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Abstract:  

This research aims to investigate human thermal responses to air humidity in warm and 

hot environments and to evaluate the effect of humidity on human thermal comfort. 20 

subjects were involved in 12 exposure experiments in a well-controlled climate 

chamber at three relative humidity levels (40%RH, 60%RH, 80%RH) and four air 

temperature levels (26°C, 28°C, 30°C, 32°C) with no much indoor airflow. The 

physical environmental  and physiological parameters as well as subjective 

questionnaires were collected simultaneously during the period of experiments. The 

results show that in hot environments, particularly when the air temperature exceeds 

30°C, the relative humidity has a significant effect on human thermal responses both 

physiologically and subjectively. The Standard Effective Temperature (SET) is biased 

when evaluating human thermal comfort in the hot-humid environments without 

considering human thermal adaptation to humidity. Hence, a humidity correction 

coefficient eRH is proposed to modify the deviation of the SET under different relative 

humidity levels, and to quantify the effect of humidity on human acceptable air 
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temperatures. The modified acceptable temperature-humidity zone has been obtained 

using the modified method.  
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1 Introduction 

 

The impact of thermal environments on comfort and health have long been of interest 

for researchers[1], although it is often regarded as a main role of temperature. In reality, 

humidity impacts on thermal sensations. For example, according to the on-site survey 

in China, the relative humidity is usually above 70% in the hot-humid area[2-4], which 

significantly exacerbates negative impact on human thermal comfort[5].  

However, the humidity is so far the most debated variable as there is almost 

inconsistency in how humidity is incorporated and interpreted in these studies. These 

studies have covered a variety of research directions from the aspects of thermal 

comfort to human health and from the comfortable thermal environments to the extreme 

ones that are heat stress-related. For example, the initial studies on indoor air humidity 

concentrated on improving the understanding of the effective temperature (ET)[6-8]. 

From the 1960s to the 1980s, quite a number of experimental studies were conducted 

in climate chambers to explore the effect of relative humidity on human physiological 

responses and thermal perceptions in a wide range of 20%-90%. These studies had 

coupled with a larger temperature range [9, 10] (e.g. from 20oC to 34oC[10]), moderate 

metabolic rate level [11-13] (e.g. from 0.95met to 2.94met [13]) and air velocity 

range[14, 15] (e.g. from 0.7m/s to 1.4m/s[15] ), etc. Overall, they concluded 

consistently that the effect of air humidity under 70% with lower temperature and 

metabolism  was slight; while thermal discomfort increased with elevated temperature 



 

 

and metabolism. While the effect of air humidity is negligible on thermal  comfort 

zones,  research on air humidity extended to extreme thermal environments have 

focused on human heat stress and drawn some significant results. For example, Ronald 

J.[16]compared the acceptable training time of subjects and their physiological 

regulation with different relative humidity levels. The results showed the subjects’ 

acceptable exposure time were significantly shorten with increased relative humidity, 

and their skin temperatures had significant differences between 24%RH and 80%RH. 

Besides, the relative humidity in hot environments would also affect human heat 

tolerance[17], productivity[18] and heat acclimatization[19]. These studies explored 

the negative effect of high air humidity and have been well developed on the 

improvements [20, 21]to the international standards of heat stress [22, 23]. With the air 

quality and its relationship with human health being the focus, the effect of air humidity 

on indoor air quality and the possible pathogenicity attracted more and more researchers’ 

interests based on field surveys. One emphasized the relations of building indoor 

moisture and children’s respiratory disease like asthma [24-26], and the effect on the 

formation of organic aerosols [27, 28], as well as the volatilization of building materials 

[29]. Some other work focused on the negative effect of low air humidity on passengers’ 

comfort and health in aircraft cabins, causing  uncomfortable feelings of irritation in 

eyes, noses and throat, dryness of the skin and mucous membranes [30, 31]. 

Despite the widespread studies, research on identifying the effect of air humidity on 

thermal comfort are still far from perfect. Previous studies showed the effect of air 

humidity is slight within the comfort range[8, 11, 12, 32, 33]. However Nevins et al. 

[9] studied the human thermal responses under the 72 combined temperature and 

humidity experimental conditions with temperatures range from 18.9°C to 27.8°C at 

the interval of 1.1°Cand the relative humidity range from 15% to 85% at the interval 

of 5%. Results from this study showed when the RH was decreased by 10%, the 

acceptable air temperature could be increased by 0.3°C to share the same thermal 

sensation. Ling et al.[34] also pointed out that the impact of humidity became 

significant with increased air temperature if the humidity was above 70%, which is in 



 

 

agreement with other studies[35, 36]. The simulated dynamic change of air humidity 

from Li et al.[37] also demonstrated the effect of the RH ramps (gradual change of RH 

in a cycle: 80% to 20% to 80%RH) was more prominent at 28oC than that at 20 oC and 

25 oC. All these studies documented that the negative effect of RH outstood when 

combing with high air temperatures. Unfortunately, there is a paucity of research to 

evaluate the effect of air humidity quantitatively rather than qualitatively. Though the 

humidity limitation has been revised and presented in different ways in different 

versions of ASHRAE from 1915 [38], the humidity ratio of 0.012kg/kg considering 

the condensation and mold, has been adopted for the comfort zone since the version 

of ASHRAE 55-2004 [39]. In this case, the acceptable maximum relative humidity is 

close to 70% when the temperature is less than 25°C.  

Furthermore, these studies do not reflect the actual situation in some regions, especially 

for the hot-humid areas. For example, although the comfort temperature with thermal 

sensation of 0(neutral) and thus the acceptable temperature range with thermal 

sensation of -0.5 to +0.5 have been defined in the Graphic Comfort Zone in ASHRAE 

55[40], it remains unknown whether people living in hot-humid environments for a 

long time have the capacity to adapt to high humidity and thus have larger acceptable 

temperature ranges. The present comfort zone in ASHRAE 55-2013 is mainly based on 

the predicted model for the Predicted Mean Vote-Predicted Percentage of Dissatisfied 

(PMV-PPD) [40]. The PMV is originally derived from the heat balance equation under 

neutral conditions in which human skin temperatures and skin wetness are required to 

be within a comfortable range. In ISO 7730 [41], it is recommended that the PMV index 

should only be used for PMV values between -2 to +2 to predict the indoor thermal 

environments. Studies has also verified that the PMV model has a significant deviation 

compared with the actual thermal sensation in a number of laboratory studies in hot-

humid conditions[35, 36, 38, 42]. Therefore, the PMV model is not expected to be used 

in a hot environment.  

Another commonly and extensively used model is the Standard Effective Temperature 

(SET) [43]which has long been used in ASHRAE Standard 55 for thermal comfort in a 



 

 

variety of thermal environments and vary depending on air temperature and humidity 

and other factors. It is an equivalent temperature index that assumes people in the actual 

environment have the same skin temperatures and skin wetness as those in an imaginary 

environment [40]. The SET takes into consideration of human real sweating and skin 

wetness and thus can be used in a wide range of environmental conditions, and has been 

verified to have a good relationship with human thermal sensation[3, 15].  

However, some recent field studies involving human thermal adaption have discussed 

the deviation of the SET model in naturally ventilated environments. Gao et al. 

[44]argued a great difference between thermal sensation predicted by SET and the 

actual thermal sensation votes (TSV) from occupants and thus proposed an adaptive 

SET model referring to the adaptive PMV model (aPMV)[45]. Through a year-long 

field study in naturally ventilated buildings in hot-humid environments, Zhang et al. [3] 

found that the SET range corresponding to each scale of real TSV from occupants was 

shifted to a higher temperature by 1.5°C more than the SET recommended range 

[46]that corresponds to different thermal sensation scales. The research findings 

suggest that the SET model should be modified to evaluate human thermal comfort in 

hot-humid environments when taking into account human thermal adaptation. 

Therefore, some open questions remain as follows:  

 Do people living in the hot-humid climates, who have been acclimatized to the 

higher humidity levels, have a higher tolerance for high temperature?  

 Can the SET model reflect human thermal adaptation to the air humidity when 

being used to evaluate human thermal comfort?   

 How can the effect of human thermal adaptation caused by high humidity on 

acceptable temperatures be quantified?  

To the authors’ knowledge, these questions have not been answered by the existing 

studies. The aim of this research is to investigate the human physiological response to, 

and their subjective thermal perception of, the different humidity levels through a series 

of human exposure experiments, and quantify the effect of humidity on the people’s 



 

 

acceptable temperature ranges due to the capacity of long-term thermal adaptation and 

acclimatized. To achieve the aim, it is envisaged that lower acceptable temperature limit 

was dependent upon whether the effect of air humidity on human thermal comfort 

occurs under that temperature/humidity condition, which is related to whether the 

occupants’ thermal adaptation to hot-humid occurs. Meantime the upper acceptable 

temperature limit was dependent upon whether the subjects’ thermal sensation exceeds 

0.5 under the given condition. The acceptable temperature ranges is expected to be 

obtained through analyzing the predicted results by the SET model, and the actual 

thermal sensation votes (TSV) based on the experimental data in a well-controlled 

climate chamber.  

 

2 Methods 

The quantitative analysis method of human thermal adaptation to air humidity in this 

study refers to that proposed by Griffiths[47]. Based on the SET model, human skin 

temperature and skin wetness are the essential parameters for the calculation of SET, 

therefore the two-node model from Gagge[48] is used to obtain the predicted SET 

values. Experiments with different conditions were conducted in a well-controlled 

climate chamber with human exposures and the data obtained are to be used for 

quantitative analysis.  

2.1 Climate chamber and experimental conditions 

Experiments were designed to expose  subjects to the 12 designed  conditions (Air 

Temperature: 26°C, 28°C, 30°C, 32°C; Relative Humidity: 40%, 60%, 80% ) in a 

climate chamber from June to July in Chongqing and performed strictly in accordance 

with the Declaration of Helsinki[49]. The climate chamber with dimensions of 

4m×3m×3m (L×W×H) was used to create different temperature and humidity 

conditions. The controlled range of temperatures in the chamber was from 10°C to 40°C 

within an accuracy of ±0.3°C and from -5°C to 10°C within an accuracy of ±0.5°C. In 



 

 

addition, the chamber environments were designed with different RH values from 10% 

to 90%, with an accuracy of ±5%. The air supply was from a ceiling perforated plate, 

designed to ensure a uniform air distribution during the experiments. Also, an adjacent 

room (see Fig.1), with dimensions of 5.15m×4.2m×3m (L×W×H) at a temperature 

maintained at 26°C was used for the preparation work before the experiments. 

 

 

Figure 1: The floor plan of the climate chamber and the preparation room 

 

The main aim of this study is to explore the human thermal response with two variables 

of air temperature and air humidity, and thus 12 conditions were created in the climate 

chamber with four temperature levels and three relative humidity levels (see Table 1). 

Considering that the effect of air humidity and occupants’ thermal adaptation to 

humidity would take place coupling with higher temperatures, the conditions with 

higher air temperature of 32oC and air humidity of 60% and 80% are conducted. This 

referred to the meteorological parameters over the years in Chongqing [50] and is 

commonly encountered in Chongqing based on the typical climatic characteristics, 

namely, hot, humid, and less wind in summer. As a result, as fixed variables, the air 
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velocity was controlled under 0.1m/s (measured at the position of 0.6m above the floor 

and 0.5m away from subjects).   

The physical environmental parameters of different conditions during the experiments 

were measured and the averaged values are shown in Table 1. As can be seen, the 

thermal environments are well controlled during the experiments to meet the design 

requirement. Besides, due to the inner enclosure structure in the chamber, the globe 

temperature was much close to the air temperature, the difference of which was below 

0.5oC. Therefore, this research mainly focused on the air temperature and assumed the 

radiant temperature was equal to the air temperature.  

 

Table 1: Measured parameters in the climate chamber during experiments 

Designed conditions Experiment conditions 

Air 

temperature

/oC 

Relative 

humidity/% 

Air 

temperature/ 

oC 

Relative 

humidity/% 

Air 

velocity/m/s 

Globe 

temperature/ 

oC 

26 

40 25.9±0.1 41.6±1.2 0.08±0.05 25.6±0.1 

60 25.9±0.1 60.1±1.1 0.11±0.06 25.6±0.1 

80 26.0±0.1 80.6±1.7 0.12±0.05 25.6±0.1 

28 

40 28.0±0.1 40.9±1.5 0.07±0.02 27.6±0.1 

60 27.9±0.1 59.8±0.9 0.09±0.03 27.5±0.1 

80 28.0±0.1 79.7±1.8 0.09±0.04 27.6±0.1 

30 

40 29.9±0.1 42.5±1.1 0.10±0.02 29.4±0.1 

60 29.9±0.1 59.8±1.3 0.09±0.03 29.5±0.1 

80 29.9±0.1 81.3±1.3 0.10±0.05 29.4±0.1 



 

 

Designed conditions Experiment conditions 

Air 

temperature

/oC 

Relative 

humidity/% 

Air 

temperature/ 

oC 

Relative 

humidity/% 

Air 

velocity/m/s 

Globe 

temperature/ 

oC 

32 

40 32.0±0.1 41.2±1.1 0.11±0.02 31.9±0.2 

60 32.0±0.1 60.4±1.3 0.10±0.03 31.8±0.2 

80 32.0±0.2 81.2±0.9 0.12±0.05 31.9±0.2 

 

2.2 Subjects  

As the primary work, a large number of experiments aiming to study the effect of 

humidity and human adaptation on thermal comfort have been conducted with over 400 

subjects from 2008 to 2011 in our climate chamber. Empirical and experimental results 

(the PMV and subjects’ real TSV) verifying the effect of high relative humidity on 

human thermal perceptions have been discussed extensively by Yang et al.[51]. 

However, the study did not further quantify the effect of relative humidity based on the 

results. To fill this gap, this study focuses on the method of quantification of the effect 

of humidity on thermal sensation. G*Power 3 software, a general stand-alone analysis 

program for statistical tests which is commonly used in social and behavioral 

research[52], has been used to calculate the sample size based on the experimental 

conditions. Through the a priori power analysis in G*Power 3, the required experiment 

sample size is 16. Therefore, in this study, a subject sample size of 20 was selected to 

meet this requirement.  

All the 20 subjects were college students between 20 and 30 years of age and 

participated in all the experimental conditions. These subjects were recruited randomly 

from Chongqing due to its distinct hot-humid climatic characteristics. The subjects had 

all been living in Chongqing for more than one year and were therefore acclimatized to 



 

 

the hot-humid climate conditions in summer. Basic personal information was collected 

such as gender, age, height (Hb) and weight (Wb) (see Table 2). Subjects were not 

allowed to take either strenuous exercise or alcoholic drinks for 24 hours before the 

experiments. They should have had a good sleep on the day before the experiments to 

meet the required criteria.  

 

Table 2: Physical characteristics of the subjects (Mean ± SD) 

Gend

er 

Number 

Age 

(years) 

Height (cm) 

Weight 

(kg) 

Male 10 23.6±1.3 174.1±4.7 67.6±8.8 

Female 10 23.9±1.1 158.9±3.6 46.6±4.2 

Total 20 23.7±1.2 166.5±8.7 57.1±8.9 

 

2.3 Experimental procedure                            

Each of the 12 experimental conditions (Table 1) lasted for 120 minutes. The procedure 

is illustrated in Fig. 2. During the first 30min, the subjects were firstly asked to put on 

the uniform clothes (short-sleeve cotton shirts, shorts, sport socks, slippers with 

insulation values of approximately 0.32clo[40]) and attach a total of eight 

thermocouples (TSD202B, BIOPAC, US) one each on the forehead, chest, back, upper 

arm, lower arm, dorsal hand, thigh and calf on the left side of their body. The data for 

the skin temperatures (Tsk) measured at the eight different parts of the body were logged 

by a multi-channel physiological-acquisition system (MP150, USA). The mean skin 

temperatures of subjects were calculated using Gagge’s eight-point formula, as shown 

in Equation (1)[53]. 

 



 

 

forehead chest back upperarm

lowerarm hand thigh calf

MST 0.07*T 0.175*T 0.175*T 0.07*T

0.07*T 0.05*T 0.19*T 0.2*T

   

   
          (1) 

 

Subjects were subsequently required to sit quietly in the adjacent room (temperature: 

26°C). After this period, the subjects moved into the climate chamber for a 90min 

exposure. During the experiment, the local skin temperatures were recorded every 2s, 

while the environmental parameters and subjects’ thermal perceptions were recorded 

every 10 min, as shown in Fig.2. Subjects were sedentary and allowed to do light 

activities such as reading and listening to music. According to the recommended value 

in Table 5.2.1.2 of ASHRAE 55-2013[40], the metabolic rate was approximately 

estimated by 1met. To note here, although the metabolic rate would be significantly 

affected by surroundings such as ambient temperature that increased slightly with 

increased air temperatures [54], the main purpose of this study focuses on the two 

variables of air temperature and humidity and the metabolic rate is not involved in and 

assumed to be equal to 1met in later analysis and evaluation method building.  

 

 

Figure 2: Experimental process 

2.4 Questionnaires 

During the experiments, subjects were required to fill in the repeated questionnaires 

every 10min. The main questions discussed in this study, included subjects’ whole and 

local thermal sensations, humidity sensations and sweating sensations. Thermal 

sensations were quantified using the ASHRAE 7-point scale[40], as well as the 

humidity sensations. A 5-point scale based on the degree of sweating at the skin surface 
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was designed to evaluate subjects’ sweating sensation. A detailed description of the 

responses to different scales is shown in Table 3. 

 

Table 3: Scales used to measure subjective response to environmental variables 

Scale -3 -2 -1 0 1 2 3 4 

Thermal 

sensation 

Cold Cool 

Slightly 

cool 

Neutral 

Slightly 

warm 

Warm hot  

Humidity 

sensation 

Too 

humid 

Humid 

Slightly 

humid 

Just right 

Slightly 

dry 

Dry Too dry  

Sweating 

sensation 

   

No 

sweating, 

skin dry  

No 

sweating, 

but skin 

sticky  

Slightly 

sweating, 

skin 

moist  

Sweating, 

skin 

droplets  

Much 

sweating, 

droplets 

falling  

2.5 Data processing and analysis  

To judge whether the subjects’ objective and subjective responses stabilize, the repeated 

measurement analysis of variance (ANOVA) was conducted to test the differences 

within the results obtained from repeated measurements in different time intervals. 

Therefore, subjects’ skin temperatures and subjective votes presented in Section 3 are 

the mean values in steady-state conditions according to the statistical results, shown as 

mean ± SD in this paper. The effect of different temperature and relative humidity levels 

on human thermal responses was also examined using ANOVA and a significance level 

of 0.05 was adopted.  

 



 

 

3 Results  

3.1 Mean skin temperature 

Fig.3 shows the mean skin temperature (MST) of the 20 subjects in the 12 designed 

experimental conditions (Table 1). As shown in Fig.3, the MST increases from 33.5°C 

at air temperature of 26oC, to around 35°C at 32°C. Subjects’ maximum MST at 32°C 

is approximately 2°C higher than that at 26°C when the relative humidity is equal to 

80%. The statistical results (ANOVA) show that there is no significant difference in the 

MST at the three relative humidity levels (40%, 60% and 80%) for these four 

temperature levels (26oC, 28oC, 30oC, 32oC) respectively (P=1.000 for each 

temperature condition). The maximum difference of subjects’ MST is just 0.28oC at 

32oC between 40%RH and 80%RH, suggesting that under the same temperature 

conditions the effect of humidity on subjects’ MST is slight. However, it is interesting 

to note in Fig.3 that when the temperature increases from 28°C to 30°C, the MST at 

40%RH increases by 0.66°C while when the temperature increases from 30°C to 32°C, 

the MST increases by only 0.33°C regardless of the same temperature increment. By 

contrast, at 80%RH condition, the increment of MST reduces slightly from 0.64°C to 

0.56°C (demonstrated in red lines in Fig.3). This is inferred due to the effect of subjects’ 

sweating evaporation, which would be explained by Fig.7. That is to say, in hot 

environments, especially for the low humidity condition of 40%, the sensible sweating 

evaporation enhanced effectively and takes more heat from the skin surface to the 

surroundings, which in turn prevents the increase in the subjects’ MST.   

 



 

 

 

Figure 3: Mean skin temperature in responding to air temperature under different humidity 

levels.  

3.2 Thermal sensation and its relation to SET 

The average values of subjects’ thermal sensation votes (TSV) under different indoor 

air temperatures and relative humidity levels are shown in Fig. 4. Overall, the subjects’ 

TSVs increase significantly with the increasing temperature, except at the temperature 

of 26°C. When the temperature is at 26°C in Fig.4, the higher the relative humidity is, 

the lower (towards cooler) the subjects’ TSV is, which suggests that the damp air in 

neutral environments would aggravate subjects’ cool sensation. Moreover, the 

differences of TSV between 40%RH and 60%RH, 40%RH and 80%RH, 60%RH and 

80%RH increase at each temperature condition of 28°C, 30°C, and 32°C, suggesting 

the effect of relative humidity on subjects’ TSV takes place when the temperature is 

high. The statistical results show that no significant differences of TSV are observed 

(p>0.05) among the three humidity levels when the air temperatures are at 26 °C and 

28 °C. When the temperatures are at 30°C and 32°C, significant differences (p<0.05) 

are found between different humidity levels. The higher the temperature and relative 

humidity are, the greater the difference of TSVs are between two humidity conditions. 

This indicates that higher air humidity could cause subjects’ uncomfortably warmer 

sensations in the warm and hot environments, which is in agreement with other 
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studies[9, 35, 36]. 

 

 

Figure 4: TSV changes with air temperature under different relative humidity levels. 

 

As aforementioned, the PMV index, which is widely used to evaluate moderate thermal 

environments, does work only under specific conditions (e.g. ta<30oC, Pa<2700Pa) and 

thus it is inappropriate to use PMV to evaluate the human thermal sensation in warm 

environments with high air humidity, especially in hot-humid environments. By 

contrast, the SET index is deduced by human physiological model and have been 

confirmed to be related to human thermal sensation in hot-humid environments[35, 55]. 

Fig. 5 shows the relation between SET and TSV under different temperature and 

humidity conditions. It is clearly seen that there is a good linear relationship between 

TSV and SET (R2=0.96, P<0.01). The TSV increased from -0.62 to 2.27 when the SET 

increased from 23.27oC (Ta=26 oC, RH=40%) to 34.48oC (Ta=32 oC, RH=80%). Since 

the TSV value of 0 representing neutral thermal environment, the corresponding SET 

of 24.8oC can be calculated. Besides, as the air temperature increased, the air humidity 

did work and the differences of SET between two relative humidity raised, as well as 

the differences of TSV. However, despite that the SET index is a comprehensive index 

that involve the physical and physiological parameters, it cannot reflect the actual long-
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term thermal adaption of occupants to hot-humid thermal environments. As a result, 

whether the SET can be used to evaluate accurately the effect of air humidity on human 

thermal sensation are reserved and would be discussed in the later part.  

 

 

Figure 5: The relationship between SET and TSV under different relative humidity conditions 

 

3.3 Humidity sensation  

The average values of the humidity sensation vote (HSV) of the subjects under different 

temperature and relative humidity (RH) conditions are shown in Fig. 6. For the same 

indoor air temperature, HSV increases with the relative humidity increasing and the 

difference between two humidity levels is more obvious when the indoor temperature 

increases to 30°C and 32°C. Through the statistical test (ANOVA) of subjects’ TSV at 

the three humidity levels, there is no significant difference (p>0.05) of HSV when the 

temperatures are 26°C and 28°C. When the temperature increases to 30°C, significant 

differences of HSV (p<0.05) are found between 40%RH and 80%RH, and between 

60%RH and 80%RH. When the temperature further increases to 32°C, the HSV shows 

significant differences (p<0.001) among the three humidity levels, which is similar to 

the TSV’s change. Additionally, a notable change is circled in Fig. 6: when the 

temperature increases from 28°C to 30°C under 80%RH, the HSV increases sharply;  

when the temperature increases from 30°C to 32°C under 40%RH, the HSV decreases 

rather than increases. This might be explained as the possible effect of subjects’ 
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sweating. When the RH is high (80%), increasing the temperature from 28°C to 30°C 

would have a great effect on a human’s subjective humidity sensation. Subjects might 

begin to sweat at 30°C (shown later in Fig.7) and this enhances the humidity sensation; 

while at 32°C, subjects would sweat intensively. Under such conditions, the lower 

humidity enhances the evaporation of perspiration from the skin and reduces the skin 

wetness, leading to a relatively lower HSV. To sum up, in Fig 6 subjects express less 

sensitivity to humidity within neutral thermal environments but are more sensitive in 

warm and hot environments. 

 

 

Figure 6: Humidity sensation under different test conditions 

3.4 Sweating sensation 

Sweating evaporation is an efficient way to accelerate the release of heat to 

surroundings, particularly in hot environments. The mean sweating sensation votes for 

each part of the subjects’ body are shown in Fig.7. The sweating sensations for local 

parts of the body change similarly to the TSV and HSV at 26°C and 28°C (p＞0.05). 

When the temperature rises to 30°C, the differences between the sweating sensations at 

different parts of the body caused by different humidity levels increase, meaning that 

different parts of a subject’s body begin to sweat to different extents. In this case, the 
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relative humidity begins to affect subjects’ sweating regulation. As the temperature rises 

to 32°C, subjects’ sweating sensations continuously rise and the effects of relative 

humidity on different parts of the body are more significant, reflected by the significant 

differences in the sweating sensation for different parts of the body. For example, the 

difference between 40%RH and 80%RH is 2.1 for the head while the difference is 1 for 

the feet. This suggests that a high relative humidity would have a bigger effect on the 

head than on the feet. The statistical analysis shows significant differences in sweating 

sensation votes between 40%RH and 80%RH and between 60%RH and 80%RH 

(p<0.001) when the temperature is 30°C. At 32°C, significant differences are noted for 

all the three different humidity conditions. The results illustrate that when the subjects 

begin to sweat with increased temperatures, the effect of humidity on the sweating 

sensation appears and deteriorate the subjects’ sweating sensation. 
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Figure 7: Sweating sensation vote to different air temperatures under different humidity 

levels  

3.5 Correction of the predicted deviation in SET caused by air humidity  

3.5.1 SET and the thermal comfort temperature Tc  

Griffiths[47] proposed a method (the Griffiths method, shown in Equation (2)) to 

calculate the thermal comfort temperature Tc (equivalent to neutral temperature).  
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The author proposed a simple standard regression coefficient G, which was defined as 

the "Griffiths constant, K-1" (it is used as °C-1 in this paper) to express the linear 

relationship between human thermal sensation and operative temperature.  

                                    (2) 

Equation (2) can be simplified as follows: 

   
/c o pT T C G 

                                            (3) 

Where Tc is the comfort temperature, °C; Top is the operative temperature, °C;  

C is the real thermal sensation vote (ASHRAE 7-point scale);  

G is the Griffiths constant, °C -1. 

According to Griffith[47], the Griffiths method was based on the field study of thermal 

comfort and the G value was mainly deduced via the regression analysis of occupants’ 

thermal sensation in a wide range of environmental temperatures and air humidity. 

Therefore, the key point of this method to a great degree depends on the determination 

of G value appropriately. Humphreys et al. [56]obtained the maximum regression 

coefficient of 0.4°C-1 when the standard deviation of temperature was about 1°C based 

on the reanalysis of several thermal comfort databases from other researchers (e.g. de 

Dear et al.[57]; Nicol et al.[58]; McCartney and Nicol[59]). Considering error in the 

predict variable and some adaptation error at the maximum of the curve, Nicol and 

Humphreys [60]pointed out that the G constant had better be greater than 0.4 to be safe 

and recommended an appropriate G value of 0.5°C-1. This means the corresponding 

thermal sensation vote based on the ASHRAE 7-point scale will change by 0.5 if the 

indoor operative temperature changes by 2°C. The value is also adopted in this study. 

Based on the G constant (0.5), the thermal sensation vote C and the operative 

temperature Top, the corresponding comfort temperature Tc then can be calculated. For 

the same operative temperatures, the difference of thermal comfort temperatures Tc 

arising under two different humidity levels can actually reflect the effect of humidity 

on thermal sensation. Accordingly, here we denote the thermal comfort temperature 

 0 op cC G T T  



 

 

difference between two different relative humidity levels as δTc-RH to represent the 

actual humidity effect on thermal sensation. Similarly, the difference of the SET under 

two different relative humidity levels can be calculated based on Gagge’s model[43], 

namely δSETRH, which is used to represent the theoretical effect of humidity on thermal 

sensation. In particular, the SET is just an equivalent temperature metric, which reflects 

comprehensively the effect of environmental variables on human physiological 

responses and subjective thermal perception indirectly. In theory, the SET is applicable 

to a variety of thermal environments. .    

When the air temperature is constant, Tc decreases as the relative humidity 

increases, while SET increases as the relative humidity increases. Then δTc-RH and δTc-

RH can be given by Equations (4) and (5). 

   δTc-RH=Tc1-Tc2                                           (4) 

   δSETRH=SET2-SET1                                        (5) 

where subscripts 1 and 2 represent different relative humidity conditions. In this study, 

we define RH2> RH1, and denote RH1 as the minimum relative humidity level of 40% 

in our experiments. Thus, RH2=60% and RH3=80% can be similarly defined. 

The δTc-RH and the δSETRH can then be calculated based on the data collected from the 

experiments and be plotted in Fig.8. The  dots represent the differences of Tc-RH and 

SETRH between 40%RH and 60%RH under all temperature conditions; while the  

triangles represent the differences of Tc-RH and SETRH between 40%RH and 80%RH. 

From Fig. 8, there is a linear relationship between δTc-RH and δSETRH. The regression 

equations are as follows: 

When δRH=20% (The difference between RH2 and RH1), 

 21.03 0.48 0.95   c RH RHT SET R                                 (6) 

When δRH=40% (The difference between RH3 and RH1), 

20.84 0.79 0.94   c RH RHT SET R                              (7) 

 



 

 

 

Figure 8: Relation between δSETRH and δTc-RH with the δRH values of 20% and 

40%  

 

3.5.2  The modified SETRH and the correction coefficient eRH  

From the abovementioned, δTc-RH is drawn from occupants’ real thermal sensation 

empirically based on field studies where the long-term thermal adaptation is embodied, 

whereas the δSETRH depends on the theoretical heat balance of the human body that 

occupants’ thermal adaptation cannot be reflected. Therefore, the deviation caused by 

two relative humidity level between the δTc-RH and the δSETRH indicates that the 

predicted SET neglects the subjects’ thermal adaptation. However, from Equations (6) 

and (7) the theoretical δSETRH is linearly related to the real δTc-RH. We therefore denote 

a correction coefficient “eRH”, called the humidity correction coefficient, to correlate 

the relationship between δTc-RH and δSETRH, as shown in Equation (8): 

 c- *RH RH RHT e SET                                           (8) 

Then, Equations (6) and (7) can be transformed using the correction coefficient “eRH”. 

When δRH=20%,  

δTc-RH = 1.03δSETRH - 0.48

(R² = 0.95)

δTc-RH = 0.84δSETRH - 0.79

(R² = 0.94)
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c-RH

0.48
* 1.03 0.48=(1.03 )*   RH RH RH RH

RH

T e SET SET SET
SET

   


       (9) 

In this case, the correction coefficient can be expressed as follows: 

0.48
=1.03RH

RH

e
SET


                                          (10) 

Similarly, when δRH=40%,  

0.79
* 0.84 0.79=(0.84 )*    c RH RH RH RH RH

RH

T e SET SET SET
SET

   


  (11) 

0.79
=0.84RH

RH

e
SET


                                            (12) 

3.5.3 The acceptable air temperature-humidity zones  

Based on the method above, we define Tair’ as the equivalent indoor air temperature 

when the thermal sensation is equal to that in the environment with Tair and RH=40%. 

If RH=40%, Tair’ = Tair. As the relative humidity increases, thermal sensation increases 

and Tc-RH decreases. If we would like to maintain the same thermal sensation in the 

environment under conditions of higher humidity, the air temperature should decrease 

when the other parameters are constant. Moreover, the value δTc is equal to the 

difference between Tair’ and Tair. Then we have the following equation (13). 

'

air air c RH RH RHT T T e * SET                                   (13) 

According to Equations (10), (12) and (13), and the given conditions set up in the 

experiments, we calculated δSETRH under different temperature and relative humidity 

levels and the modified eRHδSETRH values, as shown in Table 4.It is noted that, though 

the clothing insulation is 0.32clo in this study, the modification method presented above 

does not involve the clothing insulation factor and thus it is appropriate to apply the 

method to calculate the equivalent air temperatures with a clothing insulation of 0.5clo 

(standard summer clothing in ASHRAE 55[40]). Both two series of equivalent indoor 

air temperatures are shown in Table 4.   



 

 

 

Table 4: The acceptable temperatures using the modified eRHδSETRH model 

 Index SET/°C eδSETRH/°C Tair’/°C 

 Ta RH=40 RH=60 RH=80 δRH=20 δRH=40 RH=40 RH=60 RH=80 

0.32clo

0.1m/s 

28 25.68 26.4 27.55 0.26 0.78 28 27.74 27.22 

29 26.71 27.66 29.18 0.50 1.28 29 28.50 27.72 

30 27.73 28.93 30.85 0.76 1.83 30 29.24 28.17 

31 28.76 30.21 32.57 1.01 2.41 31 29.99 28.59 

32 29.78 31.5 34.33 1.29 3.03 32 30.71 28.97 

0.5clo 

0.1m/s 

28 26.86 27.76 29.15 0.45 1.13 28 27.55 26.87 

29 27.85 28.97 30.70 0.67 1.60 29 28.33 27.40 

30 28.83 30.19 32.29 0.92 2.12 30 29.08 27.88 

31 29.81 31.41 33.91 1.17 2.65 31 29.83 28.35 

32 30.78 32.64 35.56 1.44 3.23 32 30.56 28.77 

 

As discussed above, the effect of air humidity on human thermal comfort occurs with 

high air temperature and in such case occupants’ thermal adaptation to hot-humid 

conditions would express. Based on the 7-scale metrics of thermal sensation in this 

study, the subjects’ TSV were both lower 0.5 when the temperature was 28oC for three 

humidity levels, meaning the effect of air humidity could be exclusively considered. In 

such case, the air temperature of 28oC was taken as the lower limit to judge whether the 

effect of increasing air humidity should be considered on the human acceptable 

temperatures. On the other hand, when the temperatures were at 30oC and 32oC, the 

subjects’ TSV was under 0.5 only under the condition of 30oC/40%RH. It suggests the 



 

 

air temperature of 30oC was the upper limit for subjects and thus it was defined as the 

upper limit of acceptable air temperature. In fact, study from Yao et al. [61]verified 

there was a higher comfort range of occupants in the hottest period in summer (e.g. The 

comfort temperature is 26.3 oC in July and therefore the comfort range will be between 

22.8 and 29.8 oC with low standard in naturally ventilated buildings), which is in line 

with study. Accordingly, in Fig.9, the paper presented an example which shows the 

indoor acceptable air temperature ranges under different relative humidity levels with 

the correction to the SET model based on Table 4. In Fig. 9, the area enclosed by two 

green lines is drawn with the clothing insulation of 0.32clo based on this study. Besides, 

based on the proposed modified method, the adaptation factor eRH mainly reflects the 

occupants’ long-term physiological adaptation to hot-humid thermal environments in 

daily life, and the difference caused by two humidity levels is less related to the clothing 

differences. Therefore it is appropriate to using the method with the standard summer 

clothing (0.5clo) recommended in ASHRAE 55[40] and the acceptable temperature 

zone can be drawn through equivalent calculation, as shown by two black lines in Fig.9. 

It is clearly seen that both the acceptable temperature limits decreases when the 

humidity increases under two clothing insulation levels. However, the lower clothing 

insulation of 0.32clo contributes to the higher acceptable air temperature limits, 

demonstrating that clothing regulation is also a major factor that affects human thermal 

comfort in hot environments.   

 



 

 

 

 Figure 9: The acceptable thermal comfort zone based on the modified SET model with the 

humidity correction coefficient  

It should be noted that, as mentioned above, the metabolic rate of 1.0 met, the air 

velocity of 0.1m/s and ta=tr has been used as prerequisite during the calculation. This 

condition could be argued about the impacts on the obtained acceptable temperature-

humidity zone in Fig.9. However the proposed modification method is based on the 

differences of Tcomf and SET between two different levels (δTcomf and δSET), so the 

fixed variables of air velocity and met rate as well as the assumption of ta=tr is 

acceptable. The result presents an example to draw the acceptable temperature-

humidity zone with the fixed variables.  

4 Discussion 

4.1 The coupled effect of temperature and relative humidity on MST 

and TSV 

The mean skin temperature (MST) is an important physiological parameter reflecting 

human responses to cold or warm stimuli. Several researchers have found that there is 

a linear relationship between mean skin temperature and human thermal sensation in 

certain comfort ranges [62-64]so that it can be an essential physiological index to 

predict human thermal comfort. We also presented the average values of subjects’ TSV 



 

 

against MST at steady-state under different temperature and relative humidity levels, 

as shown in Fig.10. The four colors in Fig. 10 represent the four indoor air temperature 

levels in this study (black: 26°C, blue: 28°C, yellow: 30°C, red: 32°C) and the three 

symbols represent the three relative humidity levels (square: 40%RH, circle: 60%RH, 

triangle: 80%RH). From the figure, we can see that the MST and TSV increase 

significantly with the rising air temperatures. When the air temperature is under 28°C 

and the MST is lower than 34°C, there is a linear relationship (R2=0.87) between MST 

and TSV, which agrees with other studies[62-64]. However, when the temperature is 

above 30°C, the correlation between the TSV and the MST dispersed. The TSV 

increases sharply with the rising RH from 40% to 80%, while the MST shows only a 

slight increase, suggesting the effect of higher relative humidity is more significant on 

human thermal sensation. For example, when the relative humidity increases from 40% 

to 80%, the increments of the TSV are respectively 1.1(at 30°C) and 1.6(at 32°C) while 

the increments of the MST are only 0.14°C (30°C) and 0.28°C (32°C). These changes 

indicate that MST fails to predict TSV in hot-humid conditions. In hot environments, 

although the increasing temperature would increase subjects’ skin temperature due to 

convection heat loss, the sweating regulation would play the dominant role gradually, 

which in turn restrain the increase of skin temperatures. But on the other hand, the 

increasing air humidity would increase the water vapor pressure and prevent the 

perspiration on the skin surface from evaporating effectively, leading to the inconsistent 

change of MST and TSV. 

 



 

 

 

Figure 10: Thermal sensation versus mean skin temperature for different experimental 

conditions 

 

Besides, it is known that in warm and hot environments human thermoregulation works 

to a limited extent. In such case, sweating regulation of the human body would be 

enhanced and the latent heat loss through evaporation will increase, which would in 

turn affect the thermoregulatory responses. In this study, the changing trend of the MST 

at the condition of 32°C/40%RH differs to that of 32°C/80%RH (see Fig.3). Due to 

sweating and higher skin wetness, the water vapor pressure difference under the 

condition of 32°C/40%RH is larger so that the perspiration could effectively evaporate 

and thus enhance the heat loss from skin surface. This alleviates significantly the 

upward trend of skin temperature in Fig.3. Overall, this verifies that the effect of air 

humidity, coupled with air temperature, is complicated on human thermoregulation and 

thermal perception. 

4.2 Acceptable temperatures due to thermal adaptation  

As argued before, the comfort zone in the present standard[40] defines a moderate 

temperature and humidity range. However, its applicability in hot environments is 

challenged. Though a large number of studies on human thermal adaptation provide a 

-1.0

0.0

1.0

2.0

3.0

33.0 33.5 34.0 34.5 35.0 35.5

T
h
er

m
al

 S
en

sa
ti

o
n
 V

o
te

Mean Skin Temperature (℃)

RH=40% RH=60% RH=80%

TSV=0.63MST-21.369 

(R2=0.87)

Tair=26℃ Tair=28℃ Tair=30℃ Tair=32℃



 

 

wide range of thermal comfort zone through the adaptive models[3, 44, 45, 56, 60], 

these studies concentrated on the effect of temperatures rather than humidity. Studies 

from laboratory experiments have further verified and improved the understanding of 

human thermal adaptation to temperature[65-67] but have contributed little to the 

understanding of humidity, especially in high relative humidity environments.  

Our previous study[51] had argued that the PMV overestimated the actual human 

thermal sensation under high humidity conditions due to people’s long-term thermal 

adaptation, but the appropriate acceptable temperatures caused by adaptation to high 

humidity were not revealed. Therefore, this research focuses on the development of an 

empirical method to quantify the effect of human thermal adaptation to high humidity 

and works out the acceptable temperature-humidity zone by denoting a correction 

coefficient eRH (Fig.9). Based on the experimental conditions, here we plotted the 

acceptable temperature ranges according to the SET model and the modified method in 

Fig.11 with the same clothing insulation of 0.32clo. The square and triangle symbols 

are temperature values under three relative humidity levels (40%, 60%, 80%), where 

the square ones are calculated by the SET model and the triangle ones are calculated by 

the modified method. Accordingly, the two solid lines are the lower and upper 

acceptable temperature limits using the SET model and the two dotted lines are the 

modified ones considering subjects’ thermal adaptation. The deviation of acceptable 

temperatures under different relative humidity levels with and without considering 

human thermal adaptation is directly seen from Fig.11. Please note, the human 

behavioral adaptation, like clothing regulation and air velocity, has been input 

parameters and reflected during the SET calculation. Accordingly, in Fig.11 the 

deviation of the acceptable air temperatures between the SET model and the modified 

ones mainly result from the long-term physiological acclimatization and psychological 

expectation of occupants in daily life, which fails to be reflected in the SET model. That 

is to say, on the one hand, the occupants living in hot-humid environments for long time 

have higher tolerance to temperature and humidity[3, 51, 64], and thus lower their 

psychological expectation. This lead to the relative high acceptability of temperatures 



 

 

for occupants under high relative humidity[51]. On the other hand, the long-term 

exposure to hot-humid conditions would cause the differences physiologically, like 

sweating regulation, heat dissipation, etc., which could be reflected by our previous 

study on the thermoregulation model of human body[68] considering individual 

differences. Therefore, to the same hot-humid stimuli, the thermoregulation enhances 

and the corresponding physiological responses are not much stranger, which would in 

turn affects the subjective thermal perceptions.       

As a result, the SET model overestimates the effect of humidity on human acceptable 

temperatures in warm/hot environments. For the modified model with the humidity 

correction, the upper acceptable temperature increases at the same humidity level. 

Besides, with the relative humidity increasing, the deviation of the acceptable 

temperatures between the SET model and the modified method is greater. For instance, 

under the relative humidity level of 80%, the maximum difference between the upper 

acceptable limits before and after thermal adaptation modification is up to 1.29°C, 

manifesting the improved tolerance and acceptability of occupants to hot and humid 

thermal environments.  

 

 

Figure 11: Comparison of air temperatures with and without thermal adaptation modification 
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4.3 The application of the modification method and its limitations  

In ASHRAE 55[40], the upper temperature and humidity limits of the comfort zone in 

summer can be extended upwards if the air speed is over 0.2m/s (up to 1.2m/s). In this  

study, when subjects’ thermal adaptations to temperature and humidity in hot and humid 

conditions are considered, the acceptable temperature limits also increased (Fig. 11), 

even though the air movement is not accessible. In this case, it can be regarded as a 

supplement and extension to the temperature and humidity boundaries in ASHRAE 55. 

However, though the acceptable temperature-humidity zone in Fig.9 is drawn according 

to experimental results, and obtained with several prerequisites such as the assumed 

metabolic rate of 1.0met, the lower air velocity( ＜ 0.1m/s), the equal radiant 

temperature (Tr=Ta) and the light clothing insulation of 0.32clo, the aim of this study is 

to provide a method to evaluate the human adaption to air humidity and its effect on 

acceptable air temperature quantitatively. The method is tenable, especially to evaluate 

occupants’ thermal comfort in free-running buildings, even though these prerequisites 

change. 

It must be said, the findings in this study of increasing acceptable air temperatures due 

to thermal adaption are mainly based on human thermal comfort, but the air humidity 

and the health outcomes are worthy of consideration. With increasing air humidity 

occupants would feel the inhaled air to be much warmer, more stuffy, and less 

acceptable[69]. Therefore, Toftum[69] concluded that the upper limit for indoor air 

humidity should rather be based on the effect of high humidity on perceived air quality 

and on the growth of fungi and microorganisms. In this study, the investigation of 

subjects’ perceived air quality during the experiments is exclusively considered and is 

not embedded in the modification method here. Accordingly, more attention should be 

paid to the air quality under hot-humid conditions when designing the indoor thermal 

environments properly. 

A large number of cross-sectional and longitudinal studies have verified that long-term 

high air humidity exposure would increase cardiovascular and respiratory disease 



 

 

admissions[70], and the risk of pulmonary and respiratory disease[71, 72], indirectly 

suggesting that the air humidity has a great effect on human health. In view of this point, 

humidity control is worthy of consideration. Technologies of independent temperature 

and humidity control are becoming good methods to solve this problem [73] and the 

low economic cost [74]may contribute to its application possibilities in office or 

residential buildings widely.  

Overall, the effect of air humidity on human thermal perception and health is complex. 

Even though this paper proposes the modification method and quantifies the effect of 

human thermal adaptation on the acceptable temperature-humidity zone in hot-humid 

conditions, further studies should be conducted combining the relation of air humidity 

and human health when designing the appropriate indoor thermal environments in hot-

humid regions.  

 

5 Conclusions 

This paper presents a theoretical and experimental study to reveal the impact of air 

humidity on acceptable temperatures in hot environments. The results validated that the 

relative humidity has a significant effect on human physiological responses and 

subjective thermal perceptions when the temperature is above 30°C. There is a 

significant correlation of MST and TSV when the air temperature is below 30°C but 

little correlation is found when the temperature increases, and the higher air humidity 

further contributed to the dispersed relationship between MST and TSV.  

Our previous and existing studies demonstrate that people living in hot-humid 

environments have higher acclimatization and tolerance due to thermal adaptation. The 

SET model failed to reflect the human long-term physiological acclimatization and 

psychological adaptation to high humidity in hot conditions. Accordingly, a humidity 

correction coefficient eRH is proposed to modify the deviation of the predicted SET 

caused by different humidity levels, and is expressed as a function of δSETRH. Based 

on the modified method, the acceptable air temperatures under different relative 



 

 

humidity levels with clothing insulation of 0.32clo and 0.5clo are obtained, and the 

acceptable temperature-humidity zone is therefore drawn. 

A comparison of the acceptable temperature limits with and without the correction 

coefficient shows that the upper acceptable temperatures are raised using the modified 

SET model. The modified model fills the gaps in which the SET model could not reflect 

the human thermal adaption and the present adaptive models fail to quantify the impact 

of air humidity. It is revealed that the acceptable temperatures decrease with increasing 

humidity for both models with and without thermal adaptation modification.  

The proposed method of the modified SET would be referred for ensuring a comfortable 

indoor thermal environment and promoting the energy efficiency in buildings when 

considering human long-term thermal adaption in hot-humid regions.   

Future studies will include changing variables of indoor air velocity, metabolism rate 

as well as the account of the radiation temperature.  
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