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Abstract 
 
We examined the P3 (250 to 500 ms) and Late Positive Potential (LPP; 500 to 2000 ms) event-

related potentials (ERPs) to food vs. nonfood cues among adolescents reporting on emotional 

eating (EE) behavior. Eighty-six adolescents 10-17 years old were tested using an instructed food 

versus nonfood cue viewing task (imagine food taste) during high-density EEG recording. Self-

report data showed that EE increased with age in girls, but not in boys. Both P3 and LPP 

amplitudes were greater for food vs. nonfood cues (food-cue bias). Exploratory analyses revealed 

that, during the LPP time period, greater EE was associated with a more positive food-cue bias in 

the fronto-central region. This heightened fronto-central food-cue bias LPP is in line with a more 

activated prefrontal attention system. The results suggest that adolescents with higher EE may 

engage more top-down cognitive resources to regulate their automatic emotional response to 

food cues, and/or they may exhibit greater reward network activation to food cues than do 

adolescents with lower EE, even in the absence of an emotional mood induction. 
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1. Introduction 

1.1 Emotional Eating 

Food is a primary reinforcer for many species, driving goal directed behavior.  In modern 

society, with an abundance of food for many, humans eat not only for nutrition and to satisfy 

hunger, but also for pleasure and to alleviate negative emotions and reduce stress (Greeno & 

Wing, 1994; Rutledge & Linden, 1998). This latter function, referred to as emotional eating 

(EE), describes a tendency to eat and overeat when experiencing negative mood states, even in 

the absence of physiological hunger (Arnow, Kenardy, & Agras, 1995). Various mechanisms 

have been proposed to contribute to EE. Negative emotions reduce inhibitory control, thus 

making people more likely to eat unhealthy foods. Eating elevates positive mood. Thereby it 

becomes a self-reinforcing habit for blunting negative emotions (Hayaki, 2009). Additionally, 

long-term exposure to stress can cause malfunction of the hypothalamic-pituitary-adrenal (HPA) 

axis, thus dysregulating food consumption and metabolism (Yau & Potenza, 2013), and leading 

to long-term health concerns (Tryon, Carter, Decant, & Laugero, 2013).  

EE is closely related to several eating disorders and obesity (Pinaquy, Chabrol, Simon, 

Louvet, & Barbe, 2003). Also, EE is a major contributor to binge eating (Eldredge & Agras, 

1996) and is associated with emotional problems such as anxiety and depression (Van Strien, 

Schippers, & Cox, 1995). Compared to men, women are at higher risk for EE and related weight 

gain (Epel, Lapidus, McEwen, & Brownell, 2001; Fryer, Waller, & Kroese, 1997; Levine & 

Marcus, 1997). The pattern of more EE among females emerges by late adolescence (Wardle et 

al., 1992). However, a majority of EE studies have only examined adult women (Pinaquy et al., 
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2003; Van Strien et al., 1995). Therefore, further studies are needed on the development of EE in 

adolescent women and men. 

1.2 ERPs and food-cue studies 

Event-related potentials (ERPs), with their high temporal resolution, are a useful tool for 

detecting the early onset of attentional processing of visual food cues (Wolz, Fagundo, Treasure, 

& Fernandez-Aranda, 2015). The P3 and Late Positive Potential (LPP) are two commonly 

examined ERP components. The P3 is a positive ERP component occurring ~300 ms post-

stimulus onset and is associated with attention allocation and memory (Polich & Kok, 1995). The 

LPP is a slow wave ERP which emerges as early as 200 ms and lasts 1000 ms or more and is 

associated with more extended attention allocation driven by the emotional and motivational 

relevance of visual images (Cuthbert, Schupp, Bradley, Birbaumer, & Lang, 2000; Hajcak, 

MacNamara, & Olvet, 2010; Marmolejo-Ramos et al., 2015). 

Recent evidence suggests that food cues can preferentially engage attention over nonfood 

cues (Castellanos et al., 2009; Doolan, Breslin, Hanna, Murphy, & Gallagher, 2014). Enhanced 

P3 and LPP amplitudes are associated with visual food cues versus neutral stimuli (Asmaro et 

al., 2012; Gable & Harmon-Jones, 2010; Nijs, Franken, & Muris, 2008, 2010). Additionally, P3 

and LPP amplitudes to food cues are sensitive to the motivational salience of the cue. Greater 

amplitude enhancements to food cues are observed in hungry versus satisfied states 

(Stockburger, Schmalzle, Flaisch, Bublatzky, & Schupp, 2009) and to high versus low calorie 

foods (Meule, Kubler, & Blechert, 2013). LPP amplitude is also sensitive to emotion regulation 

and cognitive control. LPP amplitudes are reduced when adults are instructed to attend to the less 

arousing parts of emotional images (Hajcak, Dunning, & Foti, 2009) and when children are 

instructed to reappraise emotional images as neutral situations  (Dennis & Hajcak, 2009). 
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Similarly, suppressing craving towards food cues decreases LPP amplitude to food cues in adult 

female restrained eaters (Svaldi et al., 2015).  

P3 and LPP amplitudes can reflect more stable individual differences as well. For 

example, enhanced P3 amplitudes to food cues are correlated with higher external eating in adult 

women (Nijs, Franken, & Muris, 2009). Similarly, women who are restrained eaters exhibit 

greater LPP amplitudes to images of food that is unavailable versus available (Blechert, Feige, 

Hajcak, & Tuschen-Caffier, 2010). Regarding EE specifically, researchers have found 

associations of EE with LPP amplitudes to food cues (Blechert, Goltsche, Herbert, & Wilhelm, 

2014; Meule et al., 2013), but not with P3 amplitudes (Nijs, Muris, Euser, & Franken, 2010). 

Although emotional eaters are particularly vulnerable under emotional situations, some evidence 

suggests that emotional eaters show different electrophysiological responses to food cues 

regardless of their current mood state. For example, in electrophysiological studies that measured 

EE in adults, high emotional eaters have been shown to have heightened LPP responses to food 

cues across both neutral and negative mood states (Blechert et al., 2014) and in the absence of 

any mood induction (Meule et al., 2013). These findings suggest that emotional eaters find food 

cues to be more salient even in the absence of negative emotional states. It is worth mentioning 

that in both of these studies all stimuli were food cues and there were no nonfood cues as 

controls. Blechert et al. (2014) suggested that future studies on EE including both food and 

nonfood cues would be necessary in order to confirm the food-cue specificity of heightened LPP 

responses in those high in EE. 

1.3 Emotional eating in Adolescents 

Adolescence is a particularly important developmental period in which to study EE. 

Adolescents experience heightened emotionality due to changes in hormone levels and their 
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social environment (Arnett, 1999; Larson, Moneta, Richards, & Wilson, 2002). They also start to 

develop more independence of food choice (Bassett, Chapman, & Beagan, 2008). In fact, EE 

increases with age during adolescence and is also more prominent in girls than in boys (Wardle 

et al., 1992). Unhealthy eating behaviors emerging in childhood contribute to eating disorders 

and obesity in adults (Stark, Atkins, Wolff, & Douglas, 1981), and EE is significantly more 

common among obese children compared to their non-obese counterparts (Braet & Van Strien, 

1997). However, only a handful of studies have examined the brain-based correlates of the onset 

of problematic eating behavior during adolescence. P3 amplitude to food cues was found to be 

positively correlated with restrictive feeding practices in children (Hill, Wu, Crowley, & Fearon, 

2013) and restrained eating scores in obese adolescents (Hofmann, Ardelt-Gattinger, Paulmichl, 

Weghuber, & Blechert, 2015). Additionally, enlarged P3 and LPP amplitudes to food cues were 

found in adolescents with anorexia nervosa compared to the control group (Novosel et al., 2014).  

Despite the importance of emotional eating for understanding the onset of problematic 

eating behavior in adolescence, no previous studies have examined how EE relates to P3 or LPP 

amplitudes to food cues in adolescents. The present study fills this research gap. We expect that 

electrophysiological responses to food cues will reflect individual differences in EE in 

adolescents.  

1.4 The present study 

While EE and neural responses to food cues have been examined in adults, no studies 

have explored this potential link in adolescence. Thus, employing high-density EEG, we 

measured the neural responses to food versus non-food cues in relation to EE within a sample of 

adolescents aged 10 to 17 years. Given existing literature, we examined the modulations of two 

ERP components, the P3 and LPP, in response to food and non-food images and in association 
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with adolescent self-reported EE. Behaviorally, we hypothesized that greater EE would be 

observed as age increases, and that girls would report greater EE than boys. In terms of neural 

response, we hypothesized that adolescents would show a food bias that is comparable to what 

has been found in adults, with food cues generating an enhanced P3 and LPP, relative to nonfood 

cues. Moreover, we predicted that adolescents with higher EE would exhibit a larger food bias 

than those with lower EE, which is consistent with the heightened food-cue sensitivity in the 

former group.  

2. Method 

2.1 Participants 

The current study included 86 adolescents (10-17 years old, 38 female, Table 1) who 

were a subset of participants in a larger study (Crowley et al., 2014; Crowley et al., 2013). The 

participants included in the paper completed the food-nonfood cue viewing task described in the 

current report. The remaining participants in the larger study completed a different task not 

reported here. Families were recruited via mass mailings to New Haven, CT, and surrounding 

towns within a 20-mile radius of the study research offices. Children were fluent in English and 

had no evidence of serious mental illness (psychosis, autism, bipolar disorder) assessed via a 

parental telephone screen. Participants were intellectually in the normal range based on results 

from the Vocabulary and Similarities subscales of the Wechsler Abbreviated Scale of 

Intelligence (Wechsler, 1999). Seven participants did not have a sufficient number of trials for 

the EEG task and 1 participant did not complete the post-task Food-Cravings Questionnaire-

State. Thus the remaining 78 subjects (34 female) were included in the EEG related report. The 

mean age of the adolescents was 13.86 years (SD = 2.24, min =10.14, max = 17.89). The ethnic 

background of the participants was 7.0% African American, 5.8% Hispanic, 75.6% Caucasian, 
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7.0% Asian, 2.3% Native American, and 2.3% other ethnic background. This study was 

approved by the Human Investigation Committee of the Yale University School of Medicine. 

                                       ----------------------------------------------- 

Table 1 goes here 

                                       ----------------------------------------------- 

 

2.2 Behavioral measures 

Anthropometric measures 

 Participants’ weight and height were measured in the laboratory by a trained researcher 

using Detecto Weigh Beam (Detecto Inc, Missouri, US). Height was measured to the nearest 

inch and then converted to meter (m). Weight was measured to the nearest pound and then 

transformed to kilogram (kg). Body Mass Index (BMI) was calculated as kg/m2. 

Food-Cravings Questionnaire-Trait (FCQ-T)  

The Food-Cravings Questionnaire-Trait (FCQ-T) (Cepeda-Benito, Gleaves, Williams, & 

Erath, 2000) is composed of 39 questions assessing food-related traits including emotional 

eating, positive and negative reinforcement, with a 1-6 Likert scale: Never/Not applicable, 

Rarely, Sometimes, Often, Usually, Always. The EE subscale score was calculated as the total 

scores of 4 items: item 20 (I crave foods when I feel bored, angry, or sad.), item 30 (When I'm 

stressed out, I crave food), item 34 (My emotions often make me want to eat) and item 39 (I 

crave foods when I'm upset). The Cronbach’s alpha of the EE subscale was .88.  

Food-Cravings Questionnaire-State (FCQ-S): 

The Food-Cravings Questionnaire-State (FCQ-S) measures hunger and food cravings at 

the current moment (Cepeda-Benito et al., 2000). We implemented the questionnaire on the 
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computer so that it first asked the subject to enter his/her favorite food, and then used the food 

entered by the participant to populate the questions in FCQ-S. The subject was asked to provide 

ratings using a 1 (strongly disagree) to 5 (strongly agree) Likert scale regarding 15 questions 

about the craving intensity at the current moment. In 8 of the 15 questions, a favorite food was 

used in the question, example: “Eating ice cream would make things seem just perfect”, with ice 

cream being the favorite food entered by the subject earlier. The hunger subscale score was 

calculated as the total response of 3 items, item 13 (I’m hungry), item 14 (If I ate right now, my 

stomach wouldn't feel as empty) and item 15 (I feel weak because of not eating). The Cronbach’s 

alpha for the hunger subscale was .71. 

2.3 Instructed food and nonfood cue-viewing task 

The EEG experiment consisted of presenting a mixture of food and nonfood images (45 

in each category without repetition). Participants were presented with the following food-cue 

processing instructions: “You are going to see some food and nonfood images. Try to imagine 

what the food tastes like if it is a food image.” Food images were savory snacks, sweets and high 

fat food. (Example: pizza, burger, ice cream, chicken, pork, pasta). Nonfood images were neutral 

objects. (Example: boat, backpack, table, house, chair, cup). Figure 1 shows samples of the food 

and nonfood stimuli. Appendix 1 has a complete list of all the stimuli in both categories. 

Roughly half of all stimuli were from the IAPS library and the other half of the stimuli were 

pulled from the internet (due to the small number of food pictures in the IAPs). Each trial began 

with a white cross on a black screen for a variable interval of 2300 to 3000 ms. Then a stimulus 

from either the food category or the nonfood category would appear on the screen for 2000 ms. 

The stimuli were presented as full-screen images on a 19-inch square LCD screen. Subjects sat 

24 inches away from the screen. A pseudo-random list was used to present the images so that no 
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more than three stimuli from the same category were presented consecutively. The total length of 

the task was about 10 minutes. Stimuli were presented using E-Prime 2.0 (PST, Sharpsburg, PA, 

USA).  

                                       ----------------------------------------------- 

Figure 1 goes here 

                                       ----------------------------------------------- 

 

 

2.4 Procedure 

Participants made two visits to the lab in order to finish all the requirements. In visit 1, 

parental permission and youth questionnaire assessments were obtained. FCQ-T was completed 

in this visit. Within 2 weeks, families attended a second visit to conduct the EEG experiment. 

Participants’ heights and weights were measured. After the EEG net application, the participants 

completed a 7-minute resting EEG task, which was not included in the present study. Participants 

then completed the food and nonfood picture viewing task described in the current report. All 

EEG recording for the task was scheduled between 3:30 and 4:30 pm in order to control the 

daytime and circadian rhythms and hunger level. After the EEG measurement, participants 

completed the FCQ-S. 

2.5 EEG collection and preprocessing 

EEG was collected using NetStation 4.4 and a high-impedance amplifier (Series 300 

Amplifier) (Electrical Geodesic Inc., Eugene, OR). Hydrocel-128 nets (Electrical Geodesic Inc., 

Eugene, OR) with saline electrolyte were used to collect data. Data was recorded at 250 Hz 

sampling rate with 0.1 to 100 Hz frequency band. Data was referenced to Cz while recording and 
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re-referenced to the averaged reference offline. All impedances were assessed at or under 40 

kOhm before recording. 

EEG was first passed through a first-order high pass filter of 0.1 Hz and a low pass filter 

of 30 Hz. Then continuous EEG was segmented into 100 ms pre-stimulus and 2000 ms post-

stimulus segments. Eye blinks (identified as eye blink channel amplitudes exceeding 150 µV) 

and eye movements (identified as eye movement channel amplitudes exceeding 150 µV) were 

corrected using the Ocular Artifact Removal Tool in NetStation 4.5 (Electrical Geodesic Inc., 

Eugene, OR). Bad channels (more than 40% of the segments having any data point higher than 

200 µV) were marked; trials with more than 10 bad channels were marked bad and excluded 

from future steps. In the next step, bad channels were replaced by the surrounding channels using 

spherical spline interpolation. Then all the channels were re-referenced from Cz to the average 

reference. Baseline correction was conducted on each segment using the pre-stimulus 100 ms 

duration. At the end, trials of the same condition were averaged. The number of trials for the 

food condition was M =27.70, SD = 7.46, Range = 16 to 43. The number of trials for the 

nonfood condition was M = 26.97, SD = 6.93, Range = 15 to 43. NetStation 4.5 (Electrical 

Geodesic Inc., Eugene, OR) was used for data preprocessing. SPSS 22.0 (IBM Corp, Armonk, 

NY) was used for statistical analysis. 

2.6 Data analysis 

Self-reported EE 

Since prior research has shown that sex and age modulate EE in adolescents (Wardle et 

al., 1992), linear regression models were conducted using EE as the dependent variable and sex, 

age and the sex-by-age interaction as predictors. 

ERP Data Analysis 



 

 13 

For the primary analyses, mean amplitudes of the P3 (250 to 500 ms) and LPP (500 to 

2000 ms) were calculated at two symmetrical clusters in the left and right parietal regions. These 

clusters were identified based on previous literature (Blechert et al., 2014; Meule et al., 2013; 

Nijs et al., 2008, 2009; Nijs, Muris, et al., 2010; Stockburger, Renner, Weike, Hamm, & Schupp, 

2009; Svaldi et al., 2015) and on visual examination of the ERP waveforms for food and nonfood 

cues where the difference appeared maximal (Figure 3). Specifically, the left hemisphere parietal 

cluster consisted of channels 42, 53, 61, 47, 52, 60, 67, 51, 59, 66, 58, 65, and the right 

hemisphere parietal cluster consisted of channels 93, 86, 78, 98, 92, 85, 77, 97, 91, 84, 96, 90 of 

an EGI 128-channel Hydrocel EEG net (Figure 4, panel A). A repeated measures ANOVA was 

conducted for the P3 and LPP separately with condition (food vs. nonfood) x hemisphere (left vs. 

right) factors.  Then, a repeated measures ANCOVA was conducted with EE as a continuous 

predictor (a covariate of interest) of P3 and LPP amplitudes, and interactions between EE and 

condition, hemisphere, and condition x hemisphere were tested. 

Following these primary analyses, a more exploratory secondary analysis was conducted 

of the associations between EE and the food-nonfood difference wave. Difference waves for 

food versus nonfood cues were calculated at each channel, then correlation of EE and the 

difference wave was calculated at each 100-ms bin window across the whole head. Topographic 

maps of the correlation coefficients over time were then visually examined for clusters of 

channels exhibiting persistent correlations with EE. Then analyses were conducted on the 

identified clusters testing the significance of the EE associations with mean voltages across these 

channel clusters in the relevant time windows following the ANCOVA modeling procedures 

described above.  
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Several other factors and covariates are also worth considering. Sex and age modulate 

ERPs in adolescents (Crowley et al., 2013; MacNamara et al., 2016; Speed et al., 2015). Hunger 

modulates attentional allocation towards food (Loeber, Grosshans, Herpertz, Kiefer, & Herpertz, 

2013; Mogg, Bradley, Hyare, & Lee, 1998), and has been found to modify food-cue induced 

ERPs (Stockburger, Schmalzle, et al., 2009). In this report, hunger was positive correlated to EE, 

r = .26 , p < .05, (Table 2). Body Mass Index (BMI) has been found to not be related with EE 

(Nguyen-Rodriguez, Chou, Unger, & Spruijt-Metz, 2008; Snoek, Engels, van Strien, & Otten, 

2013), and it was not correlated with any ERPs in the current study (Table 3), thus it was not 

included in the model. We examined the EE-related effects with the presence of sex, age and 

hunger, by adding them as covariates to the original ANCOVA model. Linear regressions were 

used for post-hoc tests upon significant EE-related interactions. All the covariates were 

standardized prior to being entered in the ANCOVA models. 

                                       ----------------------------------------------- 

Table 2 goes here 

                                       ----------------------------------------------- 

 

Finally, previous work reported that EE is closely related to the positive and negative 

reinforcement aspects of eating (Hayaki, 2009). The positive reinforcement subscale in FCQ-T 

has 5 items that ask about the positive feelings that may result from eating, and the negative 

reinforcement subscale in the FCQ-T has 3 items that ask about anticipation of relief from 

negative states as a result of eating (Cepeda-Benito et al., 2000). In the current study, EE was 

found to be highly correlated with both the positive reinforcement subscale, r = .72, p < .001, and 

the negative reinforcement subscale, r = .59, p < .001. Therefore, in order to examine the 
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divergent validity of the EE effects, additional ANCOVAs were conducted using FCQ-T positive 

reinforcement and negative reinforcement subscale scores as predictors in place of EE. 

Additionally, a model was conducted in which the FCQ-T positive and negative reinforcement 

subscales were included as predictors in addition to EE in order to establish whether EE is 

uniquely correlated with P3 and LPP amplitudes after controlling for these closely-related 

constructs. 

3. Results 

3.1 Self-report measures of EE 

A General Linear Model using EE as the dependent measure, and using sex (male coded 

0 and female coded 1), age, and the sex by age interaction as predictors, showed a significant 

model effect, F(3, 82) = 3.29, p = .025. There were no significant main effects of sex, b = -9.27, 

t(82) = -1.75, p = .084, or of age, b = -0.07, t(82) = -0.27, p = .789. However, there was a 

significant sex by age interaction predicting EE, b = 0.77, t(82) = 2.05, p = .044. To probe this 

significant interaction, correlations between EE and age were calculated separately for males and 

females. EE was positively correlated with age in the female sample, r = .36, p = .025, n = 38, 

transformed to z = 0.38, SE = 0.17, but not in the male sample, r = -.04, p = .775, n = 48, 

transformed to z = -0.04, SE = 0.15 (Figure 2). The difference of the two correlations was 

significant using a one-tailed t-test, z = 1.88, p = .030, indicating that the correlation of age and 

EE was stronger in girls than boys.  

                                       ----------------------------------------------- 

Figure 2 goes here 

                                       ----------------------------------------------- 
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3.2 EEG 

3.2.1 Parietal P3 and LPP amplitudes to food vs. nonfood cues 

 To test for the main effects of food vs. nonfood cues, repeated-measures ANOVAs were 

conducted for the parietal P3 (250 – 500 ms) and LPP (500 – 2000 ms) separately with condition 

(food vs. nonfood) x hemisphere (left parietal vs. right parietal) factors. Significant condition 

effects were found for both P3 and LPP, F(1, 77) = 22.12, p < .001, hp
2 = .22, and F(1, 77) = 

21.01, p < .001, hp
2 = .21, respectively, reflecting more positive P3 and LPP amplitudes for the 

food cue than the nonfood cue, P3, Mfood = 7.13 µV, SD = 3.75 µV, Mnonfood = 6.19 µV, SD = 

3.40 µV, t(77) = 4.70, p < .001, LPP, Mfood = 1.40 µV, SD = 2.16 µV, Mnonfood = 0.49 µV, SD = 

1.88 µV, t(77) = 4.58, p < .001. 

 

                                       ----------------------------------------------- 

Figure 3 goes here 

                                       ----------------------------------------------- 

 

There was also a significant main effect of hemisphere for the P3, F(1, 77) = 20.57, p < 

.001, hp
2 = .21, indicating the left hemisphere had a less positive P3 than the right hemisphere, 

Mleft = 5.87 µV, SD = 3.68 µV, Mright =7.46 µV, SD = 3.92 µV, t(77) = -4.54, p < .001. The 

hemisphere effect was not significant for the LPP, F(1, 77) = 0.03, p = .859, hp
2 < .01. There was 

no significant condition x hemisphere interaction for the P3, F(1, 77) = 0.11, p = .743,  hp
2 < .01, 

or for the LPP, F(1, 77) = 1.52, p = .222, hp
2 = .02, indicating that the main effect of condition 

did not differ across hemispheres.  

3.2.2 Association of EE with parietal P3 and LPP amplitudes 
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After adding EE to the models, we found no significant EE-related effects predicting 

parietal P3 or LPP amplitudes. Specifically, for the P3, the EE-related effects were: EE main 

effect, F(1,76) = 1.09, p = .301, hp
2 = .01, EE x hemisphere, F(1,76) = 0.03, p = .858, hp

2 < .01, 

EE x condition, F(1,76) = 0.41, p = .521, hp
2 = .01, and EE x hemisphere x condition, F(1,76) = 

0.37, p = .547, hp
2 = .01. For the LPP, the EE-related effects were: EE main effect, F(1,75) = 

3.03, p = .086, hp
2 = .04, EE x hemisphere, F(1,76) = 0.26, p = .609, hp

2 < .01, EE x condition, 

F(1,76) = 0.29, p = .595, hp
2 < .01, and EE x hemisphere x condition, F(1,76) = 0.27, p = .602, 

hp
2 = .01.  

                                       ----------------------------------------------- 

Figure 4 goes here 

                                       ----------------------------------------------- 

 

 

3.2.3 Exploratory analysis of EE correlations with the food vs. nonfood difference wave  

Since individual differences are not always observed at the same locations where 

condition effects are observed (Asmaro et al., 2012; Blechert et al., 2010; Blechert et al., 2014), 

topographic plots of the correlation between EE and the food-nonfood difference wave at each 

channel were examined to take a more exploratory approach to identifying clusters of channels 

where EE may be associated with the response to food cues (Figure 5). 

                                       ----------------------------------------------- 

Figure 5 goes here 

                                       ----------------------------------------------- 

Visual examination of these topographic correlation maps revealed broad clusters of 
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channels in both fronto-central and occipital regions where individual differences in EE were 

correlated with the food-nonfood difference wave beginning around 500 ms and strengthening 

through 2000 ms. EE was positively correlated with the difference wave in the fronto-central 

region and negatively correlated with the difference wave in the occipital region. Since the ERP 

waveforms showed inverted voltage fluctuations between fronto-central and occipital regions 

(Figure 3), we reasoned that the inverse correlation of the food-nonfood difference wave with EE 

across these two regions may reflect opposite projections of a single dipole source. Therefore we 

conducted source localization using GeoSource 2.0 (Electrical Geodesic Inc., Eugene, OR) on 

the responses to food cues, following procedures described in a previous paper (Crowley et al., 

2013). The sLORETA representations of the responses to food cues indicated that the maximum 

activation started in the occipital lobe, with a maximum around 350 ms, and transitioned to the 

frontal lobe starting around 500 ms and strengthening throughout the LPP time window (Figure 

6). The maximum activation during the LPP time window was localized to Brodmann’s area 11, 

which is part of the orbitofrontal cortex. Therefore, we decided to focus our further analyses of 

the LPP on the fronto-central region only. Guided by the correlation maps, we selected two 

symmetrical clusters of channels in the fronto-central region for statistical analysis. The left 

fronto-central cluster consisted of channels 20, 13, 28, 29, 30, 31, 34, 35, 36, 37, 39, and 40, and 

the right fronto-central cluster consisted of channels 118, 112, 117, 111, 105, 80, 116, 110, 104, 

87, 115, and 109 (Figure 7 panel A). We then conducted a repeated-measures ANCOVA on the 

average voltage in these fronto-central channel clusters in the LPP time window (500 – 2000 ms) 

with condition (food vs. nonfood) x hemisphere (left frontal vs. right frontal) factors and with EE 

as the covariate of interest. 

                                       ----------------------------------------------- 
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Figure 6 goes here 

                                       ----------------------------------------------- 

 

  As expected, the ANCOVA revealed a significant condition x EE interaction, F(1, 76) = 

7.83, p = .007, hp
2 = .09. Since the EE x condition x hemisphere interaction was not significant, 

F = 0.24, p = .627, the LPP amplitudes from the left and right fronto-central regions were 

averaged for post hoc analyses. Pearson’s correlation indicated that EE positively correlated with 

the fronto-central LPP difference wave (food minus nonfood cue), r = .31, p = .007 (Figure 7, 

panel D). The ANCOVA revealed no significant main effect of EE, F(1, 76) = 0.92, p = .342, 

partial h2 = .01, or other interactions, Fs <= 1.11, ps >= .295. 

 

                                       ----------------------------------------------- 

Figure 7 goes here 

                                       ----------------------------------------------- 

 

When sex, age, and hunger were added to the model as covariates, the condition by EE 

interaction predicting fronto-central LPP amplitudes remained significant, F(1, 73) = 6.22, p = 

.015, partial h2 = .08. Linear regressions using the LPP food-nonfood difference wave as the 

dependent variable with EE, age, sex, and hunger as the predictors indicated that the positive 

association of EE with the LPP difference wave in fronto-central regions also remained 

significant after controlling for these covariates, b = 0.45, t(73) = 2.50, p = .015.  

To test for divergent validity of the EE effects on LPP amplitude in fronto-central 

regions, the repeated measures ANCOVA was conducted separately with the positive and 
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negative reinforcement subscale scores from the FCQ-T as covariates of interest in place of the 

EE score. The positive reinforcement effect was significant at the trend level, condition x 

positive reinforcement, F(1, 76) = 3.40, p = .070, hp
2 = .04. The negative reinforcement effect 

was not significant, condition x negative reinforcement, F(1, 76) = 2.16, p = .145, hp
2 = .03. 

When both the positive and negative reinforcement scales were included in the ANCOVA model 

with EE, the EE effect remained significant, condition x EE, F(1, 76) = 4.11, p = .046, hp
2 = .05.  

3.3 Outlier sensitivity tests 

 One female participant had an EE score that was greater than 3 standard deviations from 

the sample mean (EE = 24, Z-score = 3.90). To test for the sensitivity of the results to this outlier 

value, we re-ran all analyses that had yielded significant EE findings excluding this participant’s 

data. 

3.3.1 The association of EE with age in girls after outlier removal 

We conducted the same regression model as in Section 3.1 (EE regressed on sex and age) 

after removing the outlier, and found comparable results. The sex by age interaction predicting 

EE was significant, b = 0.71, t(81) = 2.04, p = .045. The correlation of age with EE in girls was 

significant, r = .40, p = .015, n = 37, transformed to z = 0.42, SE = 0.17. The correlation of age 

with EE in boys stayed the same, and the difference between the two correlations remained 

significant, z = 2.02, p = .022.  

3.3.2 The EE effect on the fronto-central LPP after outlier removal 

 We conducted the same ANCOVAs as in Section 3.2.3 (fronto-central LPP predicted by 

condition, hemisphere, and EE) after removing the outlier and found comparable results. With 

only EE as the covariate, the ANCOVA revealed a significant condition x EE interaction 

predicting fronto-central LPP amplitudes, F(1, 75) = 4.78, p = .032, hp
2 = .06. Pearson’s 
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correlation indicated that EE positively correlated with the LPP food-nonfood difference wave, r 

= .25, p = .032.  

 After adding sex, age and hunger to the model, the condition by EE interaction predicting 

fronto-central LPP amplitudes remained significant, F(1, 72) = 4.14, p = .046, partial h2 = .05. 

Again, the post hoc linear regression showed a significant positive association of EE with the 

LPP difference wave after controlling for these covariates, b = 0.40, t(72) = 2.04, p = .046. 

 When either positive or negative reinforcement was used in place of EE with this outlier 

removed, neither of the ANCOVAs produced any significant results related to the covariate of 

interest. The condition x positive reinforcement interaction term was, F(1, 75) = 1.86, p = .177, 

hp
2 = .02 and the condition x negative reinforcement interaction term was, F(1, 75) = 1.20, p = 

.278, hp
2 = .02. 

4. Discussion 

This study examined whether adolescents with a spectrum of EE traits would have 

different sensitivity to food cues. We assessed EE via self-report and measured EEG while 

participants viewed food and nonfood cues, with the instruction to imagine what the pictured 

foods taste like. Behaviorally, we found a significant sex by age interaction in predicting EE. 

Among girls only age was positively correlated with the EE score, and there was no such 

correlation in boys. This finding is consistent with a previous study showing older girls reporting 

more EE issues (Wardle et al., 1992).  

In terms of electrophysiological results, we found enhanced P3 (250 – 500 ms) and LPP 

(500 – 2000 ms) amplitudes for food-cue stimuli versus the nonfood-cue stimuli in the parietal 

regions, suggesting that food cues were preferentially processed over nonfood cues (food-cue 

bias) during both the P3 and LPP time periods. Previous studies in adults have shown similar 
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food-cue biases for the P3 and LPP (Meule et al., 2013; Nijs et al., 2008; Nijs, Muris, et al., 

2010). In adolescents, the only relevant study we found was that of Hofmann and colleagues 

(Hofmann et al., 2015), who found an enhanced P3 for food versus object cues, with participants 

being a combination of healthy controls and obese counterparts. The current study confirmed 

that, similar to adults, adolescents exhibit enhanced P3 and LPP amplitudes towards food cues 

versus nonfood cues, reflecting preferential processing of food cues. However, this effect must 

be interpreted in light of our paradigm instructions. Participants were instructed to imagine the 

taste of foods pictured in the food cues, whereas no special instructions were provided for the 

nonfood cues. The enhanced P3 and LPP amplitudes to food cues in this study may thus be due 

at least in part to the instruction to engage in more elaborate cognitive processing of the food 

cues.  

 To our knowledge, the current report is the first to examine the effects of EE on 

electrophysiological responses to food cues in adolescents. We found no effects of EE on the 

food cue bias (food-nonfood difference) in the P3 or LPP amplitude when measured at parietal 

regions where the main effect of the food vs. nonfood cues appeared maximal. However, a 

subsequent exploratory analysis revealed that higher EE was associated with a more positive 

amplitude to food vs. nonfood cues specifically in a fronto-central region in the LPP time period. 

This finding is in line with previous research, in which EE was found to correlate with the LPP 

to food cues (Meule et al., 2013). The LPP reflects sustained perceptual and cognitive-

elaborative processing of motivationally relevant stimuli (Hajcak et al., 2010). Thus, the present 

results suggest that individual differences in EE are associated with food cue processing during 

cognitive-elaborative stages of information-processing. Specifically, we found that adolescents 

with higher EE (HEE) exhibited higher food-cue bias (more positive LPP amplitudes to food vs. 
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nonfood cues) in fronto-central regions. Since participants were instructed to imagine what the 

pictured foods tasted like, these differences in the food-cue bias may reflect individual 

differences in both the intrinsic salience of food cues and in the neural resources recruited during 

in-depth cognitive-elaborative processing of the food cues.  

Previous food-related studies have found associations of frontal LPPs with emotionally 

salient food-cue stimuli. For example, more positive frontal LPPs have been observed for 

appetitive food cues versus neutral stimuli (Gable & Harmon-Jones, 2010) and for unavailable 

food cues compared to available food cues in restrained eaters (Blechert et al., 2010). In the 

present study, the maximum source of the LPP to food cues was localized to the frontal lobe, in 

particular Brodmann’s Area 11, which is part of the orbitofrontal cortex. Our finding is 

consistent with a previous study in which source localization of the LPP implicated a prefrontal-

occipitoparietal attention network that underlies sustained attention during the late stages of 

stimulus processing (Moratti, Saugar, & Strange, 2011). Sustained attention facilitates affective 

processing by enhancing activity in visual processing areas and prefrontal cortex (Wessing, 

Rehbein, Postert, Furniss, & Junghofer, 2013). Compared to the parietal regions, LPPs from the 

frontal region have been found to relate to top-down cognitive control of emotion (Moratti et al., 

2011). For example, cognitive up- and down-regulation of emotion increases 

magnetoencephalographic activation to emotional pictures in the LPP time window in the dorsal 

prefrontal cortex (Wessing et al., 2015). Thus we speculate that in the current study, HEE 

participants may have more strongly engaged the prefrontal attention network to regulate their 

automatic emotional responses to the food images. 

The prefrontal attention network is also involved in reward processing. fMRI studies find 

that food cues activate brain reward regions including prefrontal cortex, orbitofrontal cortex, 
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anterior cingulate, insula and amygdala (Garcia-Garcia et al., 2013; van der Laan, de Ridder, 

Viergever, & Smeets, 2011). Implicating prefrontal activation in reward-related processing, 

greater prefrontal circuit activation was observed for high-calorie food cues versus low-calorie 

ones (Killgore et al., 2003). Enhanced prefrontal cortex activations to food images were found in 

individuals with eating disorders compared to controls (Uher et al., 2004). With regard to EE, 

greater EE has been associated with greater activation in the left dorsolateral prefrontal cortex in 

response to high versus low calorie food cues in adults (Wood et al., 2016) and with greater 

insula activation to food cues in both healthy controls and obese participants (van Bloemendaal 

et al., 2015). Additionally, only in high emotional eaters, reward regions including anterior 

cingulate cortex were more activated for food cues in an induced negative mood (Bohon, Stice, 

& Spoor, 2009). Thus another plausible explanation of the heightened activation over the fronto-

central cluster would be heightened reward sensitivity towards food cues in HEE through the 

prefrontal attention network.  

To our knowledge, the only previous research linking EE with brain activities in 

adolescents was conducted by Bohon (2014). In this study, EE was found to negatively correlate 

with activations in palatable food regions and reward circuitry upon receipt of milkshake. The 

reduced reward circuitry activation in relation to greater EE seems to contradict the results from 

the current study. However, Bohon and colleagues used real food consumption as the stimuli 

whereas the current paper used visual food cues. It is possible that high EE in adolescents is 

related to enhanced sensitivity to reward cues, which activate reward anticipation processes, in 

combination with reduced sensitivity to actual reward consumption. For example, obese 

adolescents have been shown to exhibit reduced activation in reward circuitry during food 

consumption but not during food anticipation (Stice, Spoor, Bohon, Veldhuizen, & Small, 2008).  
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With regard to other subscales of the FCQ-T, the present study showed that neither the 

positive nor the negative reinforcement subscales significantly contributed to the heightened LPP 

food bias. Importantly, the association between EE and the heightened LPP food bias remained 

significant when both the positive and negative reinforcement subscales were included in the 

model, suggesting that EE contributes uniquely to the LPP food bias, even when controlling for 

the highly correlated tendency to find food positively and negatively reinforcing. 

Several limitations of the current study and future directions should be considered. First, 

participants in the current study were healthy adolescents, thus there were not many extreme 

emotional eaters in our sample. Pre-selecting extreme groups of low and high emotional-eating 

participants would provide more power to examine potential interactions with age and sex (van 

Strien, Herman, Anschutz, Engels, & de Weerth, 2012). Secondly, the current study was 

designed to understand the neural correlates of emotional eating in the absence of induced 

emotional states. Future work could include a scenario to evoke emotion and stress, and thus to 

study the emotional eating effect in a more emotionally challenging context. Third, participants’ 

dietary preferences (e.g., vegetarian or not) were not collected. Vegetarians may show 

differential neural responses to meat (Stockburger, Renner, et al., 2009) which could contribute 

to unexplained variance in the results for EE. Fourth, we did not provide instructions regarding 

eating prior to the visit, thus participants could have different hunger levels during the 

experiment. We measured participants’ hunger levels at the end of the EEG experiment and 

tested post-task hunger as a covariate in the analysis model. Using this approach, we accounted 

for the variance of the brain signal differences due to different hunger levels at the end of the 

task. However, a mean hunger level (average of pre and post task) could be a better covariate. 

Fifth, subjective ratings of the stimulus images were not measured, which would otherwise add 
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more insights to the brain differences for the current report. Sixth, we did not use one of the 

published standardized food image stimulus sets. Thus the findings should be replicated using 

standardized food images that are controlled for contrast and recognizability. Lastly, we gave 

explicit instructions for processing food-cue stimuli, instructing participants to imagine the taste 

of the food images. Thus the food versus nonfood ERP condition effect should be considered as 

reflecting individual differences in attention and cognitive control in the context of imagining the 

taste of food images. Future research is needed to illuminate whether a similar pattern of findings 

for EE emerges when food cues are presented without the explicit instruction to imagine the taste 

of the pictured foods. 

In summary, the current study was the first to examine emotional eating in relation to 

EEG correlates of visual food cue processing in adolescents. We first confirmed that emotional 

eating positively correlates with age but only in girls. Secondly, we confirmed that posterior P3s 

and LPPs exhibited food-cue biases in adolescents consistent with studies in adults. Thirdly, we 

found that EE contributed significantly to heightened food-cue biases in LPP amplitudes in the 

fronto-central region. This heightened fronto-central LPP may reflect greater cognitive 

regulation of the emotional response to food cues and/or heightened reward network activation to 

food cues among high emotional eaters.
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Tables and Figures 
 
Table 1. Mean and SD of age, emotional eating (EE), body mass index (BMI), hunger and age 
separated by sex groups 

 age EE BMI hunger 

Male, n = 48 13.71 (2.21) 7.56 (3.57) 22.36 (5.99) 9.04 (2.06) 

Female, n = 38 14.06 (2.31) 9.11 (4.45) 22.39 (4.30) 9.34 (2.70) 

Total, n = 86 13.86 (2.24) 8.24 (4.04) 22.37 (5.28) 9.18 (2.56) 
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Table 2. Correlations (Pearson’s r values) between sex (male and female coded as 0 and 1 
respectively), age, emotional eating (EE), hunger, and body mass index (BMI).(* for .05 
significance and ** for .01 significance.) 

 sex EE hunger BMI 
age .061 .079 .003 .406** 
sex  .153 .048 .028 
EE   .261* -.097 
hunger    -.117 
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Table 3. Correlations (Pearson’s r values) of P3 and LPP amplitudes in parietal and 
fronto-central regions with age, sex (male and female coded as 0 and 1 respectively), 
emotional eating (EE), hunger, and body mass index (BMI) (* for .05 significance and 
** for .01 significance). 
 age sex EE hunger BMI 
parietal P3 food -.38** -.38** -.13 .24* -.09 
parietal P3 nonfood -.25* -.42** -.10 .26* -.07 
parietal P3 difference -.35** .003 -.07 .02 -.06 
parietal LPP food -.31** -.27* -.19 .07 .06 
parietal LPP nonfood -.12 -.29* -.16 .07 .10 
parietal LPP difference -.26* -.02 -.06 .01 -.18 
fronto-central LPP food .29* .10 .25* .08 .11 
fronto-central LPP nonfood .15 .05 -.09 -.04 .09 
fronto-central LPP difference .14 .05 .31** .11 .03 
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Figure 1: 
Figure 1 Caption: Examples of food stimuli (left panel) and nonfood stimuli (right panel). 
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Figure 2. 
Figure 2 Caption: 
Scatter plots of emotional eating and age in boys and girls. Emotional eating is not correlated 
with age in boys (left panel), but positively correlates with age in girls (right panel). 
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Figure 3 
Figure 3 Caption: 
ERP waveforms at eight representative locations: F3, F4, C3, C4, P3, P4, O1, O2 with two time 
windows of interest P3 (250 to 500 ms) and LPP (500 to 2000 ms). 
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Figure 4. 
Figure 4 Caption: 
This figure illustrates the waveforms of P3 (250 to 500 ms) and LPP (500 to 2000 ms) at the 
parietal region (averaged across hemispheres). For illustration purpose only, the sample was split 
into high emotional eating (HEE, emotional eating score > median score 7) and low emotional 
eating (LEE, emotional eating score <= median score 7).  Both HEE and LEE exhibited a more 
enhanced P3 and LPP for food cues than nonfood cues, but the effect did not interact with EE. 
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Figure 5 
Figure 5 Caption: 
This figure illustrates the dynamic changes of the correlation coefficient (Pearson’s r) of 
emotional eating with the food versus nonfood cue difference wave. Starting around 500 ms and 
strengthening through 2000 ms, a positive correlation emerged in the fronto-central region and a 
corresponding negative correlation emerged in the occipital region. 
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Figure 6 
Figure 6 Caption: 
This figure illustrates the dynamic location of the maximum source of the ERPs in response to 
the food cues. The maximum source was located in the occipital lobe during early processing 
(P3, 200 to 500 ms) and it switched to the frontal lobe during later processing (LPP, 500 to 2000 
ms). 
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Figure 7 
Figure 7 Caption: 
This figure illustrates the waveforms of the LPP (500 to 2000 ms) at the fronto-central region 
(averaged across hemispheres). For illustration purpose only, the sample was split into high 
emotional eating (HEE, emotional eating score > 7) and low emotional eating (LEE, emotional 
eating score <=7). HEE individuals exhibited a more positive food-nonfood difference in fronto-
central LPP amplitude than did LEE individuals. 
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Appendix 1 

List of stimulus images from the IAPs library 

• food from IAPs (n=24/45) 
7200 (brownie), 7220 (pastry), 7230 (fruit pie), 7260 (ice cream), 7270 (ice 
cream), 7282 (ice cream), 7283 (fruit), 7284 (fruit), 7286 (bread and cheese), 
7289 (meat), 7291 (chicken), 7330 (ice cream), 7340 (ice cream), 7350 (pizza), 
7351 (pizza), 7402 (pastry), 7430 (cake), 7450 (burger), 7470 (pancake), 7475 
(shrimp), 7480 (pasta), 7481 (shrimp), 7482 (meat), 7484 (fish) 

• food stimuli not from IAPs (n=21/45): 
beef dishes n=3, bread n = 1, cake n = 1, chichen dishes n = 2, fries n = 1, fruit n 
= 1, hotdog n = 1, ice cream n = 2, pasta n = 2, pizza n = 1, pork dishes n = 2, 
potato dishes n = 1, strawberry pie n = 1, sushi n = 1, tacos n = 1 

• nonFood from IAPs (n = 18/45) 
5390 (boat), 5740 (leave), 7000 (roller), 7009 (cup), 7010 (basket), 7025 (chair), 
7030 (iron), 7040 (dust pan), 7052 (clippers), 7080 (fork), 7090 (book), 7100 (fire 
hydrant), 7130 (truck), 7140 (bus), 7150 (umbrella), 7175 (lamp), 7211 (clock), 
7950 (box of tissue) 

• nonfood stimuli not from IAPs (n =  27/45) 
backpacks n = 3, bed n = 3, bike n = 1, boat n = 2, building n = 1, chair n = 1, 
coffee table n = 2, couch n = 1, desk n =3, door n = 1, house n = 1, mailbox n = 1, 
playground n = 1, racket n = 1, schoolbus n = 1, street n = 1, tree n = 1, washer n 
= 1, window n = 1. 

 


