the desired scale, climate model output is almost routinely post-processed by bias correction
(often called bias adjustment) methods. A vast number of bias corrected national and global
climate change projections has been published?078910:1112.13 "5 served as input for impact
studies 1415:10:16 a5 well as assessment reports 19 and has been made available through data
portals??2L13 - A wide variety of bias correction methods is in use, ranging from simple adjust-
ments of the mean to flexible, potentially multivariate, quantile mapping approaches??23:24,
Yet many problems related to bias correction have been identified2%8:26:27:2829  Thys, even
though bias correction is often considered a necessary step in climate impact modelling?*, the
approach is prone to misuse and best practice still needs to be established®’. Some authors
even question the very basis of bias correction®!.

Current developments on bias correction have largely focused on improving statistical
methodology: to better match variability and extremes?#3%3334  the dependence between
different climatic variables®33¢, the location of features®’, or to retain simulated trends%3>!!,
This focus has ignored a major issue: a key requirement of climate model projections is
credibility®®12.  Here, we argue that current bias correction methods might improve the
applicability of climate simulations, but in general cannot improve low model credibility.
Indeed, bias correction may hide a lack of credibility or may even reduce credibility. The way
bias correction is often applied and evaluated might ultimately lead to ill-informed adaptation
decisions.

We start from the basic reason underlying the demand to bias correct: all models are
substantial simplifications of a real system. Climate models are based on physical laws such
as conservation of energy, mass and momentum, thermodynamic and radiation laws. But
models have a limited spatial resolution, their topography is coarse and they will never re-
solve nor represent all relevant processes from planetary waves down to turbulence. Sub-grid
processes are simplified by parameterisations. As a consequence, many relevant atmospheric,
oceanic and coupled processes are not realistically represented, with knock-on effects on other
processes even far away from where the primary biases occur®”. Biases in basic quantities
such as mean and variance are therefore commonplace, even for something as fundamental
as global-mean surface temperature®. Often, a realistic behaviour is only achieved by tuning
the model®. In short, climate model biases are severe enough to in principle justify the use
of bias correction techniques to render model output more useful for impact studies.

We therefore argue that bias correction should not be dismissed, but that a solid conceptual
and process understanding of climate model biases is required to successfully apply bias
correction. The extent to which biases can be mitigated by post-processing depends on
their origin. We present several examples, discuss their correctability by state-of-the-art bias
correction methods, and propose alternative approaches and future directions of research.
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1 Bias correction in a nutshell

We define a bias as the systematic difference between a modelled property of the climate
system and the corresponding real property?%:41:25:3142:43 = Quch properties could be mean
temperature, variance or a 100-year return value. The term “systematic” refers to all dif-
ferences that are not due to sampling uncertainty. Biases are typically assumed to be time-
independent #4523 hut in principle may vary in time*4%2542  Some authors define a bias
as the time independent error component of a model?#4%47. The problems we discuss below
occur irrespective of the specific bias definition.

As bias correction we consider all methods that calibrate an empirical transfer function
between simulated and observed distributional parameters, and apply this transfer function
to output simulated by the considered model. Bias correction according to this definition is
a mere post-processing.

We focus on two different types of methods which are broadly representative of those
commonly used: a simple adjustment of the mean, and quantile mapping. A simple mean
bias correction would estimate a bias as the difference (or ratio for, e.g., precipitation) between
simulated and observed mean over a reference period, and adjust the simulated time series over
a scenario period by the estimated bias (by subtracting it, or rescaling). Quantile mapping
individually adjusts each quantile. The transfer functions are then applied to climate change
simulations under the assumption that they are time-invariant.

Bias correction relies on observational reference data, which should in many cases be
considered a model product themselves. This holds true in particular for gridded data sets.
Related issues are an important topic for bias correction, but are outside the scope of this
article.

2 The evaluation problem
[Figure 1 about here.|

To begin with, we demonstrate the difficulties to evaluate the performance of bias correc-
tion. The evaluation of statistical models, e.g., in weather forecasting, is generally done by
cross-validation: the model is calibrated to a subset of the available data only, the evaluation is
carried out by assessing the prediction of the remaining (independent) data. Cross-validation
is widely used for establishing skill of bias correction, often only for calibrated properties
of the marginal distribution®474823:49 (some exceptions evaluate temporal or spatial depen-
dence®?7). Here we demonstrate that such an evaluation is not suitable to establish bias
correction skill.

Consider the rather absurd setting of bias correcting simulated daily temperature from
the Southern Ocean against observed daily precipitation over central Europe during boreal
winter. The corresponding model grid boxes are simply taken from the exact opposite side
of the globe. Whereas the temperature field over the Southern Ocean (mapped onto Eu-
rope) is very smooth (Fig. 1a,d), precipitation in Europe has a distinct pattern controlled by
distance to sea and orography (b,e). But even though modelled temperature and observed
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precipitation fields are essentially unrelated and both fields show different long-term changes,
the quantile mapping looks reasonable for the validation period, for mean and high values
(¢,f). The residual bias (g) between corrected model and observation purely stems from the
different trends in both regions. The problem is especially severe for non-parametric quantile
mapping, as demonstrated for the grid box enclosing Venice (h): even though the tempera-
ture and precipitation distributions have completely different shapes, and both distributions
change substantially over time (mean precipitation +28%, mean temperature -0.29K in the
corresponding Southern Ocean grid box), the QQ plot looks reasonable also for the validation
period. In other words: cross-validation of calibrated climatological properties is not able
to identify the absurdity of the chosen example, and is thus not sufficient to evaluate the
performance of bias correction. The reason for the failure is that, in climate modelling, model
and observations are not in synchrony and predictive skill cannot, as in weather forecasting,
be established by cross-validation?®. The evaluation is restricted to long term distributional
aspects only, and provided the sampling is adequate, cross-validation will merely reproduce
the long-term distribution. But in a non-synchronous setting it is still possible to evaluate
non-calibrated aspects, in particular for the temporal and, if required, spatial dependence
structure. Such an evaluation would yield essential and indispensable information about the
appropriateness of a bias correction.

3 Bias correction under present conditions
[Figure 2 about here.|

Bias correction may introduce artefacts already for present climate conditions which are
invisible to an evaluation of marginal distributional properties. As example, consider correc-
tions of the drizzle effect, i.e., the fact that climate models often simulate too high a number
of wet days with very low intensities. Quantile mapping adjusts the number of wet days by
changing the least wet days into dry days. The adjustment in turn improves the representa-
tion of dry spells of typically up to about 20 days®®. But climate models have considerable
deficiencies in representing temporal variability beyond the drizzle effect. Dry spells are often
too short, e.g., because the persistence of blocking highs is typically underrepresented®!, or
because a dry valley may be represented as an exposed location by a typical climate model
with coarse topography. Whereas the drizzle effect may indeed be correctable, an attempt to
correct other, more fundamental errors in the spell length distribution may result in unwanted
artefacts (Fig. 2). In many cases one may simply miss the long spells (a), in some cases one
may by chance even combine short spells into long ones and therefore improve the overall
spell length distribution (b). But in a substantial amount of cases, the wet-day adjustment
might either produce too many short and medium-length spells (c¢) or even too long spells
(d). This example highlights that bias correction is not a one-size-fits-all approach, but needs
to be user-tailored: is the overall wet-day probability relevant or the representation of spell
lengths? A careful decision needs to be drawn, and a sensible adjustment carried out. Other
examples, where attempts to bias correct temporal structure might cause severely misleading

results, are the diurnal cycle of precipitation or the onset of the rainy season®.
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[Figure 3 about here.]

Bias correction may further be infeasible if the climate model variable does not capture
the relevant regional processes. Consider a GCM that simulates reasonable ENSO variability,
but does not reproduce the clustering of extreme precipitation in Peru during El Nino events
(Fig. 3, top and middle left panels). Quantile mapping trivially adjusts the distributions (right
panel), but still the result is meaningless as the wrong clustering is not improved (bottom
left panel). In this example, already a visual inspection of the resulting time series uncovers
the bias correction problem. When evaluating many grid boxes, an evaluation conditional on
El Nifio events might be required. A similar representativeness problem may be caused by a
coarse model topography, which may act as an unrealistically strong meteorological divide?®.

[Figure 4 about here.]

In many cases bias correction is used to downscale to a finer spatial resolution ®#8:49:35:15,12
Current approaches, however, are unable to generate unexplained subgrid day-to-day variabil-
ity and may even introduce artefacts, e.g., in the representation of extreme precipitation?’.
But similar effects might also occur for temperature fields in complex terrain. Consider tem-
perature inversions, a common feature in the Central Valley, California (Fig. 4). A bias cor-
rected GCM will trivially reproduce the climatological temperature difference of 2 K between
a location in the valley and a nearby location higher up in the Sierra Nevada. But whereas
the actual day-to-day temperature difference has a broad distribution - with negative values
indicating inversions - the bias corrected difference is essentially constant (it varies slightly
because quantile mapping corrects different quantiles individually). Stochastic approaches
explicitly modelling unexplained sub-grid variability may thus be required in complex terrain
or for highly variable fields.

4 Bias correction under climate change conditions

Some artefacts of bias correction may only appear under changing climatic conditions and
may thus be invisible to evaluation against present observations.

One cause of such artefacts are GCMs biases in the large-scale atmospheric circulation
which themselves result from an insufficient resolution of the atmospheric model®, a coarse
topography®®5¢ or from biases in the underlying sea surface temperature®”°%5?. For instance,
over Europe the North Atlantic winter storm track is too zonal in most models and crosses
Europe too far south®®. Such biases exert a strong control on regional climate?%%. They are

inherited by downscaling and are reflected in regional biases®.

52,53
Y

[Figure 5 about here.|

It has been argued that biases in surface weather resulting from circulation biases cannot be
bias corrected?%3°. For instance, when the frequency of circulation types is misrepresented,
bias correction may increase biases for specific circulation types?’. Here we further show that
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bias correction in the presence of substantial circulation biases may induce implausible future
signals.

Consider precipitation projections based on a GCM with a substantial southward bias
of the Atlantic storm track, such that the maximum of present day winter precipitation in
Western Europe is shifted southwards by about 20°(Fig. 5 top). The GCM simulates a north-
ward shift of the storm track. A mean bias correction of winter precipitation will perfectly
align simulated present-day mean precipitation with observations, by damping precipitation
over Southern Europe, and amplifying it over Central and Northern Europe. Applying this
correction to the future simulation, however, the northward shift of the uncorrected precipita-
tion peak - indicating a northward shift of the storm track - is transformed into a southward
precipitation shift.

In other words: in the presence of major circulation biases, bias correction - even though
the local climate change signal is preserved - might create implausible patterns of surface
climate change. Such problems can be avoided by a careful climate model selection: for a
GCM with a lower circulation bias, the precipitation bias correction preserves the northward
precipitation shift consistent with the storm track shift (Fig. 5 right bottom panel).

Two approaches have been suggested to correct atmospheric circulation biases. First,
to bias correct GCM fields prior to dynamical downscaling®?; and second to spatially shift
simulated fields3”. Both approaches, trivially, correct biases in the climatological atmospheric
fields. The first approach, however, introduces inconsistencies in the atmospheric dynamics:
for instance, individual storms are - in the GCM - still generated at the wrong position of the
polar front and then - in the RCM - interact with the corrected climatological polar front. The
second approach ignores that the simulated position of circulation features is intricately linked
to the model orography, simulated land-sea contrasts and sea surface temperature biases, and
thus introduces inconsistencies with these model properties.

Another cause of artefacts is the modification of the climate change signal by variance-
adjusting bias correction methods®27%3. A debate has arisen whether these trend modifica-
tions might actually improve or deteriorate the raw climate change signal®*, and several
trend preserving bias correction approaches have been developed?®?11:6%:66  We argue that this
issue cannot be resolved based on purely statistical arguments. Again, one needs to refer to
process understanding.

Obviously, a credibly simulated trend should not be altered by any postprocessing. In
such a case, the assumption of a time invariant correction is fulfilled and a trend preserving
bias correction is the method of choice. Often, however, climate model biases depend on the
actual state of the climate system #2557 5o in a changing climate they are not time-invariant.
Two questions arise: first, in what situations are climate model trends implausible? And
second, in which situations could bias correction methods like quantile mapping potentially
improve such trends?

Many cases have been identified where climate models may simulate implausible changes
of large-scale climatic phenomena, because the underlying processes are not realistically rep-
resented. Prominent examples are the representation of ENSO feedbacks®®% the Indian
summer monsoon "5 the influence of increased diabatic heating on the intensification of
extratropical cyclones™, or European blocking®!. Current bias correction methods will not
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succeed in improving these changes, as they result from fundamental climate model errors®’.

At the regional scale, misrepresented land-surface interactions may result in implausi-
ble climate change trends. For instance, models simulating unrealistically low summer soil
moisture tend to over-represent summer temperature increases*7; similarly the simulated
increase of spring temperature is tightly linked to snow-albedo feedback strength™. Further-
more trends may be implausible as a result of inadequately parameterised sub-grid processes.
For instance, there is evidence that the response of summer convective precipitation extremes
to global warming is mis-represented by regional climate models with parameterised convec-
tion 7677,

In such situations, it has been argued that quantile mapping may improve implausible
trends*?%4, because its correction is value-dependent: a simulated value of, say, 25°C will be
adjusted with a specific correction irrespective of the actual state of the climate system, i.e.,
in present and future climate. The distributions typically adjusted by quantile mapping are
mostly spanned by day-to-day variability, which is mainly caused by the passage of different
types of airmasses. Under climate change, the properties of airmasses themselves will change.
If a temperature of 25°C corresponds to a rare, sunshiny day in present climate, such a
temperature might correspond to an overcast rainy day in a warmer climate. It is thus
conceivable that the value dependence of biases found for present day climate®® might be
different in the future. The same reasoning can be made from a time-scale point of view: as
bias correction is calibrated on daily time scales, also the modification of the climate change
signal stems from the rescaling of modelled day-to-day variability?”%. Therefore, a trend
modification by quantile mapping can only be sensible if - in a given context - the transfer
function calibrated on short time scales can sensibly be applied to correct biases on long time
scales.

[Figure 6 about here.|

We illustrate this issue with spring temperature trends in mountaineous terrain. Consider
again the example from California (Fig. 6). A GCM misses the complex topography of the
region and thus simulates a rather smooth temperature field for present climate (a). Quantile
mapping trivially produces the correct present temperature fields (b). Similarly, a high reso-
lution RCM simulates a realistic temperature field (¢). The RCM also simulates a plausible
climate change signal which varies systematically across topography (f): at high elevations,
the warming is amplified by the snow-albedo feedback. The climate change signal of the GCM,
however, is again unrealistically smooth (d); no elevation dependent warming is produced.
A trend preserving bias correction would fully inherit this implausible climate change signal.
Standard quantile mapping modifies the large-scale changes, but in an unsystematic way (e).
We do not know whether the RCM simulation is correct, but the preserved and bias corrected
GCM signals are highly implausible.

Thus, bias correction is trapped in a fundamental dilemma: in situations where the driving
model simulates a credible change a trend preserving bias correction®*!! is a sensible choice.
In many cases, however, we may have strong evidence that the simulated regional climate
change is implausible - we would like to improve the change. Standard quantile mapping
modifies simulated trends. But as discussed above and demonstrated for the snow albedo
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feedback, we know that these modifications may not be physically justified. Here, one would
have to assess the raw and modified changes on a case-by-case basis, referring to the relevant
climatic processes and their model representation.

5 Ways Ahead

We presented examples of artefacts that may occur when bias correction is applied without
considering the underlying processes. These examples illustrate that bias correction is only
recommended if, in a given context, the following assumptions hold: first, relevant processes
are reasonably well captured by the chosen climate models, including the temporal structure
(Figure 2) and location (Figure 5) of the large-scale circulation, as well as the regional response
to large-scale processes (Figure 3) and local feedbacks (Figure 6). Second, the climate models
resolve the local spatial-temporal variability (Figure 4) and climate change (Figure 6). Over
areas where some of these assumptions are not valid, the bias corrected output should be
handled with great care. To avoid the related artefacts, we advocate research along four major
strands. Process understanding should inform bias correction already during the climate
model selection, as part of the actual bias correction procedure, when evaluating the correction
and when shifting to alternative approaches.

5.1 Understanding Model Biases

Any regional climate projection that is intended to serve for decision making relies on a
realistic simulation of all relevant processes controlling climate change. It has thus to be
recognised that the appropriateness of a bias correction is only partly a statistical issue, but
importantly an issue of the credibility of the driving model. Thus it is important to understand
the origins of model biases, from the large-scale circulation to regional-scale forcings and
feedbacks.

Emergent constraints™ are a promising approach to understand the influence of model
biases in present climate on the climate change signal. The essence of this approach is to
identify strong statistical relationships between (1) an observable feature of the simulated
present climate and (2) a future climate change signal in a large ensemble of climate models.
If the statistical relationship is associated with robust physics, then the most realistic models
in the present climate can be declared to have the most credible future climate change signal.
Basically, emergent constraints allow one to determine which present climate biases are most
consequential for future climate change signals. Emergent constraints have already been
applied extensively to global-scale processes and feedbacks. However, there is no reason
they cannot be applied to regional-scale processes, either in ensembles of global models or
associated downscaled data products. Examples are the influence of location biases in the
large-scale atmospheric circulation on regional precipitation changes™, or the influence of
biases in snow-albedo feedbacks on the regional warming signal®’. We advocate searching
for emergent constraints along these lines at the regional scale. This technique would exploit
regional biases to improve the credibility of future climate change signals, instead of trying
to get rid of them in some unphysical way.
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As discussed above, a key issue is also to understand the relationship of biases across
time-scales: how do biases in day-to-day or interannual variability translate into biases in the
climate change signal? Identifying such linkages may help to judge the feasibility of trend
modifications.

Given that fundamental model errors cannot be corrected by bias correction®’, we advocate
for a region-targeted selection of the driving GCMs prior to any downscaling exercise. The
aim of such a procedure would neither be to identify the overall best performing GCM, nor
to discard models simulating biased surface variables. Rather, it would be to discard those
GCMs that unrealistically simulate the processes controlling the regional climate of interest,
and those that have strong location biases in the large-scale atmospheric circulation (see
Figure 5). The selection of course has to account in some manner for the range of uncertainty
in global climate sensitivity.

There is realistic hope that further model improvements and increased model resolution
may improve the representation of both local and large-scale processes®:5482:5883 = The re-
sulting reduction in location biases and the increase in credibility of future projections will
render subsequent bias correction a more defensible approach.

5.2 New Bias Correction Approaches

We identified two major limitations of current bias correction methods: their difficulties
in downscaling to finer spatial scales, and their inability to improve the local climate change
signal. To address both these issues, we advocate the development of new methods, combining
advanced statistical modelling with physical understanding.

The downscaling problem requires stochastic approaches which generate sub-grid spatial
variability: to simulate fine-scale precipitation fields, or to simulate sub-grid temperature
variations such as inversions. Recently it has been proposed to carry out the bias correction
at the grid-box scale, and then to stochastically downscale to finer scales®. More realistic
fields can be obtained by including process information, e.g., by conditioning the downscaling
on the atmospheric circulation?.

As laid out above, a misrepresentation of regional feedbacks may result in an implausible
regional climate change signal, and quantile mapping will likely not be able to improve it.
Avenues should be explored to explicitly account for regional-scale processes and feedbacks
for improving the climate change signal in the statistical postprocessing. One such avenue is,
again, process-based bias correction. For instance, summer temperature biases may depend
on temperature because of soil moisture feedbacks. Here it has been suggested to condition
the correction on simulated soil moisture®”. Another avenue are emulators of high-resolution
RCMs, which simulate a credible climate change signal. For instance, local variations in the
warming signal could be statistically expressed by covariates such as elevation, continentality
or large-scale warming patterns. These expressions can be calibrated across a range of dy-
namically downscaled GCMs, and then applied to statistically downscale the climate change
signal of other GCMs®. Such emulators could also be developed for other regional processes
such as convection: measures of stability and moisture convergence could serve as input to
emulate high-resolution convection permitting models. Thereby the representation of extreme
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events could be improved, a weak point of essentially all statistical post-processing methods
so far.

5.3 Evaluating Bias Correction

None of the artefacts we presented would have been identified by a standard cross-validation
of marginal aspects. Rigorous standards for evaluating bias correction methods need thus
be developed. These should encompass temporal as well as process-oriented aspects®¢. For
instance, an investigation of the spell length distribution (Figure 2), or an evaluation condi-
tional on the state of the relevant climatic phenomenon (Figure 3) may help to reveal bias
correction problems. In any case, the resulting bias corrected time series should be - at least
for some selected grid boxes - visually inspected and compared with observational data. A
useful indicator for an unphysical bias correction is the dis-similarity between modelled and
observed distribution (Figure 1): major differences point to a misrepresentation of key pro-
cesses, and a bias correction is unlikely to be sensible. In any case one should investigate the
projected signals for implausible change (Figures 5 and 6). The use of pseudo realities for
evaluating simulated trends®® should further be explored.

5.4 Alternative approaches

Finally, we advocate to explore alternative approaches in any given context. In some cases,
perfect prognosis statistical downscaling and change factor weather generators?? may be more
appropriate than bias correction. In other cases, response surfaces®” with qualitative input
of possible climate changes might suffice to obtain decision relevant information, or expert
knowledge combined with raw climate model simulations might provide useful information.
Location biases of the atmospheric circulation may be reduced by surrogate climate warming
studies®. Finally, storyline simulations of how single but relevant past events might look in
a warmer future may substantially improve the representation of local feedbacks: they reduce

computational costs and thereby enable much higher model resolutions®’.

6 Final Remarks

Bias correction is not a Swiss Army knife, many issues remain unresolved, and research is
needed to understand its limitations and to develop new concepts for mitigating the effects of
climate model biases. Bias correction is not a purely statistical problem and cannot overcome
fundamental deficiencies in climate models.

We recommend carrying out any bias correction or downscaling based on solid knowledge
about the relevant climatic phenomena and the ability of the employed climate models to
simulate them. To identify implausible results, a successful bias correction thus requires a
close collaboration with global and regional climate modellers as well as experts both in the
relevant large scale climatic phenomena and the local weather and climate of the target region.
We recommend a concerted action among all involved disciplines to build up the necessary
knowledge and to develop best practice guidelines to make bias correction a rigorous science.
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In any case, it is essential to disclose relevant expert decisions affecting the results and to

transparently discuss the usefulness and limitations of the output with users, in particular as
the use of climate model data by non-experts is more and more operationalised by climate
service providers?.
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ter (DJF) temperature [°C, Southern Ocean, 455-55S, 175W-163W] to E-OBS
daily precipitation [mm/day, Central Europe, 45N-55N, 5E-17E], calibrated
over 1961-1980. a-c, mean and d-f, 95th percentile over validation period
(1981-2000). a,d, uncorrected ERA40, b,e observations, c,f corrected ERA40.
g, histogram of biases across all grid boxes. h QQ-plot for grid box close to
Venice (see cross in panel a). A QQ-plot plots the quantiles of two distribu-
tions against each other, i.e., for two time series, the values are sorted separately
and then plotted against each other. The correction function is based on linear
interpolation between empirical quantiles with a constant correction for new
extreme values. . . . . .. ..
Unrealistic dry spell lengths | Distribution of dry spell lengths (wet-day
threshold 0.1 mm) at a, Tafjord (Norway; 7.41° W, 62.23°N, winter), b, Con-
stanta (Romania; 28.63° E, 44.22°N, winter), ¢, Sion (Switzerland, 7.33° E,
46.22°N, winter) and d, Rome (Italy, 12.58° E, 41.78°N, summer) of MPI-
ESM-LR downscaled with CLM to a horizontal resolution of 0.44°, 1971-2000.
Black: observations (ECA-D®), blue: raw climate model, red: corrected cli-
mate model. Long dry spells are typically underrepresented even after a sea-
sonal wet day correction (a), although in some cases the correction may improve
the overall distribution (b). Often, artefacts are introduced for short (c) and
long (d) spells. . . . . . .
Non-representative model output | Daily precipitation bias correction for
the GISS-E2-R model against station data at Piura, Peru® from 1976-2000.
a, observations; b, raw GCM data; c, quantile mapped GCM data; d, QQ
plot. Grey shading: El Nino events. As the GCM is run in climate mode,
simulated events are not synchronised with observations. Even though the
quantile mapping perfectly adjusts the simulated distribution, the result is
meaningless, as the GCM does not correctly capture the clustering of extreme
precipitation during El Nino events. . . . . . . . . . . ... .. ... ... ...
Missing temperature inversions | Distribution of spring (MAM) daily mean
temperature differences between Fresno (~90m) and Three Rivers (70 km to-
wards the southeast, at ~400m) in California, US, 1981-2000. Blue: obser-
vations (1/8° gridded data®?), orange: GFDL-CM3 GCM after quantile map-
ping against observations (scaled by 1/4). In reality, temperature inversions
(AT < 0) in the Central Valley occur on about 7% of the days. The coarse-
resolution GCM does not simulate such inversions. Quantile mapping provides
the correct climatological temperature difference, but is by construction un-
able to produce sub-grid inversions. The correction function was based on
parametric Gaussian distributions. . . . . .. ... ...

19



698

699

700

701

702

703

704

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

Large-scale circulation problems | a-c, FGOALS-g2; d-f, MPI-ESM-MR.
a,d, simulated (colour shading, mm/day) and observed (contour lines at 4
and 6 mm/day) mean winter precipitation 1976-2005. b,e, uncorrected mean
precipitation averaged over 10W to 20E (vertical red lines in a and d) from
present and future (2070-2099, RCP8.5%) simulations. c,f, corresponding cor-
rected simulations (the black line by construction equals observed winter pre-
cipitation). Precipitation is bias corrected relative to the GPCP climatology
(1980-2013). In FGOALS-g2, the storm track is unrealistically far south. As a
result, even though the storm track shifts northwards in the future simulation,
the corrected precipitation shifts southwards. For MPI-ESM-MR the circula-
tion bias is low, avoiding an unphysical inconsistency between circulation and
precipitation shift. The correction function multiplicatively adjusts long-term
mean biases. . . . . .. L L
Implausible sub-grid climate change signal | Spring (MAM) daily mean
temperature [°C] in the Sierra Nevada and Central Valley, California, US. a-c,
present climate (1981-2000 average); d-f, simulated change (2081-2100 aver-
age minus 1981-2000 average, RCP8.5 scenario®). a,d, GFDL-CM3 GCM,
bilinearly interpolated to 8km grid; b,e, corrected GCM (for present by con-
struction identical with observations at 8km horizontal resolution®?); c,f, WRF
RCM at 3km horizontal resolution, driven with GFDL-CM3 climate change sig-
nal®. Whereas the RCM simulates plausible strong elevation-dependent warm-
ing (the strongest temperature increase in the Sierra Nevada mountains), the
bias correction modulates the GCM change unsystematically and not related
toelevation. . . . . . ...
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Figure 1: Cross-validation problem | Quantile mapping from ERA40 daily boreal winter
(DJF) temperature [°C, Southern Ocean, 45S-55S, 175W-163W| to E-OBS daily precipitation
[mm/day, Central Europe, 45N-55N, 5E-17E], calibrated over 1961-1980. a-c, mean and d-f,
95th percentile over validation period (1981-2000). a,d, uncorrected ERA40, b,e observations,
c,f corrected ERA40. g, histogram of biases across all grid boxes. h QQ-plot for grid box
close to Venice (see cross in panel a). A QQ-plot plots the quantiles of two distributions
against each other, i.e., for two time series, the values are sorted separately and then plotted
against each other. The correction function is based on linear interpolation between empirical
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Figure 2: Unrealistic dry spell lengths | Distribution of dry spell lengths (wet-day thresh-
old 0.1 mm) at a, Tafjord (Norway; 7.41° W, 62.23°N, winter), b, Constanta (Romania;
28.63° E, 44.22°N, winter), ¢, Sion (Switzerland, 7.33° E, 46.22°N, winter) and d, Rome
(Italy, 12.58° E, 41.78°N, summer) of MPI-ESM-LR downscaled with CLM to a horizontal
resolution of 0.44°, 1971-2000. Black: observations (ECA-D®), blue: raw climate model, red:
corrected climate model. Long dry spells are typically underrepresented even after a sea-
sonal wet day correction (a), although in some cases the correction may improve the overall
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distribution (b). Often, artefacts are introduced for short (c) and long (d) spells.
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Figure 3: Non-representative model output | Daily precipitation bias correction for the
GISS-E2-R model against station data at Piura, Peru®' from 1976-2000. a, observations; b,
raw GCM data; ¢, quantile mapped GCM data; d, QQ plot. Grey shading: El Nino events.
As the GCM is run in climate mode, simulated events are not synchronised with observations.
Even though the quantile mapping perfectly adjusts the simulated distribution, the result is
meaningless, as the GCM does not correctly capture the clustering of extreme precipitation
during El Nino events.
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Figure 4: Missing temperature inversions | Distribution of spring (MAM) daily mean
temperature differences between Fresno (~90m) and Three Rivers (70 km towards the south-
east, at ~400m) in California, US, 1981-2000. Blue: observations (1/8° gridded data®?),
orange: GFDL-CM3 GCM after quantile mapping against observations (scaled by 1/4). In
reality, temperature inversions (A7 < 0) in the Central Valley occur on about 7% of the days.
The coarse-resolution GCM does not simulate such inversions. Quantile mapping provides
the correct climatological temperature difference, but is by construction unable to produce
sub-grid inversions. The correction function was based on parametric Gaussian distributions.
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Figure 5: Large-scale circulation problems | a-c, FGOALS-g2; d-f, MPI-ESM-MR. a,d,
simulated (colour shading, mm/day) and observed (contour lines at 4 and 6 mm/day) mean
winter precipitation 1976-2005. b,e, uncorrected mean precipitation averaged over 10W to
20E (vertical red lines in a and d) from present and future (2070-2099, RCP8.5%) simulations.
c,f, corresponding corrected simulations (the black line by construction equals observed winter
precipitation). Precipitation is bias corrected relative to the GPCP climatology (1980-2013).
In FGOALS-g2, the storm track is unrealistically far south. As a result, even though the storm
track shifts northwards in the future simulation, the corrected precipitation shifts southwards.
For MPI-ESM-MR the circulation bias is low, avoiding an unphysical inconsistency between
circulation and precipitation shift. The correction function multiplicatively adjusts long-term
mean biases.
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Figure 6: Implausible sub-grid climate change signal | Spring (MAM) daily mean
temperature [°C| in the Sierra Nevada and Central Valley, California, US. a-c, present cli-
mate (1981-2000 average); d-f, simulated change (2081-2100 average minus 1981-2000 aver-
age, RCP8.5 scenario®). a,d, GFDL-CM3 GCM, bilinearly interpolated to 8km grid; b,e,
corrected GCM (for present by construction identical with observations at 8km horizontal
resolution??); c,f, WRF RCM at 3km horizontal resolution, driven with GFDL-CM3 climate
change signal®®. Whereas the RCM simulates plausible strong elevation-dependent warm-
ing (the strongest temperature increase in the Sierra Nevada mountains), the bias correction
modulates the GCM change unsystematically and not related to elevation.

26



