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ABSTRACT

Amajor source of errors in radar-derived quantitative precipitation estimates is the inhomogeneous nature

of the vertical reflectivity profile (VPR). Operational radars generally scan in azimuth at constant elevation

(PPI mode) and provide limited VPR information, so predetermined VPR shapes with limited degrees of

freedom are needed to correct for the VPR in real time. Typical stratiformVPRs have a sharp peak below the

08 isotherm, known as the ‘‘bright band,’’ caused by the presence of large melting snowflakes, but this feature

is not present in convective cores where themelting ice is in the form of graupel or compact ice. Inappropriate

correction assuming a brightband VPR can lead to underestimation of rain rates, with particular impacts in

intense convective storms. This paper proposes the use of high values of linear depolarization ratio (LDR)

measurements to confirm the presence of large melting snowflakes and lower values for melting graupel or

high-density ice as a prerequisite to selecting a suitable profile shape for VPR correction. Using a climato-

logically representative dataset of short-range, high-resolution C-band vertical profiles, the peak value of the

LDR in the melting layer is shown to have robust skill in identifying VPRs without bright band, with the

‘‘best’’ performance at a threshold of 220 dB. Further work is proposed to apply this result to improving

corrections for VPR at longer range, where the limited effect of beam broadening on LDR peaks could

provide advantages over other available methods.

1. Introduction

Radar quantitative precipitation estimation (QPE) is

achieved through the conversion of reflectivity mea-

surements aloft into a rain-rate estimate at the ground.

An important step in this process is determination and

correction for inhomogeneities in the vertical profile of

reflectivity (VPR).

The VPR defines the variation of atmospheric reflec-

tivity with height above the ground surface. While there

is little variation at low levels, other than that caused by

partial beam blocking or orographic growth, in areas

where the radar beam samples above or close to the

08 isotherm the difference between measured and sur-

face reflectivities can exceed an order ofmagnitude. VPR

is therefore a significant (if not the most significant)

source of error in radar QPEs.

The vertical structure of precipitating systems varies

with rain type. In stratiform conditions the VPR has

a characteristic structure that includes the radar bright

band: a region of enhanced reflectivity below the freezing

level attributable to large melting snowflakes. However,

there is a significant minority of cases in which no bright

band exists: for example, in the presence of convection

with graupel. Operational radars scan in plan position

indicator (PPI) mode to provide good areal coverage, but

because of horizontal variations in rain rate, it is very

difficult to infer the VPR from PPI reflectivity values

alone. Applying a brightband correction to radar data

where none is present can lead to severely underestimated

QPEs in hydrologically significant cases. Correctly iden-

tifying the underlying VPR type is therefore an important

prerequisite for accurate correction and QPE.

The U.K. C-band radar network is currently being

upgraded, with three-quarters of the network (as of

December 2016) now delivering operational dual-

polarization measurements. This increasing availability
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of high-quality dual-polarization data provides oppor-

tunities to improve the identification and correction for

different types of VPR.

Existing VPR correction methods can generally be

divided into ‘‘global’’ and ‘‘local’’ schemes. For global

corrections the VPR shape is determined using data

from large regions of the radar domain, sometimes over

extended periods of time (e.g., Andrieu and Creutin

1995; Matrosov et al. 2007; Tabary 2007; Zhang and Qi

2010). This same VPR shape is then applied over ex-

tended domains and time periods. Local VPR schemes,

by contrast, assume consistency over smaller regions, by

azimuth sector, or rain-typed domain [e.g., Vignal et al.

(1999), who define a local VPR scheme over 20 km 3
20 km regions]. The more local the scheme is, the more

closely it reflects true atmospheric conditions, with more

local schemes tending to produce more accurate rainfall

estimates (Vignal et al. 2000).

The Met Office radar processing software (Radarnet)

uses a pixel-by-pixel VPR correction scheme developed

by Kitchen et al. (1994). The mean stratiform profile

shape (Fig. 1) was derived from a 3-yr climatological

sample of high-resolution range–height indicator (RHI)

scans observed with the 25-mS-band dish at Chilbolton,

in southern England. The profile has a fixed brightband

depth (of 700 m) and uses the wet-bulb freezing level

from the Met Office’s Unified Model with a grid length

of 1.5 km (UKV; Brown et al. 2012) to define the top of

the bright band. Mittermaier and Illingworth (2003)

compared the forecast freezing-level height with obser-

vations of the melting-layer top from a vertically pointing

radar, and found an RMS error of less than 150 m, con-

firming that the model height is sufficiently accurate for

use in VPR correction. A single variable parameter in

reflectivity is used to scale the idealized profile to the

measured reflectivity at each radar pixel, using a known

beam power profile to simulate the observed reflectivity

measurement (Kitchen et al. 1994; Kitchen 1997) and

adjusting the variable scaling parameter until the simu-

lated reflectivity matches the observation. The surface

reflectivity can then be found from the fitted profile.

A significant strength of the Met Office scheme is its

ability to account for sub-kilometer-scale variability

such as changes in brightband intensity and the presence

of embedded convection, as it responds to local condi-

tions at the radar radial resolution (600m for the stan-

dard U.K. QPE) along each azimuth. Kitchen et al.

(1994) demonstrated a 60% overall reduction in QPE

error for a number of light stratiform cases, and em-

phasized that greater gains would be expected in heavier

frontal rain. A similar improvement was found by

Matrosov et al. (2007), who reported a 65% reduction in

QPE in stratiform rainfall using a brightband correction

scheme where the height of the melting layer was de-

rived from the height of the minimum in the copolar

correlation coefficient rhv, rather than the height of the

wet-bulb freezing level in the forecast model. However,

the form of such idealized profiles is not suited to cases

without bright band, such as occurs for example in em-

bedded convection with graupel. The underestimation

in surface rainfall caused by erroneous brightband cor-

rection disproportionately affects estimates of the in-

tense, often flood-producing rainfall associated with

convective cores. It is therefore important to identify

where these profiles occur, to avoid errors in high-

impact situations.

The current U.K. VPR scheme uses a high-level

reflectivity threshold to identify profiles without bright

band in radar data. If a reflectivity exceeding 30dBZ is

measured at a height exceeding 1 km above the wet-bulb

freezing level (criterion hereinafter referred to as Z1),

the pixel is classified as convective, and the VPR at that

pixel is set to be constant with height. This draws on the

assumption that high reflectivities above the 08 iso-

therm can proxy for the strong updrafts associated with

convection and non-brightband VPRs (Smyth and

Illingworth 1998).

The majority of the VPR classification literature di-

vides profiles into two broad types: stratiform (with

bright band) and convective. Various schemes have been

proposed to distinguish between these types in radar PPIs.

The well-established method of Steiner et al. (1995)

FIG. 1. The idealized stratiformVPR shape, derived byKitchen et al.

(1994), which is used operationally in Radarnet. The wet-bulb freezing

level is derived from the operational forecast model gridded output.
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uses the ‘‘intensity’’ and ‘‘peakedness’’ of the 2D radar

reflectivity field as criteria to locate convective cores in

3-km constant-altitude PPIs (CAPPIs). These cores are

then extended using a seeded growth algorithm, with any

remaining rainfall classed as stratiform. This classification

framework has formed the basis of much subsequent lit-

erature (e.g., Biggerstaff and Listemaa 2000; Anagnostou

2004; Rigo and Llasat 2004; Delrieu et al. 2009).

Anagnostou (2004) presented a neural network scheme,

adding parameters such as a vertical reflectivity gradient

to the thresholds and texture parameters of Steiner

et al. (1995), while Qi et al. (2013) developed a decision-

tree approach using multisource data.

While reflectivity properties can be a useful indicator of

precipitation type, they are indirect proxies, based on em-

pirical studies of convective cells and bright bands. The

scheme proposed by Steiner et al. (1995), for example, sets a

minimum intensity of 40dBZ to locate the center of a

convective cell, yet a follow-up study byDelrieu et al. (2009)

finds 43dBZ to be more suitable. Both schemes are equally

valid, since there is no direct physical link between the

threshold reflectivity value and the presence of convection.

The justification of Steiner et al. (1995) in using hori-

zontal reflectivity structure as a framework for convective

diagnosis is based on the difficulty of detecting stratiform

bright bands directly at long range. The authors identify

smoothing of the reflectivity peak with range as the main

limitation of a brightband approach, emphasizing also

that strong reflectivity bright bands are often not mea-

surable until the stratiform system is well developed.

With the advent of dual-polarization measurements,

however, measurements of reflectivity degraded by beam

broadening are no longer the only available option.

One approach to convective diagnosis using dual po-

larization is to classify precipitation indirectly according

to drop size distribution (DSD). Bringi et al. (2009) show

that moments of a gammaDSDderived from reflectivity

and differential reflectivity (ZDR) are distinctly differ-

ent for stratiform and convective rain. Penide et al.

(2013) find that this approach improves upon the Steiner

et al. (1995) reflectivity-based classification algorithm.

However, this and other DSD methods can only be ap-

plied to rain pixels and cannot classify measurements in

and above the freezing level. In such cases the radar

beam is already sampling rain, so no correction for VPR

or bright band is required.

Recent papers have shown that the copolar correla-

tion coefficient rhv can be used to locate the melting

layer in stratiform rainfall (e.g., Tabary et al. 2006;

Matrosov et al. 2007; Giangrande et al. 2008; Boodoo

et al. 2010). The increased variability of hydrometeor

sizes, shapes, and orientations within the radar pulse

volume due to melting is associated with a significant

reduction in rhv. However, the melting hail and graupel

characteristics of convective melting layers also cause a

similar reduction in rhv. There are no published results

to suggest that rhv would be significantly different in

stratiform bright bands from convective melting layers,

where no bright band is present.

Smyth and Illingworth (1998) first suggested using the

linear depolarization ratio (LDR) to distinguish be-

tween stratiform bright band and the deeper, mixed

melting of higher-density graupel characteristic of con-

vection. They classify stratiform events as having an

LDR exceeding 218 dB (at S band) over widespread

regions, corresponding to the bright band as sampled by

radar PPIs. This high measured LDR occurs as a result

of the strong depolarization properties of large melting

snowflakes, which are also responsible for the stratiform

reflectivity bright band. A major strength of LDR in

brightband detection is that, since an LDR measure-

ment is strongly dominated by the maximum depolar-

ized reflectivity return, long-range LDR peaks are much

less smoothed out by beam broadening (e.g., Fig. 2).

Since the dominant species of melting hydrometeors

in convection is quasi-spherical graupel, which is much

less depolarizing than melting snow, LDR has the po-

tential to distinguish reliably between stratiform and

convective melting. Illingworth and Thompson (2011)

demonstrate the difference in peak melting-layer LDR

for selected stratiform and convective case studies, and

suggest that this finding could be extendable to a larger

dataset. If so, using a direct, in situ LDR measurement

to detect the different types of hydrometeor present in

stratiform and convective melting has obvious benefits

over a reflectivity-based proxy criterion.

The values of LDR can be affected by the differential

attenuation of the returned horizontal- and vertical-

polarization (H and V, respectively) signals. As for

many operational radar systems, the Met Office uses the

value of differential phase shift fdp to correct for two-

way total attenuation. The two-way differential attenu-

ation is about one-third of the total attenuation, but if

necessary, the one-way differential attenuation could

also be derived from fdp and used to correct for LDR.

This paper seeks to determine whether observations

of LDR could potentially be used to distinguish cases of

melting snow in stratiform bright bands from convective

situations when there is no bright band. If this can be

established, along with a suitable threshold value of

LDR, then a different VPR correction scheme should be

used for these two types of cases, as suggested by

Illingworth and Thompson (2011).

The aim of this paper is to quantify the skill of using

the maximum value of LDR in the melting layer to

identify whether or not a bright band is present, in cases
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where measurements are not affected by beam broad-

ening. This is a prerequisite to further work on an al-

gorithm to select the more suitable of ‘‘stratiform’’

(Fig. 1) or ‘‘convective’’ VPR shapes for correction at

longer range. To address this question, a large sample

of vertical profiles of reflectivity and LDR was

extracted from RHI scans from the Met Office’s

C-band research radar at Wardon Hill. The profiles

used are from short range only (5–15 km), to preserve

the fine vertical structure and avoid any impacts of

beam broadening. From these data, relative operating

characteristic (ROC) curves are developed for both

peak LDR and the current U.K. operational convective

diagnosis criterion (Z1), to compare skill and de-

termine optimal LDR classification thresholds. Section 2

describes the dataset and methods used to extract a

climatologically representative sample of vertical pro-

files. Section 3 presents results and discusses their

implications. Section 4 concludes with a summary and

outline of further planned work.

2. Dataset

To assess the skill of LDR in distinguishing between

profile types, a large dataset of high-resolution vertical

profiles was collected. For operational reasons, the radar

scans primarily in PPImode, so the data in this paper are

obtained from an RHI performed every 10 min, when

the radar moves down from the zenith after obtaining a

ZDR calibration. Data over the range 5–15 km were

used to obtain high-resolution vertical profiles un-

affected by beam broadening, using the methods de-

scribed in section 2a. Each vertical profile was assigned a

‘‘true’’ classification based on the reflectivity behavior in

the melting region, to provide a baseline for assessing

the skill of peak LDR.

a. Extracting vertical profiles

Upgraded radars within the Met Office network are

capable of scanning in two dual-polarization modes.

‘‘ZDR mode’’ refers to simultaneous transmissions in

the H and V channels, and is used for QPE. Additional

‘‘LDR mode’’ scans transmit in the horizontal polari-

zation only, but receive in both the H and V channels.

For low-elevation PPIs scanned at 88 s21, corresponding

to 22 independent pulses per azimuth and range gate

(after range averaging), the intrinsic limit on the accu-

racy of reflectivity is approximately 1.1 dB (Doviak and

Zrnić 1993, p. 128), which (by summing in quadrature)

yields an uncertainty on LDR of 1.5 dB.

The research radar at Wardon Hill performs an RHI

scan in LDR mode every 10 min. An archive of these

RHI scans was built up over two study periods: from late

September to November 2014 and fromApril to August

2015. Absolute calibration of reflectivity was achieved to

an accuracy of 1.5 dB by using the redundancy of Z,

ZDR, and KDP in rain [self-consistency relation based

on Gourley et al. (2009)]. LDR was calibrated to an

accuracy of 0.5 dB or less by comparing the long-range

noise emissions from sun interference, which is com-

pletely depolarized, in the H and V channels. The

dataset was then filtered to remove both ‘‘dry’’ RHIs

and those containing undesirable wide-ranging effects,

such as radio frequency interference.

RHI data were collected by scanning through 08–908
in elevation at a fixed azimuth, with a radial resolution of

either 300 or 75 m. The scan duration was 17 s, with an

average slewing rate of 5.38 s21. Azimuths were sampled

FIG. 2. Example (left) reflectivity and (right) LDR 0.58-elevation PPIs from Ingham, 1709UTC 21Nov 2016, with

a maximum range of 250 km. The clear bright band in LDR allows high reflectivity values around the radar to be

correctly attributed either to a bright band (e.g., northwest of the radar) or to heavy rainfall (e.g., north and slightly

east of the radar, at close range). The high values of LDR at long range are due to low signal-to-noise ratio.
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at random over the study period. The data in each scan

consisted of the horizontally polarized reflectivity return

Z, LDR, and clutter phase alignment (CPA) (Hubbert

et al. 2009). CPA is a measure of the amplitude and

phase variability of samples in the radar pulse volume

and is significantly higher for stationary clutter than

precipitation echoes.

To extract meteorological VPRs, a simple quality

control procedure was developed to filter out non-

meteorological echoes. A pixel fulfilling the following

criteria was classed as meteorological:

1) reflectivity Z . 10dBZ,

2) LDR , 25 dB, and

3) CPA , 0.525.

All other pixels were discarded. The cross-polar iso-

lation at the Wardon Hill radar, determined using the

median LDR measurement in light rain (20–25dBZ),

is236 dB. Given a noise threshold of220 dBZ at 15-km

range, the reflectivity threshold of 10 dBZ corresponds

to a minimum signal-to-noise ratio (SNR) of 30 dB; so

the impact of cross-polar noise is negligible. Extending

this sensitivity to a noise threshold 23 dBZ at 100-km

range, the SNR in the copolar channel for a reflectivity

of 23 dBZ (equivalent to a rain rate of about 1 mmh21)

would be 26 dB; so an LDR of 223 dB can be detected

at 100 km. For more significant rain rates of 3 mmh21

(about 31 dBZ), this LDR sensitivity would be achieved

out to a range of 250 km.

Following quality control, the polar RHI data were

regridded onto a Cartesian grid with 100 m3 100m

resolution. A very fine Cartesian grid was chosen so

that the initial regridding could be done using a simple

‘‘nearest neighbor’’ algorithm. From this intermediate

Cartesian grid, the data were then averaged to 1-km

resolution in the horizontal. Vertical profiles were then

extracted directly from the resulting 1 km (horizontal)3
100m (vertical) grid. To preserve fine vertical structure

and to minimize the effect of nonzero elevation on

LDR, the profiles for this study were taken only from

ranges between 5 and 15 km from the radar location.

This resulted in a dataset of 6680 high-resolution vertical

profiles, from 2283 RHIs taken on 104 different days.

b. Observed profile types

The vertical profile dataset was initially sorted into

classes based on the shape of the reflectivity peak in the

vicinity of the melting layer. For the purposes of this

study only, since no rhv data were available, a simple

LDR-based algorithm was defined to locate the bound-

aries of melting in RHI profiles. By experimenta-

tion, the melting layer was defined as the region

FIG. 3. Example stratiform RHI: (left) reflectivity and (right) LDR from 1416 UTC 13 Oct 2014, truncated at

10-km height and 20-km range. The bright band is clearly visible as a region of enhanced reflectivity and LDR at

2-km altitude, just below the 08C isotherm (see also Fig. 6, top). Note that the bright band is clearly visible in LDR

even at 15–20-km range, contrasting with the weaker reflectivity bright band in this region.

FIG. 4. Example RHI for rain from compact ice: (left) reflectivity and (right) LDR from 1346 UTC 9 Oct 2014,

truncated at 10-km height and 20-km range. The compact-ice region around 5–7-km range shows no clear bright

band in reflectivity, and correspondingly lower LDR than in the surrounding brightband regions. However, there is

a sharp increase in reflectivity in the melting layer at 2-km altitude (see also Fig. 6, middle), which is not consistent

with convective updrafts.
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around the LDR peak where the LDR values and

gradients met certain conditions. The process was as

follows:

1) find the maximum measured LDR above the ex-

pected clutter height (300 m);

2) search downward from the peak for the melting layer

base, where=LDR, 20 dBkm21 andLDR,225 dB;

the reflectivity at this point is Zrain, and

3) search upward from the peak for the melting layer

top,where=LDR.220dBkm21 andLDR,225dB;

the reflectivity at this point is Zice.

The maximum reflectivity in the melting layer (between

the heights of Zrain and Zice) is then Zpeak, which is not

usually collocated with the peak in LDR. The LDR

gradient at a point was calculated over a 200-m-height

window, between the values immediately above and be-

low that point. The clutter height, LDR, and gradient

thresholds were empirically determined using a selection

of measured VPRs. This method was used only to auto-

mate the processing of this particular dataset, and there is

no intention to extend it to any other context, given that

robust threshold-based melting layer detection algo-

rithms already exist for PPIs (e.g., Matrosov et al. 2007).

Initial analysis of a selection of RHIs and profiles sug-

gested classification based on three categories. These cat-

egories align well with three of the five categories

identified by Fabry and Zawadzki (1995) through an ob-

servational study using vertically pointing X-band radar:

1) low-level rain—shallow, light rainfall developing

below the melting layer in stratiform conditions;

2) rain with bright band—cold rain developing above

the 08 isotherm in stratiform conditions; this profile

shows a clear increase in reflectivity with the onset of

melting and decreasing Z below the melting layer,

forming the traditional reflectivity bright band;

3) rain from compact ice—similar to the ‘‘rain with

bright band’’ profile, in that increased reflectivity

occurs with the onset of melting, but no decrease in

Z is observed below the melting layer; Fabry and

Zawadzki (1995) speculate that this profile shape ‘‘is

likely caused by the melting of fast-falling snow

pellets or dense graupels’’; this is supported by later

DSD analyses of Matrosov et al. (2016);

4) showers—shallow, light rainfall developing below

the 08 isotherm in convective conditions; and

5) deep convection—the unstratified profiles observed

where updrafts are present in convective thunder-

storms, squall lines, and embedded convective cells.

The VPR dataset was sorted into three of these clas-

ses: rain with bright band (hereinafter ‘‘stratiform’’; e.g.,

Fig. 3), compact ice (e.g., Fig. 4), and convective (e.g.,

Fig. 5). Both low-level rain and shower profiles, where

the top of the precipitation profile was below the model

freezing level (Brown et al. 2012), were excluded by

design, since they do not include a melting layer.

The so-called true precipitation class for each VPR

was determined based on the shape of the melting-layer

peak. Figure 6 shows how the maximum reflectivity in

the melting region (Zpeak) and at the top (Zice) and base

(Zrain) of the LDR-determined melting layer were

compared. Classification rules were applied as follows:

1) if the peak-to-rain reflectivity difference DZ 5
Zpeak 2 Zrain $ 3 dB, the profile is stratiform;

2) if DZ , 3 dB and the peak-to-ice reflectivity differ-

ence Zpeak 2 Zice $ 6 dB, the profile is compact ice;

3) otherwise, the profile is convective.

The choices behind these DZ and peak-to-ice classifi-

cation thresholds are discussed in section 2c.

As expected for a high-latitude climate, the most

prevalent profile in the Wardon Hill dataset is the

stratiform profile, accounting for 84% of the total sam-

ple. Compact-ice profiles account for a further 10%,

with 6% of profiles classed as convective. Examples of

individual RHIs and profiles of each type are shown in

Figs. 3–6. The average shapes of these profiles, along

with quantiles to illustrate spread, are shown in Fig. 7.

FIG. 5. Example convective RHI: (left) reflectivity and (right) LDR from 2220 UTC 3 Jul 2015, truncated at

10-km height and 20-km range. A weak bright band in the region of 8–10-km range, marking the 08C isotherm at

3.5-km altitude (see also Fig. 6, bottom), contrasts sharply with the convection at 10–15 km. High reflectivity in this

region extends consistently around 2 km above the melting layer. LDR values in the convective region are lower

than in the weak brightband region and are much lower than in the strong brightband case in Fig. 3.
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Figure 8 shows the frequency distributions of rain re-

flectivity for the stratiform, compact-ice, and convective

profiles used in this study.While small differences exist, the

majority of these distributions occupy the same reflectivity

region, with no significant difference in modal or mean

values between the three profile types. This suggests that

approaches based on reflectivity intensity may not be re-

liable in distinguishing between different types of VPR.

FIG. 6. (top)Vertical profiles of (left) reflectivity and (right) LDR from the stratiformRHI in

Fig. 3 at 7.5-km range. (middle) As in the top panels, but from the compact-ice RHI in Fig. 4, at

5.5-km range. (bottom) As in the top panels, but from the convective RHI in Fig. 5, at 12.5-km

range. Limits of themelting layer, as determined from the LDRprofile, are shown in green, and

the wet-bulb freezing level is represented by the dashed gray line. Annotated red stars show

values at the key levels: reflectivity at the top (Zice) and bottom (Zrain) of the melting layer,

peaks (Zpeak) for stratiform and compact-ice cases, and the peak melting-layer LDR (Lpeak).
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c. Quantitative definition of true VPR types

The reflectivity peak size used to classify stratiform

rain is based on observations of the profile sample,

which showed some noise at the dBZ level. To account

for this when determining the reflectivity peak, DZ ex-

ceeding 3 dB (a factor of 2 in linear reflectivity) was

judged suitable for a profile to be classed as stratiform

(with bright band).

The separation of compact-ice profiles from strong

convection was more systematic. The physical explana-

tion given by Fabry and Zawadzki (1995) for rain from

compact ice involves dense, fast-falling ice and snow

particles above the melting layer. These particles do not

grow significantly as they melt, nor do they speed up, so

the drop in reflectivity after melting observed in strati-

form conditions does not occur. Recent observations of

drop-size distributions byMatrosov et al. (2016) provide

additional evidence in support of this model. The au-

thors show that rain from compact ice (which they call

‘‘non bright band,’’ as distinct from ‘‘bright band’’ and

‘‘convective’’ cases), has a much higher proportion of

small drops than either stratiform or convective rain.

This characteristic rain DSD would be consistent with a

population of relatively small, dense ice or snow pellets

in the region directly above the melting layer.

Using the standard assumption of no aggregation or

breakup across the melting layer (e.g., Szyrmer and

Zawadzki 1999; Hardaker et al. 1995), changes in re-

flectivity with melting can be attributed directly to

changes in hydrometeor diameter, fall speed, and di-

electric constant. The small, high-density ice particles

responsible for compact-ice profiles are similar in both

diameter and fall speed to liquid water, so the increase in

reflectivity is almost entirely due to the increase in the

dielectric factor. The squared ratio of the dielectric fac-

tors of ice and water then suggests a reflectivity increase

of 7.2 dB with melting, or 6.5 dB if the slight difference in

density between solid ice and water is taken into account.

A minimum peak-to-ice threshold of 6 dB was therefore

chosen to identify compact-ice profiles.

The use of approximate thresholds has the potential to

impact the results of this study. If the reflectivity peak

size thresholds are not well matched to the underlying

FIG. 7. Average stratiform, compact-ice, and convective reflectivity profiles with height relative to themodel-derived (Brown et al. 2012) wet-

bulb freezing level. Height levels are at six evenly spaced intervals between the lowest usable reflectivity (LUS) and the freezing level (FL), and

then in 200-m steps above the FL.

FIG. 8. Rain reflectivity frequency distributions for the strati-

form, compact-ice, and convective VPRs used in this study. (The

numbers in parentheses give the total number of each type of

profile.) There is significant overlap between these distributions,

with little difference in the mean or modal values. This suggests

reflectivity-based criteria may not be effective in distinguishing

between different types of VPR.
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physics, any discriminatory skill that LDR is found to

have could be spurious, and the confidence in the best

LDR peak threshold for profile identification would be

low. To increase the robustness of the study results, a

range of peak size thresholds will be tested around the

selected values. These results are discussed alongside

the main outcomes in section 3.

3. Results and discussion

The sample of profiles from5–15-km rangewas classified

by reflectivity peak as described in section 2b. A peak

LDRvalue above any ground clutter,which canbeuniquely

attributed to melting, was then extracted for each profile

and compared with the true classification (section 2b).

The intrinsic skill of LDR as a criterion was examined

by comparing ROC curves for LDR with curves for the

high-level reflectivity criterionZ1. ROC curves above the

1:1 line demonstrate that a quantity has discriminatory

skill, and the point farthest above the 1:1 line is the

threshold at which that quantity most skillfully distin-

guishes between profile types. Contingency tables were

generated for a range of LDR thresholds between 225

and 215 dB at 0.5-dB intervals, and for Z1 from 20 to

36dBZ at 1-dB intervals. Two sets of tables were gener-

ated: one for the diagnosis of all nonstratiform profiles

(convection and compact ice) and the other for identify-

ing convection only. Correct diagnosis of no bright band

(or convection) is termed a hit, false identification of no

bright band (or convection) is a false alarm, incorrect

default to bright band is a miss, and correct default

to a brightband profile is considered no detection. ROC

curves, of hit rate (HR) against false-alarm rate (FAR),

were then plotted for both types of categorization, with

FIG. 9. ROCcurves for (top)Z1 thresholds from 20 to 36 dBZ and (bottom) peakLDR from225 to215 dB. (left)

Skill in identifying nonstratiform profiles (compact ice and convective). (right) Skill in identifying convective

profiles only. Plot points are gray-shade coded by the threshold used to classify profiles as nonstratiform (left

panels) or convective (right panels), and some points have also been labeled by threshold.
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each point on the curve corresponding to a different

threshold. HR and FAR are defined as follows:

HR5
Hits

Hits1Misses
and (1)

FAR5
False alarms

False alarms1No detection
. (2)

ROC curves for the range of thresholds in peak LDR

and Z1 are shown in Fig. 9. The left-hand panel in Fig. 9

shows the skill of each criterion in identifying non-

stratiform profiles, while the right-hand panel shows

skill for convection only. The best threshold for iden-

tifying nonstratiform profiles, using a peak LDR of less

than 220 dB, has an HR of 0.42 and a FAR of 0.06.

By contrast, the currently operational high-level re-

flectivity criterion has virtually no skill in identifying

nonstratiform profiles. A threshold of 34 dBZ gives a

hit rate of 0.03, which was the highest above the cor-

responding rate of false alarms (0.01). The currently

operational threshold of 30 dBZ has a higher hit rate

(0.06), but this is equal to the rate of false alarms (0.06).

The LDR criterion therefore gives a sevenfold increase

in hit rate from the currently operational criterion, for

no increase in FAR.

The distinguishing feature of stratiform profiles is the

peak-to-rain DZ value that defines a bright band. The

frequency distribution of DZ for profiles diagnosed as

having no bright band should be peaked at very low values,

while profiles with bright band will peak at higher positive

values. Figure 10 shows normalized histograms of DZ in

the high-resolution profile sample for stratiform and non-

stratiform profile types, as diagnosed by LDR and Z1, re-

spectively. The DZ threshold for true profile classification

of 3 dB is shown for reference. The LDR histograms are

well separated, with the distribution of brightband DZ
peaked at 7–8 dB, and non-brightband profiles heavily

skewed toward DZ , 1 dB. However, the Z1 histograms

are much less well separated. The brightband histogram is

similar to that obtained from LDR; however, the profiles

diagnosed as non–bright band by Z1 show a bimodal dis-

tribution in DZ, with equally high normalized frequencies

in both DZ, 1 dB and the 8–10-dB window. This further

demonstrates the lack of intrinsic skill in Z1, and the im-

provements achievable by using LDR.

The right-hand panels in Fig. 9 show the respective

skill of LDR andZ1 in separating convection from other

types of VPR (stratiform bright band and compact ice).

Convective VPRs are skillfully identified by a peak

LDR of 220 dB, with an HR of 0.58 and a FAR of

0.09. By comparison, Z1 shows minimal skill; the best

threshold for convection (of 30 dBZ) has an HR of 0.10

and a FAR of 0.05.

High reflectivity kilometers above the freezing level

is considered to be a proxy for strong updrafts and large

rimed hydrometeor species, such as hail. The lack of skill

of Z1 in identifying compact-ice profiles is consistent

with the expected microphysics, since compact-ice pro-

files arise from a different DSDs than other types of

profile (Fabry andZawadzki 1995;Matrosov et al. 2016),

and not from convective processes. However, the lack of

skill in identifying convective profiles is unexpected and

suggests that reflectivity at this height is, in fact, a poor

proxy for updrafts and riming.

Sensitivity to VPR-type definitions

Section 2c presents the peak size thresholds used to

define reflectivity profiles as stratiform, compact ice, or

convective. These thresholds of 3 and 6 dB for DZ and

FIG. 10. Normalized frequency histograms of peak-to-rain (DZ) value for VPRs classified as bright band or non–bright band by (left)

LDR and (right) Z1. Dashed lines correspond to a non-brightband classification; solid lines correspond to stratiform VPRs. The figure in

parentheses in each legend is the total number of profiles included in each histogram.
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peak-to-ice reflectivity differences, respectively, were

subjectively determined and, therefore, have some

inherent uncertainty. The ‘‘best’’ LDR threshold of

220 dB, and the qualitative skill of LDR as a parameter

(as measured by an ROC curve consistently above the

1:1 line), should not be sensitive to small changes inVPR

peak size thresholds within this uncertainty range.

Consistency in the best LDR value for profile discrimi-

nation would increase confidence in the finding that

LDR has skill and in the inference that this skill is

derived through a response to a physical process: that is,

the melting of large snowflakes.

To test the sensitivity of LDR skill to the precise defi-

nition of VPR types, additional ROC curves were gener-

ated for a range of peak size thresholds. The minimum DZ
needed to define a profile as stratiformwas varied between

0.5 and 4.0 dB (eight test values), and peak-to-ice thresh-

olds ranged from 4.0 to 8.0 dB (five test values).

Figures 11 and 12 show the range of ROC curves

generated from the 40 different sets of thresholds used

FIG. 11. As in Fig. 9, but for theROC curves for (top)Z1 thresholds from 20 to 36 dBZ and (bottom) peakLDR from225 to215 dB, for

the range of true-classification DZ and peak-to-ice values tested in the sensitivity study. Lighter gray shades correspond to smaller DZ and

peak-to-ice thresholds (see also Fig. 12).
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in the sensitivity study. (For the identification of no-

brightband profiles, only 8 of the 40 curves are visible in

Fig. 11. This is because the no-brightband identification

is not sensitive to the peak-to-ice threshold, so the five

peak-to-ice curves for each DZ threshold are identical.)

It can be seen that, although the positions of the curves

differ, all LDR threshold curves are consistently above

the 1:1 line. The maximum skill threshold for identi-

fying nonstratiform and convective profiles in LDR

is robust to uncertainty in true profile definitions,

having a value of 220 6 0.5 dB for all combinations of

tested thresholds. By contrast, there is no combination

of thresholds for which Z1 shows skill in distinguishing

between profile types.

From these data it can be concluded that LDR skill

is not sensitive to the precise dividing lines between

VPR types as defined by the size of the reflectivity

peaks but is a robust indicator of the presence of

large melting snowflakes leading to stratiform

bright bands.

FIG. 12. As in Figs. 9 and 11, but for ROC curves for (top) Z1 thresholds from 20 to 36 dBZ and (bottom) peak LDR from 225

to215 dB, for extremes of the sensitivity study shown fully in Fig. 11. Curves are labeled by threshold values to illustrate trends. (Note that

the gray scale here does not match Fig. 11.)
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4. Conclusions

Accurate determination and correction for VPR in op-

erational radar data requires a priori information as to the

profile shape, which varies with precipitation type. Before

VPR correction, precipitation measurements are often

separated into convective or stratiform types, using dif-

ferent shapes to determine and correct for the VPR in

different conditions. Current algorithms developed to di-

agnose convection, such as the well-established Steiner

et al. (1995) reflectivity-based method, use proxies for

convective updrafts and cores, and may not be reliably

transferrable between radar systems or climatologies.

This paper assesses the potential benefits of LDR

measurements in distinguishing between different types

of VPR. LDR responds directly to the presence of the

large melting snowflakes responsible for the reflectivity

bright band. Values of LDR in the melting layer vary

with precipitation type, showing lower values in non-

stratiform regions where melting species originate from

higher-density ice.

In this work a large sample of high-resolution vertical

reflectivity and LDRprofiles was collected and classified

into three types, corresponding to three of the types

identified by Fabry and Zawadzki (1995). This dataset of

6680 profiles was used to assess the skill of peakmelting-

layer LDR in distinguishing between VPRs with and

without bright bands.

It has been demonstrated that peak LDR has skill

over a range of values, significantly greater than the

skill of the high-level reflectivity threshold currently

used in the United Kingdom. A peak LDR value

of 220 dB was found to maximize the probability of

detection of nonstratiform profiles for a given FAR.

This result suggests LDR has the potential to effect

large improvements in the operational identification

of nonstratiform reflectivity profiles. This will reduce

the underestimation of rain rates because of inappro-

priate brightband correction, with particular benefits

expected through preserving the high precipitation

intensities associated with convective cores.

Having established the ability of LDR to distinguish

between stratiform and non-brightband melting, the

authors will pursue research toward an operational

implementation for the Met Office radar processing

software. Examining long-range values of LDR in PPI

mode is expected to confirm the negligible effect of

beam broadening on peak values (Smyth and Illingworth

1998), so the detection of brightband melting at long

ranges should be significantly improved where LDR—in

addition to reflectivity—is available. One way to do this

would be to compare the simultaneous values of LDR

in PPIs observed at two different elevations from

overlapping radars, so that the bright band is much

closer to one radar than the other. Where possible,

comparing LDR PPIs with RHIs in stratiform condi-

tions could provide further verification of the accuracy

of long-range LDR measurements. By exploiting LDR

measurements to select suitable VPR shapes, the au-

thors expect to improve operational correction for VPR

in nonstratiform conditions, increasing the accuracy of

the corresponding surface QPEs. Within the context of

operational QPEs, it would be useful in the future to

explore the potential of rhv for this application.
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