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Anoptimal control framework is designed inwhich the use of clean plantingmaterials, debudding, disinfection of tools, and roguing
are considered as control measures of Banana Xanthomonas Wilt (BXW) within a plantation of multiple cultivars. A model for a
special case of two cultivars (AAA- andABB-genome cultivars)was analyzed. By Pontryagin’sMaximumPrinciple, we characterized
and discussed possible control strategies that substantially reduce the infection levels of BXW within a plantation of ABB- and
AAA-genome cultivars. A combination of both prevention and containment controls yielded the greatest decline in the infection
levels in both cultivars. Additionally, for effective BXW management, it is important to assess the endemic level of the plantation
before application of controls, and once implemented, this should bemaintained even when the disease is undetectable to eliminate
possible resurgence.

1. Introduction

Banana is a major crop grown in the East and Central
African region. It provides food security and income to
over 20 million people in the region [1]. Since 2001, Banana
Xanthomonas Wilt (BXW) has been reported as a major
threat to the banana production and livelihoods of millions
of people have been affected [2]. The pathogen caused by
Xanthomonas campestris pv. musacearum (Xcm) was first
reported in Ethiopia on Ensete, a related crop to banana in
1964 [3]. The disease is transmitted by insect vectors, birds,
bats, contaminated farming tools, and infected suckers used
for setting up new plantings. It attacks all the commonly
grown cultivars although some are more susceptible than
others. Disease symptoms include yellowing and wilting of
leaves, male bud wilting, premature ripening and rotting of
fruit, yellow ooze observed on the cross section cut of the
pseudostem, and eventually death of the entire plant.

Since the reporting of BXW disease, scientists have dis-
seminated information on identification based on symptoms,
mode of spread, and how to implement cultural control
practices that have been used tomanage similar diseases such
as Moko and Bugtok [4, 5]. Cultural control practices for
management of BXW have been categorized as preventative
or containment. Among the preventative practices, we have
debudding which is the removal of the male bud by twisting
with a forked stick as soon as the last cluster is formed
[6]. This approach avoids contact between the tool and the
potentially infected tissues. This is done within 3 weeks since
flowering to prevent insect vector from transmitting the
disease.

Use of clean planting materials is another preventative
approach being advocated for although there are no proper
screening facilities for the seed system. Farmers basically
obtain suckers for new plantings either from their planta-
tions or from neighboring plantations. Such suckers could
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be latently infected but since the available detecting tool
(lateral flow device) is not yet accessible to the farmers,
there is a risk of transferring latently infected plants to new
plantations. Nevertheless, to reduce this risk, farmers are
constantly cautioned on the use of these suckers and the
need to monitor them as they develop.The third preventative
approach is the disinfection of tools between plants using
sodium hypochlorite solution (usually known by the trade
name of the commonest brand in Uganda: Jik) or flames of
fire [5, 7].

Two approaches have been implemented as containment
practices. These are single disease stem removal (SDSR)
dealing with removal of the infected stem from the mat
at stool level and roguing involving removal of the entire
mat from which the infected stem arose. The latter is more
effective as it eliminates the risk of vertical transmission from
mother stem to attached suckers. However, it is expensive
to implement as it requires more labor [7]. Kubiriba et al.
[8] evaluated the SDSR approach and noted that it was
effective especially if the manifesting symptoms are via the
inflorescence part of the plant.

Jogo et al. [9] studied the extent to which cultural
control practices have been adopted by farmers and assessed
the socioeconomic factors that influence adoption of these
practices among smallholder farmers inUganda.Their results
indicate that among the key determinants were labor and per-
ceived effectiveness of the technologies being implemented.
This indicates knowledge gaps in identifying the combination
of control options which is cheap enough to implement but
causes a large decline in number of infected stems.

The best combination of cultural control practices also
depends on the main production systems within the region.
The two main groups of cultivars include the East African
highland banana (EAHB) AAA-genome grown in western
Uganda (1700 masl) and the “kayinja” (beer banana) ABB-
genome cultivar grown in the central Uganda (1300 masl)
[9]. The intensity of management among these cultivars is
different with the former being managed intensively than the
later [9]. Also ABB-genome cultivars are more susceptible
to insect infection due to the greater production of sweet
nectar that attracts the insects as compared to AAA-genome
cultivars. These features influence BXW management and
control adoption by farmers in these respective regions.

Even though application of all control approaches has
been advocated, few farmers are in position to implement
them. Therefore, it is necessary to examine the approaches
and identify themost cost-effective combination formanage-
ment of BXW disease.

The use of optimal control approaches/models allows
the determination of the most cost-effective intervention.
Optimal control modeling has been extensively used to
understand biomedical problems and suggest optimal control
combinations that willminimize the costs [10–14]. Ourmodel
focuses on determining the optimal control combination
within smallholder plantations with mixed cultivars given
that in banana cropping system different cultivars are man-
aged differently and the risk of infection is also different.

Thus, we propose aHealthy-Infectedmodel for the spread
of BXW via inflorescence infection, vertical transmission,

and tool-mediated spread. We formulate an optimal control
model with debudding, use of clean plantingmaterial (reduc-
ing the proportion of infected suckers), roguing/SSDR, and
disinfection of tools used for cultivating between and within
cultivars as our control options.The optimal control model is
analyzed using the Pontryagin’s Maximum Principle [15–17]
and numerical simulations assessing different combinations
of control options. The paper is organized as follows: in
Section 2, the formulation of the optimal control model
for a plantation with multiple cultivars (𝑚) is presented.
Mathematical analysis and numerical simulations of the
optimal control model considering a special case of two
cultivars are given in Section 3 and lastly conclusions drawn
are given in Section 4.

2. Model Formulation

Consider a population of banana stems with 𝑚 different
cultivars each subdivided into healthy 𝐻𝑖 and infected 𝐼𝑖
classes for 𝑖 = 1, 2, 3, . . . , 𝑚. We assume negligible latent and
incubation period for simplicity of the model, also because
omission of this compartment does not entirely affect the
dynamics of the disease. It is assumed that in a unified
plantation several blocks of each cultivar are maintained.
The effort going into maintenance of each block will depend
on preference of farmers in a specific region. The healthy
compartment contains all banana stems that are disease-
free but at a risk of being infected either by contaminated
tools or by insect vectors during inflorescence formation.
The populations per cultivar are maintained at equilibrium
by a logistic function at a constant rate 𝑟 and a constant
carrying capacity 𝐾. The equilibrium 𝑟 is a result of various
activities within the plantation including replanting, desuck-
ering, sucker emergence, and harvesting.The infected class is
increased by the following scenarios.

(1) Let 𝜃𝑖 denote the proportion of healthy suckers from
infected mats; then a proportion (1 − 𝜃𝑖) indicates
the suckers recruited into the infected compartment
arising from vertical transmission.

(2) Disease transmission by contaminated tools is mod-
eled using mass action incidence term with 𝛽𝑡 as the
coefficient of effective contact between healthy and
infected stems by tools. Assuming random use of
tools, spread is independent of plantation density but
rather dependent on the proportion of infected stems
within the plantation. Therefore, the incidence term
due to contaminated tools is given as 𝛽𝑡𝐻𝑖𝐼𝑗 for the
interaction between cultivars 𝑖 and 𝑗.

(3) Transmission by vectors via the inflorescence infec-
tion is considered to be frequency dependent, that
is, (𝛽V𝐻𝑖, 𝐼𝑗)/𝑁 with 𝛽V as the coefficient of effective
contact by vectors between cultivars 𝑖 and 𝑗.This inci-
dence term is reasonable because spread by vectors
depends on the number of flowering stems and vector
activity resulting in infection at a particular time.

Once infected, infected stems showing symptoms are
removed at a constant rate 𝛿𝑖 for cultivar 𝑖. This rate also
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depends on the available resources and farmers’ desire to
control that particular cultivar. In some regions within the
central Uganda, farmers tend to concentrate on the cooking
banana ignoring other cultivars like kayinja which tends to
increase the risk of vector spread.

We now incorporate the main cultural control practices
that are being implemented in the management of BXW
disease into the model formulation.

(I) 𝑢1(𝑡) as the control is associated with ensuring that
only clean planting materials are used for replanting
after mat removal or infilling of space. This involves
the ability to detect and remove infected suckers from
mats such that they are not used for replanting. Since
there is no proper screening for the seed system,
farmers rely on suckers from their plantations or
neighboring plantations for replanting. It is necessary
to determine whether a sucker/planting material is
clean.The lateral flow device developed could be used
to detect even latently infected material but currently
it is not available for farmer and even then it would be
expensive. (1 − 𝑢1(𝑡)) shows the failure to detect and
remove infected suckers so that they are reluctantly
used for replanting.

(II) 𝑢𝑖𝑗(𝑡) is the control associated with disinfection of
tools used during cultivation, pruning, or harvesting
between cultivars 𝑖 and 𝑗. 𝑢𝑖𝑖 shows the effort placed
in controllingwithin cultivar spread.This involves use
of sodium hypochlorite solution or heating briefly in
a fire to destroy bacteria before cutting into another
stem. Besides the expense of sodium hypochlorite
solution, use of fire flames may not be feasible as it
requires moving to the fire and is likely to damage
the cutting edge by softening or embrittling the blade
depending on howoften it is used. (1−𝑢𝑖𝑗(𝑡)) indicates
failure to disinfect tools when cutting into cultivars 𝑖
and 𝑗.

(III) 𝑢2(𝑡) is the control associated with debudding
(removal of male bud by forked stick). This requires
continuous surveillance andmonitoring such that the
male buds are removed immediately after the last
cluster is formed to eliminate vector spread. (1−𝑢2(𝑡))
represent failure to implement this control which
results in vector spread.

(IV) Roguing or single stem removal of infected stem.
Let 𝑢3(𝑡) indicate control associated with removal of
infected stems with 𝛿𝑖 as the roguing rate of cultivar𝑖. This involves detecting BXW infected stems and
removing them effectively without further spread by
tools or mat removal.

Combining all the cases above, the following system can
be used to describe the dynamics of BXW when control
measures are being implemented.

𝑑𝐻𝑖𝑑𝑡 = 𝑟 (1 − 𝑁𝑖𝐾 ) (𝐻𝑖 + (1 − 𝑢1) 𝜃𝑖𝐼𝑖)
− (1 − 𝑢2) 𝛽V𝐻𝑖𝑁

𝑚∑
𝑗=1

𝐼𝑗 − 𝛽𝑡𝐻𝑖 𝑚∑
𝑗=1

(1 − 𝑢𝑖𝑗) 𝐼𝑗,

𝑑𝐼𝑖𝑑𝑡 = 𝑟 (1 − 𝑁𝑖𝐾 ) (1 − (1 − 𝑢1) 𝜃𝑖) 𝐼𝑖
+ (1 − 𝑢2) 𝛽V𝐻𝑖𝑁

𝑚∑
𝑗=1

𝐼𝑗 − 𝛿𝑖𝑢3𝐼𝑖
+ 𝛽𝑡𝐻𝑖 𝑚∑

𝑗=1

(1 − 𝑢𝑖𝑗) 𝐼𝑗,
(1)

with nonnegative initial conditions given as𝐻𝑖0, 𝐼𝑖0, and𝑁 =∑𝑚𝑖=1𝐻𝑖 + 𝐼𝑖, 𝑖, 𝑗 = 1, 2, . . . , 𝑚.
The term (1−𝑢1)𝜃𝑖𝐼𝑖 represents the proportion of healthy

suckers that are recruited into healthy population arising
from infected suckers given application of control. With𝑢1(𝑡) = 1, only healthy plants are maintained in the planta-
tion.Thus, 𝑢1, 𝑢2, 𝑢3, 𝑢𝑖𝑗 = 1 indicated full effort placed in the
implementing of controls while 𝑢1, 𝑢2, 𝑢3, 𝑢𝑖𝑗 = 0 indicated
failure to implement the controls. The objective function
to be minimized is given as

𝐽 (𝑢 (⋅)) = ∫𝑡𝑓
0

[
[
𝑚∑
𝑖=1

𝐴 𝑖𝐼𝑖 + 𝑤1𝑢1 (𝑡) + 𝑤2𝑢2 (𝑡)

+ 12 (𝑤3𝑢23 (𝑡) +
𝑚∑
𝑖=1

𝑚∑
𝑗=1

𝑤𝑖𝑗𝑢2𝑖𝑗 (𝑡))]]𝑑𝑡
(2)

with 𝑡𝑓 being the maximum time for which the control
practices are implemented.

The constants𝐴 𝑖 are the weight constants on the infected
plants of cultivar 𝑖 while 𝑤1𝑢1(𝑡), 𝑤2𝑢2(𝑡), (1/2)𝑤3𝑢23(𝑡),
and (1/2)𝑤𝑖𝑗𝑢2𝑖𝑗(𝑡) are the corresponding costs for controls𝑢1, 𝑢2, 𝑢3, and 𝑢𝑖𝑗, respectively, in terms of labor or cash.
The costs associated with use of clean planting materials
(𝑢1) and debudding (𝑢2) are directly proportional to the
rates at which these controls are implemented. Thus, it is
reasonable to consider the objective function with linear
controls 𝑢1, 𝑢2 strategy. Later these will be adjusted to include
quadratic control terms to make the problemmathematically
more tractable. The quadratic cost functions are used as
the simplest form of describing nonlinear costs involved in
implementation of the controls disinfection of tools (𝑢𝑖𝑗) and
roguing 𝑢3 [10].

The target is to determine an optimal control solution𝑢∗ = (𝑢∗1 , 𝑢∗2 , 𝑢∗3 , 𝑢∗𝑖𝑗) for 𝑖, 𝑗 = 1, 2, . . . , 𝑚 with their corre-
sponding state solution which minimizes the objective func-
tion subject to the system on the defined control space:

Ω = {(𝑢) | 𝑢 (𝑡) is Lebesgue measurable on [0, 𝑡𝑓]
with 0 ≤ 𝑢 (𝑡) ≤ 1} . (3)

Thus,

𝐽 (𝑢∗) = min
𝑢∈Ω

𝐽 (𝑢)
where 𝑢 = (𝑢1, 𝑢2, 𝑢3, 𝑢𝑖𝑗) , 𝑖, 𝑗 = 1, 2, . . . , 𝑚. (4)
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Applying all the control options would be the most rapid
method in stopping the spread of BXW but this is often
too costly [9]. Therefore, here we determine combinations
of control measures that would effectively lead to disease
eradication at minimum total cost of implementation.

3. Optimal Control Model: Special Case of
Two Cultivars

To analyze the optimal control model, we consider a special
case whereby, on a particular plantation, only two cultivars,
that is, AAA-genome cultivars (𝑖 = 1) and ABB-genome
cultivar (𝑖 = 2), are considered. This is justified by the
common practice in the affected areas of growing these two
types, one for food and trade and one for beer.

First, we formulate our optimal control problem consid-
ering linear cost function for use of clean planting material
and debudding controls with an intention of determining0 ≤ 𝑢∗1 ≤ 1, 0 ≤ 𝑢∗2 ≤ 1, 0 ≤ 𝑢∗3 ≤ 1, 0 ≤ 𝑢∗𝑖𝑗 ≤ 1, for𝑖, 𝑗 = 1, 2 for 𝑡 = [0, 𝑡𝑓] that minimize

𝐽 (𝑢) = ∫𝑡𝑓
0
[𝐴1𝐼1 + 𝐴2𝐼2 + 𝑤1𝑢1 (𝑡) + 𝑤2𝑢2 (𝑡)

+ 12 (𝑤3𝑢23 (𝑡) + 𝑤𝑖𝑗𝑢2𝑖𝑗 (𝑡))] 𝑑𝑡
(5)

subject to

𝑑𝐻1𝑑𝑡 = 𝑟 (1 − 𝑁1𝐾 ) (𝐻1 + (1 − 𝑢1) 𝜃1𝐼1)
− 𝛽𝑡𝐻1 ((1 − 𝑢11) 𝐼1 + (1 − 𝑢12) 𝐼2)
− (1 − 𝑢2) 𝛽V𝐻1𝑁 (𝐼1 + 𝐼2) ,

𝑑𝐼1𝑑𝑡 = 𝑟 (1 − 𝑁1𝐾 ) (1 − (1 − 𝑢1) 𝜃1) 𝐼1
+ 𝛽𝑡𝐻1 ((1 − 𝑢11) 𝐼1 + (1 − 𝑢12) 𝐼2)
+ (1 − 𝑢2) 𝛽V𝐻1𝑁 (𝐼1 + 𝐼2) − 𝛿1𝑢3𝐼1

𝑑𝐻2𝑑𝑡 = 𝑟 (1 − 𝑁2𝐾 ) (𝐻2 + (1 − 𝑢1) 𝜃2𝐼2)
− 𝛽𝑡𝐻2 ((1 − 𝑢21) 𝐼1 + (1 − 𝑢22) 𝐼2)
− (1 − 𝑢2) 𝛽V𝐻2𝑁 (𝐼1 + 𝐼2)

𝑑𝐼2𝑑𝑡 = 𝑟 (1 − 𝑁2𝐾 ) (1 − (1 − 𝑢1) 𝜃2) 𝐼2
+ 𝛽𝑡𝐻2 ((1 − 𝑢21) 𝐼1 + (1 − 𝑢22) 𝐼2)
+ (1 − 𝑢2) 𝛽V𝐻2𝑁 (𝐼1 + 𝐼2) − 𝛿2𝑢3𝐼2.

(6)

From system (6), it is noted that, in the absence of disease,
no control practice is implemented (𝐼𝑖 = 0, 𝑢1 = 0, 𝑢2 = 0,

𝑢3 = 0, 𝑢𝑖𝑗 = 0). The population growth per cultivar is deter-
mined by

𝑑𝑁𝑖𝑑𝑡 = 𝑟 (1 − 𝑁𝑖𝐾 )𝑁𝑖 ≤ 0 if 𝑁𝑖 (𝑡) ≥ 𝐾. (7)

Moreover, by solving for 𝑁𝑖(𝑡), we obtain 𝑁𝑖(𝑡) = 𝐾𝑁𝑖(0)/(𝐾𝑒−𝑟𝑡 + 𝑁𝑖(0)(1 − 𝑒−𝑟𝑡)) → 𝐾 as 𝑡 → ∞.
Thus, given 𝐻𝑖(0) ≥ 0, 𝐼𝑖(0) ≥ 0, for 𝑖 = 1, 2, the state

solutions𝐻𝑖(𝑡), 𝐼𝑖(𝑡) are positively invariant for all 𝑡 ≥ 0. That
is, the set

𝑋 = {(𝐻𝑖, 𝐼𝑖) ∈ R4+ | 𝐻𝑖 ≥ 0, 𝐼𝑖 ≥ 0,𝐻𝑖 + 𝐼𝑖 ≤ 𝐾 for 𝑖
= 1, 2} (8)

is positively invariant. Furthermore, the following holds:

lim
𝑡→∞

𝑁𝑖 (𝑡) = 𝐾 for 𝑖 = 1, 2. (9)

3.1. Existence of theOptimal Control Solution. Consider linear
controls (𝑢1) and (𝑢2) and quadratic controls 𝑢𝑖𝑗 and 𝑢3 such
that the costs associated with controls 𝑢1, 𝑢2, 𝑢𝑖𝑗, and 𝑢3
are 𝑤1𝑢1(𝑡), 𝑤2𝑢2(𝑡),(1/2)𝑤3𝑢23(𝑡), and (1/2)𝑤𝑖𝑗𝑢2𝑖𝑗(𝑡), respec-
tively. We show that the optimal control solution exists and
thenwe characterize the systemusing Pontryagin’sMaximum
Principle [17, 20] to obtain the optimal control solution.

Theorem 1. There exists an optimal control solution

𝑢∗ = (𝑢∗1 , 𝑢∗2 , 𝑢∗3 , 𝑢∗11, 𝑢∗12, 𝑢∗21, 𝑢∗22) (10)

for objective function (5) subject to model system (6).

Proof. Let 𝑥(𝑡) denote the state variables and 𝑢(𝑡) denote the
control variables. Let the integrand for the objective function
be defined as

𝐿 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) = 𝐴1𝐼1 + 𝐴2𝐼2 + 𝑤1𝑢1 (𝑡) + 𝑤2𝑢2 (𝑡)
+ 12 (𝑤3𝑢23 (𝑡) + 𝑤𝑖𝑗𝑢2𝑖𝑗 (𝑡)) .

(11)

To prove existence of the optimal control solution, we apply
Theorem 4.1 in [21] by checking the following assumptions.

(A1) The set of control and corresponding variables is
nonempty.

(A2) The control set Ω is closed and convex.
(A3) The right-hand side of the state system is bounded

above by a sum of bounded control and the state and
can be written as a linear function with coefficients
dependent on time and state.

(A4) The integrand is a convex function on Ω.
(A5) There exists constant 𝑐1, 𝑐2 > 0 and 𝜏 > 1 such that the

integrand satisfies

𝐿 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) ≥ 𝑐1 |𝑢|𝜏/2 − 𝑐2. (12)
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Since the equations of system (6) have bounded coefficients
and the solution exists in finite time intervals, Theorem 9.2.1
in [22] guarantees the existence of the solution to the model
system which gives assumption (A1). By definition of the
set Ω, (A2) is also satisfied. From system (6), the right-
hand side of the equations is continuous and linear in the
controls indicating that it can be written as 𝑓(𝑡, 𝑥, 𝑢) =𝑔(𝑡, 𝑥) + ℎ(𝑡, 𝑥)𝑢, where 𝑥 = (𝐻1, 𝐼1, 𝐻2, 𝐼2) and 𝑢 =(𝑢1, 𝑢2, 𝑢3, 𝑢11, 𝑢12, 𝑢21, 𝑢22). By the boundedness of the solu-
tion, |𝑓(𝑡, 𝑥, 𝑢)| ≤ 𝐵(|𝑥|+ |𝑢|) for 0 ≤ 𝑡 ≤ 𝑡𝑓. Thus (A3) is also
satisfied.

For (A4), the integrand 𝐿(𝑡, 𝑥(𝑡), 𝑢(𝑡)) is convex; that is, it
can be easily shown given 𝑝 ∈ (0, 1). Let 𝑢(𝑡) and ](𝑡) be two
vectors in the integrand; then

𝐿 (𝑡, 𝑥 (𝑡) , (1 − 𝑝) 𝑢 (𝑡) + 𝑝] (𝑡)) − (1 − 𝑝) 𝐿 (𝑡, 𝑥 (𝑡) ,
𝑢 (𝑡)) − 𝑝𝐿 (𝑡, 𝑥 (𝑡) , ] (𝑡)) = 12 [(𝑝2 − 𝑝)
⋅ (𝑤3 (𝑢3 − ]3)2 + 𝑤11 (𝑢11 − ]11)2
+ 𝑤12 (𝑢12 − ]12)2 + 𝑤21 (𝑢21 − ]21)2
+ 𝑤22 (𝑢22 − ]22)2)] < 0

since 𝑝 ∈ (0, 1) → 𝑝2 < 𝑝.

(13)

Lastly there exist constants 𝑐1, 𝑐2 > 0 and 𝜏 > 1 such that

𝐿 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) ≥ 𝑐1 (𝑢12 + 𝑢22 + ⋅ ⋅ ⋅ + 𝑢222)𝜏/2
− 𝑐2 = 𝑐1 |𝑢|𝜏/2 − 𝑐2.

(14)

Thus, assumption (A5) is satisfied.

3.1.1. Characterization of the Optimal Control Solution. Pon-
tryagin’s Maximum Principle is applied to obtain the nec-
essary conditions that an optimal control pair (𝑥∗(𝑡), 𝑢∗(𝑡))
must satisfy. The principle converts the optimal control
problem given by objective function (5) subject to sys-
tem (6) into a problem of minimizing the Hamiltonian𝐻(𝑡, 𝑥(𝑡), 𝑢(𝑡), 𝜆(𝑡)) with respect to the control set 𝑢(𝑡).𝜆(𝑡) = (𝜆1(𝑡), 𝜆2(𝑡), 𝜆3(𝑡), 𝜆4(𝑡)) is the nonempty adjoint
vector function corresponding to the state variables 𝑥(𝑡) =(𝐻1(𝑡), 𝐼1(𝑡),𝐻2(𝑡), 𝐼2(𝑡)). The necessary conditions to be
satisfied are

𝑑𝑥 (𝑡)𝑑𝑡 = 𝜕𝐻 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡))𝜕𝜆 ,
𝐻 (𝑡, 𝑥 (𝑡) , 𝑢∗ (𝑡) , 𝜆 (𝑡)) ≤ 𝐻 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡)) ,

∀𝑢 ∈ Ω
𝑑𝜆 (𝑡)𝑑𝑡 = −𝜕𝐻 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡))𝜕𝑥 ,

(15)

with the transversality condition 𝜆(𝑡𝑓) = 0.

We define the Hamiltonian equation

𝐻 = 𝐴1𝐼1 + 𝐴2𝐼2 + 𝑤1𝑢1 + 𝑤2𝑢2 + 12 (𝑤3𝑢23 + 𝑤11𝑢211
+ 𝑤12𝑢212 + 𝑤21𝑢221 + 𝑤22𝑢222)
+ 𝜆1 {(1 − 𝑁1𝐾 ) (𝐻1 + (1 − 𝑢1) 𝜃1𝐼1)
− 𝛽𝑡𝐻1 ((1 − 𝑢11) 𝐼1 + (1 − 𝑢12) 𝐼2)
− (1 − 𝑢2) 𝛽V𝐻1𝑁 (𝐼1 + 𝐼2)}
+ 𝜆2 {𝑟 (1 − 𝑁1𝐾 ) (1 − (1 − 𝑢1) 𝜃1) 𝐼1 − 𝛿1𝑢3𝐼1
+ (1 − 𝑢2) 𝛽V𝐻1𝑁 (𝐼1 + 𝐼2)
+ 𝛽𝑡𝐻1 ((1 − 𝑢11) 𝐼1 + (1 − 𝑢12) 𝐼2)}
+ 𝜆3 {𝑟 (1 − 𝑁2𝐾 ) (𝐻2 + (1 − 𝑢1) 𝜃2𝐼2)
− 𝛽𝑡𝐻2 ((1 − 𝑢21) 𝐼1 + (1 − 𝑢22) 𝐼2)
− (1 − 𝑢2) 𝛽V𝐻2𝑁 (𝐼1 + 𝐼2)}
+ 𝜆4 {𝑟 (1 − 𝑁2𝐾 ) (1 − (1 − 𝑢1) 𝜃2) 𝐼2 − 𝛿2𝑢3𝐼2
+ 𝛽𝑡𝐻2 ((1 − 𝑢21) 𝐼1 + (1 − 𝑢22) 𝐼2)
+ (1 − 𝑢2) 𝛽V𝐻2𝑁 (𝐼1 + 𝐼2)} .

(16)

The differential equations governing the adjoint variables are
obtained by differentiating the Hamiltonian 𝐻 with respect
to the state variables. The adjoint system is obtained by
determining

𝑑𝜆1𝑑𝑡 = 𝜕𝐻𝜕𝐻1 ,𝑑𝜆2𝑑𝑡 = 𝜕𝐻𝜕𝐼1 ,𝑑𝜆3𝑑𝑡 = 𝜕𝐻𝜕𝐻2 ,𝑑𝜆4𝑑𝑡 = 𝜕𝐻𝜕𝐼4

(17)

written as

𝑑𝜆1𝑑𝑡 = 𝜉2𝑁 [𝐻2 (𝜆4 − 𝜆3) + 𝐻1 (𝜆2 − 𝜆1)]
− [𝜉11 + 𝜉2 + 𝜉3] (𝜆2 − 𝜆1)
+ 𝑟𝐾 (𝐼1𝜆2 + 𝐻1𝜆1) − 𝑟𝜆1 (1 − 𝑁1𝐾 )
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𝑑𝜆2𝑑𝑡 = −𝐴1
+ [𝜉2𝑁 − 𝜉6] [𝐻2 (𝜆4 − 𝜆3) + 𝐻1 (𝜆2 − 𝜆1)]
+ 𝛿1𝑢3𝜆2 + 𝑟𝐾 (𝜆1𝐻1 + 𝜆2𝐼1)
− (𝜉3 + 𝐶11) (𝜆2 − 𝜆1) − 𝐶21 (𝜆4 − 𝜆3)
− 𝑟 (1 − 𝑁𝐾) [𝜆2 − (1 − 𝑢1) 𝜃1 (𝜆2 − 𝜆1)]

𝑑𝜆3𝑑𝑡 = 𝜉2𝑁 [𝐻1 (𝜆2 − 𝜆1) + 𝐻2 (𝜆4 − 𝜆3)]
− (𝜉12 + 𝜉2 + 𝜉4) (𝜆4 − 𝜆3)
+ 𝑟𝐾 (𝜆3𝐻2 + 𝜆4𝐼2) − 𝜆3𝑟 (1 − 𝑁2𝐾 )

𝑑𝜆4𝑑𝑡 = −𝐴2
+ [𝜉2𝑁 − 𝜉6] [𝐻1 (𝜆2 − 𝜆1) + 𝐻2 (𝜆4 − 𝜆3)]
+ 𝛿2𝑢3𝜆4 + 𝑟𝐾 (𝜆3𝐻2 + 𝜆4𝐼2)
− 𝐶12 (𝜆2 − 𝜆1) − (𝜉4 + 𝐶22) (𝜆4 − 𝜆3)
− 𝑟 (1 − 𝑁𝐾) [𝜆4 − (1 − 𝑢1) 𝜃2 (𝜆4 − 𝜆3)] ,

(18)

where

𝜉11 = 𝛽𝑡 (𝐼1 (1 − 𝑢11) + 𝐼2 (1 − 𝑢12)) ,
𝜉12 = 𝛽𝑡 (𝐼1 (1 − 𝑢21) + 𝐼2 (1 − 𝑢22)) ,
𝜉2 = 𝛽V (1 − 𝑢2) (𝐼1 + 𝐼2)𝑁
𝜉3 = 𝑟𝐼1 (1 − 𝑢1) 𝜃1𝐾 ,
𝜉4 = 𝑟𝐼2 (1 − 𝑢1) 𝜃2𝐾
𝜉6 = (1 − 𝑢2) 𝛽V𝑁 ,
𝐶11 = 𝐻1 (1 − 𝑢11)
𝐶12 = 𝐻1 (1 − 𝑢12) 𝛽𝑡

𝐶21 = 𝐻2 (1 − 𝑢21) 𝛽𝑡
𝐶22 = 𝐻2 (1 − 𝑢22) 𝛽𝑡

(19)

with the transversality condition 𝜆1(𝑡𝑓) = 𝜆2(𝑡𝑓) =𝜆3(𝑡𝑓) = 𝜆4(𝑡𝑓) = 0. For the optimal controls, we solve for(𝑢∗1 , 𝑢∗2 , 𝑢∗3 , 𝑢∗11, 𝑢∗12, 𝑢∗21, 𝑢∗22) by differentiating𝐻with respect
to the respective controls, and considering the bounds, we
obtain the optimal control solution as follows.

For the linear controls 𝑢1, 𝑢2, bounded such that 0 ≤𝑢(𝑡) ≤ 1, the optimal control solution is given as

𝑢∗1 (𝑡) =
{{{{{{{{{{{{{{{{{

0 if 𝜕𝐻𝜕𝑢1 > 0
𝑢∗1𝑠 if 𝜕𝐻𝜕𝑢1 = 0
1 if 𝜕𝐻𝜕𝑢1 < 0

𝑢∗2 (𝑡) =
{{{{{{{{{{{{{{{{{

0 if 𝜕𝐻𝜕𝑢2 > 0
𝑢∗2𝑠 if 𝜕𝐻𝜕𝑢2 = 0
1 if 𝜕𝐻𝜕𝑢2 < 0.

(20)

Let 𝜙1 = 𝜕𝐻/𝜕𝑢1 and 𝜙2 = 𝜕𝐻/𝜕𝑢2 referred to as
switching functions for the controls 𝑢1 and 𝑢2, respectively. In
the region where 𝜙1 and 𝜙2 are not equal to zero, we say that
the controls 𝑢1 and 𝑢2 are bang-bang controls. In this case,
applications of these controls are switched between the lower
and the upper bound through the period of implementation.
To address the case where 𝜙1 and 𝜙2 are zeros for some time
interval {𝑡1, 𝑡2}, we note that all the derivatives with respect to
the corresponding controls vanish in this time interval. The
functions 𝜙1 and 𝜙2 are differentiated with respect to time
and substitution is consequently done until the controls 𝑢1
and 𝑢2, respectively, reappear. The optimal controls are then
referred to as singular arcs. The singular arcs 𝑢1𝑠 and 𝑢2𝑠 are
then determined by equating the time derivatives to zero and
solving. If the 𝑘th derivative of the switching functions 𝜙1, 𝜙2
is nonzero and the Generalized Legendre Clebsch Condition
given by

(−1)𝑘 𝜕𝐻𝜕𝑢𝑖 [
𝜕2𝑘𝜙𝑖𝜕𝑡2𝑘 ] ≥ 0 for 𝑘 = 0, 1, 2, . . . (21)

is satisfied, then the singular controls have order 𝑘 [23].
Thus, for the system (Section 3), we have the optimal control
solution given as

𝑢∗1 (𝑡) = {{{{{
0 if 𝜙1 > 0𝑢∗1𝑠 if 𝜙1 = 01 if 𝜙1 < 0

where, 𝜙1 = 𝐾𝑤1 + 𝑟 (𝑁1 − 𝐾) 𝜃1𝐼1 (𝜆∗1 − 𝜆∗2) − 𝑟𝐼2 (𝑁2 − 𝐾) (𝜆∗3 − 𝜆∗4) 𝜃2𝐾
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𝑢∗2 (𝑡) = {{{{{
0 if 𝜙2 > 0𝑢∗2𝑠 if 𝜙2 = 01 if 𝜙2 < 0

where, 𝜙2 = 𝑤1 + (𝐼1 + 𝐼2) (𝐻1 (𝜆∗1 − 𝜆∗2) + 𝐻2 (𝜆∗3 − 𝜆∗4)) 𝛽V𝑁 .
(22)

For the quadratic controls, given the bound 0 ≤ 𝑢3, 𝑢𝑖𝑗 ≤ 1,
where 𝑖, 𝑗 = 1, 2, the optimal controls are given as

𝑢∗3 (𝑡) =
{{{{{{{{{{{{{{{{{

𝑢∗3 = 0 if 𝜕𝐻𝜕𝑢3 < 0
0 ≤ 𝑢∗3 ≤ 1 if 𝜕𝐻𝜕𝑢1 = 0
𝑢∗3 = 1 if 𝜕𝐻𝜕𝑢1 > 0

𝑢∗1𝑗 (𝑡) =
{{{{{{{{{{{{{{{{{

𝑢∗𝑖𝑗 = 0 if 𝜕𝐻𝜕𝑢𝑖𝑗 < 0
0 ≤ 𝑢∗𝑖𝑗 ≤ 1 if 𝜕𝐻𝜕𝑢𝑖𝑗 = 0
𝑢∗𝑖𝑗 = 1 if 𝜕𝐻𝜕𝑢𝑖𝑗 > 0.

(23)

These can be summarized as

𝑢∗3 = min{1,max{0, 𝐼1𝜆∗2𝛿1 + 𝐼2𝜆∗4𝛿2𝑤3 }}
𝑢∗11 = min{1,max{0, 𝐼1𝐻1 (𝜆∗2 − 𝜆∗1) 𝛽𝑡𝑤11 }}
𝑢∗12 = min{1,max{0, 𝐼2𝐻1 (𝜆∗2 − 𝜆∗1) 𝛽𝑡𝑤12 }}
𝑢∗21 = min{1,max{0, 𝐼1𝐻2 (𝜆∗4 − 𝜆∗3) 𝛽𝑡𝑤21 }}
𝑢∗22 = min{1,max{0, 𝐼2𝐻2 (𝜆∗4 − 𝜆∗3) 𝛽𝑡𝑤22 }} ,

(24)

where 𝜆∗1 , 𝜆∗2 , 𝜆∗3 , 𝜆∗4 are solutions to the adjoint system (18)
with the transversality condition.Theoptimal controls for use
of clean planting materials (𝑢1) and debudding (𝑢2) tend to
suggest existence of singular arcs. In this case, the controls
are implemented whenever the resources are available which
better suits application than the bang-bang case where they
are just switched between the lower and the upper limit.
According to Ledzewicz and Schätler [23], singular controls
(if they exist) tend to be either the best (minimizing) or
the worst (maximizing) strategies and in either case they are
essential in determining the structure of optimal controls.
However due to the complexity of the optimal control model,
this can not be verified. Thus we consider quadratic terms
for all the controls in the objective function for the following
reasons: (1) Minimizing linear control terms in the objective

function is similar to minimizing quadratic terms. (2) With
varying seasons, the cost associated with implementation
of these control may vary unproportionally to the rate of
implementation.

3.1.2. Quadratic Control Terms for Debudding and Use of
Clean Planting Materials. Considering quadratic terms for
the objective function to be minimized and by applying
Pontryagin’s Maximum Principle, we have the following
Hamiltonian function:

𝐻 = 𝐴1𝐼1 + 𝐴2𝐼2 + 12 (𝑤1𝑢21 + 𝑤2𝑢22 + 𝑤3𝑢23
+ 𝑤11𝑢211 + 𝑤12𝑢212 + 𝑤21𝑢221 + 𝑤22𝑢222)
+ 𝜆1 {(1 − 𝑁1𝐾 ) (𝐻1 + (1 − 𝑢1) 𝜃1𝐼1)
− 𝛽𝑡𝐻1 ((1 − 𝑢11) 𝐼1 + (1 − 𝑢12) 𝐼2)
− (1 − 𝑢2) 𝛽V𝐻1𝑁 (𝐼1 + 𝐼2)}
+ 𝜆2 {𝑟 (1 − 𝑁1𝐾 ) (1 − (1 − 𝑢1) 𝜃1) 𝐼1 − 𝛿1𝑢3𝐼1
+ (1 − 𝑢2) 𝛽V𝐻1𝑁 (𝐼1 + 𝐼2)
+ 𝛽𝑡𝐻1 ((1 − 𝑢11) 𝐼1 + (1 − 𝑢12) 𝐼2)}
+ 𝜆3 {𝑟 (1 − 𝑁2𝐾 ) (𝐻2 + (1 − 𝑢1) 𝜃2𝐼2)
− 𝛽𝑡𝐻2 ((1 − 𝑢21) 𝐼1 + (1 − 𝑢22) 𝐼2)
− (1 − 𝑢2) 𝛽V𝐻2𝑁 (𝐼1 + 𝐼2)}
+ 𝜆4 {𝑟 (1 − 𝑁2𝐾 ) (1 − (1 − 𝑢1) 𝜃2) 𝐼2 − 𝛿2𝑢3𝐼2
+ 𝛽𝑡𝐻2 ((1 − 𝑢21) 𝐼1 + (1 − 𝑢22) 𝐼2)
+ (1 − 𝑢2) 𝛽V𝐻2𝑁 (𝐼1 + 𝐼2)} .

(25)

The existence of controls in this case can be proved using
similar techniques as in Theorem 1. The adjoint variables are
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the same as system (18). Thus the optimal control solution
can then be given as

𝑢∗1 = min{1,max{0, 𝑟 (𝐾 − 𝑁1) 𝜃1𝐼1 (𝜆∗1 − 𝜆∗2) − 𝑟𝐼2 (𝐾 − 𝑁2) (𝜆∗3 − 𝜆∗4) 𝜃2𝐾𝑤1 }}
𝑢∗2 = min{1,max{0, −(𝐼1 + 𝐼2) (𝐻1 (𝜆∗1 − 𝜆∗2) + 𝐻2 (𝜆∗3 − 𝜆∗4)) 𝛽V𝑁𝑤2 }}
𝑢∗3 = min{1,max{0, 𝐼1𝜆∗2𝛿1 + 𝐼2𝜆∗4𝛿2𝑤3 }}
𝑢∗11 = min{1,max{0, 𝐼1𝐻1 (𝜆∗2 − 𝜆∗1) 𝛽𝑡𝑤11 }}
𝑢∗12 = min{1,max{0, 𝐼2𝐻1 (𝜆∗2 − 𝜆∗1) 𝛽𝑡𝑤12 }}
𝑢∗21 = min{1,max{0, 𝐼1𝐻2 (𝜆∗4 − 𝜆∗3) 𝛽𝑡𝑤21 }}
𝑢∗22 = min{1,max{0, 𝐼2𝐻2 (𝜆∗4 − 𝜆∗3) 𝛽𝑡𝑤22 }} .

(26)

The optimal control characterizations are inversely propor-
tional to the associated weighted costs of implementation
indicating that the effectiveness of the control strategy greatly
depends on the necessary costs.

Next we solve numerically the optimality system consist-
ing of state system (6) with corresponding initial conditions,
adjoint system (18) with the transversality condition, and
optimal control characterization assuming the costs terms
associated with the controls are quadratic (26).

3.2. Numerical Simulation. In this section, numerical results
for the optimal control model given in Section 3 are studied.
The backward-forward sweep method with the fourth-order
Runge-Kutta algorithm is applied to solve the optimality
system. The algorithm has been implemented by various
authors to obtain optimal control solutions of related systems
[11, 14, 17]. For easy reference we summarize it below.

(i) Make an initial guess of the control; 𝑢 = 0 is always
sufficient.

(ii) Using the initial conditions 𝐻10, 𝐼10, 𝐻20, 𝐼20, and
the values of 𝑢 solve for 𝑥 forward in time according
to the differential equations in the optimality system
given.

(iii) Using the transversality condition 𝜆(𝑡𝑓) = 0 and the
values of 𝑥 and 𝑢 solve the adjoint system 𝜆 backward
in time according to the corresponding differential
equations in the optimality system.

(iv) Update the control set 𝑢 by entering the new values
of 𝑥 and 𝜆 into the characterization of the optimal
control.

(v) Verify for convergence the following: if the values
obtained are sufficiently close to the corresponding
ones in the previous iterations, then the output of
the current values is the optimal control solution;
otherwise return to step (ii).

This algorithm was implemented in Matlab by modifying the
optimal control code presented by [17].

The numerical values used for the numerical simulation
as reflected in Table 1 are obtained from literature and
some are selected from given ranges based on the banana
growing system in Uganda, for which the feasible solution is
guaranteed.

According to the guide by [24], the maintenance rate, 𝑟,
is considered to range between 3 between 5 stems of varying
ages per mat. It is noted that the smaller the number of stems
the bigger the bunch. Also, for a new plantation, the carrying
capacity 𝐾 of stems per hectare given 3m × 3m spacing is
assumed to be 750–900 mats [24]. This means, for a well-
established plantation, the average carrying capacity would
range from 2250 to 4500 stems. Roguing by removal of only
the infected stem at stool level or by removal of the entire mat
depending on the severity of the disease is considered to range
between 0 and 1 permonth per hectare per infected stem.The
proportion of healthy suckers arising from infected mats is
also assumed to range between 0 and 1. Transmission by tools
is dependent on the activities being carried out within the
plantation. For instance, harvesting of the leafmight require a
single cut as compared to desuckering which requires several
cuts and exposes the attached mat to infection. Accordingly,
we assume the rate of tool-mediated transmission to range
between 0 and 0.002. The given range guarantees existence
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Table 1: Values used for model simulations.

Parameter Range Value Unit Source𝑟 3–5 3 Month−1 Assumed𝛿1 0-1 0.1 Month−1 Assumed𝛿2 0-1 0.1 Month−1 Assumed𝜃1 0-1 0.9997 Month−1 [18]𝜃2 0-1 0.9998 Month−1 [18]𝛽V 2.031 Month−1 [18]𝛽𝑡 0–0.02 0.00002 Month−1 Assumed𝐾 1000–4500 1000 ha−1 Assumed

Table 2: Table showing costs of implementations of control options [19].

Control practice Control option Cost per hectare (Ug.Sh)
Use of clean planting materials 𝑢1 1,454,500
Disinfection of tools 𝑢𝑖𝑗, 𝑖, 𝑗 = 1, 2 12,000
Debudding 𝑢2 72,000
Roguing 𝑢3 1,615,500

of the optimal solution if other factors are kept constant. The
rest of the parameters are as given in [18].

The choice of the weight constants is intended to reflect
the cash and labor involved in the controlmeasure. According
to the study by Sebikari [19], use of clean planting materials
and roguing was more expensive than debudding and disin-
fection of tools. In Table 2, the costs for implementation of
these controls are given.

The low cost for disinfection of tools was due to the
fact that most farmers use fire frames made from collected
firewood instead of JIK. Additionally, the required labor
for activities like disinfection of tools and debudding is
mainly from family members which makes these activities
less expensive.Thus, we consider reasonable ratios as weights
such that 𝐴1 = 50, 𝐴2 = 50, 𝑤1 = 1212, 𝑤2 = 6, 𝑤3 = 1346,
and 𝑤11 = 𝑤12 = 𝑤21 = 𝑤22 = 1. Assume the control options
are implemented for a period of two years such that 𝑡𝑓 = 24
(months).

To illustrate the dynamics of disease with and without
controls, we consider the following initial conditions: 𝐻10 =300, 𝐼10 = 50,𝐻20 = 300, 𝐼20 = 50 chosen arbitrary given that
the model exhibits global stability behavior (not presented
here). The controls are then introduced after one month.
We investigate the following combinations of cultural control
practices. Note that several combinations of control strategies
have been considered. However, only those giving substantial
reductions when applied as compared to no control are
presented.

(A) Optimal debudding
(B) Combination of two controls

(B1) Optimal debudding and disinfection of tools
between cultivars

(B2) Optimal debudding and disinfection of tools
within cultivars

(B3) Optimal debudding and roguing
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Figure 1: Simulation for the number of infected stems for AAA-
genome comparing different control strategies after time 𝑡 = 1
month applied for a period of 24months; (A) (𝑢2 ̸= 0), (B1) (𝑢2, 𝑢12 ̸=0), (B2) (𝑢2, 𝑢11 ̸= 0), (B3) (𝑢2, 𝑢3 ̸= 0), (C1) (𝑢2, 𝑢3, 𝑢21 ̸= 0), (C2)
(𝑢2, 𝑢3, 𝑢22 ̸= 0), and (D) (all controls).

(C) Combination of three control options

(C1) Optimal debudding, disinfection of tools
between cultivars, and roguing

(C2) Optimal debudding, disinfection of tools within
cultivars, and roguing

(D) Combination of all control options.

In Figures 1 and 2, we present how the incidence of BXW
varies from the same starting position with each control
strategy. The objective function was optimized using only
controls in the given strategy while setting others to zero.
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Figure 2: Simulation for the number of infected stems for ABB-
genome comparing different control strategies after time 𝑡 = 1
month applied for a period of 24months: (A) (𝑢2 ̸= 0), (B1) (𝑢2, 𝑢12 ̸=0), (B2) (𝑢2, 𝑢11 ̸= 0), (B3) (𝑢2, 𝑢3 ̸= 0), (C1) (𝑢2, 𝑢3, 𝑢21 ̸= 0), (C2)
(𝑢2, 𝑢3, 𝑢22 ̸= 0), and (D) (all controls). Parameters are as given in
Table 1.

Strategies (A) (debudding only), (B1) (debudding and
disinfection of tools between cultivars), and (B2) (debudding
and disinfection of tools within cultivars) are all preventative
control practices. In both Figures 1 and 2, the population
levels of AAA and ABB infected stems obtained using these
control are lower than when no control is applied. Further-
more, we observe that implementation of these controls only
reduces the risk of further infection but does not lead to
reduction in already infected stems. For example, the number
of infected AAA and ABB cultivars was lower by 10% of the
expected number in the absence of control after 20 months
of application. It is also noted that disinfection of tools(𝑢11, 𝑢12, 𝑢21, 𝑢22) led to relatively better results in the AAA-
genome cultivar as compared to ABB-genome.This indicates
that, in the absence of containment controls, disinfection of
tools within AAA-genome cultivars is crucial. From these
results, we can conclude that application of only preventative
controls delays further infection but, with these parameters,
if no other measures are implemented, then uncontrolled
endemic levels may be attained asymptotically.

When either of the strategies (B3) (debudding and rogu-
ing), (C1) (debudding, roguing, and disinfection of tools
between cultivars), and (C2) (a combination of debudding(𝑢2), roguing (𝑢3), and disinfection of tools within cultivars)
is implemented independently, the number of infected AAA
and ABB stems reduced greatly as compared to the counter-
parts where only prevention controls are applied. In this case,
both prevention and containment controls are applied and
as expected the number of infected stems declines by more
than 70% asymptotically to zero. Furthermore, we notice the
importance of disinfection of tools among the ABB-genome
cultivars. The findings here indicate that disinfection of tools
within the highly susceptible cultivars (ABB) and between
cultivars is important and reduces the risk of further infection
that could arise during roguing and pruning exercises.

Lastly, when all controls are implemented, we observe
that the number of infected stems in both cultivars declined
rapidly (Figures 1 and 2). That is, AAA and ABB infected
stems declined by 90% of the expected number of stems
considered in the absence of the controls.

In Figure 3, we present the control profiles for each
strategy defined above. In all cases, we observe that the
control profiles for debudding (𝑢2) and roguing (𝑢3) are
maintained at maximum intensity throughout the period
of implementation. The control of use of clean planting
materials (𝑢1) is maintained at the lower limit indicating
that this control is neutral and should not be implemented
alone but in the combination with other controls. As noted
in Figures 1 and 2, application of all controls gave better
results as compared to the strategies when 𝑢1 was set to
zero. The control profile for disinfection of tools between
and within cultivars (𝑢12) and (𝑢22) in strategies (B1) and
(B2) is maintained at the upper bound throughout the period
of implementation while those in strategies (C1) and (C2)
decline and oscillate between the upper and the lower bound
after a period of 15 months.This indicates that, in the absence
of roguing and considering debudding and disinfection of
tools as the only controls applied, maximum effort should be
used to reduce new infection. On the contrary, with roguing
disinfection of tools can be at maximum intensity when
incidence is still high but relaxed and applied at intervals as
the infection levels decline.

In Figure 4, numerical results compare control strategies
applied at different infection levels (𝑡 = 0, 𝑡 = 1 month,𝑡 = 2 months) with the case of no control. We notice
that if control measures are applied at 𝑡 = 0 when the
prevalence is about 10%, then it would require about 20
months to bring infection below 1% and 30 months for less
than 0.1%. On the contrary, if controls are introduced when
the prevalence is about 80% (𝑡 = 1), then much more effort
and time will be required to attain a prevalence of less than
1%. Also if controls were introduced when the disease was
already endemic, then controlling the diseases would become
much harder as it would require more time to reduce infec-
tion to undetectable levels. Clearly, we notice that disease
management and containment are much dependent on the
infection level. This implies that once the disease is endemic
it may be more cost-effective in clearing the plantation and
replanting than in continuously applying the controls which
might take up to 5 years to bring disease to undetectable
levels.

Additionally, we observe that even when infection is
reduced to undetectable levels, that is, <1%, irrespective of
the time of withdrawal of controls, the prevalence increases
rapidly towards the endemic equilibrium. In Figure 5, a
comparison of the cases where controls are completely
withdrawn and when few are maintained is presented after
infection is <1%. We observe that the number of infected
stems continues to decline for the case where controls are just
reduced compared with the case when they are completely
withdrawn.This implies continuous monitoring and applica-
tion of controls when necessary should be emphasized even
when infection levels are undetectable to eliminate cases of
resurgence within or outside plantations.
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Figure 3: Plots showing control profiles for the different strategies (D), (A), (B1), (B2), (B3), (C1), and (C2), respectively, when quadratic cost
terms are considered. The graphs are maintained at maximum value in all strategies for debudding and roguing. Parameters are as given in
Table 1.

4. Conclusions

In this paper, a deterministic model for optimal control
of BXW within a mixed cultivar plantation is derived and
analyzed. The possible modes of spread are incorporated
including inflorescence infection and use of infected planting
materials obtained via mother-to-sucker and tool-mediated
spread were considered. The model focuses on the interplay
of control options such as debudding, use of clean planting
material, disinfection of tools, and roguing as control mea-
sures of BXW.

At first, linear cost terms for the debudding and use
of clean planting material controls were considered. This

is because the cost of implementation of these controls is
directly proportional to the rate of implementation. For the
other controls, quadratic cost terms were considered due to
the nonlinear changes in their implementations. By applying
Pontryagin’s Maximum Principle, the necessary conditions
for optimal control of BXW were obtained. These conditions
suggest possibility of having debudding and use of clean
planting materials controls as bang-bang controls within
the upper and the lower bounds. They appear also to have
singular arcs on a given interval for which controls 𝑢1 and 𝑢2
are reactivated whenever necessary although this could not
be explicitly verified due to the complexity of the model.
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genome and ABB-genome. The purple line shows, after 𝑡 = 30, all
controls are withdrawn. Red dashed and green lines indicate the case
when only (B1) or (B3) is continued after 𝑡 = 30.

To obtain insights into the combination of control
options, the linear cost terms for debudding and use of clean
planting materials in the objective function were adjusted
to include quadratic terms. Using Pontryagin’s Maximum
Principle and through numerical simulations, it was observed
that several combinations of different controls resulted in
large reductions in the number of infected BXW stems. From
the comparison between the suggested control strategies (see
Figures 1 and 2), application of all the controls gave the most
significant reduction in the number of infected AAA-genome
and ABB-genome cultivars. Our finding further indicates the
relevance of applying control measures as soon as infection
in observed. We noted that the earlier the control measures
are applied, the easier it becomes to manage the disease.
Also if disease has reached endemic level, then it is cheaper
to clear the plantation than to apply continued controls,
since these will take much time and in the long run become
costly. Importantly, it was noted that once the controls are
withdrawn even with less than 1% infection level, the disease
rapidly increases to endemic level. This calls for emphasis in
monitoring and application of controls whenever necessary,
even when disease is seemingly eradicated.

Lastly, it is important to note that results obtained are sub-
ject to the weight constants chosen and some parameters that
vary with season. The true weight constants and parameters

would require extensive field work and data collection. It is
also important to acknowledge from the model formulation
that other factors may influence implementation of the
controls including incubation period and biotic and abiotic
conditions. However, the results given in this study give
insights into how best BXW can be managed.
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