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Abstract1

The aim of this study is to further our understanding of whether skil-2

ful seasonal forecasts of the large-scale atmospheric circulation can be3

downscaled to provide skilful seasonal forecasts of regional precipitation.4

A simple multiple linear regression model is developed to describe winter5

precipitation variability in nine UK regions. The model for each region is6

a linear combination of two mean sea-level pressure (MSLP)-based indices7

which are derived from the MSLP correlation patterns for precipitation in8

north-west Scotland and south-east England. The first index is a pressure9

dipole, similar to the North Atlantic Oscillation but shifted to the east;10

the second index is the MSLP anomaly centred over the UK. The multiple11

linear regression model describes up to 76% of the observed precipitation12

variability in each region, and gives higher correlations with precipitation13

than using either of the two indices alone. The Met Office’s seasonal fore-14

cast system (GloSea5) is found to have significant skill in forecasting the15

two MSLP indices for the winter season, in forecasts initialised around the16

start of November. Applying the multiple linear regression model to the17

GloSea5 hindcasts is shown to give improved skill over the precipitation18

forecast by the GloSea5, with the largest improvement in Scotland.19

1 Introduction20

In recent years, the UK has experienced several extreme seasonal precipita-21

tion events, with instances of heavy rain leading to flooding in some regions22

(e.g. winter 2013–2014; Huntingford et al., 2014; Kendon and McCarthy, 2015;23

Muchan et al., 2015; Sibley et al., 2015), and periods of low precipitation lead-24

ing to drought in others (e.g. the 2010–2012 drought; Kendon et al., 2013;25

Parry et al., 2013). The ability to forecast the risk of such events on seasonal26

timescales enables forward planning and the implementation of measures to27

mitigate the effects of these events on society.28

There have been recent advances in the capability of seasonal forecasting29

for the North Atlantic and Europe. For example, Scaife et al. (2014) demon-30

strated that the GloSea5 system was able to skilfully forecast the wintertime31

North Atlantic Oscillation (NAO) from forecasts initialised around the start of32

November. However, it still remains extremely challenging to skilfully forecast33

the details of European weather on seasonal timescales.34

One way to address this challenge is to utilise the observed relationships35

between the NAO and European weather. The NAO is often defined as the36

mean sea-level pressure (MSLP) difference between the Azores High and the37

Icelandic Low (e.g. Hurrell et al., 2003) and is a well-known driver of the weather38

in the UK and Northern Europe. When the NAO is positive, the North Atlantic39

jet is stronger, the UK and Northern Europe experience milder temperatures,40

stronger westerly winds, and more frequent passage of extratropical storms with41

associated precipitation. When the NAO is negative, the UK and Northern42

Europe experiences colder temperatures, with more frequent episodes of anti-43

cyclonic blocking, weaker winds and generally drier conditions.44

This approach was adopted by Scaife et al. (2014), who showed that higher45

correlation skill scores are obtained for observed winter storminess, temperature46

and windspeed over much of Northern Europe when using the GloSea5 predic-47

tion of the NAO rather than the direct GloSea5 predictions of these weather48
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variables. Similarly, Svensson et al. (2015) made use of the GloSea5 NAO fore-49

cast skill by including the NAO index as an input to a river flow model. They50

showed that using the NAO index from GloSea5 seasonal forecasts improved the51

skill of winter river flow forecasts for the UK. Palin et al. (2015) demonstrated52

that the GloSea5 winter NAO forecasts can be used to provide skilful forecasts53

of winter impacts on UK transport. Karpechko et al. (2015) found that skil-54

ful forecasts of Baltic Sea maximum ice extent could be obtained by using the55

GloSea5 winter NAO forecasts, which were more skilful than using explicit sea56

ice forecasts.57

One key question is whether regional winter precipitation over the UK is pri-58

marily driven by the NAO or whether other patterns of atmospheric circulation,59

such as the East Atlantic Pattern (EAP), are also important. The EAP is char-60

acterised by a MSLP anomaly centred to the east of the central North Atlantic61

(Barnston and Livezey, 1987) and can affect the position of the North Atlantic62

jet (Woollings et al., 2010). The positive phase of the EAP is associated with a63

low pressure anomaly in the North Atlantic, with warmer temperatures in west-64

ern Europe and increased precipitation to the south of, and collocated with,65

the low pressure centre. In the negative phase of the EAP, the high pressure66

anomaly in the North Atlantic is associated with a northward displacement of67

the jet and increased anticyclonic blocking in southwestern Europe.68

The summer counterpart to the NAO, the summer NAO (SNAO) has a69

more northward position and smaller spatial extent, with MSLP centres ap-70

proximately over Greenland and the UK (Folland et al., 2009). The positive71

phase of the SNAO is associated with high pressure over the UK and a stronger72

jet to the north, with the UK experiencing warmer, generally drier conditions;73

the negative phase has lower pressure over the UK and a weaker jet to the north,74

with the UK experiencing cooler, generally wetter conditions. In summer, the75

EAP pressure anomaly is weaker than in winter and is located further east, just76

to the west of the UK.77

The relationship between regional precipitation and atmospheric circulation78

was investigated by Wilby et al. (1997), who showed that for winters with a79

strong positive NAO index, the west of Scotland had the strongest positive80

rainfall anomalies, while eastern England had negative rainfall anomalies. In81

contrast, in years with a strong negative NAO index, eastern England had pos-82

itive rainfall anomalies while the west of Scotland had negative rainfall anoma-83

lies. Murphy and Washington (2001) found that in winter an index similar84

to the NAO (with slightly shifted centres) controlled the north-west/south-east85

precipitation gradient, while a second mode of atmospheric variability, with cen-86

tres over Scotland and Madeira, controlled the precipitation amount over the87

UK. In summer a MSLP index with centres over Scotland and Greenland con-88

trolled the precipitation over the whole UK, but not the north-west/south-east89

gradient. Lavers et al. (2010) looked at the relationship between precipitation90

and river flow at ten observation stations across the UK, and different atmo-91

spheric fields. They found that the relative importance of the different quantities92

varied spatially and temporally. For stations in the north-western UK, winter93

precipitation is correlated with westerly winds and a MSLP dipole similar to94

the NAO. For stations in the south-east of England, winter precipitation is cor-95

related with negative MSLP anomalies centred over the UK and westerly winds96

to the south. Similarly Folland and Woodcock (1986) used MSLP patterns to97

forecast half-monthly rainfall in different UK regions, and show a correlation98
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of -0.80 between MSLP and precipitation in South-West England and South99

Wales in the first half of January. Folland et al. (2015) found a similarly strong100

correlation of -0.78 between the English Lowlands (the south-east of England)101

rainfall and MSLP anomalies centred over this region for the winter half-year.102

Other studies used Lamb Weather Types (LWTs, Lamb, 1950) to cate-103

gorise atmospheric circulation patterns and linked them with UK weather.104

Jones et al. (2014) studied relationships between UK precipitation and objec-105

tively defined LWTs (Jones et al., 2013). They found significant positive (neg-106

ative) correlations between England and Wales total seasonal precipitation and107

the cyclonic (anticyclonic) LWTs in all four seasons. The LWTs can also108

be expressed in terms of the mean flow direction and strength and vorticity109

(Jenkinson and Collison, 1977). Osborn et al. (1999), Turnpenny et al. (2002)110

and Jones et al. (2013) looked at the relationship between regional precipita-111

tion and these circulation measures. They found that in south-east England the112

vorticity had the strongest link with the precipitation amount in all seasons,113

with high vorticity and cyclonic conditions generally leading to more precipi-114

tation. In north-west England and western Scotland the precipitation amount115

was most strongly influenced by flow strength, with stronger flows resulting in116

more precipitation.117

The aim of this study is to further our understanding of whether skilful118

seasonal forecasts of the large-scale atmospheric circulation can be statistically119

downscaled to provide skilful seasonal forecasts of regional precipitation. This120

will be addressed by:121

1. investigating the atmospheric circulation patterns associated with winter122

precipitation in different UK regions;123

2. using these circulation patterns to produce a simple statistical downscaling124

method to describe UK regional precipitation variability and;125

3. applying this downscaling methodology to the GloSea5 seasonal forecast126

data to provide improved seasonal forecasts of UK regional precipitation.127

Section 2 describes the datasets used. In Section 3 the relationship between128

precipitation in different UK regions, and the relationship between regional129

precipitation and MSLP, are discussed. In Section 4 a multiple linear regres-130

sion model is developed for UK regional precipitation, which is then applied to131

seasonal forecast data in Section 5 to test its capability at providing regional132

precipitation forecasts. Finally, Section 6 gives a summary of the results and a133

discussion of applications of this methodology.134

2 Methodology and data135

The precipitation observation data used in this study is the HadUKP UK re-136

gional precipitation series (Alexander and Jones, 2000). Data is available for 9137

regions of coherent precipitation variability (as defined by Gregory et al. (1991);138

see maps in Fig. 1), for the period 1931 to present for Scotland and Northern139

Ireland, and the period 1873 to present for England and Wales. Only data140

between 1931 and 2012 is used in this study, for consistency between regions.141

The long period over which this data is available, and the fact that it is divided142

into predetermined coherent regions, makes it a suitable choice for this study.143
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The precipitation data is derived from observed daily precipitation data from144

a selection of quality-controlled rainfall stations within each region, which are145

combined to give area average daily and monthly precipitation values for each146

region. Monthly means are used here, since daily data has been found to be too147

noisy in similar studies (Lavers et al., 2010, 2013). In addition to this regional148

precipitation dataset, the Met Office’s UKCP09 gridded precipitation dataset149

(Met Office et al., 2017) is also used. This includes monthly mean precipitation150

observations on a high-resolution 5km× 5km grid over the UK, and is available151

from January 1910 to December 2014.152

The MSLP observation dataset used is HadSLP2r (Allan and Ansell, 2006).153

This is a gridded dataset created using marine and land observations, which are154

blended and interpolated onto a 5◦ × 5◦ regular grid. The HadSLP2r dataset155

extends back to the year 1850, and therefore covers the period studied in this156

paper.157

The seasonal hindcast data is from the Met Office Global Seasonal forecast158

system, GloSea5 (MacLachlan et al., 2015). This is a global ensemble forecast159

system with 24 ensemble members. The hindcast set covers the period winter160

1992–1993 to winter 2011–2012, and is the same hindcast dataset as used by161

Scaife et al. (2014). Hindcasts were initialised on 25 October, 1 November and162

9 November in each year, with eight members for each start date; members from163

the same start date differ from each other by applying a stochastic physics pa-164

rameterisation. The model has a resolution of 0.83◦ longitude by 0.55◦ latitude,165

85 levels in the vertical, with model top at 85km, and a relatively high-resolution166

ocean (∼ 0.25◦ horizontally, 75 vertical levels) with interactive sea-ice. For con-167

sistency with observed MSLP, the model MSLP fields have been regridded to168

the HadSLP2 5◦ × 5◦ grid. For comparison between GloSea5 precipitation and169

the UKCP09 observed precipitation, the UKCP09 is regridded to the GloSea5170

grid and a land-sea mask applied to remove points where at least 50% of the171

gridbox is ocean.172

Throughout this paper ‘winter’ is defined as the average of December, Jan-173

uary and February, and referred to as DJF, and ‘summer’ is defined as the174

average of June, July and August, and referred to as JJA. Individual winters175

are referred to by the year corresponding to the December at the start of the176

season (e.g. winter 2011-12 is referred to as winter 2011).177

3 Regional precipitation variability in the UK178

The aim of this section is to explore the relationships between precipitation179

in each UK region, and the associated atmospheric circulation patterns. The180

seasonal precipitation for winter and summer for each of the HadUKP regions is181

shown in Fig. 1 and Table 1. In both seasons, there is a clear north-west/south-182

east gradient in precipitation, with more precipitation received in the north-183

western regions than the south-eastern regions. The Northern and Southern184

Scotland regions (NS and SS respectively) receive the most precipitation in185

both summer and winter, with more than double the amount in winter than186

received by South-East and Central England (SEE and CE respectively). South-187

West England (SWE) receives a large amount of precipitation in winter, but188

considerably less in summer. East Scotland (ES) is substantially drier than189

NS, despite their close locations. Regions in the east have similar precipitation190
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totals in summer and winter, while regions in the west have more precipitation191

in winter.192

To investigate the north-west/south-east gradient further, Figs. 2(a,c) show193

the winter and summer correlations between precipitation in NS and precipita-194

tion in each region, while Figs. 2(b,d) show correlations between precipitation195

in SEE and precipitation in each region; the correlations are given in detail in196

Table 1. These two regions were chosen since they are at opposite ends of the197

domain, and because the timeseries of precipitation in each of these regions are198

not significantly correlated in either season. NS is strongly correlated with SS199

in both seasons (Figures 2a and c), but the correlation rapidly weakens further200

to the south. NS also has a relatively low correlation with ES in both sea-201

sons, despite ES being directly to the east of NS. This is due to the so-called202

‘rain shadow’ effect (Weston and Roy, 1994; Fowler et al., 2005; Svensson et al.,203

2015), whereby regions to the east of mountain ranges receive considerably less204

precipitation under westerly flow than occurs to the west. Correlations with205

SEE are generally stronger and more widespread than for NS (Figures 2b,d).206

The strongest correlations with SEE are seen in the two bordering regions (SWE207

and CE) while the weakest SEE correlations are with NS and SS. The summer208

correlations between regions are similar to the winter correlations. However,209

in summer there is more spatial coherence across the country than in winter,210

with stronger correlations seen in summer between more remote regions than in211

winter. The low correlations between regions at opposite ends of the UK might212

indicate that precipitation in each region has different atmospheric drivers.213

Figure 3 shows correlation maps of winter mean MSLP with precipitation in214

each UK region. There are substantial differences in spatial patterns between215

north-western and south-eastern regions of the UK. The NS correlation pattern216

(Fig. 3a) has a north-south pressure dipole, and resembles the positive phase217

of the NAO but with centres shifted to the east. Over the UK, there is a218

strong meridional pressure gradient, corresponding to westerly wind anomalies.219

Periods with positive precipitation anomalies in NS are therefore associated220

with a stronger North Atlantic jet stream, stronger westerlies and the passage of221

more low pressure systems and associated fronts across the norther UK. Periods222

with negative precipitation anomalies in NS are associated with easterly wind223

anomalies over the UK, corresponding to a weaker or meandering North Atlantic224

jet stream, and typically associated with more frequent atmospheric blocking225

patterns. SS shows a similar correlation pattern to that of NS but with slightly226

weaker magnitude (Fig. 3b).227

In contrast, the SEE correlation pattern (Fig. 3i) has a region of negative228

correlations, corresponding to a low pressure anomaly, centred over the UK. This229

resembles the EA pattern (Barnston and Livezey, 1987) but with the area of230

strongest correlation centred further to the east, over the UK. High precipitation231

anomalies in SEE therefore occur when there is a low pressure anomaly centred232

over the UK, with the jet passing roughly across the centre of the UK. Low233

precipitation anomalies in SEE are associated with a blocking pattern over the234

UK and western Europe. North-East England (NEE) and CE show similar235

correlation patterns to SEE (Figs. 3f and h), although the correlations are236

slightly weaker. The correlation patterns for Northern Ireland (NI) and North-237

West England (NWE) (Figs. 3d and e) have a north-south pressure dipole like238

NS, but shifted further south, meaning that the low pressure part sits partly239

over the UK, and the westerly wind anomalies are located over northern Spain.240
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Figure 1: Maps of HadUKP observed regional precipitation, showing average
total precipitation (in mm) in each region in (a) winter and (b) summer, for the
period 1931–2011.

Therefore NI and NWE have elements of both the NS and SEE correlation241

patterns. SWE has a similar correlation pattern to SEE (Fig. 3g) but with242

the low pressure centred a little further north, while ES (Fig. 3c) has generally243

weaker correlations, and the low centre further to the north-east.244

Inspection of composites of the ten wettest and driest years for each region245

(not shown) show that these MSLP patterns are roughly symmetric for the wet246

and dry cases, with only small variations in the locations of high and low MSLP247

anomaly centres.248

Equivalent correlation maps are shown for summer in Fig. 4. NS shows a249

region of low pressure centred to the north of the UK and west of Norway (Fig.250

4a). All other regions show a MSLP dipole with high positive correlations over251

Greenland and negative correlations centred just to the east of the UK; this252

pattern resembles the SNAO (Folland et al., 2009).253

The above results show that in both winter and summer, the seasonal-mean254

precipitation in regions in the north-west and south-east of the UK are not255

significantly correlated, and that they are associated with different atmospheric256

circulation patterns.257

4 Downscaling atmospheric drivers to estimate258

UK regional precipitation259

In this section the links between precipitation and MSLP circulation patterns260

discussed in Section 3 are used to derive a simple multiple linear regression model261

to estimate winter precipitation in each region based on historical observations.262

Only winter is considered here, since the aim is to derive a model that can be263
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Figure 2: Maps showing seasonal correlations of HadUKP observed regional
precipitation, for the period 1931–2011. Panels show correlations between each
region and (a,c) NS, (b,d) SEE, in (a,b) DJF and (c,d) JJA.

developed for seasonal prediction, and currently the known skill of GloSea5 for264

the North Atlantic region is only in winter. The potential to develop a similar265

methodology for summer is discussed in Section 6.266

Using the correlations discussed in Section 3, it is possible to derive a simple267

multiple linear regression model to estimate the winter precipitation in each UK268

region, making use of the fact that NS and SEE precipitation are uncorrelated269

and driven by different atmospheric patterns of variability. Informed by the270

MSLP correlation maps in Figs. 3a and i, two MSLP indices are constructed271

that represent these atmospheric patterns. For NS precipitation, the maximum272

correlation value is located in North Africa, at 35◦N, 5◦W, and the minimum is273

over the ocean to the north of the UK, at 70◦N, 5◦W. We construct the index274

MSLPNSI, defined as the standardised (i.e. centred about the time-mean value275

and divided by the standard deviation over the timeseries) MSLP difference276

between the southern point and the northern point (i.e. similar to the NAO277

index). For SEE, there is a strong negative correlation centred over the UK.278

We therefore construct a MSLP index based only on MSLP at this point. We279

define the index MSLPUK as the standardised mean MSLP anomaly in a box280

centred over the UK (50◦N–60◦N,10◦W–5◦E). The correlation between the two281

indices MSLPNSI and MSLPUK in the period 1931–2011 is very small and not282

significant (-0.06).283

To construct the multiple linear regression model, a training period (1931–284

1991) is used, and a later period (1992–2011) is used to evaluate the model.285

Figure 5a shows the correlation between winter precipitation in each region and286

MSLPNSI and MSLPUK in the training period. Precipitation in NS, SS, NI287

and NWE is significantly correlated with MSLPNSI (blue bars), while precipita-288

tion in all regions except for NS is significantly correlated with MSLPUK (green289

bars). The geographical distribution of these correlations is shown in Fig. 6.290

The four regions where precipitation is significantly correlated with MSLPNSI291

are in the north-west of the UK, with the highest correlation in NS (Fig 6a).292

Correlations between precipitation and MSLPUK are larger in the south of the293
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Figure 3: Maps of observed correlation between winter MSLP and winter pre-
cipitation in each of the HadUKP regions, for the period 1931–2011.
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Figure 4: Maps of observed correlation between summer MSLP and precipita-
tion in each of the HadUKP regions, for the period 1931–2011.
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UK, with the highest correlations in SEE and SWE. In all regions, the precipi-294

tation is significantly correlated with at least one of the two MSLP indices, and295

in three regions the precipitation is significantly correlated with both indices.296

A multiple linear regression model for the estimated precipitation, Plini, in297

each region i is constructed using MSLPUK and MSLPNSI as predictors. Thus298

for region i:299

Plini = αiMSLPUK + βiMSLPNSI + ci. (1)

Each region i has a different set of regression coefficients αi, βi and ci which300

represent the relative importance of MSLPUK and MSLPNSI as atmospheric301

drivers of precipitation in that region. The forward selection stepwise linear re-302

gression method is used. A significance criterion of p < 0.1 is used for inclusion303

in the regression model: if p > 0.1 for one of the MSLP indices then the corre-304

sponding regression coefficient is 0. The regression coefficients for each region305

are shown in Table 2. Here the standardised MSLP indices are used; that is,306

anomalies are computed which are normalised by the standard deviation of the307

index over the training period. Plini is therefore an estimate of the standard-308

ised precipitation anomaly, which can be scaled by the standard deviation of309

the observed precipitation timeseries for each region, and recentred about the310

mean, to give an actual precipitation estimate. Since the coefficients are for the311

precipitation anomaly, the term ci = 0. For correlation scores this choice of312

standardisation makes no difference. The impact of detrending the MSLPNSI,313

MSLPUK and precipitation timeseries was found to make almost no difference314

to the results (correlations within 0.01), so the non-detrended values are used.315

For each region the correlation between Plini and the observed precipitation316

is shown in Fig. 5a (purple bars). To evaluate the derived precipitation against317

observed precipitation, the Spearman rank correlation is used in preference to318

the Pearson correlation, as this avoids making assumptions about linearity, and319

deals better with outliers (Wilks, 1995). Using the Pearson correlation gives320

generally similar results. The correlations between Plini and observed precip-321

itation are significant in all regions. The highest correlations are in SEE and322

SWE, with the lowest correlations in ES and NEE. In all regions apart from ES323

and NEE, this method explains more than 50% of the precipitation variance (i.e.324

the correlation r ≥ 0.71) , while in SEE more than 75% of variance is explained325

(r ≥ 0.87). Fig. 6c shows that the highest correlations are obtained for regions326

in the north-west and south of the country, with north-eastern regions having327

the lowest correlations.328

To evaluate the simple multiple linear regression model, the coefficients de-329

rived for the 1931–1991 training period were applied to observed MSLP data for330

the test period 1992–2011, and the results evaluated against regional precipita-331

tion for this later period. Timeseries of the observed and derived precipitation332

for three sample regions are shown in Fig. 7. In NS (Fig. 7a) there is very333

good agreement between observed and derived precipitation, and in particu-334

lar the precipitation extremes are well captured. In NWE (Fig. 7b), where335

precipitation is controlled by both pressure indices relatively equally, the ex-336

tremes are again well captured, but there are a few years where the derived337

precipitation does not match the observed precipitation. A similarly good cor-338

respondence between observed and derived precipitation is seen for CE (Fig.339

7c), but again there are a few years where the derived precipitation does not340

match the observed. The years with poor correspondence between derived and341
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observed precipitation tend to be those where the precipitation is close to the342

mean value, which suggests that the model may not perform so well when the343

driving circulation patterns are weak. The correlations for the test period are344

shown in Fig. 5b. These are similar to the correlations for the training period345

(Fig. 5a). The good agreement between the downscaled and observed precip-346

itation for the independent evaluation period suggest that the multiple linear347

regression model is robust, and is not over-fitted to the training dataset. Repeat-348

ing the evaluation of the multiple regression model on other 20-year sub-periods349

(1932–1951, 1952–1971 and 1972-1991) also give similar correlations to those350

for the full training period. In regions NI and NWE, there is a difference in351

the relative importance of the two pressure indices between the training period352

and the test period: in the training period precipitation in these regions has a353

higher correlation with MSLPUK than MSLPNSI, while in the test period the354

correlation with MSLPNSI is higher (compare Fig. 5a and b). This emphasizes355

the need for a long training period that is independent from the test period.356

The same methodology can be applied to the UKCP09 gridded precipitation357

data. A multiple linear regression model based on the two pressure indices358

can be derived for each grid point, over the training period 1931–1991. As359

for the regional precipitation, this leads to the strongest correlations between360

observed and derived precipitation in the south of England and the north-west361

of Scotland, with slightly lower correlations in the north-east of the country (not362

shown). The observed MSLP-precipitation relationships derived for each grid363

point are used in Section 5.2 to derive forecasts of precipitation on these scales.364

5 Seasonal precipitation forecasts using the mul-365

tiple linear regression model366

The aim of this section is to evaluate seasonal hindcasts of UK regional precip-367

itation obtained by applying the multiple linear regression model developed in368

Section 4 to GloSea5 hindcasts of MSLP.369

5.1 Evaluation of GloSea5370

The current GloSea5 system has been shown to have good skill in forecasting371

the wintertime NAO from forecasts initialised around the start of November,372

with a correlation skill score of 0.62 for the period 1992–2011 (Scaife et al.,373

2014). Less has been said about the skill in forecasting precipitation, although374

MacLachlan et al. (2015) showed that there was little skill in raw model output375

for Northern Europe for DJF upper and lower terciles of precipitation (their376

Figure 13). Figure 8(a) shows a map of the correlation skill for the ensemble377

mean precipitation from GloSea5 evaluated against the UKCP09 gridded pre-378

cipitation observations (regridded first to the GloSea5 grid). There are a few379

gridboxes with high skill (correlations exceeding 0.5), mostly in south Wales380

and moderate (but not significant) skill in some gridboxes in western Scotland.381

In general the grid-point skill within the HadUKP regions is coherent, although382

in the SWE region this is not true, as South Wales has higher skill than further383

south. Most of the eastern parts of the UK have low or no skill (correlations less384

than 0 in some places). These results should, however be taken with caution385
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Figure 5: Absolute value of Spearman rank correlations between observed winter
regional precipitation and the two pressure indices MSLPNSI (blue), MSLPUK
(green) and derived precipitation Plin (purple) for (a) the training period (1931–
1991) and (b) the test period (1992–2011). Correlations that are not significant
(p > 0.1) in the training period (and therefore correspond to indices not used
in the construction of Plin) are shown in pale blue/green.
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Figure 6: Correlation between winter regional precipitation and (a) MSLPNSI,
(b) MSLPUK, and (c) Plin for observations in the training period (1931–1991).
In (a,b) correlations that are significant at the 90% level are overlayed with
hatched lines; in (c) all correlations are significant so hatching is omitted for
clarity.

since data output from models such as seasonal forecast models is not designed386

to be evaluated on the grid-point scale (e.g. Lander and Hoskins, 1997).387

Figure 9 shows a spatial map of the skill of the GloSea5 ensemble mean in di-388

rectly forecasting DJF MSLP, as compared to the HadSLP2 observation dataset,389

over a domain covering the North Atlantic and Europe. Regions over the UK390

and to the north and south, including the MSLPNSI centres, have reasonable391

skill, with correlation values between 0.4 and 0.6. The model correlation skill392

scores for the two indices defined in Section 4 are 0.56 for MSLPNSI, and 0.50393

for MSLPUK. These are both significant at the 95% level. The skill of GloSea5394

in forecasting DJF atmospheric circulation variability in the North Atlantic is395

therefore not restricted to the NAO, but also includes other modes of variability.396

It is also important to understand whether the GloSea5 forecast system397

can spatially represent the atmospheric drivers of UK regional precipitation.398

Correlation maps of MSLP against MSLPNSI and MSLPUK are shown in Fig.399

10, both for the observations for the full period 1931–2011 and for GloSea5400

for the period 1992–2011. As expected, the observed correlation pattern for401

MSLPNSI (Fig. 10a) shows a dipole structure, and looks almost identical to the402

NS precipitation correlation pattern (Fig. 3a). The equivalent correlation map403

for GloSea5 is very similar (Fig. 3b), although the southern centre of the dipole404

is slightly weaker in GloSea5 than the observations. The observed correlation405

pattern for MSLPUK (Fig. 10c) looks much like the SEE correlation pattern406

(Fig. 3i) with the signs reversed. The equivalent correlation map for GloSea5407

again strongly resembles the observed pattern (Fig. 10d). The fact that these408

correlation maps are similar for GloSea5 and for the observations indicates that409

these MSLP indices correspond to the same atmospheric circulation patterns.410
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Figure 7: Time series of DJF observed precipitation (blue lines) and precipi-
tation derived using the multiple linear regression model applied to HadSLP2
observed pressure indices (red lines), for the period 1992–2011. Panels show pre-
cipitation in (a) Northern Scotland, (b) North-West England and (c) Central
England. The dotted black line marks the time-mean observed precipitation.
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Figure 8: Spearman rank correlation scores for winter precipitation for the
period 1992–2011. (a) Correlation skill for ensemble mean precipitation from
GloSea5 at each grid-box compared with the UKCP09 observed precipitation
regridded to the GloSea5 model grid. (b,c) Correlation skill for ensemble mean
precipitation derived from GloSea5 MSLP indices using the multiple linear re-
gression model compared with the UKCP09 observed precipitation. In (b) the
correlation map is regridded to the GloSea5 grid for comparison with (a); (c) is
on the native UKCP09 5km grid.
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Figure 9: Correlation skill score between GloSea5 ensemble mean MSLP and
observed MSLP for the hindcast period 1992–2011. ‘+’ symbols indicate the
locations of the MSLPNSI centres, while the rectangular box indicates the av-
eraging area for MSLPUK.
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Figure 10: Point-based correlation between MSLP fields and (a, b) MSLPNSI
and (c, d) UK MSLP, for (a, c) observations for the period 1931–2011 and (b,
d) GloSea5 for the period 1992–2011. In (b,d) the map shows the mean of the
individual ensemble members’ correlations between MSLP and the respective
indices. ‘+’ symbols in (a,b) indicate the MSLPNSI centres, while the rectangle
in (c,d) indicates the averaging area for MSLPUK.
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5.2 Forecasting precipitation using the multiple linear re-411

gression model based on observations412

The multiple linear regression model was applied to the GloSea5 hindcasts of413

the two pressure indices. The model was applied to each ensemble member414

individually. In this section the skill for the ensemble mean is discussed. In Sec-415

tion 5.3 a discussion of how this method can be used to produce a probabilistic416

forecast is given.417

Figure 11 shows the skill obtained in forecasting precipitation for each re-418

gion by applying the multiple linear regression model to the MSLPNSI and419

MSLPUK indices obtained from the GloSea5 hindcast data for DJF, from fore-420

casts initialised around the start of November. The highest skill is obtained421

for NS, which has a correlation skill score of 0.64. CE and SS also have high422

correlation scores above 0.5. NI and NWE have reasonable correlation scores423

above 0.4, which are significant at the 90% level. The remaining three regions424

have lower skill, with the lowest correlation skill score seen in SWE.425

The high skill in forecasting NS and SS precipitation is due to the model’s426

relatively high skill in forecasting the MSLPNSI, and the high correlation be-427

tween this pressure index and precipitation in these regions (Fig. 12). The fact428

that good skill is obtained in the north-west of the UK is consistent with the429

findings of Svensson et al. (2015) that this region is strongly influenced by the430

NAO, which is a similar MSLP dipole index to MSLPNSI.431

In regions NI and NWE, significant skill in forecasting precipitation is also432

obtained (Fig. 11). It can be seen from Fig. 12, however, that in these regions,433

the correlation between GloSea5 forecast MSLPNSI and observed precipitation434

is higher than the correlation between the estimated precipitation Plin and ob-435

served precipitation. This is related to the fact that, in these two regions, in436

the test period the observed precipitation is more strongly related to observed437

MSLPNSI while in the training period MSLPUK is more important (as dis-438

cussed at the end of Section 4). For more general periods it would therefore439

be advisable to use Plin rather than only MSLPNSI to forecast precipitation in440

these regions.441

The remaining regions are those where precipitation is driven by MSLPUK.442

CE has relatively high skill (0.51) compared to the remaining four regions. ES443

and NEE are the two regions with the lowest correlations in the observations in444

the training period, so this is not unexpected. In contrast, SEE and SWE have445

relatively low correlation skill scores, but have the highest correlations in the ob-446

servations between the actual precipitation and predicted precipitation Plin, and447

therefore high potential predictability. This is partly due to the lower skill in the448

model forecast of MSLPUK compared with the skill for MSLPNSI. Therefore449

future improvements in GloSea5’s ability to represent variability in MSLPUK450

would lead to improvements in precipitation forecasts using this method.451

Using relationships derived for the UKCP09 gridded precipitation data, it452

is possible to apply this methodology to generate high-resolution gridded pre-453

cipitation forecasts. Figure 8c shows the correlation scores obtained using this454

method to forecast precipitation at each grid point in the UK. This shows a455

similar pattern of skill to that for regional precipitation, with the highest skill456

seen in the north-west of the UK. In this case Southern Scotland has areas with457

the highest correlation skill. There are some differences in detail; in particular458

there is a narrow band of regions with lower skill extending southwards from459
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north-east Scotland; this is collocated with high orography, and may be a result460

of limited or less reliable observations in these regions. These results are also461

shown regridded to the GloSea5 grid in Fig. 8b, for comparison with the GloSea5462

direct precipitation output. This downscaling method gives an improvement in463

skill over the GloSea5 direct precipitation output in most gridboxes. There are464

a few gridboxes, in Northern Ireland and the West of England where the derived465

precipitation gives slightly worse results than GloSea5 direct precipitation out-466

put. However, it should be noted that the 5km precipitation forecast obtained467

using this method are potentially much more useful for streamflow modelling, as468

it will allow distinction between river basins not possible with the much coarser469

resolution GloSea5 precipitation forecast.470

5.3 Generating a probabilistic forecast for regional pre-471

cipitation472

We have focussed on correlation skill so far because unlike probabilistic mea-473

sures like reliability, the correlation is robust to post-processing changes to the474

ensemble spread. Nevertheless, probabilistic forecasts are useful to represent475

uncertainty and so in this section we demonstrate how a well calibrated prob-476

abilistic forecast for UK regional precipitation can be produced. Scaife et al.477

(2014) noted that, while the winter NAO prediction skill is high, the magni-478

tude of the signal in the ensemble mean is much smaller than the interannual479

variability of the observations. Furthermore, the forecast skill is higher than480

would be expected given the size of the ensemble mean signal and the ensem-481

ble spread. To address this issue, Eade et al. (2014) defined a quantity, which482

they termed the ratio of predictable components (RPC), to give an estimate483

of the ratio of the ‘predictability of the real world’ to the ‘predictability of484

the model’. The ‘predictability of the real world’ is estimated by the ensem-485

ble mean correlation coefficient with the observations, while the ‘predictability486

of the model’ is estimated from the standard deviation of the ensemble mean487

divided by the standard deviation of ensemble members. This quantity should488

be 1 for a perfect forecast system. Eade et al. (2014) developed a method to489

correct the ensemble mean signal and ensemble members accordingly, to make490

RPC equal to unity. This method alters the ensemble mean variance according491

to the correlation skill, and adjusts the ensemble members such that the ensem-492

ble variance about the ensemble mean is equal to the unpredictable noise of the493

observations. The correction does not affect correlation skill and is described494

in full in Eade et al. (2014). The correction method can be applied in real-time495

using ensemble information from a hindcast period. The RPC and the correc-496

tion method are described in more detail in Appendix B. Here we show results497

both with and without this correction by applying it to the GloSea5 predictions498

of MSLPNSI and MSLPUK before they are used to infer rainfall. The RPC499

values for MSLPNSI and MSLPUK are 2.07 and 1.48, respectively.500

The observed and estimated precipitation timeseries for two regions (NS and501

CE) obtained for the 20-year test period are shown in Figure 13. Although the502

correlation skill is high for NS precipitation (0.64, Fig. 11), Fig. 13a shows that503

the magnitude of the signal in the ensemble mean predicted precipitation is much504

smaller than that of the observed precipitation variability, by a factor of 5. The505

ensemble is also overdispersed; the ensemble spread is larger than the observed506

extreme precipitation values in the timeseries. Similarly the magnitude of the507
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Figure 11: Spearman rank correlation skill for predicting winter precipitation
in each of the HadUKP regions using the multiple linear regression model ap-
plied to GloSea5 MSLP fields for the period 1992–2011. Correlations that are
significant at the 90% level are overlayed with hatched lines.
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Figure 12: Absolute value of Spearman rank correlations between observed
winter regional precipitation and the two pressure indices MSLPNSI (blue),
MSLPUK (green) and derived precipitation Plin (purple) from GloSea5 hind-
casts, over the period 1992–2011. Correlations that are not significant (p > 0.1)
in the training period (and therefore correspond to indices not used in the con-
struction of Plin) are shown in pale blue/green.
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signal of the CE ensemble mean precipitation estimates (Fig. 13b) is a factor508

of 3 smaller than the observed precipitation variability in this region, and the509

ensemble spread is again large. Similar features are also seen for precipitation in510

the remaining seven regions (not shown). Equivalent series produced using the511

RPC-corrected pressure indices are shown in Figures 13c and d. For NS (Fig.512

13c) using the RPC correction gives an ensemble mean signal magnitude around513

double that obtained using the uncorrected values (Fig. 13a). The ensemble514

spread is also smaller in this case. In particular, in winters 1994 and 2011, the515

ensemble forecast confidently predicts the high precipitation anomalies observed.516

The RPC correction has less effect on CE precipitation predictions (Fig. 13d)517

and other regions where precipitation is driven mainly by MSLPUK. This is518

due to the lower correlation skill for MSLPUK, which means that the inflation519

of the ensemble mean signal is smaller. Nevertheless, the ensemble mean signal520

for CE precipitation is increased by a factor of 1.5 by the RPC correction, and521

gives smaller ensemble variance than obtained using the uncorrected values (Fig.522

13b). Finally, it is interesting to note that in winter 2011, both the observations523

and ensemble mean show a relatively large positive precipitation anomaly in NS524

(Figs. 13a and c) and a relatively large negative precipitation anomaly in CE525

(Figs. 13b and d). This is an example of how this method can predict regional526

differences in precipitation.527

To give a probabilistic evaluation of the ensemble forecasts’ ability to predict528

higher or lower than average precipitation, the Brier skill score is used (see529

Appendix A for more details). Brier skill scores for each region are shown in530

Table 3, for both the uncorrected and RPC-corrected ensembles. In all regions531

except for ES the BSS is greater than zero, indicating that the ensemble forecast532

has more skill than climatology. In general the RPC-corrected ensemble gives533

better Brier skill scores than the uncorrected ensemble. However, in the regions534

with low skill (ES and SWE) the RPC correction does not improve the Brier535

skill scores. The five regions with significant correlation skill (Fig. 11) have536

high Brier skill scores, while those with lowest correlation skill have lower Brier537

skill scores.538

6 Discussion and conclusions539

The aim of this study was to determine whether skilful seasonal forecasts of the540

large-scale atmospheric circulation can be downscaled to provide skilful seasonal541

forecasts of UK regional precipitation.542

Precipitation in the UK has a north-west/south-east gradient, in terms of543

both the total amount of precipitation and the main atmospheric drivers of pre-544

cipitation. This gradient is stronger in winter than in summer. In winter, there545

are two distinct atmospheric circulation patterns associated with precipitation546

variability in the north-west regions and in the south-east regions. Precipita-547

tion in the north-west is associated with a MSLP dipole with centres to the548

north and south of the UK (which we refer to as the MSLPNSI index); precip-549

itation in the south-east is associated with a MSLP anomaly centred over the550

UK (which we refer to as the MSLPUK index). These modes of variability re-551

semble eastward-shifted versions of the NAO and the EA Pattern, respectively.552

GloSea5 seasonal hindcasts were found to skilfully represent both these modes553

of variability in winter in forecasts initialised around the start of November.554
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Figure 13: Timeseries of observed and estimated winter precipitation (in mm)
in regions (a,c) Northern Scotland and (b,d) Central England. Blue lines show
the observed precipitation, purple lines show the ensemble mean estimate pre-
cipitation, with shading and dotted purple lines indicating plus and minus two
standard deviations of the ensemble member estimates. The dotted black line
marks the time-mean observed precipitation. (a) and (b) show timeseries ob-
tained using the unadjusted ensemble forecasts of MSLPNSI and MSLPUK; (c)
and (d) show timeseries obtained using the RPC-corrected ensemble forecasts
of MSLPNSI and MSLPUK.

24



The skill of GloSea5 in winter is therefore not restricted to the NAO, but also555

extends to MSLP variability centred over the UK.556

A simple multiple linear regression model has been developed to describe557

the variability of winter precipitation in each UK region, using indices based558

on these two circulation patterns. This multiple linear regression model de-559

scribes between 50 and 76% of observed precipitation variability in each region.560

Applying this multiple linear regression model to GloSea5 seasonal hindcasts561

of winter MSLP leads to more skilful forecasts than simply using precipitation562

forecasts directly from GloSea5. The correlation skill is particularly high for563

north-western regions of the UK (0.64), in which precipitation is driven primar-564

ily by the MSLPNSI dipole-based index. In general lower skill is obtained for565

south-eastern regions, which are more strongly influenced by the MSLPUK in-566

dex, although Central England shows promising forecast correlation skill (0.51).567

The generally lower skill in England than in Scotland may be because GloSea5568

has lower skill for MSLPUK than for MSLPNSI, therefore improvements in569

forecasting MSLP over the UK could lead to skilful seasonal forecasts of winter570

precipitation for all UK regions.571

The downscaling methodology developed in this study has also be applied572

to the UKCP09 5km gridded precipitation data, which gives broadly similar573

results to the regional analysis. Comparison between the derived precipitation574

and GloSea5 direct precipitation output showed that this downscaling technique575

gives better correlation skill than simply using the direct GloSea5 precipitation576

output. In addition, the 5km gridded precipitation forecast produced using this577

method are potentially useful for streamflow modelling, as they allow distinction578

between river basins not possible with the much coarser resolution GloSea5579

precipitation forecasts. Due to the constraints of computational cost, seasonal580

forecast models cannot currently be run at higher resolution, and certainly they581

will not be run operationally at horizontal resolutions close to 5km in the near582

future. Even if run at kilometre-scale resolutions, biases in the model mean state583

such as positioning of the North Atlantic jet would make it difficult to use direct584

precipitation output from these models on seasonal timescales, so downscaling585

methods such as the one used in this paper would still be useful.586

A probabilistic ensemble forecast for regional UK precipitation can be made587

using this methodology by applying the multiple linear regression model to588

MSLPUK than for MSLPNSI forecast by individual GloSea5 ensemble member.589

However, post-processing of the ensemble forecasts must be performed in order590

to correct for the low signal-to-noise ratio of the ensemble. The RPC correction591

used here is one such post-processing technique. Applying this correction to592

the forecast pressure indices gives a larger signal in the ensemble mean regional593

precipitation forecasts, and smaller ensemble spread, or more confident forecasts.594

Brier skill scores show that the ensemble of derived precipitation forecasts using595

this method has skill higher than climatology in most regions.596

This multiple linear regression approach could also be applicable to decadal597

forecasting and future climate projections. In these lower-resolution models,598

regions with different precipitation drivers could well be contained within one599

gridbox. The sub-grid-scale or near-grid-scale variability means that it is dif-600

ficult to use precipitation directly from these models to provide forecasts or601

to draw conclusions about future changes in precipitation. In particular, the602

larger interannual variability of precipitation received by north-western UK re-603

gions compared to those in the south-east means that variability in precipitation604
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in the north-western regions dominate variability in the UK total precipitation.605

As shown in this study, precipitation in the south-east and north-west regions is606

uncorrelated. Therefore any forecast or projection based on a UK-average pre-607

cipitation contains little information about precipitation in south-eastern UK608

regions. This has implications for forecasts or future projections of drought,609

to which the south-east is more vulnerable than the north-west (Folland et al.,610

2015). Using the multiple linear regression model, however, provides informa-611

tion about each region separately. One consideration for using this method in612

this context would be how much the relationship between atmospheric circu-613

lation and regional precipitation can be assumed to be stationary over longer614

timescales.615

The method used in this study was designed to utilise known skill of the616

GloSea5 model at forecasting the wintertime NAO and circulation described by617

MSLP. If other fields such as vorticity, wind strength and wind direction can618

be forecast with similar levels of skill, then a similar method could be devel-619

oped based on the Jenkinson indices (Jenkinson and Collison, 1977), utilising620

the relationships between these and regional precipitation found by Jones et al.621

(2014). Future model developments will lead to further increases in forecasting622

skill for atmospheric circulation patterns, both due to higher model resolution623

and larger ensemble sizes. This increased skill could be utilised in more complex624

downscaling methods, perhaps using the above-mentioned fields in addition to625

MSLP. In addition, furthering our understanding of the processes that underlie626

modes of atmospheric variability such as the NAO is essential for improving627

seasonal predictions and capturing the relationships with patterns of precip-628

itation. This includes external processes such as ocean-atmosphere coupling629

(e.g. Kushnir, 1994) and internal atmospheric processes such as eddy-mean flow630

interactions (e.g. Wallace and Lau, 1985).631

This study has focused on winter only for building the multiple linear regres-632

sion model. However a similar approach can also be used for summer. Based on633

the correlation patterns in Fig. 4, two MSLP indices can be identified to model634

regional summer precipitation variability: the first index is a representation635

of the SNAO, defined using the pressure difference between a Greenland box636

(70◦W–45◦W, 70◦N–85◦N) and a UK box (defined as for winter); the second637

index is the pressure at (5◦W, 60◦N). Constructing a multiple linear regression638

model with observations of these two indices gives correlations with observed re-639

gional summer precipitation of between 0.7 and 0.8, so this model explains more640

than about 50% of the precipitation variability in each region. In future sea-641

sonal forecast models with more skilful representation of summer atmospheric642

circulation, this method could be useful in forecasting summer precipitation as643

well as winter.644
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A The Brier skill score650

In Section 5.3 the Brier skill score is used to evaluate the probabilistic skill of the651

forecasts at forecasting higher or lower than average precipitation. Following652

(Jolliffe and Stephenson, 2003), the Brier skill score is defined as653

BSS = 1−
B

Bref
, (2)

where B is Brier score B, defined as654

B =
1

n

n
∑

j=1

fj − oj , (3)

n is the number of years, fj is the forecast probability of the event in year655

j, and oj is equal to 1 if the event occurred and 0 if not. In this case the656

event is the occurrence of higher (or lower) than average precipitation in a657

given region. The forecast probability fj is calculated by taking the average of658

all ensemble members’ forecasts of the event occurring (either 1 or 0 for each659

ensemble member). Bref is the climatology, in this case 0.5 since higher (lower)660

than average precipitation occurs 50% of the time.661

Brier skill score values greater than 0 indicate that the ensemble system is662

more skilful than climatology; negative values indicate poorer skill than clima-663

tology.664

B The ratio of predictable components (RPC)665

and RPC correction666

In Section 5.3 the RPC correction is used. The RPC gives an estimate of the667

ratio of the ‘predictability of the real world’ to the ‘predictability of the model’668

(Eade et al., 2014). The predictable component of the observations (PCobs) is669

defined as the correlation r between the ensemble mean and observations, given670

by671

PCobs = r =

∑n

j=1
(xj − x̂)(yj − ŷ)

√

∑n

j=1
(xj − x̂)2

∑n

j=1
(yj − ŷ)2

, (4)

where xj and yj are the ensemble mean and observation (respectively) in year j,672

and x̂ and ŷ are the time-means of these quantities over n years. The predictable673

component of the model (PCmod) is defined as the ratio of the ensemble mean674

standard deviation to the average ensemble member standard deviation, given675

by676

PCmod =

√

σ2

x
1

m

∑m

i=1
σ2
xi

, (5)

where m is the number of ensemble members, xi is ensemble member i and σx677

represents the standard deviation over time of a quantity x. The RPC is then678

defined as the ratio679

RPC =
PCobs
PCmod

. (6)
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RPC can have any value, but if the model predictability accurately reflects the680

observed predictability then RPC= 1. Values of RPC greater than one indicate681

an overdispersive system; positive values lower than one indicate underdisper-682

sion; and negative values indicate that there is no skill.683

The RPC correction developed by Eade et al. (2014) adjusts the ensemble684

mean and ensemble members such that the RPC= 1. The ensemble mean is685

adjusted so that its variance is equal to the predictable part of the observed686

variance: PC2

obs = r2σ2

y. The adjusted ensemble mean xj
′ in year j is given by687

xj
′ = (xj − x̂)

σyr

σx

+ x̂, (7)

where σy is the standard deviation of the observations. The ensemble members688

are then recentred about the adjusted mean and their variance adjusted to689

be equal to the variance of the unpredictable noise part of the observations:690

(1− r2)σ2

y. The adjusted ensemble member i at time j, x′

ij , is given by691

x′

ij = (xij − x̂)
σy

√

(1− r2)

σmemj

+ xj
′ (8)

where σmemj is the standard deviation of the ensemble members about the692

ensemble mean at time j. Full details can be found in Eade et al. (2014).693
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Table 1: Average total precipitation (mm) in winter and summer seasons, along
with regional correlation with NS and SEE regional precipitation in the two
seasons, for HadUKP regions in years 1931–2012. Correlations in bold are
significant at the 95% level, based on a two-tailed t-test.
Region DJF NS DJF SEE DJF JJA NS JJA SEE JJA

precipitation correlation correlation precipitation correlation correlation
NS 497.3 1 0.13 327.3 1 0.21
SS 410.6 0.88 0.32 299.3 0.75 0.48

ES 200.8 0.44 0.65 204.2 0.50 0.65

NI 286.9 0.52 0.57 251.3 0.56 0.62

NWE 278.0 0.67 0.61 245.6 0.50 0.67

NEE 207.6 0.11 0.79 200.4 0.31 0.71

SWE 314.5 0.34 0.91 212.8 0.43 0.81

CE 158.9 0.05 0.90 175.6 0.20 0.89

SEE 198.0 0.13 1 168.4 0.21 1
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Table 2: Regression coefficients for the estimated precipitation anomaly in each
region, as given by equation 1. Values in italics are those that fail the significance
testing (p > 0.1) so are set to zero in the regression equation.
Region α β

NS -21.31 106.32
SS -26.73 70.81
ES -31.40 6.45

NI -34.69 14.80
NWE -42.74 31.27
NEE -38.33 -8.00

SWE -71.87 16.41

CE -37.08 -6.04

SEE -56.11 0.60

Table 3: Brier skill scores for precipitation in each HadUKP region obtained
from GloSea5 hindcasts of MSLP using the linear regression method, for the
period 1992–2011. The two columns show the unadjusted and RPC-adjusted
forecasts.
Region Uncorrected RPC-corrected
NS 0.21 0.36
SS 0.14 0.28
ES -0.04 -0.16
NI 0.14 0.25
NWE 0.21 0.33
NEE 0.13 0.14
SWE 0.05 -0.04
CE 0.13 0.19
SEE 0.13 0.09
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