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Sequence-selective assembly of tweezer-molecules on linear templates enables frameshift-reading of sequence information  
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Abstract:  Monomer-sequence information in synthetic copolyimides can be recognised by tweezer-type molecules binding to adjacent triplet-sequences on the polymer chains. In the present paper different tweezer-molecules are found to have different sequence-selectivities, as demonstrated in solution by 1H NMR spectroscopy and in the solid state by single crystal X-ray analyses of tweezer-complexes with linear and macrocyclic oligo-imides. This work provides clear-cut confirmation of polyimide chain-folding and adjacent-tweezer-binding. It also reveals a new and entirely unexpected mechanism for sequence-recognition which, by analogy with a related process in biomolecular information processing, may be termed "frameshift-reading". The ability of one particular tweezer-molecule to detect, with exceptionally high sensitivity, long-range sequence-information in chain-folding aromatic copolyimides, is readily explained by this novel process. 
The idea that digital information might be encoded at the molecular level, as a linear sequence of monomer residues in a copolymer chain, first crystallised some fifty years ago with discovery of the structure
,
,
 and function
 of DNA; a linear, high molecular weight organopolyphosphate in which the information represented by its nucleotide monomer-sequences was found to ultimately specify the amino acid sequences of proteins.
 Viewed purely as digital information however, DNA – with its four co-monomers ​– is far more complex than strictly necessary, since even the simplest two-monomer copolymer is the logical equivalent of a string of binary numbers.
 It is significant that, in biology, no specific information is ever written to DNA: random copying errors may be captured by evolution, but the key problem - solved in Life by the operation of a dauntingly intricate set of molecular machinery – is how comonomer  sequences are to be read.
 

We, and others,
,
 have recently begun to explore the possibility that synthetic copolymers might, in principle, be used to store and process digital information. Several groups have described the development of small, -electron-rich, aromatic tweezer-molecules,
,
,
,
,
,
,
,
,
 and we have recently shown that certain molecules of this type can recognise and bind to specific triplet sequences in high molecular weight aromatic co-polyimides.
,
,
,
 Binding occurs via sterically- and electronically-complementary --stacking
,
,
,
,
,
,
,
,
 and hydrogen-bonding between the tweezer-molecules and monomer residues (Fig.1). As in many supramolecular systems where aromatic --stacking plays a key role,
,
,
,
,
,
,
,
,
 this interaction results in very large, ring-current-induced complexation shifts of 1H NMR resonances arising from the associating components, here involving triplet binding sequences.19,20 Moreover, NMR data for a range of copolymers show that the tweezer-molecules are able to "read" sequences which are more extended than simple triplets, by a mechanism which we have suggested may involve polymer chain-folding and multiple adjacent tweezer-binding.21 In the presence of the tweezer, co-monomer sequences in which two, one, or no tweezer-molecules can be bound at sequences adjacent to the central diimide binding site are found to give three separate diimide resonances.21 Adjacent tweezer-binding to a chain-folded polyimide (Fig. 1) would produce additional ring-current shielding of the "observed" diimide protons (highlighted in blue), so providing a possible mechanism for detection of extended sequence-information.  
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Figure 1 (  Proposed19,20,21 chain folding of a polyimide-sulfone and multiple tweezer-binding at adjacent triplet sequences. Defining the diarylene-pyromellitimide unit as "I" and the bis(arylsulfonyl)-4,4'-biphenylene residue as "S", each tweezer-molecule binds to the triplet monomer-sequence "SIS". (Note: adjacent triplets are overlapping, since each "S" residue interacts with two tweezer-molecules.
Here we report the synthesis and characterisation (both in solution and, crystallographically, in the solid-state) of discrete complexes between tweezer-molecules and fully-defined diimide oligomers, both linear and macrocyclic. This work finally validates the hypothesis of polyimide chain-folding and adjacent-tweezer-binding, and also reveals a novel mechanism for sequence-recogition which, by analogy with a related process in biomolecular information-processing, we term "frameshift-reading". This wholly unexpected result explains, for the first time, the ability of one particular tweezer-molecule to detect, with extraordinarily high sensitivity (see ESI), long-range sequence-information in chain-folding aromatic copolyimides.22  

Results and discussion

Diimide oligomers 1, 2 and 3 were synthesised by chemical imidisation
 of mixtures of diamine 4 and the end-capping monoamine 5 with either pyromellitic dianhydride (for 1) or 1,4,5,8-naphthalenetetracarboxylic dianhydride (for 2 and 3), in the presence of acetic anhydride. The products were fractionated by column chromatography to afford pure, single oligomers. Attempts to grow diffraction-quality single crystals of complexes between these oligomers and the previously-reported tweezer-molecules 6 and 7 were unsuccessful, but a new type of tweezer, (8), containing a ferrocenyl substituent (but with an otherwise similar structure to tweezer-molecule 6), ultimately gave well-formed crystals of a 2:1 complex with oligo-imide 1. The X-ray structure of [82+1] is shown in Fig. 2, from which it is evident that the previously-hypothesised19,20,21 adjacent binding of tweezer-molecules does indeed occur. In [82+1] the two tweezer-molecules are related by a crystallographic inversion centre, and bind to the terminal diimide residues of the oligomer. Chain-folding of the oligomer leads to formation of a multiple -stack comprising seven electronically-complementary components (four electron-rich tweezer-arms, two electron-deficient pyromellitimide residues and one electron-deficient 4,4'-biphenylenedisulfone unit). A strong hydrogen bond (N-H...O=C = 2.26 Å, (N-H…O = 173°) is found between each tweezer-molecule and a carbonyl group of its bound pyromellitimide residue.
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Figure 2 (  X-ray structure (two views) of the 2:1 complex [82+1] between the ferrocenyl tweezer-molecule 8 and the bis-pyromellitimde oligomer 1. Tweezer-molecules are shown in blue to distinguish the three components of the assembly, with intermolecular hydrogen bonds (N-H…O=C) in magenta. 

The perpendicular distance in the crystal between each proton of a pyromellitimide residue and the mean plane of a non-adjacent pyrenyl ring (c.f. Fig. 2) is ca. 10.5 Å, very close to the value of 10.8 Å predicted by an earlier computational modelling study of the corresponding tweezer-polymer complex.21 This brings the diimide protons well within the "0.1 ppm shielding radius" of the adjacently-bound pyrenyl residue, calculated at ca. 12.0 Å.
 Consequently, in addition to the large complexation shift of the diimide resonance resulting from tweezer-binding at the diimide unit, additional upfield shifts of the diimide resonance are predicted (and observed) when tweezer-binding is possible at one or both adjacent sequences in a chain-folded polymer.21 The crystal structure of [82+1] thus provides a clear-cut demonstration of the chain-folding-and-adjacent-binding proposed for detection of long-range sequence information by tweezer-molecules 6, 7, and 8. 
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Figure 3 (  Job plots for complexation of 8 (((()  and 9 (––) with the bis(diimide) oligomer 2, based on 1H NMR complexation shifts of the aromatic diimide resonances. Samples were 6 mM in total concentration. Peak abscissa values of 0.32 and 0.48 indicate 2:1 (tweezer: oligomer) and 1:1 complexation respectively. 

Confirmation that the adjacent tweezer-binding observed in the crystal can also occur in solution was provided by Job plots for complexation of tweezer-molecule 8 with oligo-imides 1 and 2 in chloroform/hexafluoropropan-2-ol, using the complexation shifts () of the singlet diimide resonance in each case. These plots provide very good evidence for 2:1 (tweezer:oligomer) stoichiometry of binding, with peaks found at x = 0.39 and 0.32 respectively (c.f.  theoretical values of 0.33 for 2:1 and 0.50 for 1:1 binding). Remarkably however, Job analyses of complexation between the internally hydrogen-bonded tweezer 9 and oligomers 1 and 2 showed a clear-cut preference for one-to-one binding, with the latter plots peaking at x = 0.50 and 0.48 respectively (Fig. 3). The 2:1 tweezer-oligomer binding model established from the structure of complex [82+1] (Fig. 2) thus fails completely for tweezer-molecule 9. However, computational modelling (molecular mechanics with charge-equilibration) quickly showed that 1:1 complexation between tweezer-molecule 9 and diimide oligomers 1 and 2 could be accounted for in terms of tweezer-binding at the 4,4'-biphenylenedisulfone unit of the oligomer (Fig. 4a). This gives rise to a five-component, complementary -stack in which the diimide residues interact with the outer faces of the tweezer-arms, rather than with their inner faces as in complex [82+1] (Fig. 2). 
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Figure 4 (  Minimised computational models (molecular mechanics with charge-equilibration) of (a) the 1:1 complex between tweezer-molecule 9 and the bis-pyromellitimide oligomer 1, and (b) the 2:1 complex between tweezer-molecule 9 and the tris-diimide oligomer 3. Intramolecular hydrogen bonds are shown in magenta. In complex [92+3] the two tweezer-molecules are shown approaching from opposite sides of the oligomer chain, though the system is dynamic and simultaneously-complexed tweezer-molecules could in fact be bound syn or anti to one another. Van der Waals surfaces are shown at 2.4 x covalent radii.

A closely-related structure was found, computationally, for the complex between the tris-diimide oligomer 3 and tweezer-molecule 9 (Fig. 4b), where two molecules of the tweezer bind at consecutive, biphenylene-centred "ISI" sequences. This model leads to the prediction that the 1H NMR resonances of oligomer 3 associated with the biphenylene units and the central diimide residue (all of which are shielded by two tweezer-pyrenyl groups) should show significantly greater complexation shifts () with tweezer 9 than those arising from the terminal diimide groups, which are shielded by only a single pyrene unit. As shown in Fig. 5, this prediction is borne out in practice, with values (2:1 mole ratio of tweezer-molecule 9 to the tris-diimide oligomer 3) of 0.23 and 0.24 ppm for protons Ha and Hb/b' contrasting with a  value of only 0.14 ppm for the AB system representing the protons (Hd/e) of the terminal diimide units. The spectra shown in Fig. 5 were obtained at 50 °C (fast exchange conditions) since room-temperature spectra were significantly broadened, suggesting an approach to slow exchange between bound and unbound species.

The different sequence-selectivities of tweezer molecules 8 (SIS) and 9 (ISI) may be accounted for on the basis of their different hydrogen-bonding characteristics. Historically, tweezer-type molecules have invariably been found to bind small aromatic guests by a mechanism analogous to chelation in coordination chemistry, i.e. by using the inner surfaces of their tweezer-arms.10-16 However, when the "guest" molecule is a chain-folding oligomer or polymer, it is entirely feasible that – depending on the detailed geometrical parameters and conformational flexibility of the tweezer – -stacking of the diimide residues to the outer faces of the tweezer-arms could be preferred. Energetically, it makes no difference which face of the pyrenyl residue interacts with the diimide. Indeed, in the absence of other types of interaction, outer-face complexation might even be the norm, and it is clearly favoured for the intramolecularly hydrogen-bonded diester-tweezer 9 (Figs. 4, 5 and 6), leading to complexation at the sequence "ISI". In contrast, the diamide tweezer-molecule 8 and analogues such as 6 and 7 have two convergent N-H groups, each of which can form an intermolecular hydrogen bond to the carbonyl group of a diimide residue in a poly- or oligo-imide chain (Fig. 2). This would obviously promote tweezer-binding at the diimide unit, now leading to complementary --stacking between the diimide ring and the inner surfaces of the tweezer-arms. As a result, the diamide-type tweezers invariably show selective binding at the sequence "SIS".19,20,21
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Figure 5 (  1H NMR spectra showing complexation shifts of different resonances for the tris-diimide oligomer 3 (lower trace) in the presence of tweezer-molecule 9, at 1:1 (centre trace) and 1:2 (upper trace) molar ratios respectively. Spectra were run at 500 MHz in CDCl3/hexafluoropropan-2-ol (6:1 v/v) at 50 °C, at 2 mM total concentration.
We were unable to isolate diffraction-quality crystals of the proposed 1:1 oligo-imide complex [1+9] but the modelled biphenylene-centred binding mode was indeed identified for tweezer-molecule 9 by a single crystal X-ray study of the 1:1 complex between 9 and an analogous macrocyclic oligo-imide 11. Here, in contrast to all previous tweezer-diimide assemblies for which structural data are available,19,20,21,
 the imide unit of 11 does not represent the central binding site for the tweezer-molecule, which instead binds  at the 4,4'-biphenylene-disulfone unit. However, as with tweezer-molecule 6, where binding to macrocycle 11 occurs at the diimide residue,43 the new macrocycle-tweezer complex [9+11] packs to generate an "infinite", complementary stack in which -electron-deficient diimide residues alternate with -electron-rich pyrenyl units (Fig. 6). 

Conceptually, ring-opening polymerisation of the macrocycles in such an infinite stack would generate a tweezer-bound, chain-folded homopolymer, with the tweezer-molecules located on the 4,4'-biphenylenedisulfone units ("S"). The diimide residues ("I") would again stack onto the outer surfaces of the tweezer-arms. The structure of [9+11] thus confirms that, in a chain-folded polymer, tweezer 9 favours binding to the sequence "ISI", rather than to "SIS". Moreover, further analysis shows that this particular sequence-selectivity provides an immediate explanation for the exceptional power of 9 to reveal long-range sequence information in the 1H NMR spectra of high-MW copolyimides.22
[image: image7.jpg]



Figure 6 (  X-ray structure of the complex between macrocycle 11 and tweezer-molecule 9, showing molecular stacking along the crystallographic a-direction. Tweezer-molecules are shown in blue, emphasising the alternation of complementary donor (pyrenyl) and acceptor (diimide and biphenylenedisulfone) subunits in the -stack. Intramolecular hydrogen bonds (N-H…O=C) are shown in magenta. The tweezer-molecule clearly binds at the 4,4'-biphenylenedisulfone site, but the outer faces of its arms are both able to -stack, in the crystal, with strongly electron-accepting diimide units.
Consider the 1:1 copolymer 13, in which the hexafluoroisopropylidene-diphthalimide groups generate entirely non-tweezer-binding sequences. Here the steric bulk of the hexafluoroisopropylidene unit and the twisted orientation of the two connected phthalimide groups combine to ensure that direct tweezer-binding cannot take place at this residue. Specifying the pyromellitimide unit as "I", the hexafluoroisopropylidene-diphthalimide group as "F", and the biphenylene-disulfonyl-diamine residue as "S", the allowed septet sequences in this copolymer (centring on the pyromellitimide unit observed by 1H NMR) are then:  [–SISISIS–], [–SFSISIS– or –SISISFS–], and [–SFSISFS–]. The structure of complex [82+1] reported here, together with previous spectroscopic studies,21 establishes that these sequences can bind three, two and one tweezer-molecules of type 8 respectively at their SIS triplet sequences (note: the "S" units are shared or "overlapping" under this terminology). Tweezer-binding at SIS results in large upfield shifts (> 2.5 ppm) for the central diimide resonance in each case, but additional shielding from adjacently bound tweezer(s) present produces further (small) complexation shifts, so resolving a different diimide resonance for each different septet sequence. The key point is that the central diimide residue can bind a molecule of type 8 in all three sequences of this type (Table 1).

Conversely, tweezer 9 binds predominantly at the sequence "ISI" and only very weakly, if at all, at the directionally-degenerate sequences FSI and ISF. As a result, the central diimide protons of the septet sequences are now much more sharply differentiated in terms of their susceptibility to ring-current shielding by complexing tweezer-molecules. As shown for 9 in Table 1, two tweezer molecules bind to [–SISISIS–], one to [–SFSISIS– or –SISISFS–], and none at all to [–SFSISFS–]. Consequently, interaction with 9 means that the central diimide residues in these septet sequences are shielded directly by two, one and no pyrenyl units respectively. This is a very different situation from that described for complexation of 8 to the same sequences, where the central, "observed" diimide protons are shielded directly by two pyrenyl residues in all cases. The novel sequence-selectivity discovered in this work for tweezer-molecule 9 (i.e. "ISI" rather than "SIS") thus provides a simple explanation for the extraordinarily high sensitivity to this tweezer of 1H NMR resonances associated with long-range sequence-information.22 Conversely, the "anomalous" behaviour of copolyimide 1H NMR resonances in the presence of tweezer-molecule 9 can now be seen, in conjunction with Table 1, to provide strong evidence that this molecule does indeed display a general preference for binding to the triplet sequence "ISI", rather than "SIS".
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Table 1 (  Graphical representation of "frameshift" reading resulting from the different sequence-recognition characteristics of tweezer-molecules 6, 7, 8 and 9.  The "observed" protons at the central diimide unit (I) in the first sequence are shielded to a similar extent by the pyrenyl residues of both tweezers (two proximal and two distal pyrenes). However, with tweezer-molecule 9, the presence of a non-binding hexafluoroisopropylidene-diimide (F) unit at one or both adjacent sites has a more drastic effect on the number of pyrenes shielding the diimide protons. As a result, the chemical shifts of ther three sequences are much more strongly differentiated through ring-current shielding in the presence of 9 than of 6, 7 or 8.

In reality the situation is not quite so clear-cut, because even the diimide resonance arising from the "non-9-binding" sequence [–SFSISFS–] does undergo a small upfield shift in the presence of this tweezer. It is already known that 9 can bind weakly to a diimide residue,22 and since the NMR experiments described here all show fast exchange between bound and unbound tweezer-molecules, it seems that the strong "ISI" complexation proposed for tweezer 9 will be dynamically superimposed on much weaker "SIS" binding, with both mechanisms operating simultaneously on the NMR timescale. Consistent with this, the 1:1 association constant, Ka, measured (using the UV-visible dilution method, based on the charge-transfer band at 551 nm) for the binding of tweezer-molecule 9 to the chain-folding oligomer 2, was found in this work to be 780 M-1, more than five times higher than the value (140 M-1)22 of Ka for the binding of 9 to the simple diimide 10. In the context of this 500% increase in binding constant, it should be noted that the experimental error in binding constants determined by the UV-vis. dilution method is normally of the order of 15%.
 

We have thus established, through studies of fully-defined oligomers and their tweezer-complexes, that two different designs of tweezer-molecule (exemplified by 8 and 9) have structures which are complementary to two different triplet-sequences in chain-folding polyimide-sulfones. This situation is faintly reminiscent of the relationship between the different t-RNA's (each having a different "binding codon") and m-RNA.
 Correspondingly, homopolyimide 12 can be represented as the sequence ...SISISISISIS..., with tweezer-molecules 6, 7 and 8 binding to the triplets "SIS", while the present work shows that tweezer-molecule 9 binds preferentially to the  sequence "ISI", so that the "reading frame" for 9 can be thought of as being shifted to left or right by a single monomer residue (Fig. 7).
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Figure 7 (  Chain folding and multiple binding to different polyimide triplet-sequences by different tweezer-molecules.  Defining the diarylpyromellitimide unit as "I" and the bis(arylsulfonyl)biphenylene residue as "S", each tweezer-molecule binds either to monomer-sequence "SIS" (tweezer 6, upper) or to ISI (tweezer 9, lower). Note: following the frameshift, the right-hand tweezer molecule in the lower arrangement is too distant from the "observed" protons (shown in blue) to play any role in ring-current shielding.
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