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ABSTRACT 

Animal studies have shown that acetylcholine (ACh) levels in the dorsal striatum play a role in 

reversal learning. However, this has not been studied in humans due to a lack of appropriate non-

invasive techniques. Proton magnetic resonance spectroscopy (1H-MRS) can be used to measure 

metabolite levels in humans in vivo. Although it cannot be used to study ACh directly, 1H-MRS can 

be used to study choline, an ACh precursor which is linked to activity-dependent ACh release. The 

aim of this study was to use functional-1H-MRS (fMRS) to measure changes in choline levels in the 

human dorsal striatum during performance of a probabilistic reversal learning task. We demonstrate a 

task-dependent decrease in choline, specifically during reversal, but not initial, learning. We interpret 

this to reflect a sustained increase in ACh levels, which is in line with findings from the animal 

literature. This task-dependent change was specific to choline and was not observed in control 

metabolites. These findings provide support for the use of fMRS in the in vivo study of the human 

cholinergic system. 

 

INTRODUCTION 

Studies in rodents have demonstrated that cholinergic activity in the associative dorsal striatum (DS) 

is crucial for reversal learning. For example, disruption of cholinergic signalling in this region, due 

mainly to striatal cholinergic interneuron (CIN) activity, has been shown to impair reversal learning, 

whilst leaving initial learning intact (Ragozzino et al., 2002, 2009; Tzavos et al., 2004; McCool et al., 

2008; Brown et al., 2010; Bradfield et al., 2013). This impairment is specifically related to regressive 

errors after the reversal has been identified (rather than to identifying the occurrence of the reversal 

per se), suggesting interference between old and new learning (Bradfield et al., 2013). Additionally, 

acetylcholine (ACh) efflux has been shown to increase during reversal learning, but not during initial 

learning (Ragozzino & Choi, 2004; Ragozzino et al., 2009; Brown et al., 2010). Moreover, this is 

specific to the dorsomedial striatum, with no changes in ACh levels in either the dorsolateral striatum 

or the ventral striatum during reversal learning (Ragozzino et al., 2009). 

Despite the importance of striatal ACh in reversal learning, there are currently no studies of striatal 

ACh function in humans due to a lack of appropriate non-invasive techniques. Proton magnetic 

resonance spectroscopy (1H-MRS) is an in vivo application of nuclear magnetic resonance 

spectroscopy that is non-invasive and is implemented on MRI scanners (Puts & Edden, 2012). 1H-

MRS is typically used to measure average metabolite levels in a specific region of interest. However, 

more recently, 1H-MRS has been used as a functional measure (functional magnetic resonance 

spectroscopy, fMRS) to detect event-related fluctuations in brain metabolites during a behavioural 

task (Apšvalka et al., 2015; Lindner et al., 2017). Although ACh appears on the spectrum at 3.21ppm, 

several other choline-containing compounds found in the ACh cycle (Figure 1) are also present in the 

brain at much higher levels, three of which are detectable by MRS; choline (CHO, 3.19ppm), 

phosphocholine (PC, 3.22ppm) and glycerophosphocholine (GPC, 3.23ppm). Due to its low 

concentration in the human brain, ACh levels are currently not detectable over the other choline-

containing compounds. However, evidence from the animal literature shows that ACh levels are 

related to CHO levels (Löffelholz, 1998; Klein et al., 2002), making CHO a potential proxy for ACh.  
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Due to their similarity in chemical structure, CHO, PC and GPC are located close to each other on the 

MRS spectrum (Figure 2) and are traditionally modelled together as a single peak. This is problematic 

for the idea of using choline-containing compounds as a measure of ACh (especially when measuring 

changes in ACh concentration over time), due to the relationship between CHO and PC within the 

CHO cycle. Indeed, levels of CHO and PC have been shown to be inversely correlated (Miller et al., 

1996). Consequently, measuring the three choline-containing compounds as a single summative value 

will likely mask any functional changes in CHO (e.g. a decrease in CHO would not be observed due 

to a corresponding increase in PC), making it difficult to capture CHO dynamics that might betray 

functional ACh concentration fluctuations. 

However, we have previously demonstrated that it is possible to separate the CHO peak at 3T whilst 

modelling PC and GPC together as a single peak (PC+GPC). We further demonstrated task-driven 

fluctuations of CHO levels that map on to theoretically expected changes in ACh levels, thereby 

providing support for the potential use of CHO as a proxy measure of ACh dynamics (Lindner et al., 

2017). 

An important piece of the puzzle then, is the relationship between neuronal activity and CHO levels. 

Evidence from the animal literature shows a biphasic change in extracellular CHO in response to 

sustained neuronal activation (Löffelholz, 1998; Klein et al., 2002). There is an initial peak in CHO 

concentration due to hydrolysis of the released ACh, followed by a decrease below resting levels. This 

decrease is caused by increased translocation of choline uptake transporters, which mobilise CHO 

back into the cell and thereby accelerate ACh synthesis. At this point, the rate limiting step of ACh 

synthesis and release is the availability of free CHO for uptake. Therefore, high temporal resolution in 

fMRS acquisition would capture both the activity-dependent initial CHO increase (e.g. Linder et al. 

2017) and later decrease, but lower temporal resolution would only capture the later decrease. 

Subcortical fMRS acquisitions, such as from the striatum, impose a marked trade-off between 

temporal resolution and signal-to-noise ratio. As a consequence, here we acquired averaged 

measurements over short time bins throughout the task, providing a relatively low temporal resolution 

functional measure, targeting the putative ACh release-dependent decrease in CHO. 

Typical studies of human reversal learning use two-choice tasks with multiple reversals. However, 

during two-choice tasks, once participants have identified the reversal, they straightforwardly switch 

to the opposite option, guided by their overall model of the task structure. This would provide little 

information on processes required for learning and expressing a new behaviour. Given evidence that 

the cholinergic system contributes to new learning after the reversal has been identified, we instead 

used a multi-alternative probabilistic task, to test the hypothesis that CHO levels in the DS would 

change during reversal learning. Based on evidence from the animal literature as outlined above, we 

hypothesised that the sustained involvement of ACh release in reversal learning over multiple task 

trials would drive a cumulative decrease of free CHO levels. 

MATERIALS AND METHODS 

Participants 

The study was approved by the University of Reading Research Ethics Committee. 45 volunteers (25 

female) between the ages of 18.1 and 35.3 (mean = 25.8, SD = 3.8) were recruited by opportunity 

sampling. All participants were healthy, right handed non-smokers, and gave written informed 

consent prior to participation. 
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One participant was excluded due to computer error during data collection.18 participants were 

excluded from the analysis reported here as they did not reach the task learning criteria specified 

below. Of the remaining 26 participants (10 female; mean age = 25.4, SD = 3.2), 15 reached criterion 

in both the initial learning and reversal rounds (“learners”), and 11 reached criterion in the initial 

learning round only (“partial learners”). 

Behavioural Data 

Learning Task 

The task was a probabilistic multi-alternative reinforcement learning task, based on the Friedland’s 

card betting task as adapted for functional magnetic resonance imaging (fMRI) (Schönberg et al., 

2007), with an additional reversal component. It was programmed using MATLAB (2014a, The 

Mathworks, Inc., Natick, MA, United States) and Psychtoolbox (Brainard, 1997). 

First, participants were presented with a fixation cross displayed in the centre of the visual display. 

Participants were then presented with four decks of cards. Each deck contained a mixture of winning 

and losing cards, corresponding respectively to a gain or loss of 50 points. The probability of getting a 

winning card differed for each deck (75%, 60%, 40%, and 25%) and the probabilities were randomly 

assigned across the four decks for each participant. Participants indicated their choice of deck by 

pressing the corresponding button on a button box. Outcomes were pseudo-randomised so that the 

assigned probability was true over every 20 times that deck was selected. Additionally, no more than 

4 cards of the same result (win/loose) were presented consecutively in the 75% and 25% decks and no 

more than 3 cards of the same result in the 60% and 40% decks. A cumulative points total was 

displayed in the bottom right-hand corner throughout the session and in the centre of the visual 

display at the end of each trial (Figure 3). Participants were instructed that some decks may be better 

than others, they are free to switch between decks as often as they wish, and they should aim to win as 

many points as possible. 

The learning criterion was set as selection of either of the two highest decks on at least 80% of 20 

consecutive trials. As the research question focused on the reversal, we wanted to encourage 

behavioural and neurochemical stability before the reversal to reduce intra-individual noise. 

Therefore, a “stability phase” was included at the end of the initial learning phase. The number of 

trials in this phase was equal to 60% of the number of trials taken to reach criterion. At the end of this 

phase the deck probabilities were reversed so that the high probability decks became low probability 

and vice versa. Participants were not informed of the reversal. After reaching the learning criterion 

again, participants completed a second stability phase, after which the task ended (Figure 4). 

Participants were given 100 trials to reach criterion in both the initial learning and reversal phase. If 

participants did not reach criterion in the initial learning phase, they did not experience the stability 

phase or the reversal. This was due to the rationale that participants who had not reached criterion 

during initial learning would not identify a change in contingencies during the reversal and therefore 

would not behave in the same way as those who had. If participants did not reach criterion in the 

reversal phase within 100 trials, the task ended and they did not complete the second stability phase. 

The presentation timings were jittered. The stimuli were displayed for between 0.8 and 2.8s, with an 

average display time of 1.7s (standard deviation = 0.6s). Each trial lasted, on average 8.3s (standard 

deviation = 1.3s). It was essential that the spectral measurements were synchronised with the onset of 
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the reversal, to ensure there was no overlap of post-criterion stability trials during the measurement 

acquired over reversal.  Therefore, the task was coded so that the onset of the reversal would initiate 

at the start of a new spectral measurement. If needed, trials were added to the end of the post criterion 

stability period to ensure the reversal trials occurred during a new spectral measurement (Figure 4). 

Control Task 

Participants completed a control task identical in structure to that of the learning task, however no 

feedback was presented. Participants were first presented with a fixation cross in the centre of the 

visual display. This was followed by the presentation of four decks of cards. Participants indicated 

their choice of deck using a button box. Participants were then presented with a neutral card, followed 

by three hashtags in the centre of the screen (i.e. in the location where the overall score would have 

been presented in the learning task). Participants completed 20 control task trials, corresponding to 

roughly four minutes. Presentation times were jittered as in the learning task.  

Impulsivity 

Previous research has shown that trait levels of impulsivity can influence decision making (Bayard et 

al., 2011). Individuals with higher levels of impulsivity have been shown to demonstrate sub-optimal 

performance on decision making tasks, displaying a decreased ability to learn reward and punishment 

associations and implement these to make appropriate decisions. Importantly, individuals with high 

levels of impulsivity may have difficulty adapting their choice behaviour during reversal learning 

(Franken et al., 2008; Bayard et al., 2011). Other tasks of cognitive flexibility have also been shown 

to be influenced by trait impulsivity levels (e.g. Müller et al., 2014). Therefore all participants 

completed the Barratt Impulsiveness scale (BIS-11; Patton et al., 1995) and their total score was used 

as a trait measure of impulsivity. This was used in the analysis to verify that any effects of interest 

were not driven by individual differences in impulsivity and is not reported further. 

Performance Variables and Data Analysis 

Performance was measured using the number of trials taken to reach criterion in round 1 (initial 

learning) and in round 2 (which includes the perseveration period and post-reversal learning; Figure 

4). ‘Perseveration’ was defined as the number of trials after reversal until the probability of selecting 

the previously favoured deck reached chance level (0.25), i.e. the number of trials taken to identify the 

reversal and switch behaviour (this measure was not normally distributed and therefore non-

parametric statistical tests were used, e.g. Kendall’s tau-b (tb) instead of Pearson’s correlation 

coefficient (r)). ‘Post-reversal learning’ was defined as the number of trials to reach criterion in round 

2 minus the number of perseverative trials, i.e. the number of trials to reach the new criterion after the 

reversal had been detected. In other words, post-reversal leaning was measured by the number of trials 

the participant took to learn the contingencies once they had realised the deck probabilities had 

reversed. The number of regressive errors was defined as the number of trials the participant returned 

to the previously favoured deck after the end of the perseveration period, i.e. after the reversal has 

been detected. 
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Magnetic Resonance Spectroscopy 

Data Acquisition 

Data was collected at the University of Reading on a Siemens Trio 3T MRI scanner using a transmit-

receive head coil. A high resolution whole-brain T1 structural image was acquired for voxel 

placement using a magnetization-prepared, rapid gradient-echo (MPRAGE) sequence parallel to the 

anterior-posterior commissure line (176 x 1mm slices; TR = 2020ms; TE = 2.9ms; FOV = 250mm). 

Voxels were placed in the left dorsal striatum (DS; Figure 5), with anatomy used to guide voxel 

positioning. The top of the DS was identified by slice-by-slice examination of the structural scan. The 

slice below the slice where the striatum was no longer visible was selected and the top of the voxel 

was aligned with this slice. A PRESS sequence was used to acquire data (voxel size = 10mm x 15mm 

x 15mm; TR = 2000ms; TE = 30ms). 60 spectra were collected and averaged per measurement, 

creating a two minute ‘spectral bin’. Preliminary tests showed this to be the shortest measurement that 

could be acquired with adequate signal to noise ratio for quantification. This allowed multiple 

measurements to be acquired throughout the task, creating a functional measure of metabolite 

changes.  Two initial measurements (average of 60 spectra each) were obtained at rest, followed by a 

water-unsuppressed measurement consisting of 15 spectra. Two measurements were acquired during 

the control task. During the learning task, the number of measurements for each participant varied 

depending on how long they took to complete the task. Additionally, water-unsuppressed 

measurements consisting of 15 spectra were taken before and after both the control and the learning 

task.  

The SIEMENS Auto Align Scout was used to adjust the voxel position based on the actual head 

position of the participant, correcting for participant motion and minimizing the variability of the 

voxel position.  The scout was used before the structural scan, before the resting acquisition, before 

the start of the control task, and before the start of the learning task to control for head movement 

during the scan session. 

Structural Segmentation 

Structural scans were processed using FSL version 5.0.8 (Smith et al., 2004; Jenkinson et al., 2012) 

First, the skull was removed using the brain extraction tool (BET; Smith, 2002). Images were 

segmented into three separate tissue types: grey matter (GM), white matter (WM) and cerebrospinal 

fluid (CSF) using the FAST tool (Zhang et al., 2001). The coordinates and dimensions of the voxel 

were then superimposed on these images and the proportion of each of the three tissue types contained 

within the voxel was calculated. 

Quantitation 

Data was processed in the time domain using Java-Based Magnetic Resonance User Interface (jMRUI 

software version 5.0 (http://www.mrui.uab.es/mrui); Naressi et al., 2001) Phase correction was 

performed using the water spectrum acquired closest to the measurement (i.e. the first control 

spectrum was corrected using the water spectrum acquired before the control task). Each spectrum 

was then apodized using a Gaussian filter of 3Hz to improve signal quality, reduce noise and reduce 

effects of signal truncation (Jiru, 2008). The residual water peak was removed using the Hankel-

Lanczos Singular Value Decomposition (HLSVD) filter tool. 
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Metabolite models were generated using the software Versatile Simulation, Pulses and Analysis 

(VeSPA (https://scion.duhs.duke.edu/vespa/project); Soher et al., 2010). 14 typical brain metabolites 

(Acetate, Aspartate, CHO, Creatine, Gamma-Aminobutyric Acid (GABA), Glucose, Glutamate, 

Glutamine, Lactate, Myo-inositol, N-acetyl Aspartate (NAA), Phosphocreatine, PC & GPC, Scyllo-

inositol, Succinate, Taurine) were simulated at a field strength of 3T using a PRESS pulse sequence 

(TE1 = 20ms, TE2 = 10ms, main field = 123.25MHz). CHO was modelled separately from PC and 

GPC (which were modelled as a single peak). Additionally, the sum of the three peaks (total choline, 

tCHO) was also used in the analyses for comparison with typical practice in choline MRS, and as a 

control of adequate separation of the CHO in our protocol. As a reminder, we argue that if cholinergic 

MRS is to be useful as a proxy for ACh function, then it is important to be able to separate CHO from 

other choline-containing compounds. 

Accurate Quantitation of Short Echo time domain signals (AQSES) was applied using the method 

described in Minati et al (2010). To correct for any chemical shift displacement, the spectrum was 

shifted so that the peak for N-acetyl-aspartate (NAA) was at 2.02ppm. The model was also aligned so 

that the NAA peak was at 2.02ppm. The frequency range selected for processing was limited to 0-

8.6ppm (equal phase for all metabolites, begin time fixed, delta damping (-10 to 25Hz), delta 

frequency (-5 to 5Hz), no background handling, 0 truncated points, 2048 points in AQSES and 

normalisation on).  

Partial volume correction was performed using the method described by Gasparovic et al. (2006) to 

account for differences in grey matter volume in each voxel. Briefly, the metabolite values were 

corrected for the concentration of MR visible water based on the proportion of grey matter in the 

voxel. Additionally, attenuation factors were computed based on T1 and T2 values from grey matter 

and white matter at 3T for both water and the metabolites. These factors were used to correct the 

reported values for relaxation effects dependent on the proportion of tissue in the voxel. To control for 

potential blood-oxygen-level-dependent effects on the signal acquired, and for any differences in 

signal quality between participants, the corrected values were then referenced against NAA (Zhu & 

Chen, 2001). 

Data Analysis 

Only 6% of the data exceeded acceptable Cramer-Rao lower bound (CRLB) thresholds based on 

criteria described in Posse et al., (2007) (<50% = acceptable reliability). Recent work suggests that 

data exclusion based on CRLB is not warranted (Kreis, 2016). Nevertheless, data analyses were 

performed with and without these values. Excluding these values did not alter the results, and 

therefore results are presented with all values included. 

Due to the nature of the task, participants completed different numbers of trials and had variable 

numbers of spectral bins. Therefore data was aligned at the reversal bin (Rev). The two spectral bins 

immediately pre-reversal were used for analyses (Rev-2, Rev-1) as this was the maximum number of 

bins preceding the reversal that contained data for all participants. Additionally, the two spectral bins 

immediately post-reversal were chosen for consistency (Rev+1, Rev+2) (all participants except one had 

data for both post-reversal bins). To control for individual differences in average metabolite levels, 

the metabolite levels for each bin are reported as a change from the participant’s average metabolite 

level over each task.  

Statistical analysis was performed using SPSS (IBM Corp. Released 2013. IBM SPSS Statistics for 

Windows, Version 22.0. Armonk, NY: IBM Corp). 
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Confounding Variables 

To check that variations in metabolite values were not due to varying tissue composition in the voxels 

of different participants, we tested the correlation between cholinergic metabolite levels (average 

metabolite levels at rest, during the control period, and during the task period) and proportion of grey 

matter, white matter and the water signal. No significant correlations were found and therefore these 

are not reported further. 

There is evidence that metabolite levels in the brain can vary based on time of day (Soreni et al., 

2006) and age (Pfefferbaum et al., 1999; Reyngoudt et al., 2012). To check for any such effects, we 

tested the correlation between these factors and the average metabolite levels during the control task 

and during the learning task. No significant correlations were found and therefore these are not 

reported further. 

RESULTS 

Task Performance 

Twenty six (26) participants reached our pre-defined learning criterion and progressed to the reversal 

learning phase. Fifteen (15) of these participants went on to achieve the same accuracy criterion again 

after reversal (we refer to these participants as learners; the remaining 11 participants never reached 

criterion after reversal, and we refer to them as partial learners). Participant performance is 

summarised in Table 1. 

Resting Average CHO Levels 

Learners (i.e. participants who went on to reach the learning criterion in both rounds; N=15) had 

significantly lower average levels of DS CHO (but not PC+GPC) at rest, compared to partial learners 

(i.e. participants who only reached criterion during the initial learning phase, but not after reversal 

learning; N=11). This effect was independent of the participants’ initial learning efficiency as indexed 

by numbers of trials-to-criterion (between group ANCOVA, controlling for initial learning (R1) trials-

to-criterion: F(1)=9.043, p=0.006, partial 2=0.282). Individual rest levels of CHO did not alter the 

task-related changes reported in the following section. 

Task-related Functional Changes in CHO Levels 

During the task, spectral acquisition bins were aligned to the start of testing (initial learning) and the 

onset of the first reversal bin. Paired-samples t-tests were conducted over consecutive bins during the 

initial learning and reversal periods for all participants who went through reversal (N=26) to assess 

changes in CHO levels. 

In line with our prediction, during reversal learning there was a specific significant drop in CHO 

levels during the first reversal bin compared to the bin taken directly preceding the reversal (which 

corresponds to the imposed stability period of the task; see Methods for more details) (Table 2). This 

drop in CHO levels mirrored the large drop in accuracy levels during the first reversal bin, reflecting 

the unexpected change in contingencies (Figure 6). This drop was specific to reversal; no CHO 

changes were observed at any other point during either the learning task or the control task (Figure 6, 

Table 2). Individual differences in CHO concentration changes during the first reversal bin were not 

associated with the efficiency of the reversal (as indexed by the number of perseverative responses 

(tb(23)=0.021, p=0.894), or with the number of regressive errors (r(23) = -0.304, p = 0.159), and there 
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was no difference between learners and partial learners in the magnitude of CHO change during the 

first reversal bin (t(24)=-0.684, p=0.500). 

To test the specificity of the CHO effect reported above, we also checked for changes in the PC+PGC 

and tCHO estimates, as well as control metabolites total creatine (tCre; sum of creatine and 

phosphocreatine) and glutamate (Glu). tCre is thought to be stable in brain tissue (Rae, 2014), and was 

not expected to fluctuate with task epoch. Glu provides an extra functional control given that any Glu 

changes (potentially associated with neurotransmitter recruitment during the task) would not show the 

specificity or direction of the predicted CHO changes (which were shown to be concentration 

reductions specifically during the reversal period). None of these tests were significant (summarised 

in Figure 6 and Table 2), and therefore support the specificity of the reported effect of interest. 

DISCUSSION 

We used fMRS during a probabilistic reversal learning task to provide direct evidence of the 

involvement of the human striatal cholinergic system in reversal learning. We found a task-related 

decrease in CHO levels specific to reversal, but not initial, learning. Based on the dynamics of the 

ACh cycle, we propose that this may reflect a sustained increase in ACh release, analogous to that 

found in animal studies (Ragozzino et al., 2009; Brown et al., 2010). 

During tasks that impose a change in action-outcome contingencies, evidence from the animal 

literature shows a sustained increase in ACh levels throughout the reversal learning period. Here we 

observed a drop in CHO levels during reversal, in line with a hypothesis derived from animal 

experiments showing a drop on CHO concentration following sustained activity-dependent ACh 

release (Klein et al., 2002). 

The primary target of ACh in the striatum is medium spiny neurons (MSNs), which make up the 

majority of the striatum. MSNs integrate multiple inputs from the cortex to assist in action selection 

and goal directed behaviour. By interacting with MSNs, ACh is thought to provide context-sensitive 

learning, for example, when an action may lead to a reward in one context, but not in another (Ashby 

& Crossley, 2011). ACh has an inhibitory effect on MSN activity, and it has been hypothesised that 

changes in ACh levels may be used to select the appropriate set of MSNs for association-outcome 

encoding (Stalnaker et al., 2016). Indeed, a recent study by Stalnaker et al. (2016) has demonstrated 

the crucial role of dynamic CIN activity (the main source of ACh in the striatum) in selecting context-

appropriate actions. Rats were trained on a 3-choice behavioural task which required alternate 

responses depending on the trial context, indicated by the presence of an odour. Depending on the 

odour presented, the rat would receive a reward in one of three fluid wells. If the rat went to the 

wrong fluid well, they would not receive a reward. Not only did CINs signal the corresponding state 

of the trial (i.e. which fluid well would be rewarded), they also showed that, on trials where the rats 

did not make the correct or optimal choice, the block decoding by the CINs was not accurate i.e. the 

CINs were not accurately identifying the correct trial state. Moreover, this effect was specific to CIN 

activity, and was not seen in MSNs. This demonstrates the importance of CIN function in specifying 

the action relevant context, without which inappropriate/suboptimal behaviour occurs (Stalnaker et 

al., 2016). 

Context signalling is an important aspect for reversal learning and cognitive flexibility more 

generally. After a change in context or contingencies, the previous action-outcome association is no 

longer reinforced. Therefore, without context signalling, this association would decay and would need 

to be re-learnt when the original context was experienced again. However, the inhibitory effect of 
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ACh prevents the decay of the original action-outcome association. In this way, the existing action-

outcome association is protected and a new action-outcome association can be learnt, without removal 

of the existing knowledge. This is supported by evidence from Bradfield et al. (2013), who showed 

that disruption of CIN signalling in rats through disruption of thalamic inputs resulted not only in an 

inability to encode a change in contingencies, but also an inability to express the existing learning.  

In our study, following the initial decrease, CHO levels progressively increased during post-reversal 

learning. Evidence in rodents shows that CHO levels eventually return to baseline during sustained 

CIN firing, even though ACh levels may remain elevated (Klein et al., 2002). Therefore, based on our 

data alone we cannot infer whether CHO levels returned to baseline due to an activity-linked 

reduction in ACh release (i.e. reduction in CIN firing), or if they simply returned to equilibrium as 

suggested by the rodent evidence. Consequently we cannot deduce whether ACh levels remain 

elevated throughout post-reversal learning, or indeed if further, non-linear changes in firing rate 

occur. Additionally, evidence regarding the profile of ACh release in rodents during reversal is 

conflicting. An initial study by Ragozzino & Choi (2004) showed that ACh levels returned to baseline 

during post-reversal learning, while a later study by Ragozzino et al (2009) showed that the ACh 

increase was sustained throughout post-reversal learning. Further work is needed to determine the 

dynamics of ACh and CHO release and recovery post-reversal. 

There was no association between CHO changes and performance during reversal. There are a 

number of reasons for this. Firstly, in order to reduce functional heterogeneity, our sample reached a 

stringent performance criterion which they maintained for a protracted stability period before the 

reversal was implemented. Measureable individual differences in performance are consequently 

reduced. 

Secondly, the CHO measure has both a low spatial and temporal resolution. Animal studies have 

shown that the role of the cholinergic system during reversal is specific to the dorso-medial striatum 

(roughly analogous to the human associative caudate), with no effects seen in the dorso-lateral 

striatum (roughly analogous to the human posterior putamen). Though there have been no studies 

investigating spatial specificity of the cholinergic system in humans, Bernácer et al. (2007) 

demonstrated that the density of CINs is roughly 1.8 times higher in the caudate than the putamen, 

suggesting that there will be a similar spatial specificity of activity. The size of the voxel needed in 

this study forces a currently inevitable compromise of spatial specificity. Additionally, due to the low 

temporal resolution and the fact that participants learnt at different rates, the spectral bin acquired at 

reversal will have contained trials from different stages of learning. Therefore, any changes in CHO 

levels related to individual differences in learning will be masked in this measurement.  

Finally, the prominent effect following disruption of cholinergic signalling in animals is an increase in 

the number of regressive errors (returning to the previously relevant behaviour after a change in 

behaviour has occurred) as opposed to perseverative errors (continued selection of the previously 

rewarded stimulus) (Bradfield et al., 2013). However, this aspect of animal behaviour cannot be 

directly compared with the behaviour of humans in multi-alternative choice tasks. Human participants 

will base their decisions in part on a higher-level representation of the task (potentially a verbalisable 

rule, e.g. “the left-most deck is now the most rewarded”) which is thought to be maintained in frontal 

areas of the cortex (Armbruster et al., 2012). Therefore the number of regressive errors will likely be 

modulated by task representation, with participants with the most stable task representation making 

less regressive errors. Recent evidence from the animal literature shows that, although rats with 

disrupted striatal cholinergic signalling were initially impaired during reversal, they were able to learn 

and express the reversed contingencies after additional training (Bradfield & Balleine, 2017). It is 
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possible that this occurs on a faster timescale with human participants. It should be noted that the 

cortico-basal ganglia-thalamo-cortical (CBGTC) system has been shown to be modulated by the 

maintenance of task rules, with those with stronger representation of the task structure showing higher 

activation in the caudate and thalamus (the main input to the CINs) during a behaviour switch 

(Ueltzhöffer et al., 2015). These findings suggest that cortical task structure representation likely 

“bootstraps” the involvement of DS activity in behavioural flexibility (Paul & Ashby, 2013), possibly 

via thalamostriatal input to the CINs. This highlights the need for further study of this system, to 

bridge the gap between our understanding of CIN/cholinergic dynamics in animals and humans, and 

to integrate the role of the striatal cholinergic system in the better understood dopaminergic 

modulation of CBGTC function. 

To test the specificity of the change in CHO levels during reversal, we compared it to changes in 

CHO levels during a simple button-pressing control task, identical in structure to the learning task but 

with no learning component. There were no significant changes in CHO levels during the control task, 

demonstrating that the decrease is task related and not due to a non-specific fluctuation in CHO levels. 

Additionally, there were no significant changes in CHO levels between the other bins obtained during 

the task, demonstrating that this decrease is related to the reversal only and not the task in general. 

Further, the observed changes were specific to CHO, and were not seen in PC+GPC, or when all three 

choline-containing compounds were modelled together (tCHO), emphasising the need to model CHO 

separately when investigating CHO levels as a proxy for ACh levels, as demonstrated in Lindner et al. 

(2017). Additionally, no significant changes were seen in the control metabolites tCR and Glu, 

suggesting that the result is task specific and not related to the measurement procedure itself, or 

general fluctuation in metabolite levels. 

The application of MRS to the study of the cholinergic system is undoubtedly in its infancy. 

Nevertheless, the results of this study, in conjunction with our previous work demonstrating task-

dependent fluctuations in cortical CHO during visuospatial attention shifts (Lindner et al., 2017), are 

promising in this regard. Notably, both studies tackle the more ambitious element of the cholinergic 

MRS agenda, namely the effort to indirectly capture, through CHO tracking, the dynamics of 

acetylcholine function. 

These promising findings notwithstanding, it is important to emphasise that both our studies 

demonstrate function-relevant changes in CHO levels, but provide no evidence regarding the 

relationship of these changes to ACh release. Numerous questions and technological challenges 

remain before cholinergic MRS can be considered a mainstream methodology. 

Although beyond the scope of this paper,  a key challenge for this work is the lack of data on the 

relative concentration of choline-containing metabolites in different parts of the brain. 

It has been shown that GPC, PC and CHO are present in approximate ratios of 1:0.3:0.2 (Ala-

Korpela et al., 1996). However, these ratios are based on measurements acquired in the 

hippocampus, which receives its cholinergic supply from the basal forebrain. In the case of the 

striatum, the local cholinergic system is unique, not only in containing by far the highest 

concentration of ACh in the brain (Hoover et al., 1978), but importantly in that the majority of 

striatal ACh is provided via an interneuronal system (Aosaki et al., 2010). In addition, these 

CINs are tonically active (Goldberg & Reynolds, 2011), resulting in an ambient level of ACh in 

the striatum. Therefore, levels of CHO are likely to be much higher in the striatum compared to 

other areas of the brain. However, to the authors’ knowledge, there has been no investigation 

into the relative levels of GPC, PC and CHO in the striatum. 
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In animal studies, it is possible to manipulate and measure the action of ACh directly, and 

consequently there is little interest in the measurement of the magnitude and dynamics of 

activity-related CHO concentration. Direct measurement of CHO in animal models (especially 

regional CHO concentration changes and diffusion characteristics in response to neural 

activation, and their relationship to activity-dependent ACh release) would significantly 

increase our confidence in the human measurements, and could potentially allow us to build a 

precise mathematical model of the functional relationship between ACh and CHO (as well as 

other CHO-containing metabolites). 

Further, we note in particular the difficulties posed by the very large voxel size needed at 3T to 

acquire an acceptable signal-to-noise ratio, which is problematic for anatomically specific questions. 

We also highlight the related issue of poor temporal resolution, advances in which would provide 

significant impetus for further development of the method. 

In summary, using fMRS, and for the first time in humans, we have shown a task-related decrease in 

CHO levels in the human DS during reversal learning.  We interpret this to reflect a sustained post-

reversal increase in ACh levels, which is in line with findings from the animal literature. Further 

refinement of this method is needed, in particular with reference to time-resolved subcortical 

MRS measurements at 3T, and evidence from invasive animal models regarding the activity-

dependent CHO-ACh relationship. Nevertheless, this novel finding provides further support for the 

idea of developing event-related 1H-MRS for the in vivo study of the human cholinergic system. 
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cytidine diphosphocholine (CDP-CHO) 

dorsal striatum (DS) 

field of view (FOV) 

functional-1H-MRS (fMRS) 

gamma-aminobutyric acid (GABA) 

glutamate (Glu) 

glycerophosphocholine (GPC) 

GPC hydrolase (GPC-H) 

Kendall’s tau-b (tb) 

lyso-phosphatidylcholine (Lyso-PtdCHO) 

lysophospholipase (LPL) 

magnetization-prepared, rapid gradient-echo (MPRAGE) 

Montreal Neurological Institute (MNI) 

N-acetyl aspartate (NAA) 

PC cytidyltransferase (PC-CT) 

Pearson’s correlation coefficient (r) 

phosphatidylcholine (PtdCHO) 

phosphocholine (PC) 

phospholipase (PL) 

phosphocreatine (PCRE) 

point-resolved spectroscopy (PRESS) 

proton magnetic resonance spectroscopy (1H-MRS) 

standard deviation (SD) 

time-to-echo (TE) 

time-to-repetition (TR) 

total choline (tCHO 

total creatine (tCre) 

versatile simulation, pulses and analysis (VeSPA) 
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TABLES 

Table 1. Number of trials per task phase 

 N 

Average Number 

of Trials SD 

Initial Learning (to criterion) 26 49 24 

First Stability Phase 26 32 14 

Reversal Learning    

 Perseveration Period 23 14 9 

 Number of Regressive Errors 23 11 8 

 Post Reversal Learning (to criterion) 15 39 20 

Second Stability Phase 15 34 11 

Total 15 149 46 

 

Twenty six (26) participants reached criterion during the initial learning phase of the task and 

proceeded to the reversal learning. Fifteen (15) of these participants reached the learning criterion 

following the reversal (the task was terminated after 100 post-reversal trials if criterion was not 

reached; N=11). 
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Table 2. Paired samples t-tests comparing accuracy and metabolite concentration changes across spectrum acquisition bins 

  Accuracy CHO PC+GPC tCHO tCre Glu 

  t df p pB t df p pB t df p pB t df p pB t df p pB t df p pB 

Control Task                        

 CT1-CT2 N/A N/A N/A N/A -1.812 25 0.082 0.085 -0.020 25 0.985 0.983 -1.862 25 0.074 0.074 0.348 25 0.731 0.732 -0.665 25 0.512 0.513 

                        

Initial Learning                        

 IL1-IL2 -2.397 25 0.024 0.025 -0.836 24 0.412 0.416 1.030 24 0.313 0.317 0.377 24 0.709 0.716 1.848 24 0.770 0.120 0.533 24 0.585 0.594 

 IL2-IL3 -6.229 21 0.000 0.000 0.440 20 0.664 0.674 -1.244 20 0.228 0.231 -1.377 20 0.184 0.183 -0.197 20 0.769 0.774 -1.125 20 0.274 0.269 

                        

Reversal Learning                       

 Rev-2-Rev-1 -2.035 25 0.053 0.056 -0.027 25 0.978 0.980 1.490 25 0.149 0.157 0.726 25 0.474 0.476 1.519 24 0.142 0.147 0.128 25 0.899 0.899 

 Rev-1-Rev 11.049 25 0.000 0.000 2.412 25 0.024 0.022 -0.952 25 0.350 0.347 1.183 25 0.248 0.250 -0.496 24 0.624 0.621 0.548 25 0.589 0.599 

 Rev-Rev+1 -5.082 25 0.000 0.000 -0.728 25 0.473 0.466 -1.049 25 0.304 0.307 -1.299 25 0.206 0.206 0.882 25 0.386 0.380 -0.752 25 0.459 0.456 

 Rev+1-Rev+2 -2.405 23 0.025 0.031 -1.330 24 0.196 0.193 1.385 24 0.179 0.180 -0.020 24 0.985 0.984 0.284 24 0.779 0.775 -0.616 24 0.543 0.540 

 

Note: Cn denotes the control task bins; ILn denotes the initial learning bins. Revn denotes the position of the spectral bin in relation to the reversal bin (Rev); 

CHO = choline; PC+GPC = phosphocholine and glycerophosphocholine (modelled as one peak); tCHO = total choline; tCre = total creatine; Glu = glutamate. 

Numbers in bold denote statistically significant comparisons. “pB” refers to the significance test of a 10,000 sample bootstrap analysis at 95% confidence 

interval. 
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FIGURE CAPTIONS 

Figure 1: The CHO cycle 

Phosphatidylcholine (PtdCHO) is stored in the cell membrane. When needed, it is retrieved and 

converted to lyso-phosphatidylcholine (Lyso-PtdCHO) by phospholipase (PL). Lyso-PtdCHO is then 

transformed to glycerophosphocholine (GPC) by lysophospholipase (LPL). The enzyme GPC 

hydrolase (GPC-H) hydrolyses GPC to phosphocholine (PC). PC is then converted to choline (CHO) 

by alkaline phosphatase (AP). Acetylcholine (ACh) is synthesised from CHO and acetyl coenzyme A 

(acetyl-CoA) by choline acetyltransferase (ChAT). ACh is then released into the synapse and broken 

down into CHO and acetate by acetylcholinesterase (AChE). CHO is taken back up into the synapse 

by choline uptake transporters, where it is converted back into PC by choline kinase (CK). PC is then 

converted to cytidine diphosphocholine (CDP-CHO) by the enzyme PC cytidyltransferase (PC-CT), 

which is then converted to PtdCHO by diacylglycerolholine phosphotransferase for storage back in 

the membrane (Boulanger, Labelle, & Khiat, 2000; Lockman & Allen, 2002) Figure adapted from 

Lindner et al., 2017. 

Figure 2: Spectrum of the choline-containing compound peaks 

Locations of the spectral metabolite peaks for choline (CHO), phosphocholine (PC) and 

glycerophosphocholine (GPC), taken from Lindner et al., 2017. The three peaks are located close 

together on the spectrum, and are often modelled together as a single peak. The choline-containing 

compounds were simulated using VeSPA (https://scion.duhs.duke.edu/vespa/project) at a field 

strength of 3T (main field 123.25MHz) with a PRESS pulse sequence (TE1 = 20ms, TE2 = 10ms). 

Figure 3: Task trial schematic 

Participants were instructed to choose between four decks of cards. Each deck had a different 

probability of generating winning cards (75%, 60%, 40% and 25%). Once the learning criterion had 

been reached, the deck probabilities were flipped so that high probability decks became low 

probability decks and vice versa. Participants were not informed of this in advance and were simply 

instructed to gain as many points as possible. RT = reaction time. 

Figure 4: General overview of learning task structure 

Upon reaching criterion in the initial learning phase (round 1 or R1), participants then completed a 

post criterion stability phase (criterion 1 or C1), equal in number to 60% of the number of trials taken 

to reach criterion. After this phase, the deck probabilities were reversed. 1H-MRS onset was time 

locked to the onset of reversal. If needed, trials were added to the end of the post criterion stability 

period to ensure the reversal trials occurred during a new spectral measurement. Participants then 

completed a reversal learning phase (round 2 or R2) and upon reaching criterion again, they 

completed a post criterion stability phase (criterion 2 or C2), again equal in number to 60% of the 

number of trials taken to reach criterion. The number of trials completed in each stage varied 

depending on each participant’s performance on the task.  

Figure 5: Sum of voxel placement over all subjects and representative single spectrum 

Left panel: The 1H-MRS voxel masks were transformed into MNI space for better visualisation. All 

voxels encompassed the left dorsal striatum (centre MNI coordinates: x = -22.48, y = -5.61, z = 
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11.94). Right panel: Example of spectral data after pre-processing from a single spectral bin acquired 

during the learning task from one participant. (“data”). Included are the model peaks for choline 

(CHO), creatine (CRE), phosphocholine and glycerophosphocholine (PC&GPC), n-acetyl aspartate 

(NAA), phosphocreatine (PCRE) and the residual._  

Figure 6: Changes in metabolite levels during the initial learning and reversal, superimposed 

on accuracy levels 

Top panel: CHO concentration change during initial learning bins (ILn) and reversal (Rev-n: pre-

reversal bins, Rev: reversal bin (indicated by an arrow), Rev+n: post-reversal bins), superimposed 

over group mean accuracy levels. A significant decrease in CHO levels was observed specifically 

during the reversal bin (Rev) (the asterisk denotes a significant drop in both the CHO and accuracy 

levels; p<0.05). No other changes in CHO levels during either the control task or the learning task 

were statistically significant. Bottom panel: Choline-containing compounds fluctuations during initial 

learning and reversal, superimposed over group mean accuracy levels. No significant changes were 

observed in combined levels of PC and GPC (PC+GPC; modelled together as a single peak), or when 

modelling all three choline containing compounds as a single peak (tCHO). For further details, and 

details of comparisons not shown here, please see Table 2. Each bin is defined by a single spectral 

acquisition. Error bars denote the standard error.  
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