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Abstract (maximum 200 words) 

Stochastic computer simulations are often the only practical way of answering questions relating 

to ecological management. However, due to their complexity, such models are difficult to 

calibrate and evaluate. Approximate Bayesian Computation (ABC) offers an increasingly 

popular approach to this problem, widely applied across a variety of fields. However, ensuring 

the accuracy of ABC’s estimates has been difficult. Here, we obtain more accurate estimates by 

incorporating estimation of error into the ABC protocol. We show how this can be done where 

the data consist of repeated measures of the same quantity and errors may be assumed to be 

normally distributed and independent. We then derive the correct acceptance probabilities for a 

probabilistic ABC algorithm, and update the ‘coverage test’ with which accuracy is assessed. We 

apply this method – which we call ‘error-calibrated ABC’ – to a toy example and a realistic 14-

parameter simulation model of earthworms that is used in environmental risk assessment. A 

comparison with exact methods and the diagnostic 'coverage test' show that our approach 

improves estimation of parameter values and their credible intervals for both models. 

 

Keywords 

ABC, IBM, approximate Bayesian computation, individual-based model, parameter estimation  

 

Introduction 

Stochastic computer simulations are increasingly used to make realistic predictions about real 

world ecological processes (Hartig et al. 2011); from the survival of shorebirds (West et al. 

2002) to the effects of climate change (Zurell et al. 2012) and the invasiveness of plants 

(Nehrbass and Winkler 2007). Because such models attempt to simulate all relevant aspects of a 

real physical system, they often involve many parameters, some of which will be difficult to set 

correctly. Understanding the overall uncertainty introduced by these unknown parameter values 

is crucial, especially when the final objective of these models is to assess the possible 

consequences of management decisions, such as the translocation of vulnerable species 

(Lethbridge and Strauss 2015) or the placement of wind turbines (Nabe-Nielsen et al. 2014). 
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Approximate Bayesian Computation, or ABC, is a promising technique for estimating parameter 

values together with their credible intervals. Standard Bayesian methods explore properties of 

the multivariate posterior distribution over the parameters (Gelman et al. 2013), often by 

sampling parameter vectors from it. This posterior distribution specifies the degree of support for 

different parameter vectors given the model, data and prior knowledge about the values the 

parameters are likely to take. Sampling from the exact posterior is not always feasible, leading to 

the development of approximate Bayesian methods, such as ABC.  

 

Originally developed within population genetics (Tavaré et al. 1997, Pritchard et al. 1999, 

Beaumont et al. 2002), ABC is now widely used, with recent applications to, for example, range 

expansions (Rasmussen and Hamilton 2012), infectious diseases (Kosmala et al. 2016), and 

forest dynamics (Lagarrigues et al. 2015). However, ensuring the accuracy of ABC’s estimates 

remains difficult. Here, we improve the estimation process for cases where the data consists of 

repeated measures of the same quantity, such as a time series. We do this using Wilkinson 

(2013)’s insight that accurate estimates can be obtained if the form of the error – the distribution 

of the differences between model outputs and data – is incorporated into the ABC protocol. 

 

Bayesian inference generally requires an analytical likelihood, expressing how the likelihood of 

the data depends on the model parameters, but for mechanistic simulation models, this is often 

not possible. Instead, ABC is based on simulations using the model. By repeatedly sampling 

parameters from a model’s prior, running the model, and then retaining the simulations closest 

the data according to some distance function, ABC can approximate a model’s posterior with an 

accuracy that depends on the distance allowed between model outputs and data. This version of 

ABC is referred to as ‘rejection ABC’. However in many cases even the best-fitting model will 

not replicate the data exactly – even with the best parameters, there will always be some residual 

distance between the model and the data, due to either model misspecification, observational 

measurement error, or both. In these cases, taking error into account can greatly increase 

posterior accuracy. Accounting for different types of error is well established in deterministic 

modelling (e.g., Campbell 2006, Higdon et al. 2008, Goldstein and Rougier 2009), but Wilkinson 

(2013) was the first to consider it in the context of stochastic computer simulations and ABC.  

 

Wilkinson’s (2013) method assumes that the data measurements D can be considered as a 

realization of the model  run with its input parameters 𝜃 set at their best values, 𝜃, plus an 

independent term 𝜖 representing error (Equation 1).  If the distribution of 𝜖 is known, Equation 1 

determines a probability distribution for D given the input value of 𝜃. Therefore there is an 

associated likelihood function. However, for most simulators 𝜂(𝜃) is extremely complicated, so 

the likelihood function cannot be expressed as a simple mathematical formula. This means 

standard Bayesian or maximum likelihood methods cannot be used. 

𝐷 = 𝜂(𝜃) + 𝜖 Equation 1 

The distribution of 𝜖 would ideally be based on a priori knowledge, with a principled 

decomposition into model and measurement error. However for many ecological applications, 

this is not practical. Any model concerned with the behavior of real organisms will have 

structural inadequacies that are difficult to formally characterise, and many models are validated 
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against empirical data that was collected long ago, by other researchers, so that measurement 

error is also unknown. In this paper, we present a simple approach to using Wilkinson’s (2013) 

method in cases where the empirical data consist of many data points of the same type. 

 

Using the difference between the observations and the model at its best-fitting parameter values, 

we parameterise a normally distributed estimate of the error, and then derive the corresponding 

optimal acceptance probabilities for a new ‘error-calibrated ABC’ algorithm. We illustrate the 

use of this new algorithm by analysing both a toy example and a complex computer simulation 

of earthworms (Johnston et al. 2014), which was developed for the purpose of pesticide risk 

assessment. This model was previously calibrated using ‘rejection ABC’ (van der Vaart et al. 

2015), but a diagnostic ‘coverage test’ showed some inaccuracies in the posteriors. In this paper, 

we update this diagnostic so that it also takes error into account, and show that ‘error-calibrated 

ABC’ improves the estimation process for both the toy example and the earthworm simulation. 

Methods 

In previous work (van der Vaart et al. 2015) we implemented the most basic form of ABC, 

‘rejection ABC’, using Algorithm 1. ‘Rejection ABC’ takes a sample of the parameter values 

needed to run the model from a prior distribution which expresses existing knowledge about 

what values each parameter is likely to take. The model is run with those parameter values, and 

then the process is repeated thousands of times with different sets of parameter values randomly 

drawn from the prior distribution. ‘Rejection ABC’ rejects all but the m best parameter values, 

i.e., the m values that produce model outputs closest to the data points. These are samples from 

an approximation to the Bayesian posterior distribution. The exact posterior distribution gives 

the degree of support for each parameter vector, combining prior information and model 

observations, and is used to produce univariate posterior distributions for each individual 

parameter, as well as 95% credible intervals. The accuracy of the ABC approximation to the 

posterior can be assessed using ‘coverage tests’ (Prangle et al. 2013). 

1. Repeat n times: 

a. Draw 𝜃i ∼ 𝜋(𝜃) (the prior distribution) 

b. Simulate Xi ∼ (𝜃i) (the computer model) 

2. Accept the m runs (𝜃𝑖 , 𝑋𝑖) that minimise 𝜌(𝑋𝑖, 𝐷). 

Algorithm 1. Original ‘rejection ABC’ algorithm used in van der Vaart et al. (2015). 

The computer model is represented by (𝜃), with output X and input parameters 𝜃. This model is 

stochastic: repeated evaluations using the same input usually produce different outputs. Though 

our methods are also valid for deterministic models, better alternatives are available for those 

cases. X is a vector of model outputs which are to be compared with a data vector D. 𝜃 is a vector 

of model parameters, drawn from a prior distribution, 𝜋(𝜃). We often specify a prior distribution 

for each individual parameter and form the overall prior by an independence assumption. In total, 

n model runs are done, and 𝜌 is the distance between the model output X and the data D. The m 

runs that minimise  𝜌 are accepted and then the accepted (𝜃𝑖, 𝑋𝑖) pairs form a sample from an 

approximate posterior. Since both parameters and outputs are vectors, we use subscripts to 

denote particular components. For example, 𝜃𝑗
𝑖 represents the jth parameter for model run i, while 

Xj
i represents the model output corresponding to the jth data point in model run i. 
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1.1. Coverage 

Coverage tests were introduced by Prangle et al. (2013) to check the accuracy of estimated 

posterior distributions. The idea is to randomly draw a model output Xi from ABC’s sample of 

accepted runs as the ‘pseudo-data’ X0 for a new round of ABC. This does not require further 

simulation runs, as the original runs can be re-used. The output of this new round of ABC is a set 

of accepted runs associated with X0. Then, for each parameter j, we calculate the pj
0, the 

proportion of accepted parameter values smaller than that which produced X0. We then repeat the 

whole process many times, ending up with a sample of pj
0 values for each parameter j. Intuitively 

these should be spread out between 0 and 1, and not ‘bunched up’ at either the middle or the 

extremes of the estimated posteriors. Ideally, the  pj
0 values have a Uniform(0,1) distribution 

(Prangle et al. 2013). Algorithm S1 in Appendix S1 gives the coverage algorithm that we first 

applied to our earthworm model (van der Vaart et al. 2015); unfortunately this produced non-

uniform coverage for several parameters, motivating the work reported here. 

1.2. Error-Calibrated ABC 

In order to improve our estimation procedure, we used Wilkinson’s (2013) version of ABC, 

which provides inference for the model given by Equation 1. How to choose 𝜋𝜖, the  probability 

density function for the error 𝜖, is discussed in the next section. Now the acceptance step (2) of 

Algorithm 1 is replaced by a probabilistic version, where each (𝜃𝑖 , 𝑋𝑖) pair is accepted with 

probability 
𝜋𝜖(𝐷−𝑋𝑖)

𝑐
, where 𝜋𝜖(𝐷 − 𝑋𝑖) is the probability density function of 𝜖 evaluated at D – 

Xi, and c is a constant chosen as the maximum of 𝜋𝜖(𝐷 − 𝑋𝑖) (Wilkinson 2013). 

1.3. Error Estimation 

If 𝜋𝜖 were known it would be straightforward to implement Wilkinson’s (2013) algorithm, 

though perhaps slow to produce adequate sample sizes, but in general 𝜋𝜖   is not known. 

However, if the data come from replicated experiments or time series it is possible to estimate 

𝜋𝜖 from the differences between the data and the output of the best-fitting model. 

 

To do this, we first find �̂�, the model output 𝑋𝑖 which minimises 𝜌(𝑋𝑖 , 𝐷). When all data are of 

the same type, 𝜌(𝑋𝑖 , 𝐷) is the sum of all Euclidean distances between 𝑋𝑖 and 𝐷. When the data 

are of k different types, all Euclidean distances are centered and scaled before summing. For 

example, in our earthworm model, where some data points concern growth and others concern 

reproduction, all Euclidean distances are centered and scaled by the mean and standard deviation 

of all Euclidean distances of that type. This ensures that the overall distance calculation is not 

dominated by scale differences between the data types. 

 

We then assume that, for each data type, the errors on data points are independent of each other 

and drawn from a normal distribution with mean 0, as in classical statistics; this is an assumption 

that we discuss in our conclusion. To estimate the standard deviation 𝜆 of this normal 

distribution, we take the standard deviation �̂� of all the �̂�j −𝐷𝑗values that are of the same type. 

So, for example, for the earthworm model, �̂�𝑔𝑟𝑜𝑤𝑡ℎ is equal to the standard deviation of all 

differences between the best-fitting model output �̂� and the data D for all data points concerning 

growth, and �̂�𝑟𝑒𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 is equal to the standard deviation of all differences between the best-

fitting model output �̂� and the data D for all data points concerning reproduction. 
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Then, under our assumption of independent, normally distributed errors, the probability density 

function  𝜋𝜖(𝐷 − 𝑋𝑖) ∝ ∏ 𝜋𝑁(0,1) (
𝑋𝑗

𝑖−𝐷𝑗

�̂�𝜏(𝑗)
)𝑙

𝑗=1 , where l is the number of data points, 𝜏(𝑗) is the 

type of the 𝑗th data point, and �̂�𝜏 is the standard deviation of data points of type 𝜏. In other 

words, the overall acceptance probability of a specific model run i can be calculated by 

multiplying the probability densities of each of the simulated data points being produced from 

the empirical data, given the assumed error distribution. This density is quicker to compute via a 

transformation, giving 𝜋𝜖(𝐷 − 𝑋𝑖) ∝ 𝜋𝜒𝑙
2(𝑠) 𝑠1−

𝑙

2, where s = ∑ (
𝑋𝑗

𝑖−𝐷𝑗

�̂�𝜏(𝑗)
)

2
𝑙
𝑗=1 ; i.e., the density of a 

chi-square distribution with 𝑙 degrees of freedom evaluated at s, the summed squares of all 

normalised errors multiplied by a Jacobian term, 𝑠1−
𝑙

2. Algorithm 2 shows the overall procedure, 

which we call ‘error-calibrated ABC’. 

1. Repeat n times: 

a. Draw 𝜃i ∼ 𝜋(𝜃) 

b. Simulate Xi ∼ (𝜃i) 

2. Find �̂�, the simulated value that minimises 𝜌(𝑋𝑖, 𝐷).  

3. For each data type k, calculate �̂�𝑘, the standard deviation of all corresponding �̂�j −𝐷𝑗. 

4. Accept (𝜃𝑖 , 𝑋𝑖) with probability 
𝜋

𝜒𝑙
2(𝑠) 𝑠

1−
𝑙
2

c
, where s = ∑ (

𝑋𝑗
𝑖−𝐷𝑗

�̂�𝜏(𝑗)
)

2
𝑙
𝑗=1  and c is equal to 

the  maximum acceptance probability across all runs. 

Algorithm 2. New ‘error-calibrated ABC’ algorithm. 

1.4. Error-Calibrated Coverage 

Finally, to assess the accuracy of this new algorithm, we update our coverage test, as shown in 

Algorithm 3, where d = 200, following Prangle et al. (2013). The main change is that the 

‘pseudo-data’ is no longer directly equal to a best-fitting model runs but to a model run plus 

estimated noise 𝜋𝜖 making it more like the empirical data. 

1. Add noise to all simulation results 𝑋𝑖, creating new pairs (𝜃𝑖, 𝑊𝑖). In 

particular, add 𝑵(𝟎, �̂�𝝉(𝒋)
𝟐 ) noise to 𝑋𝑗

𝑖 to get 𝑊𝑗
𝑖, where �̂�𝜏(𝑗) is the standard 

deviation of data points of type 𝜏(𝑗), i.e. of the same type as the 𝑗th data point. 

2. For each of the d noisy (𝜃𝑖, 𝑊𝑖) that minimise 𝜌(𝑊𝑖 , 𝐷): 

a. Label as (𝜃0, 𝑊0) and do ‘error-calibrated ABC’ with D = 𝑊0, using 

all remaining non-noisy model runs as the simulations: 

i. Accept each (𝜃𝑖, 𝑋𝑖) according to its acceptance probability, 

using the �̂�  values calculated in the original analysis. 

b. For each parameter j: 

i. Calculate pj
0 , the sum of all acceptance probabilities with               

 𝜃𝑗
𝑖 ≤ 𝜃𝑗

0 divided by the sum of all acceptance probabilities.  

3. Plot the distribution of all pj
0 values, and check for uniformity. 

Algorithm 3. New coverage algorithm for ‘error-calibrated ABC’. 
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1.5. Applications 

To test this new ‘error-calibrated ABC’, we applied it first to a quadratic model where it is possible 

to calculate exact posteriors, and second to our earthworm simulation. In each case, we compared 

its results to those of ‘rejection ABC’, where we deterministically accepted the m  runs with the 

highest acceptance probability according to Algorithm 1. For the quadratic model, the data consist 

of observations D =  θ1 + θ2 x + θ3 x
2 plus noise 𝜖 = 𝑵(𝟎, 100), evaluated for x values 1, 2, …, 10 

with the true θ1 = -2, θ2 = 1 and θ3 = 2. The simulator 𝜂 has the same form without the error; to 

estimate the values of the θ1, θ2, and θ3 parameters we took 105 samples of [θ1, θ2, θ3] where each 

of θ1, θ2, and θ3 were drawn from independent 𝑵(𝟎, 9) priors. This means that, for this simple 

example, the simulator is deterministic rather than stochastic. Exact posteriors were calculated 

using Bayesian regression; see Textbox S1. 

 

For the earthworms, the observed data  D consist of two types: 122 average body masses and 38 

cocoon productions of earthworms living on experimental laboratory diets. In each case, five to 

ten earthworms were placed in small containers filled with cattle manure for food (Reinecke and 

Viljoen 1990, Gunadi et al. 2002, Gunadi and Edwards 2003). The model  𝜂 is an individual-

based model (or IBM) that simulates the growth and reproduction of individual earthworms 

according to established physiological principles (Sibly et al. 2013). Earthworms wriggle around 

randomly as they forage, and allocate assimilated energy to maintenance, growth, reproduction, 

and reserves, in a fixed order of priority; see Johnston et al. (2014). In total the model has 

fourteen parameters θ, given in Table S1 in Appendix S1. The priors for all parameters were 

lognormal, with means equal to previously determined literature values (see Johnston et al. 

(2014)) and standard deviations equal to 0.3536. This produces samples where 95% of the values 

lie between half and twice the literature values on the unlogged scale. We used ARCHER, the 

UK’s national supercomputing service, to do 106 runs; see  van der Vaart et al. (2015) for details. 

1.6. Implementation 

All ABC code and the quadratic example were implemented in R (R Core Team 2015). The 

earthworm model was built in NetLogo (Wilensky 1999), and RNetLogo was used to run 

NetLogo from R (Thiele et al. 2012). All statistical tests were corrected for multiple testing using 

Holm’s method, and all code and simulation results were deposited in a figshare repository.1 

Results 

For the quadratic example, ‘error-calibrated ABC’ estimated the standard deviation of the error, 

𝜆, to be 7.91, producing 330 acceptances. Figure 1A shows the model’s resulting fit (a ‘posterior 

predictive check’). The posteriors of all three parameters were not significantly different from 

                                                             
1 Link to be added before publication. 
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those obtained by exact Bayesian regression (Figure 1B – D), and coverage plots were uniform (

 

Figure 2A - C), suggesting accurate posteriors. By contrast, for ‘rejection ABC’ with m = 330 

acceptances, all three posteriors were significantly different from those obtained by exact Bayesian 

regression, and coverage plots were ‘U-shaped’, with an excess of p values at the extremes (Figure 

S2). After further varying m from 100 to 1000 to 10000, we found that ‘rejection ABC’ was only 
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accurate for m = 1000 (Figure S1 & Figure S2); see 

 

Figure 2D – F. 

 

Figure 1. Results for the quadratic example. A: Posterior check. Black points represent the 

data, the result of θ1 + θ2 x + θ3 x
2 plus 𝑵(𝟎, 100) noise, and the semi-transparent grey lines are 

the ‘posterior predictive check’, i.e., 100 random samples from runs accepted by ‘error-calibrated 

ABC’. B – D: Posterior distributions. Bars are ‘error-calibrated ABC’, lines are exact Bayesian 

regression, all differences nonsignificant (Kolmogorov-Smirnov, p > 0.01). The true θ1, θ2 and θ3 

were -2, 1 and 2, respectively, marked on the x-axes by arrows; posteriors are centred differently 

because of the added noise and the priors that were used. On the horizontal axes, ticks are placed 

at the mean of the exact posterior density and three standard deviations above and below. 
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Figure 2. Coverage for the quadratic example. A - C: ‘Error-calibrated ABC’. D – F: 

‘Rejection ABC’ for parameter θ3 at different acceptance rates m. Asterisks mark significant 

departures from uniformity (Kolmogorov-Smirnov, p < 0.01). 

 

For the earthworms, ‘error-calibrated ABC’ initially accepted only the best-fitting run, which is 

necessarily accepted (see Algorithm 2). Using this best-fitting run, we verified that the error 

distributions were normal for both masses and cocoons (Figure S3), and we estimated their  

standard deviations to be 0.08 and 10.4 respectively. To increase the number of acceptances, we 

fixed 𝜆𝑚𝑎𝑠𝑠 and 𝜆𝑐𝑜𝑐𝑜𝑜𝑛𝑠 at their original values, but otherwise reduced the data set to every 6th 

point; see the Discussion for rationale. Now, 108 runs were accepted, giving the posterior 

predictive check of Figure 3. Relative to the priors, 4 out of 14 posteriors were significantly 

narrowed (Figure S4), and coverage was uniform for all 14 (Figure S5). 
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Figure 3. Body masses and cocoon productions in the earthworm experiments. The black 

lines show the empirical data (Reinecke and Viljoen 1990, Gunadi et al. 2002, Gunadi and 

Edwards 2003), the thick grey line is the ‘best-fitting run’ and the semi-transparent grey lines are 

the ‘posterior predictive check’, i.e., the output of 100 new simulations using random samples 

from runs accepted by ‘error-calibrated ABC’. Only every 6th data point, marked by a circle, was 

used in the analysis; those marked by a cross were removed to improve acceptance rates. Arrows 

indicate when food was added (↑) or removed (↓). See van der Vaart et al. (2015) for details. 

 

In comparison, ‘rejection ABC’ with m = 100 acceptances narrowed five posteriors (Figure S6). 

For h, the half saturation coefficient, IGm, the maximum ingestion rate, and Mm, the maximum 

mass, these posteriors were significantly different from those of ‘error-calibrated ABC’ (). IGm 

and Mm, along with three other parameters, also produced non-uniform coverage, Figure S7. 

After varying m from 100 to 103, 104 and 105, we found that ‘rejection ABC’ never produced 

uniform coverage for all parameters at once (Figure S8), with E, the activation energy, for 

example, varying from ‘U-shaped’ at m = 100 to ‘mountain shaped’ at m = 105. 
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Figure 4. Posterior distributions for the earthworm model. Black lines show ‘error-calibrated 

ABC’ accepting 108 runs; grey lines ‘rejection ABC’ accepting 100. Circles represent medians, 

whiskers 95% credible intervals. Asterisks mark significant differences (Kolmogorov-Smirnov, p 

< 0.01). All parameter values were scaled by dividing by the corresponding literature value. 

Discussion 

We have shown how incorporating estimation of error into the ABC protocol can improve 

estimates of parameter values and their credible intervals. To do this we specified ABC 

acceptance probabilities for the case that errors are normally distributed and independent. Our 

‘error-calibrated ABC’ implements a general methodology introduced by Wilkinson (2013). To 

diagnose the accuracy of our method, we updated Prangle et al.’s (2013) coverage test by adding 

the estimated error to the simulation runs used as ‘pseudo-data’, improving their realism. 

 

For our two example models, ‘error-calibrated ABC’ appears to have improved posterior 

accuracy: Coverage plots were uniform for all parameters, and for the quadratic case, results 

were indistinguishable from those of exact Bayesian regression. In both cases, ‘rejection ABC’ 

with an equivalent number of acceptances was demonstrably inaccurate. For the quadratic model, 

this could be corrected by accepting more runs, but for the earthworm IBM, ‘rejection ABC’ 

never produced uniform coverage for all parameters simultaneously. Thus, we conclude that 

‘error-calibrated ABC’ offers a real improvement with respect to model calibration. 

  

In essence, coverage checks for inaccuracies in ABC’s posteriors by repeatedly applying the ABC 

protocol to ‘pseudo data’ for which the correct parameter values are known. Typically, a lack of 

uniformity can then be due to either error or inadequacy in the ABC protocol; most notably, an 

incorrect acceptance rate. A standard coverage test assumes that the model is perfect, and that 

calibrated correctly, it can replicate the data exactly. However, our updated coverage test drops 

this assumption, by adding ‘noise’ drawn from the error model to all data points before using them 

s
c
a

le
d
_
x
_

m
e

d
ia

n
s

B0 E E c E f Es h

*

IGm

*

Mb Mc Mm

*

Mp rB rm s

parameter

s
c
a

le
d

 v
a
lu

e

0.5

1.0

1.5

2.0

2.5



12 

 

 

as ‘pseudo-data’. In a coverage test, surpluses in the tails of the coverage distribution, as in 

 

Figure 2D, imply that posteriors are too narrow, with too few runs accepted. At the other extreme, 

deficits in the tails of the coverage distribution, as in 
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Figure 2F, imply that posteriors are too wide, with too many runs accepted. For this polynomial 

example, we know the error model is correct, so any lack of uniformity must be due to problems 

with the acceptance criteria.  

 

For the earthworm model, the use of ‘error-calibrated ABC’ required two approximations: 

Firstly, it seems unlikely that its errors really are independent across observations and normally 

distributed. However, this assumption has often been made by ecologists deploying regression 

models, and would seem as justifiable here. For the future, it would be interesting to explore 

methods that incorporate correlations between successive errors, since these could reduce the 

degrees of freedom and so increase acceptance rates. Currently, as our second approximation, we 

had to remedy a lack of acceptances by reducing the data set to every 6th data point. As the error 

distribution 𝜋𝜖 is multivariate normal with dimension equal to the number of data points, 

acceptance falls off exponentially as the number of data points increases. “Too much data” is a 

common problem in ABC, known as ‘the curse of dimensionality’. It is generally addressed by 

summarizing data sets into as few as one or two ‘summary statistics’ (see, e.g., Blum et al. 

2013). Addressing the issue by ‘thinning out’ a time series, as here, is not an established 

technique but has the same fundamental justification. While simple, it appears to work well in 

this case; visually the accepted runs still mimic the full data set (Figure 3), and for ‘rejection 

ABC’, the posteriors estimated with the full and reduced data sets are similar (Figure S9).  

 

Our overall approach is relatively simple, and does not make use of various sophistications 

already present in the literature. These include techniques for ‘correcting’ accepted parameter 

values on the basis of the resulting model fit, for example using regression (Beaumont et al. 

2002), by estimating the error simultaneously with a model’s parameters, as in ABC𝜇 (Ratmann 

et al. 2009), by analysing time series data sequentially (Jasra 2015), or by sampling a model’s 

parameters more efficiently, as in MCMC-ABC (Marjoram et al. 2003) or SMC-ABC (Sisson et 

al. 2007). We see the simplicity of ‘error-calibrated ABC’ as an attraction; more efficient 

sampling schemes are harder to implement and make it impossible to re-use runs for the purpose 

of calculating coverage. In these cases, ‘error-calibrated ABC’ offers an accessible approach to 

improving models’ posteriors, with the additional benefit of explicitly accounting for error. 
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