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Abstract

Multiscale approaches are very popular for example for solving partial differential
equations and in many applied fields dealing with phenomena which take place on
different levels of detail. The broad idea of a multiscale approach is to decompose
your problem into different scales or levels and to use these decompositions either
for constructing appropriate approximations or to solve smaller problems on each of
these levels, leading to increased stability or increased efficiency. The idea of sequential
multiscale is to first solve the problem in a large-scale subspace and then successively
move to finer scale spaces.

Our goal is to analyse the sequential multiscale approach applied to an inversion
or state estimation problem. We work in a generic setup given by a Hilbert space
environment. We work out the analysis both for an unregularized and a regularized
sequential multiscale inversion. In general the sequential multiscale approach is not
equivalent to a full solution, but we show that under appropriate assumptions we
obtain convergence of an iterative sequential multiscale version of the method. For
the regularized case we develop a strategy to appropriately adapt the regularization
when an iterative approach is taken.

We demonstrate the validity of the iterative sequential multiscale approach by
testing the method on an integral equation as it appears for atmospheric temperature
retrieval from infrared satellite radiances.

1 Introduction

Multiscale methods are very popular for modeling natural phenomena, they have attracted
a lot of attention over recent years in the scientific literature, both for direct and inverse
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problems, compare for example [1, 2, 3, 4, 28, 34] for multiscale methods in simulation and
[5, 12, 14, 16, 31, 38] for their use in inverse problems. For solving an inverse problem,
the singular value decomposition (see [13, 18, 22, 30]) provides a traditional approach to
study the different scales of the problem. Classical regularization theory can be viewed as
a damping of higher modes of the inverse of the operator which maps the unknown states
onto the observations. In the area of data assimilation, different versions of the multi-scale
approach has been tested over the past years, for example in [23, 24, 26, 27, 32, 33, 36,
37, 39, 40, 41]. For many systems in the geosciences, we have something like a natural
low-scale approach by models with some course resolution, which are complemented by
high-resolution models which can be run locally on nested regions. Over the past 15
years, ensemble methods have been highly successful in meteorological or geophysical data
assimilation. Here, different scales are implicitely chosen by localization techniques, see for
example [6, 8, 10, 20, 25, 29, 35]. The relationship of multiscale methods to other iterative
methods such as Gauss-Newton or Landweber methods, compare [21, 30] or homotopy
perturbation methods, compare [11, 19, 7], which also work with a changing regularization
parameter, but for generating a homotopy and not for purposes of equivalence, will be part
of future work.

In this work, our goal is first a generic theoretical understanding of the role and effects
which appear in multiscale approaches to inverse and data assimilation methods. Second,
our goal is to analyse and test iterative sequential multiscale, with a numerical example
from the field of integral equations as they appear in atmospheric temperature retrieval
from infrared radiances. We will restrict our attention to one inversion or data assimilation
step. In this case, the generic situation is described by an equation of the form

Hϕ = f (1.1)

where ϕ ∈ X is in some state space X and f ∈ Y is the observation vector in some
observation space Y . Here, we assume that X and Y are Hilbert spaces, usually for
simplicity we restrict our attention to finite dimensional spaces, i.e. to the case where
X = Rn and Y = Rm with n,m ∈ N, where X and Y each are equipped with some norm.
Most of our arguments, though, will carry over to the general infinite-dimensional case.
We assume that some covariance matrix B ∈ Rn×n describes the knowledge about the
relationships between the different components ϕj , j = 1, ..., n of ϕ ∈ X, i.e.

ϕ := E {ϕ} , B = E
{

(ϕ− ϕ)(ϕ− ϕ)T
}
. (1.2)

Let R ∈ Rm×m be the covariance matrix of the observation error on Rm.
We will study the situation where the multiscale approach obtains its input from some

given multiscale basis of X, which might be orthogonal or non-orthogonal. This includes
classical multiscale basis sets which are obtained from generating radial basis functions,
but it also includes a multiscale basis coming from two ensembles, one covering the low
scale, the other the finer scale. We will study the generic approximation properties of
such an approach, showing that a sequential multiscale decomposition leads to typical
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approximation errors when the basis is non-orthogonal. We then provide the analysis
for the iteration of sequential multiscale, both for the case where the reconstruction is
regularized as well as for the unregularized case.

For the unregularized case and non-orthogonal case we will show that in general the
sequential multiscale approach cannot provide the same solution as if we would solve on
all scales simultaneously. The error is given by the successive projections of the solution
on the spaces perpendicular to the multiscale spaces under consideration. A generic two-
dimensional example is given and visualized in Figure 1.

We then study iterated sequential multiscale, i.e. we repeat the squential multiscale
method starting with the result of each previous iteration. For the unregularized case
we obtain linear convergence of these iterations in the spirit of alternating projections
[15] where the convergence speed is determined by cos(α) where α is the smallest angle
between the subspaces under consideration.

Inverse problems or data assimilation usually involves regularization, which causes
further complications to the above convergence analysis. Carrying out the analysis step
several times – either for the sequential steps of the multiscale method or for the iteration
of the sequence of multiscale steps – the role of the regularizing or background term,
respectively, needs to be taken carefully into account.

We first provide a generic example of iterated regularization which shows that ` steps
of a sequential regularization with regularization parameter β are identical to one-step
regularization with regularization parameter α, when the regularization parameters satisfy
the relationship √̀

(1− α) = 1− β. (1.3)

The general theory is worked out for the Kalman filter, proving that the Kalman gain
matrix K̃ for the iterations and the Kalman gain matrix K = BH ′(R+HBH ′)−1 for the
one-step analysis need to satisfy the equation

(I − K̃H)` = I −KH, (1.4)

where H is our observation operator H under consideration. The solvability of (1.4) is
shown by studying the operator in a particular weighted Hilbert space, where KH becomes
self-adjoint.

After describing our general setup in Section 2 we will start with the solution of the
inverse problem in a subspace and its reformulation into a basis transformation of the
covariance matrix and the states under consideration.

We then study the question of sequential scale splitting in Section 3. We first clarify
that in general scale splitting does not lead to equivalence of the sequential approach to the
full problem when non-orthogonal spaces are employed. For orthogonal decompositions
the problem can be equivalently split into multiscale spaces. The problem of aliasing when
data on different scales is employed is discussed in Section 3.2. Here, aliasing means that
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the high-frequency data may lead to large errors when the inversion in a low-frequency
space is carried out.

We provide a numerical example in our Section 4, which demonstrates the feasibility of
the multiscale inversion. We apply iterative sequential multiscale to an integral equation
which is often seen as a generic example for atmospheric temperature or humidity retrieval
from satellite radiances [30].

2 A Generic Multiscale Approach

The classical Tikhonov regularization for the solution of (1.1) is given by

ϕα := (αI +H∗H)−1H∗f, (2.1)

where α > 0 is known as regularization parameter. Here, in a functional analytic frame-
work, we will employ the letter ϕ to denote the states, the observations will be denoted
by f .

Either starting with Tikhonov regularization in X equipped with a norm weighted by
B−1 or using a Bayesian approach, it is well known (see e.g. [9], [17] or [30]), that the
regularized solution of (1.1) can be obtained by a minimization of

J(ϕ) := ||ϕ− ϕ(b)||2B−1 + ||f −Hϕ||2R−1 , (2.2)

where the minimizer is given by

ϕ(a) := ϕ(b) +BHT (R+HBHT )−1(f −Hϕ(b)). (2.3)

For ensemble methods, often the covariance matrix B is given by the standard covariance
estimator

B = QQT (2.4)

with Q defined by

Q =
1√
L− 1

(ϕ(1) − µ, ..., ϕ(L) − µ), (2.5)

where ϕ(ξ) denotes an ensemble of states under consideration and µ is its mean

µ :=
1

L

L∑
ξ=1

ϕ(ξ). (2.6)

A key idea of a multi-scale inversion method or data assimilation method is to carry out
an inversion on a lower scale first and then move to the next finer scale. Let

U = Ũ1 ⊕ Ũ2 ⊕ Ũ3 ⊕ · · · ⊕ ŨM (2.7)
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be a multi-scale decomposition of U into a hierarchy of spaces defined by

Uj :=

j⊕
ξ=1

Ũξ, j = 1, 2, ...,M. (2.8)

We assume that the spaces are mutual linearly independent. Instead of solving the full
minimization problem minimizing

J(ϕ) := ||f −Hϕ(b) −Hϕ||2R−1 , ϕ ∈ U, (2.9)

we solve problems with ϕ̃ ∈ Ũξ successively. In each step ξ = 1, 2, 3, ...,M we solve the
equation

Hϕ = f (ξ), ϕ ∈ Ũξ, (2.10)

where we start with f (1) := f −Hϕ(b). Starting with ϕ(0) = ϕ(b) for ξ = 1, 2, 3, ...,M we
denote the minimizer of

Jξ(ϕ) := α||ϕ||2B−1 + ||Hϕ− f (ξ)||2R−1 . ϕ ∈ Ũξ, (2.11)

by ϕ̃(ξ), where
f (ξ) := f (ξ−1) −Hϕ̃(ξ−1) (2.12)

and α > 0 is our regularization parameter. We also allow α = 0, in this case the problem
is called unregularized. We carry out the loop of (2.11) - (2.12) for ξ = 1, ...,M . This
leads to successive elements ϕ̃(1), ϕ̃(2), ..., ϕ̃(M) which are in the spaces Ũ1, ..., ŨM . The
corresponding solutions up to level j are given by

ϕ(j) := ϕ(b) +

j∑
ξ=1

ϕ̃(ξ), j = 1, 2, 3, ...,M, (2.13)

which is an element of Uj defined in (2.8).

A Multiscale Step in State Space. Here, we study one reconstruction step of
(2.11) - (2.12). Let the space under consideration be denoted by U ⊂ X. We assume that
a set of linearly independent ensemble members or a multiscale basis ϕ(1), ..., ϕ(L) of U is
given. We drop unnecessary indices for simplicity.

Theorem 2.1 Let Φ = (ϕ(1), ..., ϕ(L)) be a basis of U ⊂ Rn for L ≤ n, i.e. it is a matrix
with columns being linearly independent vectors spanning U . Then, the minimization of
J(ϕ) given in (2.2) on the affine subspace ϕ(b) + U defined by

ϕ = ϕ(b) +

L∑
`=1

α`ϕ
(`) (2.14)



Multiscale Inversion and Data Assimilation 6

for α = (α1, ..., αL), is carried out by

α(a) = B̆H̆T (R+ H̆B̆H̆T )−1f̆ , (2.15)

or alternatively by
α(a) = (αI + B̆H̆TR−1H̆)−1B̆H̆TR−1f̆ , (2.16)

and
ϕ(a) := ϕ(b) + Φα(a), (2.17)

using the abbreviations

f̆ = f −Hϕ(b), B̆−1 = ΦTB−1Φ and H̆ = HΦ. (2.18)

Remark. We note that when the dimension of U is L and the dimension of Y is m, the
matrix B̆−1 is an L× L matrix and H̆ is an m× L matrix. Thus, the inversion of (2.16)
is taking place in the L-dimensional space only, where we might have L� m. In the case
where L > m we will prefer to use (2.15).

Proof. With ϕ = ϕ(b) + Φα for α ∈ RL we rewrite (2.2) into

J(α) := ‖Φα‖2B−1 + ‖(f −Hϕ(b))−HΦα‖2R−1 , α ∈ RL. (2.19)

We remark that if B is invertible and Φ is of maximal rank, then ΦTB−1Φ is invertible in
RL×L, since

ΦTB−1Φα = 0 ⇒
〈
Φα,B−1Φα

〉
= 0 ⇒ Φα = 0 ⇒ α = 0, (2.20)

such that ΦTB−1Φ is injective and thus surjective on RL. Then, with the definitions of
H̆, B̆ and f̆ from above we transform (2.19) into

J(α) := ‖α‖2
B̆−1 + ‖f̆ − H̆α‖2R−1 , α ∈ RL. (2.21)

Minimization of (2.21) with respect to α leads to (2.15), such that α(a) is the minimizer
of (2.19) and (2.17) is a minimizer of (2.2) over ϕ(b) + U . For the different forms of the
update operator we refer to the recent book [30], Chapter 5. �

In the case where U is the whole space and Φ is linearly independent, we obtain

B̆ = Φ−1B(ΦT )−1 (2.22)

with the inverse Φ−1 of Φ and the inverse (ΦT )−1 of the transpose n×n-matrix Φ. In the
case where Φ is an orthonormal basis of X, the transform of the B matrix is obtained by
taking the inverse of B̆−1, which according to (2.18) leads to

B̆ = Φ−1B(ΦT )−1

= ΦTBΦ. (2.23)
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In the orthonormal case and when B is given by the covariance estimator (2.4), we obtain

B̆ = ΦTBΦ = ΦTQQTΦ = (ΦTQ)(ΦTQ)T , (2.24)

which is the estimated covariance for the multi-scale coefficients. If we are in the non-
orthonormal case, we obtain

B̆ = Φ−1B(ΦT )−1 = (Φ−1Q)(Φ−1Q)T (2.25)

based on (ΦT )−1 = (Φ−1)T , which holds for invertible matrices on Rn.
We need to extend our tansformation to the case where Φ is a matrix of vectors of

dimension n× L and where B ∈ Rn×n is rank deficient. Here, we can replace B−1 by its
pseudo-inverse

B† := lim
α→0

(αI +BTB)−1BT , (2.26)

compare [30], Section 3.2. If span{Φ} ∩N(B) = {0} the matrix ΦTB†Φ is invertible and
(2.18) with B−1 replaced by B† is well-defined and we obtain

B̆ =
(

ΦTB†Φ
)−1

= Φ†(B†)†(ΦT )† = Φ†B(ΦT )†. (2.27)

If we search for the solution in ensemble space, i.e. if U is the space defined by the columns
of Q defined in (2.5), then (2.25) leads to

B̆ = Q†QQT (QT )† = I. (2.28)

3 Non-Equivalence and Iterations of the Sequential Multi-
scale Approach

In this part we first study the non-equivalence of sequential multiscale to the full inversion
step, for both the unregularized and the regularized case. We show that an iteration of
the sequential steps will converge under appropriate assumptions. We will interpret our
analysis as a type of aliasing in the framework of well-posed or ill-posed inversion.

3.1 On the Equivalence and Non-Equivalence of Sequential Multiscale

In general, the sequential multiscale approach does not lead to the correct solution of the
full inverse problem under consideration.

Theorem 3.1 Consider the sequential multiscale method defined in (2.11)-(2.12). If the
spaces Ũ1, ..., ŨM are not orthogonal to each other with respect to 〈·, ·〉H∗R−1H , then in
general the sequential solution ϕ(M) defined in (2.13) will not coincide with the solution
to the full inverse problem given by (2.1).
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Proof. Let us study the generic case M = 2 and first consider the unregularized
solution and an injective operator H first, such that

〈ϕ,ψ〉H∗R−1H :=
〈
Hϕ,R−1Hψ

〉
, ϕ, ψ ∈ X (3.1)

defines a scalar product on the state space X. For the case M = 2 we assume that the
subspaces Ũ1 and Ũ2 satisfy X = Ũ1 ⊕ Ũ2. In this case, if Ũ1 ⊥ Ũ2, then Ũ1 = Ũ⊥2 and
Ũ2 = Ũ⊥1 . Let P1 be the orthogonal projector of X onto Ũ1 and P2 the corresponding
projector onto Ũ2. Then, I − P2 is the orthogonal projector onto Ũ⊥2 = Ũ1 and I − P1 is
the orthogonal projector onto Ũ⊥1 = Ũ2.

Lemma 3.2 If Ũ1 and Ũ2 are not perpendicular with respect to 〈·, ·〉H∗R−1H , then the
projector (I − P2)(I − P1) is a non-zero mapping, i.e. there is z ∈ X such that

(I − P2)(I − P1)z 6= 0. (3.2)

Proof. We remark that if Ũ1 is not perpendicular to Ũ2, then we have Ũ⊥1 is not
perpendicular to Ũ⊥2 just since Ũ1 = Ũ⊥2 and Ũ2 = Ũ⊥1 . This means that there are
elements in Ũ⊥1 whose projection onto Ũ⊥2 is non-zero, which proves (3.2). �

We now study the difference between the full unregularized solution of the problem
(2.2) and the sequential process given by (2.11)-(2.12). We note that if the unregularized
sequential solutions are not identical to the full unregularized solution, this cannot be the
case for the regularized solutions, since for large covariance matrices B the regularization
term is very small and the regularized solution will be close to the unregularized solutions.

For the case of true data we have f = Hϕ∗ we write the first step as

ϕ̃(1) = arg min
ϕ∈Ũ1

||ϕ− ϕ∗||2H∗R−1H , (3.3)

the second step as
ϕ̃(2) = arg min

ϕ∈Ũ2

||ϕ− (ϕ∗ − ϕ̃(1))||2H∗R−1H (3.4)

and the full solution as
ϕ(tot) = arg min

ϕ∈X
||ϕ− ϕ∗||2H∗R−1H (3.5)

The solutions can be understood as orthogonal projections, in particular we have

ϕ̃(1) = P1ϕ
∗, (3.6)

ϕ̃(2) = P2(ϕ∗ − ϕ̃(1))

= P2ϕ
∗ − P2P1ϕ

∗. (3.7)

This leads to
ϕ(2) = (P1 + P2 − P2P1)ϕ∗. (3.8)
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The difference between the full solution and the sequential solution in the case of injective
H is given by

ϕ(tot) − ϕ(2) = ϕ∗ − (P1 + P2 − P2P1)ϕ∗

=
{
I − (P1 + P2 − P2P1)

}
ϕ∗. (3.9)

Finally, we note that

I = P1 + (I − P1) (3.10)

= P1 + [P2 + (I − P2)](1− P1) (3.11)

= P1 + P2 − P2P1 + (I − P2)(I − P1), (3.12)

such that
ϕ(tot) − ϕ(2) = (I − P2)(I − P1)ϕ∗. (3.13)

By Lemma 3.2 the right-hand side of the above term is non-zero in general, and thus
we have shown that the sequential method does not coincide with the full minimization
procedure under the above conditions. We note that equation (3.13) can also be used to
estimate the error between the two methods.

In the case where H is not injective, the minimizer with minimal norm is the pseudo-
inverse with respect to the scalar product (3.1). In this case the above arguments will still
work when we replace Ũξ by Ũξ ∩ N(H∗R−1H)⊥, on which the operator is injective and
all arguments apply.

Finally, the case with regularization has the same property that the sequential solution
and the full solution will not conincide in general. This is clear since for small regularization
parameters the regularized solution is close to the unregularized solution (if it exists), and
thus they must be different in the two cases under consideration. �

We demostrate the situation by a two-dimensional unregularized example to visualize
the situation. For M = 2 and ϕ(b) = 0 we show that in general the successive solution is
not the same as a solution which is calculated in one big step. Assume that R = I and
H = I. In this case the solution of (2.10) in U1 corresponds to an orthogonal projection
P (1)f of f onto U1. Then, f (2) = f (1) − P (1)f is perpendicular to U (1). In the second
step, the solution of (2.10) corresponds to an orthogonal projection of f (2) onto U (2). We
visualize this situation in Figure 1. In particular, the result for the full minimization would
be the measured true solution ϕ = f . But in the successive case, we end up with the gray
solution ϕ(2) in the second step.

The above result shows that in general we need to be careful with the successive
solution of the minimization problem (2.10). We will see next that when we guarantee
orthogonality of the subspaces, we are fine.

We now come to a generic result which shows the validity and convergence of the
multi-scale minimization problem.
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U⊥1

U1

U2

f and ϕ

ϕ(2)

ϕ̃(1) = P1f

f (2) = f − P1f

ϕ̃(2)

Figure 1: The successive solution of the equations leads first to the point P1f shown
in blue. The reduced data for step two f (2) is shown as a brown dot. This is projected
onto U2 in step two, see the red dot visualizing ϕ̃(2), leading to the solution ϕ(2) shown by
the gray point. However, the true solution ϕ would be the point f itself in this example.
Thus, we see that in the general case the successive solution of the minimization problem
cannot lead to correct results.

Theorem 3.3 Assume that H is linear and injective on U and assume that the spaces
Ũ1, ..., ŨM are mutual orthogonal with respect to the scalar product defined by

〈ϕ,ψ〉HTR−1H :=
〈
ϕ,HTR−1Hψ

〉
, ϕ, ψ ∈ X. (3.14)

Then, for the unregularized approach the full minimizer ϕ of (2.9) and the iterative mini-
mizer ϕ(M) coincide.

Proof. We have worked out the error estimate for the unregularized approach for the
case M = 2 in the equations (3.1) to (3.13). When we have orthogonality of Ũ1 and Ũ2,
we obtain (I −P2)(I −P1) = 0, such that the difference between the full solution and the
successive solution vanishes. This applies inductively to all subspaces Ũ1, Ũ2, ..., such that
we obtain full equivalence. �

We also not at this point that the regularized successive solutions will not be iden-
tical even if we have orthogonality in the spaces. Differences come from the role of the
regularizing term, since in each regularization step the regularized solution is between the
background and the unregularized solution, but does not use the same norm but a weight
which involves the covariance matrix B.

3.2 General Form of Aliasing Problems

One important phenomenon of signal processing is aliasing. It means that if you sample a
signal with high frequency components and you try to reconstruct its low frequency parts
from a low number of sampling points, the high frequency parts of your signal will be
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transformed into spurious lower frequency signal. It is possible to avoid aliasing either by
using more sampling points even when you reconstruct the low modes only, or you need
to run a filter on your signal before sampling and then only sample the filtered signal and
transmit it.

The aliasing problem also appears when you try to solve multiscale inverse problems
by using a reduced number of measurements coming from a signal which contains higher
modes. In general, the aliasing problem is a null-space phenomenon on the signal or state
reconstruction operator.

Let H : X → Y be our observation operator in the finite dimensional case, i.e. X = Rn,
Y = Rm, and let Ĥ : X → Ŷ be a selection of the rows of H, i.e. Ŷ = Rm̂ with m̂ < m.
Let us assume that m = n and H is injective. Then, Ĥ will not be injective, and there is
some nullspace U := N(Ĥ) of Ĥ in X. The solution of the reduced data equation

Ĥϕ = f̂ , ϕ ∈ V, (3.15)

in some reduced subspace V ⊂ X does not need to coincide with the orthogonal or any
other particular projection Px0 of the true solution x0 of

Hϕ = f, ϕ ∈ X (3.16)

onto the space V . If the nullspace U of Ĥ does not coincide with V ⊥ or the space along
which P projects, there are many solutions ϕ0 + ∆ϕ of (3.15) which are projected onto
different solutions ϕ ∈ V by P . If, however, we have U = V ⊥ or more general U is the
space along which P projects, then the projection of any solution ϕ0 + ∆ϕ with ∆ϕ ∈ U
will lead to the projection Pϕ = Pϕ0 in V , i.e. we obtain the correct projection in the
low-dimensional subspace V .

In the framework of (3.15) filtering of the data corresponds to the transformation of
f̂ into data which are in the image space of V under Ĥ, i.e. the filter needs to construct
f̂filter := Ĥ(Pϕ0) as data for which the correct state estimate Pϕ0 ∈ V is obtained when
a solution to (3.15) in V is calculated. As argued in Lemma 3.2, the use of the data f̂ can
lead to arbitrarily large errors when solving the unregularized reduced equation.

3.3 Convergence for Iterated Sequential Multiscale

We now define an iterated approach to sequential multiscale. The basic idea is to carry
out the multiscale approach several times to improve on the solution in the case where
orthogonality of the spaces is not given.

Definition 3.4 (Iterative sequential multiscale) We carry out the sequential mul-
tiscale approach iteratively by the following steps.

1. We start with a first application of the sequential multiscale as given by equations
(2.11) - (2.12). For ` = 1 we define ϕ(ξ,`) := ϕ(ξ) and f (ξ,`) := f (ξ) for ξ = 1, ...,M .
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2. In each iteration step for ` = 1, 2, 3, ... we define new data f (1,`+1) by

f (1,`+1) := f −Hϕ(M,`) (3.17)

and
ϕ(b,`+1) = ϕ(M,`). (3.18)

3. Then, the sequential multiscale method is iterated until some convergence criterion
is satisfied or stopping rule fires.

The goal of the following paragraphs is to carry out the convergence analysis of the
iterative sequential multiscale algorithm for the unregularized case and to show convergence
when true data f = Hϕ∗ with an injective operator H are given. The regularized case
will be discussed in the following Section 3.4

Lemma 3.5 The error vector for the M -th iteration of the sequential multiscale is given
by

ϕ∗ − ϕ(M) = (I − PM )(I − PM−1) · · · (I − P1)ϕ∗. (3.19)

Proof. We carry out a proof by induction. Assume that we have already shown

ϕ∗ − ϕ(M−1) = (I − PM−1) · · · (I − P1)ϕ∗. (3.20)

Then, we obtain

ϕ∗ − ϕ(M) = ϕ∗ − (ϕ(M−1) + ϕ̃(M))

= ϕ∗ − ϕ(M−1) − ϕ̃(M)

= ϕ∗ − ϕ(M−1) − PM (ϕ∗ − ϕ(M−1))

= (I − PM )(ϕ∗ − ϕ(M−1))

= (I − PM )(I − PM−1) · · · (I − P1)ϕ∗ (3.21)

and the proof is complete. �

We can now estimate the error for the iterated sequential multiscale as follows.

Theorem 3.6 The error vector for the iterated sequential multiscale in the unregularized
case can be calculated by

ϕ∗ − ϕ(M,`) =
[
(I − PM )(I − PM−1) · · · (I − P1)

]`
ϕ∗ (3.22)

for ` = 1, 2, 3, ....



Multiscale Inversion and Data Assimilation 13

Proof. For ` = 1 the result has been shown in Lemma 3.5. If we now carry out the
iterative procedure, by definition (3.17) we start with the difference between the true data
and the last outcome of the sequential multiscale, which is

f (1,`+1) = f −Hϕ(M,`)

= H
(
ϕ∗ − ϕ(M,`)

)
. (3.23)

This means that by applying Lemma 3.5 inductively, in each application of the multiscale
method we increase ` by one in the error estimate (3.22). �

In each step of the method, the error is reduced by a factor cos(α), where α is the
angle between the subspaces under consideration. This is linear convergence for the iter-
ative sequential multiscale method, as a consequence of its understanding as a sequential
projection method. We summarize this immediate consequence in the following corollary.

Corollary 3.7 (Convergence Iterated Sequential Multiscale) The sequential
multiscale given by (3.17)-(3.18) in the unregularized case shows linear convergence with
factor c = cos(α) where α is a lower estimate for the angles between the subspaces Ũξ, i.e.
the error eξ,` = ||ϕξ,` − ϕ∗||H∗R−1H in the `-th iteration and after step ξ of this iteration
is estimated by

eξ,` ≤
(

cos(α)
)ξ+M(`−1)

||ϕ(b) − ϕ∗||H∗R−1H (3.24)

3.4 Regularized Sequential Multiscale

We have seen that we obtain convergence in the unregularized case when we iterate the
sequential multiscale, with a linear error estimate which is determined by the angle between
the multi-scale subspaces.

The regularized case is much more involved, since the background term of the regular-
izer needs to be taken care of in a special way. To see the challenge let us first study the
generic but simplified situation where we start some iteration with

γ0 := ϕ(b) (3.25)

and then iterate by
γ` = γ`−1 + β(ϕ∗ − γ`−1) (3.26)

for ` = 1, 2, 3, ... with some parameter β ∈ (0, 1). This corresponds to the increment (2.3)
where perfect data ϕ∗ are given and where we have an observation operator H = I and
covariance matrices B = β

1−β I and R = I. It is the case where we do not have different
multi-scale spaces, but carry out an iteration in one single space only. In this case, the
iterations can be calculated exactly as follows.
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Lemma 3.8 The iteration (3.25)-(3.26) leads to

γ` = γ0 +
{∑̀
ξ=1

(
`

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0) (3.27)

= γ0 +
{

1− (1− β)`
}

(ϕ∗ − γ0) (3.28)

= ϕ∗ − (1− β)`(ϕ∗ − γ0) (3.29)

for ` = 1, 2, 3, ....

Proof. We use induction for the proof. For ` = 1 it is

γ1 = γ0 +
{ 1∑
ξ=1

(
1

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

= γ0 + β(ϕ∗ − γ0), (3.30)

which coincides with our claim. Suppose the formula is true for ` = n

γn = γ0 +
{ n∑
ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0) (3.31)

Then we obtain for ` = n+ 1

γn+1 = γn + β(ϕ∗ − γn)

= γ0 +
{ n∑
ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

+ β

(
ϕ∗ −

(
γ0 +

{ n∑
ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

))

= γ0 + β(ϕ∗ − γ0) +
{ n∑
ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

− β
{ n∑
ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

= γ0 + β(ϕ∗ − γ0) +
{ n∑
ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

+
{ n∑
ξ=1

(
n

ξ

)
(−1)ξ+2βξ+1

}
(ϕ∗ − γ0)
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= γ0 + β(ϕ∗ − γ0) +
{ n∑
ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

+
{ n+1∑
ξ=2

(
n

ξ − 1

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

= γ0 +
{ n∑
ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0) + β(ϕ∗ − γ0)

+
{ n∑
ξ=2

(
n

ξ − 1

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0) +

(
n

n

)
(−1)n+2βn+1(ϕ∗ − γ0)

= γ0 +
{ n∑
ξ=1

(
n

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0)

+
{ n∑
ξ=1

(
n

ξ − 1

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0) +

(
n

n

)
(−1)n+2βn+1(ϕ∗ − γ0)

= γ0 +

n∑
ξ=1

{(n
ξ

)
+

(
n

ξ − 1

)}
(−1)ξ+1βξ(ϕ∗ − γ0) +

(
n

n

)
(−1)n+2βn+1(ϕ∗ − γ0)

= γ0 +
n∑
ξ=1

{(n+ 1

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0) +

(
n+ 1

n+ 1

)
(−1)n+2βn+1(ϕ∗ − γ0)

= γ0 +

n+1∑
ξ=1

{(n+ 1

ξ

)
(−1)ξ+1βξ

}
(ϕ∗ − γ0), (3.32)

such that the formula is true for ` = n + 1. Hence, it is true for all n ∈ N. By using the
binomial expansion we have

(1−X)` =
{∑̀
ξ=0

(
`

ξ

)
(−1)ξ(X)ξ

}

(1−X)` = 1 +
{∑̀
ξ=1

(
`

ξ

)
(−1)ξ(X)ξ

}
(3.33)

So the equation (3.31) becomes

γ` = γ0 +
{

1− (1− β)`
}

(ϕ∗ − γ0)

= ϕ∗ − (1− β)`(ϕ∗ − γ0)

(3.34)

for ` = 1, 2, 3, ... and the proof is complete. �
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Let us compare the `-th iteration in the form (3.28) with the one-step regularized
increment given by

ϕ(a) = γ0 + α(ϕ∗ − γ0) (3.35)

with replacing β by the regularization parameter α. To achieve equivalence of a `-step
method with the one-step method, we need to choose

α = 1− (1− β)` ⇔
√̀

1− α = 1− β. (3.36)

In this simplified case, when we use iterations for the regularized case, to achieve an
appropriate balance between the background and the data, we need to adapt the relative
weight using the `-th square root of the regularization parameter 1− α.

Figure 2: We show the basis functions used for the demonstration of the iterative mul-
tiscale method on the interval [a, b] = [0, 10]. The functions are generated by scaling
and translating a Gaussian basis wavelet. All functions are scaled to have the L2-norm
||ϕ||L2([a,b]) = 1, leading to some amplification at the edges. In this image, we display
n = 27 = 128 basis functions.

To complete our analysis, we now study the general but still complete-scale case, where
the iteration is given by

γ0 = ϕ(b) (3.37)

γ` = γ`−1 + K̃(Hϕ∗ −Hγ`−1) (3.38)
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with some Kalman gain operator K̃ which we need to determine appropriately. With the
analysis given in the proof of Lemma 3.8 we now obtain the following result.

Theorem 3.9 The iterations (3.37)-(3.38) lead to

γ` = γ0 +
(

1− (1− K̃H)`
)

(ϕ∗ − γ0) (3.39)

for ` = 1, 2, 3, ...

Proof. We basically use a modification of the proof of Lemma 3.8, which was the
simplified case in which an observation operator H = I and covariance matrices B = β

1−β I

and R = I were studied. Here, we need to be careful with the operator nature of K̃H.
We have

(I − K̃H)` =
{∑̀
r=1

(
`

r

)
(−1)r(K̃H)r

}
(3.40)

since there is no difficulty with the comutative law of powers of an operator A = K̃H. So,
induction is carried out following the steps of Lemma 3.8 to obtain

γ` = γ0 +
n+1∑
ξ=1

{(n+ 1

ξ

)
(−1)ξ+1(K̃H)ξ

}
(ϕ∗ − γ0) (3.41)

Now again, by using the binomial theorem representaion, we derive

γ` = γ0 +
{
I − (I − K̃H)`

}
(ϕ∗ − γ0) (3.42)

= ϕ∗ − (1− K̃H)`(ϕ∗ − γ0) (3.43)

and the proof is complete. �

To achieve equivalence of an `-step reconstruction with the one-step reconstruction

ϕ(a) = ϕ(b) +KH(ϕ∗ − ϕ(b)), (3.44)

we need to determine K̃ such that

(I − K̃H)` = I −KH (3.45)

as the counterpart of the postulate (3.36). It corresponds to taking the `-th root of the
operator I − KH = I − BH∗(R + HBH∗)−1H, with K defined by the second term of
(2.3). For symmetric positive operators, the square root is well-defined. Here, we obtain
this property by using the weighted scalar products

〈ϕ, ϕ̃〉B−1 :=
〈
ϕ,B−1ϕ̃

〉
L2 (3.46)
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(a) (b)

Figure 3: Two reconstruction results of the multiscale method and the iterative multiscale
method after ` = 100 iterations is displayed here. The blue curve shows the regularized
reconstruction when the full basis is employed. The classical multiscale method leads to
the black curve. The red curve shows the first step of the iteration, which is similar to
the black one, but with a modified regularization parameter for the two steps. Then,
iteration leads to the convergence as shown by the magenta line, where we stopped after
` iterations, we chose α = 10−9. For a convergence study see Figure 4.

and 〈
ψ, ψ̃

〉
R−1

:=
〈
ψ,R−1ψ̃

〉
L2

(3.47)

for functions ϕ, ϕ̃ ∈ X and ψ, ψ̃ ∈ Y . Using equation (5.2.11) as in (5.2.14) of [30] with
H∗,w being the adjoint with respect to the scalar products (3.46) and (3.47), we see that
we have BH∗R−1 = H∗,w and thus

I −KH = I −BH∗(R+HBH∗)−1H

= I −H∗,w(I +HH∗,w)−1H. (3.48)

Clearly, we have (
H∗,w(I +HH∗,w)−1H

)∗,w
= H∗,w(I +HH∗,w)−1H, (3.49)

i.e. we have a self-adjoint positive operator. Thus, the l-th square root of I −KH exists
and can be calculated using the singular value decomposition of the operator in the space
with weighted scalar product. We now collect the above results into the following theorem.

Corollary 3.10 Assume that for ` ∈ N we determine K̃ such that (3.45) is satisfied.
Then, after ` steps the iteration (3.37) - (3.38) is identical to the regularized solution
(3.44).
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For practical applications of the sequential multiscale method taking the `-th root of
the operator K is not feasible. Usually, the reason why we consider multiscale is the
complexity of the task under consideration. We suggest to employ the solution algorithms
as they are available on each of the scales under consideration, adapt the regularization
parameter according to (3.36) and then iterate the multiscale algorithms. Numerical tests
confirm the feasibility and convergence of this approach in our final section.

4 Numerical Examples

This last section serves to test the above method of iterative sequential multiscale for
solving integral equations of the form

f(x) =

∫ b

a
k(x, y)ϕ(y) ds(y), x ∈ [a, b] (4.1)

where b ≥ a are real numbers, k is a continuous kernel

k : [a, b]× [a, b]→ R (4.2)

and we work in L2(a, b). For numerical testing we choose the example of a Gaussian kernel

k(x, y) := e−σ|x−y|
2
, x, y ∈ [a, b], (4.3)

with σ = 3, which serves as a generic example of atmospheric temperature or humidity
retrieval from satellite radiances, compare [30, 29]. Here, we choose some example densities

ϕ1(y) := sin(c6 · (y − y1)) · |y − y1| · (y < y1) + c7 · (y − y1)2 · (y > y1) (4.4)

ϕ2(y) := c5 · ((y − y0)c3 · sin(c4 ∗ y) · sin(y) · (b− y) · (b/2)−1/2 + 1) (4.5)

ϕ3(y) := yc1 · sin(y) · cos(y) · (b− y)c2 (4.6)

for y ∈ [a, b] with a = 0, b = 10, c1 = 1.5, c2 = 0.8, c3 = 1.9, c4 = 2.1, c5 = 2, c6 = 2.4,
c7 = −0.8, y0 = 5 and y1 = 7. The functions are not in the span of the basis functions.
Examples with ϕ1 and ϕ2 are shown in Figure 3 (a) and (b), the reconstruction of ϕ3

is displayed in Figure 4. We calculate the simulated measured data f(x) by numerical
quadrature with trapezoidal or rectangular rule. The observation operator H is given by
the integral (4.1), i.e. we have

(Hϕ)(x) :=

∫ b

a
k(x, y)ϕ(y) ds(y), x ∈ [a, b] (4.7)

with kernel k given by (4.2) and (4.3). For the numerical simulation of H we have used a
collocation scheme with a regular grid on [a, b] with n points, defined by

xk := a+ k · b− a
n− 1

, k = 0, ..., n− 1 (4.8)
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Figure 4: The results of the multiscale method and the iterative multiscale method after
` = 1, 2, 10, 100, 500, 1000 iterations is displayed here. The blue curve shows the regularized
reconstruction of the truth in a space with ` = 128 degrees of freedom, when the basis
with ` = 32 elements is employed. The classical multiscale method with dimension ` = 16
of the course space and ` = 16 for the fine space leads to the black curve. The red curve
shows the first step of the iteration, which is similar to the black one, but with a modified
regularization parameter for the two steps. The iterative multiscale solution converges to
the blue solution, i.e. to the solution when all its basis functions are used in one step.
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Since we want to investigate convergence, we have used true data which were generated
by numerical collocation. We remark that the problem is exponentially ill-posed such
that even when the dimension n of our space is just modestly high an algorithm without
regularization does not lead to any reasonable solution.

There are many possibilities to define and test a multiscale basis on the interval [a, b].
Here, we carry out tests with a Gaussian type radial basis function, i.e. for N ∈ N and
n = 2N we define

ϕ`,k(x) := c`,ke
−ρ`|x−x`,k|2 , x ∈ [a, b] (4.9)

for ` = 1, ..., N and k = 1, ..., 2`−1 where

x`,k := a+
k

2`−1
(b− a), ρ` = 2`−1ρ0 (4.10)

and ϕ0,0 ≡ c0,0. The normalized basis functions (4.9) are displayed in Figure 2.
For multiscale splitting we chose the lowest L modes for the space U1 = Ũ1 and

defined Ũ2 to be the space spanned by the basis functions L + 1, ..., ñ, where ñ is the
maximal number of basis functions under consideration. For the iterations we show two
cases with ` = 100 in Figure 3. Figure 3 displays the results for n = 128, L = 16,
ñ = 32 and a regularization parameter α = 10−9. We show the truth in black dots,
the full reconstruction without any multiscale splitting in blue, the one-step regularized
multiscale in black, the first iteration of the iterative regularized multiscale method in
red and the result of the iterative multiscale method in pink. As expected, the one-step
multiscale has much larger errors than the full solution, arising from the non-orthogonality
of the multi-scale spaces. The convergence is studied in a third example in Figure 4, where
we display the result of iterations with ` = 1, 2, 10, 100, 500, 1000. The iterative multiscale
solution (pink line) confirms the convergence to the solution in the full subspace (blue
line) according to Theorem 3.9 and Corollary 3.10.

5 Conclusions

The broad idea of a multiscale approach is to decompose your problem into different scales
or levels and to use these decompositions either for constructing appropriate approxima-
tions or to solve smaller problems on each of these levels, leading to increased stability or
increased efficiency.

The idea of sequential multiscale as studied in our Section 2 is to first solve the problem
in a large-scale subspace and then successively move to finer scale spaces. The equivalence
or non-equivalence of this approach to solving the full-scale problem at once has been
studied in Section 3.1. When the spaces under consideration are orthogonal, we show
equivalence for the unregularized problem. For the regularized problems equivalence can
only achieved when the regularization parameters are modified appropriately.

In general the sequential multiscale approach is not equivalent to a full solution, but
we have shown in Theorem 3.6 and Corollary 3.7 that under appropriate assumptions we
obtain convergence of an iterative sequential multiscale version of the method.
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For the regularized case we have developed a strategy to appropriately adapt the regu-
larization when an iterative approach is taken. We have first studied a simplified situation
in Lemma 3.8, for which the calculation of the modified regularization parameter could
be carried out explicitly. Then, the general operator-based case is treated, with a core
equivalence result in Theorem 3.9.

Finally, we demonstrate the validity of the iterative sequential multiscale approach
by testing the method on integral equations as they appears for atmospheric temperature
retrieval from infrared satellite radiances and for image denoising, here for a simplified case
in one dimension. The examples show the practical validity of the results and confirm the
non-equivalence and convergence theory.

The analysis and methods of this work provide basic insight into the convergence be-
havior of multiscale approaches to inversion and data assimilation. Here, the static case
has been treated, where iteration takes place at one given point in time with fixed measure-
ments. For data assimilation, where iteration is carried out naturally by cycled systems
(compare [30]), we are interested in the extension to the case where a dynamical model is
applied between different iteration steps. This is of high interest to many researchers and
practitioners, the use of multiscale approaches in a cycled environment will be part of our
future work.
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