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Abstract Aerosol-cloud interaction is the most uncertain mechanism of anthropogenic radiative
forcing of Earth’s climate, and aerosol-induced cloud water changes are particularly poorly constrained in
climate models. By combining satellite retrievals of volcano and ship tracks in stratocumulus clouds, we
compile a unique observational data set and confirm that liquid water path (LWP) responses to aerosols are
bidirectional, and on average the increases in LWP are closely compensated by the decreases. Moreover,
the meteorological parameters controlling the LWP responses are strikingly similar between the volcano
and ship tracks. In stark contrast to observations, there are substantial unidirectional increases in LWP in the
Hadley Centre climate model, because the model accounts only for the decreased precipitation efficiency
and not for the enhanced entrainment drying. If the LWP increases in the model were compensated by the
decreases as the observations suggest, its indirect aerosol radiative forcing in stratocumulus regions would
decrease by 45%.

Plain Language Summary It remains unclear how much of the global warming induced by
greenhouse gases is offset by aerosols because the effect of aerosol particles on clouds is the most
uncertain mechanism of forcing of Earth’s climate by human activities. Cloud water responses to aerosols
are especially uncertain. Here we compare the properties of low marine clouds impacted by volcanic and
ship emissions with the properties of the nearby unpolluted clouds in order to increase the understanding
of aerosol impacts on clouds. Clouds impacted by emissions from volcanoes and ships lose or gain water
depending on meteorological conditions, but on average the amount of water does not change much in
the polluted clouds. These observations disagree with the systematic increases in cloud water in response
to aerosols simulated by the Hadley Centre climate model. This model, like other contemporary climate
models, only accounts for cloud water increases that result from decreased precipitation efficiency and
does not account for the enhanced drying in polluted clouds. Our results suggest that the ability of
aerosols to offset global warming might be overestimated. The observational constraints derived here on
aerosol-induced cloud water changes would ultimately translate into reduced uncertainties in projections
of the future climate.

1. Introduction

The largest uncertainty in anthropogenic radiative forcing of Earth’s climate over the industrial period is
associated with aerosol-cloud interactions, and cloud water responses to aerosols are especially uncertain
(Boucher et al., 2013). A larger number of aerosol particles serving as cloud condensation nuclei can increase
the number of droplets in a cloud and lead to decreased droplet sizes. This process results in the enhance-
ment of the cloud albedo—causing more reflection of shortwave radiation back to space, referred to as the
first aerosol indirect or the Twomey effect (Twomey, 1974). A larger number of smaller droplets can also affect
cloud water due to rapid adjustments referred to as the second aerosol indirect effect. In contemporary global
climate models (GCMs), it is common that the second aerosol indirect effect acts to strongly enhance the neg-
ative forcing induced by the first indirect effect (Ghan et al., 2016) following the cloud lifetime hypothesis of
Albrecht (1989), which assumes that decreased collision-coalescence efficiency of cloud droplets suppresses
precipitation. In GCMs, this process is parameterized as decreased autoconversion of cloud water to rain water
leading to unidirectional increases in liquid water path (LWP), although there is large diversity between dif-
ferent GCMs in the magnitude of the LWP increases (Ghan et al., 2016; Quaas et al., 2009). Recent research
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suggests that the cloud water increases are not as universal as assumed in GCMs (Stevens & Feingold, 2009;
Malavelle et al., 2017), raising the question of the fidelity of the representation of second aerosol indirect effect
in GCMs and highlighting the need for better observational constraints.

There is increasing evidence from global satellite observations (Chen et al., 2014; Han et al., 2002; Lebsock
et al., 2008; Michibata et al., 2016) and process-level modeling (Ackerman et al., 2004; Bretherton et al., 2007;
Hill et al., 2009; Seifert et al., 2015; Wang et al., 2003; Wood, 2007; Xue et al., 2008) that challenge the cloud life-
time hypothesis and suggest that LWP increases or decreases in warm clouds in response to aerosols depend
on different meteorological parameters like the occurrence of rain, boundary layer stability, cloud height, and
relative humidity above clouds (to name the most prominent). The decreases in LWP are induced by enhanced
cloud top entrainment drying in polluted clouds, which results from enhanced evaporation (Hill et al., 2009;
Small et al., 2009) and decreased cloud droplet sedimentation (Bretherton et al., 2007) caused by more numer-
ous, smaller droplets. Ackerman et al. (2004) suggested, using large eddy modeling, that when cloud top
entrainment is enhanced, the relative humidity above cloud has strong control over the net change in LWP.

Volcano tracks, linear cloud features formed in response to volcanic emissions beneath clouds, can be thought
of as natural experiments of aerosol-cloud interactions and ship tracks as their anthropogenic analogues. The
volcano and ship tracks have yet unexploited potential for constraining LWP responses in GCMs. The tracks
can be detected in marine stratocumulus clouds, which provide an excellent testbed to evaluate the upper
limit of LWP increases in GCMs, where stratocumulus LWP is especially sensitive to aerosols due to the high
importance of autoconversion in generating precipitation in the stratocumulus clouds (e.g., Zhang et al.,
2016). Although observations of ship tracks have been used for multiple decades to improve the understand-
ing of cloud responses to aerosols (Coakley et al., 1987), more extensive analysis of LWP changes in ship tracks
has emerged more recently (Chen et al., 2012, 2015; Christensen & Stephens, 2011). These analyses have
shown, similar to process-level modeling and satellite-based studies, that LWP in polluted clouds can both
increase or decrease depending on the meteorological conditions and cloud type. Regarding volcano tracks,
Gassó (2008) published an analysis of LWP changes in just a couple of cases. More recently, Malavelle et al.
(2017) studied monthly LWP anomalies in the area affected by a large fissure eruption in Iceland, detecting
no change in LWP on average over a broad regional-scale domain. However, those studies have not identified
the physical mechanisms inducing the LWP changes and did not compare the cloud responses to ship tracks.

Here we identify more than 900 volcano tracks and combine them with ship tracks to compile a unique obser-
vational database of aerosol-induced LWP responses. We then evaluate the realism of LWP responses in marine
stratocumulus clouds in the Hadley Centre Global Environmental Model version 3 (HadGEM3). Moreover, we
carry out a novel comparison between LWP responses in observations and in GCM depending on different
meteorological parameters to identify the physical mechanisms responsible for the disagreements in the LWP
responses. Finally, we estimate the difference in the aerosol indirect radiative forcing in stratocumulus regions
in HadGEM3 that results from constraining the LWP changes based on observations of volcano and ship tracks.

2. Data and Methods
2.1. Analysis of Volcano and Ship Tracks
Cloud properties in volcano and ship tracks are compared to the nearby unpolluted cloud properties using
Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 1 km resolution level 2 cloud prod-
ucts MYD06_L2 from Aqua and MOD06_L2 from Terra (Platnick et al., 2017). The observations of 1,451 ship
tracks (Figure S1 in the supporting information) originate from Christensen and Stephens (2012) and Chen
et al. (2012) from various stratocumulus regions in the period 2006–2009. In addition, we identify 912 vol-
cano tracks originating from South Sandwich Islands and Kuril Islands (Figure S1) in the period 2012–2016.
The 2.1 μm near-infrared (NIR) signatures resulting from decreased cloud droplet sizes (Coakley et al., 1987)
are used to identify volcano and ship tracks. Pixels are classed as polluted and unpolluted by sampling 2.1 μm
NIR reflectance across tracks following the automated scheme for identifying ship tracks in Segrin et al. (2007).
Cloud properties are averaged over 20 km long and about 30 km wide segments before comparing the
polluted properties to the unpolluted properties.

MODIS cloud retrievals are screened to include only pixels with single layer, low-level liquid water clouds. For
ship tracks, pixels with cloud top temperature below 0∘C are excluded. For volcano tracks, pixels with infrared
cloud phase being ice or mixed phase are excluded. Although 15% of volcano tracks have solar zenith angles
larger than 70∘ and are associated with larger retrieval uncertainties (Grosvenor & Wood, 2014), it does not
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Figure 1. Frequency distributions of LWP increases and decreases in volcano and ship tracks depending on the
unpolluted cloud droplet size, relative humidity above clouds, and cloud top height.

affect the results of our paper as explained in the supporting information. The calculation of relative change
in cloud droplet number concentration (CDNC) based on MODIS retrievals follows Brenguier et al. (2000) and
Quaas et al. (2006) assuming that

CDNC ∝ Re
−5∕2COD1∕2

, (1)

where COD is cloud optical depth and Re is cloud droplet effective radius. Cloud albedo (A) is calculated from
MODIS LWP, Re, and solar zenith angle using the BUGSrad two-stream radiative transfer code (Stephens et al.,
2001). The cloud albedo susceptibility to increases in CDNC in volcano and ship tracks is compared to sus-
ceptibility expected just from the Twomey effect assuming constant LWP (Ackerman et al., 2000; Platnick &
Twomey, 1994), which is estimated as

ΔA
A(1 − A)

= Δln(CDNC)
3

. (2)
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Figure 2. (a) Binned fractional changes in LWP depending on cloud droplet effective radius (μm). (b) Fractional change
in LWP depending on the occurrence of precipitation and above-cloud relative humidity simultaneously. The DRY label
indicates RH<= 50%; MOIST indicates RH > 50%. Clouds with cloud droplet effective radius > = 15μm are labeled
RAINING, and clouds with cloud droplet effective radius < 15μm are labeled NON-RAINING following Rosenfeld et al.
(2012). Average values for fractional changes in LWP are given with numbers and in color.

In addition to MODIS retrievals, relative humidity from the ERA-Interim reanalysis (Dee et al., 2011) is used.
The analysis methods of volcano and ship tracks are detailed in the supporting information.

2.2. Model Experiments
The Global Atmosphere configuration (Walters et al., 2017) of the HadGEM3 GCM (Hewitt et al., 2011) is used
to simulate stratocumulus cloud response to doubling CDNC. Global 5 year simulations are performed at 1.25∘
× 1.875∘ horizontal resolution with 85 hybrid-height vertical levels. The prognostic cloud fraction and con-
densation cloud scheme (Wilson et al., 2008) is used with prognostic treatment of rain (Abel & Boutle, 2012).
Autoconversion represents the LWP response to aerosols in the GCM and the parameterization of autoconver-
sion in HadGEM3 follows Boutle et al. (2014) and Khairoutdinov and Kogan (2000). Parameterization of mixing
at the top of boundary layer follows Lock et al. (2000), where radiative cooling at the cloud top, evaporative
cooling of entrained air, and production of turbulence through surface heating and wind shear determine
the entrainment rate. The modeled grid box mean LWP response is compared with the observations as no
changes in cloud fraction are detected in volcano and ship tracks based on the MODIS retrievals at 5 km spa-
tial scale. However, changes in cloud fraction at subpixel resolution are possible as lidar measurements from
Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) show a marked increase in cloud
fraction between polluted and unpolluted ship track segments embedded in open cell clouds (Christensen
& Stephens, 2012). All experiments are nudged (Telford et al., 2008) toward ERA-Interim reanalysis (Dee et al.,
2011) above 3 km.

In the control experiment (CNTRL-EXP) monthly three-dimensional CDNC distribution is taken from a simu-
lation with interactive aerosols (Mann et al., 2010) and an aerosol activation scheme (West et al., 2014). In
two perturbation experiments, monthly CDNC is doubled in the boundary layer of stratocumulus regions
(Figure S1) compared to CNTRL-EXP. FULLINDIRECT-EXP accounts for the first and second aerosol indirect
effect. TWOMEY-EXP only accounts for the first indirect effect. Monthly differences between FULLINDIRECT-
EXP, TWOMEY-EXP, and CNTRL-EXP are analyzed in the stratocumulus regions only. Model experiment design
is detailed in the supporting information.
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Figure 3. (a) Cloud albedo susceptibility (ΔA/[A(1-A)]) compared to relative change in CDNC (Δln(CDNC)) in volcano
and ship tracks. Solid green lines (forced through the origin) show least squares fits to cloud albedo susceptibility in
volcano and ship tracks. The dashed black lines show the slope of 1/3 expected just from the Twomey effect assuming
constant LWP. Fractional changes in LWP for individual tracks are given in color. (b) Frequency distributions comparing
the changes in cloud optical depth (−Δln(COD)) with the changes in droplet radii (Δln(Re)) in volcano and ship tracks. If
this ratio is less (larger) than 1, then LWP is decreased (increased) in polluted clouds. If this ratio is less (larger) than 0,
then cloud albedo is decreased (increased) in polluted clouds, since cloud droplet effective radii are always decreased in
the polluted clouds studied.

3. Results
3.1. Observations of Volcano and Ship Tracks
Comparing polluted cloud properties within the tracks with the nearby unpolluted cloud properties reveals
close similarities in cloud responses between the volcano and ship tracks. This is explained by the very similar
dependencies of LWP changes on different characteristics of the atmosphere (Figure 1). In both the volcano
and ship tracks, LWP tends to increase more readily in raining clouds (Figures 1 and 2). LWP tends to decrease
more readily when the air above clouds is dry. In higher clouds, associated with less stable boundary layer,
LWP tends to decrease more readily compared to the lower clouds (Figure 1) in agreement with Chen et al.
(2014). Decreased LWP in nonraining clouds with dry air above clouds and increased LWP in raining clouds in
volcano and ship tracks (Figure 2) is in good agreement with Ackerman et al. (2004) and Chen et al. (2014).

Although there are substantial changes in LWP of either sign in individual tracks, the changes are small on
average in both the volcano and ship data sets. On average, the LWP decreases by 1.9% in the volcano tracks
and increases by 3.7% in the ship tracks (Table S1 in the supporting information). Although the average abso-
lute LWP value is decreased in ship tracks, the average relative LWP change is positive, indicating that LWP
decreases tend to occur in thicker clouds (Table S1). Moreover, the unpolluted clouds in volcano track regions
are thicker compared to the ship track regions. Overall, the LWP decreases in 57% of the volcano tracks and in
55% of the ship tracks (Figure 3b). No changes in average cloud fraction are detected in the volcano or ship
tracks based on the 1 km resolution MODIS retrievals used in this study. However, the cloud fraction calculated
from 1 km resolution cloud masks is 100% for most of the track segments.

TOLL ET AL. CLOUD WATER RESPONSE TO AEROSOLS 5
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Figure 4. (a) Binned fractional changes in LWP depending on cloud top height (CTH) (km) and above-cloud relative
humidity (RH) (%). Bins are 500 m wide for CTH and 20% wide for RH. Fractional changes in GCM precipitation rates
(GCM PRECIP) are shown with dashed red lines. Area within ±1 standard deviation of LWP changes in each bin in the
GCM is shaded. (b) Fractional change in LWP depending on CTH and RH simultaneously. The DRY label indicates
RH <= 25%, MOIST indicates RH > 25%. Please note that these RH thresholds are different from those in Figure 2 to have
equal number of observations in each bin. Clouds with CTH > 1 km and CTH <= 2 km are labeled HIGHER CLOUDS, and
clouds with CTH <= 1 km are labeled LOWER CLOUDS. Average values for fractional changes in LWP are given with
numbers and in color.

In both the volcano and ship tracks there are substantial decreases in cloud droplet effective radii (Table S1),
and the average relative increases in cloud albedo (ΔA∕[A(1 − A)]) are close to those expected just from the
first indirect effect assuming constant LWP (equation (2), Figure 3a). In individual tracks, the relative change
in cloud albedo is to a large extent determined by the change in LWP. The cloud albedo is decreased in 14%
of the volcano tracks and 22% of the ship tracks (Figure 3b) due to strong decreases in LWP.

3.2. Model Compared to Observations
A clear dependence of the LWP response on cloud top height and above-cloud relative humidity is detected
similarly in the volcano and ship tracks (Figures 4a and 4b). If above-cloud relative humidity is less than 30%,
LWP decreases on average in both data sets. In addition, LWP tends to decrease when cloud top is higher than
1 km. In the volcano and ship tracks, there is on average an increase in LWP in lower clouds with moist air
above the clouds and a decrease in LWP in higher clouds with dry air above the clouds (Figure 4b). However,
cloud top height has a stronger control over the LWP responses in the volcano tracks, and above-cloud relative
humidity is more important in the ship tracks. The median cloud top height and above-cloud relative humidity
are higher in volcano tracks compared to the ship tracks (Table S1).

In HadGEM3 FULLINDIRECT-EXP, LWP is always increasing in stratocumulus regions independent of meteo-
rological conditions (Figures 4a and 4b). The average LWP increase is 14.5%. The LWP increases in the GCM
are explained by decreases in precipitation rates resulting from decreased autoconversion of cloud water
to rain water (Figure 4a). The GCM does not capture the dependence of LWP response on the above-cloud
relative humidity. Similar to observations, LWP increases more in lower clouds than in higher clouds also
in the GCM. However, LWP increases in all clouds in the model, irrespective of their heights. In HadGEM3
FULLINDIRECT-EXP total cloud fraction is 1.5% higher in stratocumulus regions compared to the CNTRL-EXP.

Strong radiative forcing induced by the unidirectional LWP increases in the GCM is not in agreement with
the weak second aerosol indirect effect seen on average in the volcano and ship tracks. The total indirect
aerosol forcing in stratocumulus regions in response to doubling the CDNC in FULLINDIRECT-EXP compared
to CNTRL-EXP is −10.7 W/m2. The forcing in TWOMEY-EXP is only −5.9 W/m2, which indicates that if the LWP
responses in HadGEM3 were as negligible as indicated by the observations, the aerosol indirect radiative forc-
ing in stratocumulus regions would decrease by 45%. Perturbed marine stratocumulus clouds also lead to
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sizeable global forcing. When the forcing due to perturbations in the stratocumulus regions is scaled up to a
global average, it is −0.10 W/m2 in TWOMEY-EXP and −0.35 W/m2 in FULLINDIRECT-EXP.

4. Discussion and Conclusions

We compiled a unique observational data set for constraining LWP responses to aerosols by identifying
hundreds of volcano tracks in stratocumulus clouds and combining these with previously identified ship
tracks. The striking similarity in cloud responses between the volcano and ship tracks suggests that the LWP
responses are driven by the meteorological conditions and cloud type, rather than the way aerosols are
injected into the clouds or the aerosol type. In individual volcano and ship tracks the LWP can strongly increase
or decrease. The volcano and ship tracks indicate that the LWP tends to increase more readily in precipitating
clouds and in lower clouds associated with more stable conditions, and that the LWP decreases are caused
by the enhanced cloud top entrainment drying controlled by the relative humidity above clouds. Moreover,
decreased LWP in nonraining clouds with dry air above clouds is in good agreement with high-resolution
modeling results of Ackerman et al. (2004) and an analysis of A-Train satellite observations by Chen et al. (2014).

On average, volcano tracks suggest a weak LWP decrease of 1.9%, and ship tracks suggest a weak LWP increase
of 3.7%. Somewhat stronger LWP decreases in volcano tracks are possibly caused by the less frequent precip-
itation, indicated by less frequent occurrence of large droplets compared to the ship tracks and occurrence of
higher clouds (Table S1) that characterize the regions where volcanoes are located in this study. Due to slightly
different data screening procedures compared with the ship tracks, the volcano tracks also potentially include
some mixed-phase clouds, which might contribute to stronger LWP decreases (Christensen et al., 2014). Both
the volcano and ship tracks indicate that the net change in LWP and the associated radiative forcing are small,
but the sign of the net LWP changes is uncertain, as it is dependent on the relative frequency of meteorolog-
ical conditions favoring LWP changes of either sign. Global analysis of A-Train satellite observations by Chen
et al. (2014) suggest that the LWP responses in marine warm clouds globally are negative under wider range
of meteorological conditions than the responses in volcano and ship tracks detected in stratocumulus clouds.
However, LWP responses in volcano and ship tracks are more direct observations of cloud perturbations and
are not relying on a correlative analysis between aerosols and cloud properties as is Chen et al. (2014).

No changes in cloud fraction were detected in either volcano or ship tracks from 1 km horizontal resolution
cloud masks. However, there can be changes in cloud fraction at the subkilometer spatial scale not studied
in this work. Using CALIPSO data, Christensen and Stephens (2012) detected increased cloud fraction in ship
tracks embedded in open cell stratocumulus clouds. Aerosol-induced transition of open cell stratocumulus
clouds to closed cell clouds with higher cloud fraction is also shown by Rosenfeld et al. (2006) and Goren
and Rosenfeld (2012). Goren and Rosenfeld (2014) show that aerosol-induced delay in opening of the closed
cells can considerably increase in-cloud LWP and cloud fraction, but such analysis of transitional cases only
does not give the representative average cloud responses. Gryspeerdt et al. (2016) propose that the linkage
between aerosol distribution and cloud fraction is largely explained by meteorological covariations, but if
requiring CDNC to mediate the relationship between aerosol optical depth and cloud fraction, higher cloud
fraction is still observed when more aerosol is present. Further research on volcano and ship tracks using
subkilometer scale data could help to separate aerosol influence on the total cloud water amount into in-cloud
LWP and cloud fraction changes.

We compare cloud water responses to aerosols in volcano and ship tracks with the perturbations in large-scale
cloud sheets. Expecting similar LWP response for local and larger-scale perturbations is justified by large
eddy modeling of ship tracks (Berner et al., 2015) and large eddy modeling of stratus/stratocumulus clouds
(Ackerman et al., 2004; Bretherton et al., 2007), showing that LWP increases result from suppressed precipita-
tion and LWP decreases result from enhanced entrainment in polluted clouds. However, changes in mesoscale
circulation across the volcano and ship tracks cannot be entirely excluded, and further work is needed to
determine the overall importance of the modified local scale circulation.

In stark contrast to the observations, there are substantial unidirectional increases in LWP in stratocumu-
lus regions in HadGEM3 in response to doubling CDNC, with the average LWP increase being 14.5%. LWP
increases result from suppressed precipitation as the rate of autoconversion decreases with increasing CDNC.
The entrainment parameterization in the GCM (Lock et al., 2000) does not explicitly include aerosol impact
on cloud top entrainment through decreased cloud droplet sedimentation (Bretherton et al., 2007) and/or
enhanced cloud droplet evaporation (Hill et al., 2009; Small et al., 2009), probably resulting in the inability
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to simulate LWP decreases in the GCM. This inability reveals itself as an insensitivity of the LWP response to
relative humidity above clouds.

One potential solution to improve the representation of LWP responses could be to avoid parameterizing
LWP responses to aerosol changes because the net response is likely to be weak as suggested by the vol-
cano and ship tracks. In order to capture the more nuanced behavior and the spatiotemporal variability of the
LWP responses that depend on meteorological conditions, multivariate probability density functions-based
parameterizations (Guo et al., 2011) could be used as they reproduce bidirectional LWP responses. Using the
observations of volcano and ship tracks together with high-resolution modeling provides a great opportu-
nity for further development of GCMs to improve the representation of cloud water response to aerosols,
especially for representing both LWP decreases and increases in response to aerosol perturbations. Specifi-
cally, these observations together with high-resolution models could help to further evaluate entrainment
parameterizations in GCMs.

Volcano and ship tracks provide unequivocal evidence for the excessive LWP increases in contemporary
GCMs. In addition, they provide support for the weaker satellite-based estimates of the LWP responses to
aerosols (Michibata et al., 2016; Quaas et al., 2009) and the less negative inverse estimates of aerosol radia-
tive forcing (Murphy et al., 2009; Stevens, 2015) compared to the estimates based on GCMs. In HadGEM3,
neglecting second indirect effect leads to a 45% decrease in total aerosol indirect forcing in stratocumulus
regions. Yet HadGEM3’s LWP increases in response to aerosol changes are weak compared to other GCMs
(Ghan et al., 2016; Malavelle et al., 2017). In those models, observational constraints from volcano and ship
tracks would most probably lead to even larger weakening of aerosol indirect forcing. Such a substantial weak-
ening of the aerosol radiative forcing in climate models would ultimately translate into reduced uncertainties
in projections of the future climate.
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