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Summary 

We have previously shown that the ‘low limit’ number words (from one to five) have exceptionally slow rates 

of lexical replacement when measured across the Indo-European languages. Here we replicate this finding 

within the Bantu and Austronesian language families, and with new data for the Indo-European languages. 

Number words can remain stable for 10,000 to over 100,000 years, or around 3.5 to 20 times longer than 

average rates of lexical replacement among the Swadesh list of ‘fundamental vocabulary’ items. Ordinal 

evidence suggests that number words also have slow rates of lexical replacement in the Pama-Nyungan 

language family of Australia. We offer three hypotheses to explain these slow rates of replacement: i) that the 

abstract linguistic-symbolic processing of ‘number’ links to evolutionarily conserved brain regions associated 

with numerosity; ii) that number words are unambiguous and therefore have lower ‘mutation rates’; and iii) 

that the number words occupy a region of the phonetic space that is relatively full and therefore resist change 

because alternatives are unlikely to be as ‘good’ as the original word. 

 

1. Introduction 
 

In previous work we introduced the formal study of rates of lexical replacement as estimated from 

statistical models applied to phylogenetic trees of languages [1]. By ‘lexical replacement’ we refer to 

the replacement over evolutionary time of a word for a given meaning by a new and non-cognate 

word. For example, the word hand in English is cognate to the German hand but not to the Spanish 

mano, which in turn derives from the Latin manus. Both the Germanic and Romance languages 

independently trace their ancestry back to a proto-Latin language. This suggests that the word hand 

is a newer and non-cognate form that probably arose somewhere along the lineage that eventually 

gave rise to the Germanic languages. 

 

In our earlier study we found that rates of lexical replacement varied around 100-fold among the 

200 items in the widely-used Swadesh fundamental vocabulary [2]. The Swadesh list includes words 

that might be expected to be found in all languages, such as common nouns, verbs, adjectives and 

adverbs, names of body parts, kinship terms and the number words from one to five; it avoids words 

specific to particular habitats or climates, as well as technical terms. We found that dirty was the 

most rapidly evolving word in the list, with a rate of lexical replacement of about 0.0009 per annum, 

or approximately one new non-cognate form every thousand years [1]. This rate of replacement 

yielded forty-seven different non-cognate forms among the 86 Indo-European languages in our 

sample. By comparison to words for dirty, the words with the slowest rates of lexical replacement 

were represented by just a single cognate form across the entire Indo-European language tree. 

Among these slowly evolving forms were the number words two, three, five, and the pronouns who 

and I.  

 

The rates of lexical replacement for the slowly evolving words correspond to an expectation of one 

change in one hundred thousand years. If this figure seems extreme, consider that the Indo-

European language family is somewhere between 7000 and 8000 years old [3]. Summing the time 

represented by all the branches that makes up the tree of the 86 Indo-European languages we 

studied yields approximately 140,000 language-years of potential evolution. Remarkably, during that 

time all the forms of the words for two (e.g., dos, due, deux, duo, and twee, among others) remained 

cognate, as did those for three, five, who and I. The words one, four, we, when and tongue round out 

the ten most slowly evolving words in the Indo-European languages.  

 

The preponderance of number words in the list of slow evolvers raises the question of whether their 

slow rates of replacement are just an idiosyncrasy of Indo-European, or represent a more general 

phenomenon. Some reason to think that the slow rate of change of the number words might be a 

general phenomenon can be found in recent work on ‘numerosity’ – the ability to gauge number 

without a symbolic counting system – in animals. The ability to gauge number is almost certainly 
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useful in foraging, competitive, navigation and mating situations, and studies of the brains of 

animals ranging from insects [4] to cephalopods [5], fish [6], amphibians [7], birds [8] and mammals 

[9, 10] suggest the existence of dedicated populations of neurons attuned to the perception of 

number, especially small numbers.  

 

Here we extend our study of rates of lexical replacement from our previous Indo-European sample 

to new data on the Indo-Europeans, and to Bantu and Austronesian language data sets, with special 

emphasis on the relative rates of replacement of the ‘low limit' number words one to five. 

 

2. Materials and Methods 

 
(a) Lexical datasets 

We use three published lexical datasets. The Indo-European (IE) data comprise the words for 200 

meanings in each of 103 languages [3]. The Austronesian data comprise 210 meanings and 400 

languages [11], and here we use the 154 meanings with fewer than 200 cognate classes (see 

Supplementary Materials). The Bantu data comprise 424 languages and 102 meanings [12]. The 

meanings in these datasets are taken principally from the Swadesh fundamental vocabulary 200-

word list [2]. The raw data for the IE and Austronesian languages are available upon request from 

the authors of those studies, and for the Bantu they are made available as part of the supplementary 

information to that paper. Alternatively the IE data are available at IELex (ielex.mpi.nl) and the 

Austronesian data are made available in the Austronesian Basic Vocabulary Database (ABVD, 

language.psy.auckland.ns/austronesian). 

 

(b) Phylogenetic trees 

We used the Bayesian posterior samples of phylogenetic trees made available upon request by the 

authors of the Indo-European and Austronesian, and for the Bantu as part of the supplementary 

material of the original study [3, 11, 12]. Each study employed Bayesian Markov Chain Monte Carlo 

methods [13] to estimate posterior distributions of time-calibrated trees. The trees are rooted and 

have node ages derived from historical calibration points and statistical inference: the Indo-

European tree is dated to approximately 7654 +/- 915 years old, the Austronesian tree to 6924 +/- 

500 years, and the Bantu tree to 6929 +/- 418 years. Branch lengths on the trees are calibrated in 

years and so lexical replacement rates we report here are in units of expected changes per annum. 

 

(c) Cognate classifications  

The lexical datasets group the words for each meaning into between 1 and k cognate classes 

denoting sets of words that are derived from a common ancestral word, based on expert linguist 

judgments as described in the original references. 

 

(d) Modelling rates of lexical replacement  

Given the lexical data for each meaning coded into k distinct cognate classes, we observe for each 

meaning a set of states (1…k) at the tips of phylogenetic tree T, where the tips correspond to 

individual languages and the tree describes the patterns of descent of the set of languages from a 

common ancestor (e.g., Figure 1).  

 

We wish to discover the rates at which those k states arose given the assumption that they began 

from a common ancestral state at the root of the tree. We presume that a series of replacements 

has taken place throughout the tree eventually producing the k cognate sets. To capture this process 

we define the instantaneous transition rates qjk from any beginning state (cognate class) j to any end 

state k, for all pairs of beginning and end states jk.  

 

The set of qjk defines a square matrix Q of order k × k, where Q is given by 
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and, by convention, the main diagonal elements (qjj) are given by −∑�
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. 

 

We expect k to vary considerably across meanings (e.g., compare k=47 for dirty and k=1 for two in 

our previous study), leading to the expectation of different average rates of lexical replacement 

among meanings. Accordingly, we re-write Q as  

 

 

 

, 

 

 

 

 

 

where ri is now meaning i’s generalized rate of transition and the term 1/c is a normalization 

constant that, without any loss of generality, scales the qjk to have a mean rate of 1.0. This scaling 

means that the qjk can be interpreted as deviations around the generalized rate ri.  The 

normalization constant is calculated as  

 

, 

 

 

where pj is the probability of state j in the observed data. 

 

With Q defined this way, the probability of a lexical change (appearance of new non-cognate word) 

from state j to state k over short interval of time dt, Pjk(dt), = Qjkdt, where P and Q are matrices. To 

estimate the probability of transitions over longer time t, Pjk(t), Q is exponentiated to give P(t) = e
Qt

, 

and P is the matrix of transition probabilities. This structure defines the usual continuous time 

Markov Model (e.g., [14]). 

 

We estimate Q using Bayesian Markov Chain Monte Carlo methods (e.g., [13] ) to find 

 

L(D /Q,T ) = P(D /Q,T )dQ
Q,T
∫ dT , 

 

where L(D|Q,T) is the likelihood of the data (the observed cognate sets for a meaning) given Q and 

the phylogenetic tree T. The Monte Carlo integration is performed simultaneously over increments 

in Q and T and these increments are drawn from, in the case of Q, a suitable proposal mechanism 

for altering the values of the qjk, and in the case of T by calculating the likelihood over the posterior 

sample of trees. Integrating over Q and T ensures that the estimates of the qjk take into account 

uncertainty in the model of evolution and in the phylogenetic tree. 

Q =

... q12 q13 . q1k

q21 ... q23 . q2k

q31 q32 ... . q3k

. . . ... .

q j1 q j2 q j3 . ...

























Q = ri
1

c

... q12 q13 . q1k

q21 ... q23 . q2k

q31 q32 ... . q3k

. . . ... .

q j1 q j2 q j3 . ...
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The number of elements in Q increases as the square of k, the number of cognate sets. Thus, even 

for a relatively small k, there can be a large number of parameters to estimate. To reduce the 

severity of this problem we employ a reversible-jump Markov Chain Monte Carlo method we have 

previously developed [15] that automatically collapses the large number of parameters in Q into a 

smaller number of distinct classes within which the individual qjk can be regarded as identical 

statistically.  

 

The procedures for estimating the likelihood are implemented in the BayesTraits comparative-

phylogenetic analysis package (www.evolution.reading.ac.uk). We provide a sample command file in 

the Supplementary Materials. The analysis yields a Bayesian posterior sample of Q and the ri, as 

defined above. Our interest here is in the mean of the posterior sample of the ri as an estimate of 

the generalized rate of change for meaning i.  

 

(e) estimation of a lexical half-life  

Given a generalized rate ri for meaning i, define the half-life of words for that meaning as the 

expected amount of time before there is a 50% chance that word j will have been replaced by word 

k [1, 16]. The half-life can be written as  

 

t50 = -Loge(0.5)/ri,  

 

3. Results 

 

 (a) rates of lexical replacement in the three language families 

 
The distribution of generalised rates over the Swadesh list items takes a broadly similar uni-modal 

form in all three language families (Figures 2a-c), and rates of lexical replacement vary within each 

family from 10 to over 100-fold (Table 1). The rate of replacement for bird in the Indo-European 

languages at 0.00017 (Figure 1) falls just below the mean IE rate, and, as before, dirty has the fastest 

rate of replacement.  The Indo-European rates of change correlate r=0.91 with the rates of change 

from our previous study [1] despite the new rates coming from a new tree that includes about 15% 

more languages. Rates of change correlate strongly, but not perfectly, with the number of cognate 

sets (a large number of cognate sets implies more replacements per unit time): r=0.89 for Indo-

European; r=0.86 for Bantu; r= 0.85 for Austronesian (Figure 3a-c).  

 

The lack of a perfect correlation between the number of cognate sets and rates of change illustrates 

the importance of the phylogenetic tree, or more generally, of history in understanding evolution. 

Two meanings might have an equal number of cognate sets but if the historical lexical replacements 

(e.g., Figure 1) are distributed differently throughout the tree, the rates of replacement will also 

differ. This is why the scatter about the regression lines in Figures 3a-c increases with the number of 

cognate sets – as the number of cognate sets grows there are more different ways to distribute 

them around the tree.  For the data we report here, the phylogeny is responsible for around 21% to 

28% of the variation in rates of change among the meanings, these figures being derived from 1-r
2
 of 

the above correlations. 

 

The average rates of lexical replacement in the IE and Bantu languages correspond to roughly a 20% 

probability of lexical replacement per thousand years, remarkably close to the value Morris Swadesh 

proposed in the 1950s from analysing differences between pairs of ancestral and descendant 

languages – such as ancient and modern Greek -- separated by known times [2].  
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The average rate of lexical replacement among the Austronesian meanings is significantly higher 

than for Bantu or IE. We cannot be certain whether this represents a true difference or perhaps a 

difference in linguistic practice in identifying cognate words, the so-called ‘lumpers’ versus ‘splitters’ 

problem that can also plague taxonomic practice in zoology. Alternatively, the Austronesian 

expansion into Oceania was a process of ‘island hopping’ as the Austronesian people pushed further 

and further into the unknown and uncharted Pacific [17]. It is possible then that serial founder 

effects have influenced the Austronesian languages[18], where idiosyncrasies among the speakers 

on a temporally ancestral island get magnified among the small number of speakers who move on to 

descendant islands. Whatever the explanation, by restricting ourselves to the 154 meanings with 

fewer than 200 cognate classes (see Materials and Methods) our average rate of lexical replacement 

for Austronesian could even be an underestimate. 

 

It is difficult to know why the upper bound of the Bantu rates is lower than that for IE or 

Austronesian. It might reflect sampling: the 102 meanings in the Bantu list do not include the nine 

fastest rate items from the IE list. On the other hand, rates of lexical replacement, while significantly 

correlated among language families, are only modestly so: For IE and Austronesian, r = 0.47, 

p<0.0001; Bantu and Austronesian, r = 0.37, p+0.0006; IE and Bantu, r = 0.24, p=0.0283. 

 

Half-life figures based on the rates of lexical replacement vary widely but even among the 

Austronesian languages a slowly evolving word has a half-life of over 10,000 years (Table 1). The IE 

languages seems to be extreme and this might arise because their smaller sample size and total tree 

length mean some changes have been missed. The total tree length is the sum of the times over all 

of the branches of the phylogenetic tree. For IE this is 148,400 years, for Bantu it is 490,660 and for 

Austronesian it is 718,000. 

 

(b) rates of lexical replacement of the low-limit number words (one to five) 

 
The low-limit number words fall at the slower (lower) end of all three distributions of rates (Figure 

2a-c, Table 1), and dominate the list of slowly evolving words in all three language families (Table 2). 

Their rates of replacement are 3.5 to 20 times slower than the average rates of replacement and 10 

to 130 times slower than the fastest rates of replacement (Table 1). Accordingly, low-limit number 

words account for most of the longest half-lives (Table 1). Replacement rates for the number word 

one are higher in all three languages families than for two to five (Table 2). We do not know why this 

is the case but speculate that it might have something to do with one being replaceable in some 

circumstances by ‘a’ or ‘an’. This grammaticalisation by one to take over the use of articles has 

occurred, among other languages, in English, German, Romanian, Spanish, French and Italian. The 

probabilities of observing all five low-limit number words among the slowest eleven words, or four 

of the five as in the case of Bantu and Austronesian, are all less than 0.0004 (Table 2). The extreme 

slow rates of lexical replacement in the IE languages for the low-limit number words might arise 

because 148,400 language-years is not sufficient to observe more than one change (as above).  

 

c) low-limit number words in the Pama-Nyungan family 
 

The Pama-Nyungan language family is widely geographically distributed throughout Australia [19, 

20]. Its languages typically have simple low-limit number systems often not exceeding five [19]. A 

dated phylogenetic tree for this language family is not available, making it impossible to calculate 

lexical replacement rates. However, Claire Bowern (personal communication) who has studied this 

group extensively has made available to us data for 183 vocabulary words in 190 Pama-Nyungan 

languages, recording the rank orders across meanings of the number of cognate sets per meaning, 

and classified into seventeen categories, including the number words, kinship terms and words for 

Page 6 of 20

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

the environment. The dataset includes three number words – one, two and three – and their mean 

rank order is the lowest (fewest cognate sets) of any of the seventeen categories of words. 

 

4. Three hypotheses to explain the unusual conservation of the number 

words 
 

Previously we have shown that words used more frequently in everyday discourse tend to be among 

the most conserved or slowly evolving [1]. Even among the slowly evolving words, the number 

words are unusual in having rates of lexical replacement considerably slower than would be 

predicted from their frequency of use [1].  Here we speculate on three hypotheses that might 

explain why the number words evolve so slowly, and offer data consistent with each. 

 

(a) evolutionarily conserved brain regions associated with numerosity (somehow) influence 

the learning and use of linguistic-symbolic number words  
  

Could the evolutionarily ancient and seemingly hard-wired nature of many animals’ abilities to 

perceive ‘number’ independently of a symbolic language for counting ([4], [5],[6],[7], [8],[9],[10]) be 

linked to the slow replacement rate of number words? Brain regions associated with numerosity are 

distinct from those involved in language [10, 21]. Still, brains are vast interconnected and highly 

parallel networks that can make available their internal representations or outputs to other brain 

regions. Perhaps an unambiguous brain state associated with simple judgements of different 

numbers of objects – so called numerosity judgements – makes number words easier for humans to 

learn or strengthens the association of numerosity to the symbolic number words, thereby slowing 

their rates of replacement.  

 

Data from a study of the age of acquisition for 30,000 English words [22] might be relevant to this 

idea. Children learn words earlier the more frequently those words are used in common everyday 

speech. But using the Kuperman et al. [22] data, we find that all ten number words from one to ten 

have earlier ages of acquisition than is predicted from their frequency of use (binomial test, p< 0.002, 

two-tailed; Figure 4). 

 

 (b) number words are unambiguous in their meanings and therefore less likely to admit 

alternatives  
  

If the number words are unambiguous in their meanings, or at least relatively so compared to other 

meanings, then speakers might be less likely to use alternatives for them in everyday speech. For 

example, shown three objects and asked to describe ‘how many’, speakers will overwhelmingly say 

‘three’. But speakers describing, for example, a weather storm that includes thunder and lightning 

might call it a thunderstorm or thunder and lightning or perhaps a lightning storm. Each of these 

alternative forms is likely to be understood and thereby might be allowed to co-exist in the 

population of speakers.   

 

If it is generally true that the number words admit fewer alternatives, then, from a population-

genetic perspective the mutation rate (rate at which new words enter the lexicon) for number words 

is lower than the mutation rate for other kinds of words. The neutral theory of evolution [23] 

demonstrates that the rate of evolution of neutral alleles is equal to the rate of neutral mutation. If 

we entertain the possibility that alternative words for a meaning might be equally good – and 

therefore neutral -- then the lower mutation rate of number words predicts their slower rate of 

lexical replacement. 
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Large-scale surveys that record the words people use in conversation [24] reveal that for some 

common objects and actions a variety of different words might be used, whereas for others most 

respondents use the same word: days of the week, months of the year and the number words fall 

into this latter category. 

Brysbaert et al. [25] provide ratings of ‘concreteness’ for 40,000 English words. The number words 

for one to ten receive a mean concreteness rating (five-point scale) of 3.78±0.33 (s.e.m., n=10), 

significantly higher than the overall mean of 3.04±0.005 (n=39,894), although not significantly higher 

than nouns (3.53±0.008, n=14,592). But the Brysbaert ‘concreteness’ scale measures “things or 

actions in reality, which you can experience directly through one of the five senses”, and so is not 

directly relevant to the sense we are suggesting here of ‘unambiguous’, corresponding to a meaning 

for which, owing to the unambiguous nature of the concept, only a single word generally applies. 

Thus, the highest scoring words in the Brysbaert sample included ‘spaghetti sauce’, ‘trench coat’, 

‘thorn’ and ‘angelfish’, all of which received a score of five but for which one can easily imagine 

alternative words.  

  

(c) number words occupy a region of the phonetic space that is relatively full  

 

Shorter words define a smaller space of possible words than longer ones. The exact size of the space 

of possible words will depend upon a language’s phonotactic rules [26] governing permissible 

combinations of sounds. For instance, no English word begins with the velar nasal sound ng, 

although this combination is common in other languages and occurs at the end of many English 

words. If the phonotactic rules could be known precisely for a language it would be possible to 

generate all of the possible words of a given length for that language. But even without knowing 

what these rules are, the space of possible words will grow rapidly, probably something close to 

factorially, with a word’s length.  

 

Data from the British National Corpus [27] record the frequency of use of thousands of common 

words in everyday speech and writing. These data reveal that a word’s length (scored conservatively 

here as the number of letters rather than the number of distinct sounds) declines sharply with its 

frequency of use (Figure 5). Zipf [28] had already been identified this relationship by the late 1940s 

when he put forward his principle of least effort to explain, among other things, why the frequently 

used words became shorter.  

 

If we accept Zipf’s principle, then words will continually evolve to become shorter, and the more so 

the more they are used. It might just be, then, that the pressure to become shorter means that the 

already smaller phonetic space of shorter words is full or nearly full compared to the space for 

longer words. If the space is full, then possible replacements for a word already in that small space 

might in general have to be longer, or more difficult to pronounce and in that sense not as ‘fit’ as the 

original. This lower fitness might make the word less likely to be adopted, and as a consequence 

would slow the rate of lexical replacement. 

 

Anecdotally, the phonetic space for short words can seem full. Compare the words two, to, too and 

you in English or deux, tu and vous in French. These words, all highly used, have crowded in on each 

other, occupying nearly identical phonetic spaces. In the extreme this crowding produces 

homophones, words with the same sound but different meanings, such as pale and pail. An 

analogous concept in genetics is alternative splicing [29] whereby a single gene can produce more 

than one protein. Alternative splicing allows an organism to produce many more different proteins 

than would be expected from its number of genes, and can be seen as a way organisms can reduce 

the amount of DNA they have to carry and reproduce.  

 

Page 8 of 20

http://mc.manuscriptcentral.com/issue-ptrsb

Submitted to Phil. Trans. R. Soc. B - Issue

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review
 O

nly

A prediction consistent with the phonetic-space-full argument is that homophones should, in 

general, be shorter words than non-homophones, reflecting the pressure for words to become 

shorter but having a smaller phonetic space to occupy. To test this idea we recorded the average 

length of 441 pairs and triples of British English homophones and then compared the average length 

of these homophones to the length of words in the British National Corpus (Figure 6). The 

homophones are significantly shorter: mean homophone length = 4.56±0.041 (s.e.m.), n=441 pairs 

and triples or 991 words total; mean length BNC = 6.93±0.029, n=6956 (7.08±0.03 excluding 

homophones), p<0.0001.  

 

There can be disagreement about whether two or more words are homophones (e.g., all and awl or 

close and clothes) and it might be more difficult to form homophones of longer words (although the 

many more possible long words might offset this), but the result in Figure 6 is consistent with the 

idea that the vast space of possible long words makes homophones of them less necessary because 

there are so many more possible alternatives from which to choose. Nevertheless, a challenge for 

the ‘phonetic-space-is-full’ argument as an explanation for the number words is that it applies 

equally to all short words, including the pronouns and the “wh” words (who, what where, why and 

when). These words are also among some of the most slowly evolving in the Indo-European 

languages ([1]; Table 2 this paper) and frequency data show that they are all highly used. But among 

these slowly evolving words, the rate of lexical replacement for the number words is exceptionally 

slow even for their frequency of use [1]. This does not necessarily invalidate the phonetic space 

argument, but signals that there might be some additional factor slowing replacement rates of the 

number words. 

 

5. Discussion 
 

There does seem to be something special about the number words: at least in the three language 

families we studied, the low-limit number words have unusually slow rates of lexical replacement, 

meaning that a shared form of the word can often last many thousands of years. The same also 

seems true of the Pama-Nyungan language family of Australia. We speculated upon three reasons 

why the number words have low rates of lexical replacement, and offered some evidence consistent 

with each. More work on each of these hypotheses would be a welcome addition to understanding 

the beguiling stability of the number words. 

 

In contrast to the unusual conservation of the low-limit number words (and especially two to five) 

higher level number words such as the ‘teens’ (in English 13 to 19) and the names of the numbers 

that are powers of ten can be more variable ([30]). The form these higher-level number words take – 

for example, sometimes adding a base number to ten, sometimes adding ten to a base number –  

correlates with features of a language’s grammar [30]. This greater variation and the association 

with grammar may indicate that the higher-level number words are relatively recent inventions, or 

put another way, that the low-limit number words are culturally ancestral, existing from a time 

when counting above small numbers was unusual or unnecessary. Indeed, some hunter-gatherer 

languages are claimed to lack number words altogether [31] [32] [33] [34]. Alternatively, the 

combinatoric nature of the higher number words might make them inherently more prone to 

change. 

 

Some words we might expect to be highly conserved are not. Names of body parts, and relational 

words for mother, father, husband and wife, or he and she, or perhaps words for fire or spears might 

all be expected to play central roles in everyday speech and especially so in ancient societies, and 

therefore be conserved. But with the exception of child, eye and tongue none of these words made 

it into the slowest evolving set of words (Table 2) for any of the language families. Indeed, in 

contrast to the extreme conservation of the number words, there are forty-three different cognate 
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forms of the words for husband in the Indo-European languages, and thirty-seven of the words for 

wife. 

 

It is worth putting into a temporal context the extraordinary conservation of some of the number 

words. In the Indo-European languages, the numbers words for two, three and five are all 

represented by a single cognate set. The Indo-European language tree we used has a total tree 

length spanning 148,400 language-years. For a word to remain cognate among the languages of the 

Indo-European tree means that every speaker of its many languages used a cognate form of that 

word throughout history, or at least if some other forms were tried, they never caught on. Words 

that can live this long should astound us, because there were no writing systems for nearly all of the 

history of the Indo-European language family and the opportunities are great for an aural signal to 

be corrupted: when a speaker utters a word that sound travels as a pressure wave through the air 

where it is transduced by a listener’s ear into an electrical signal that travels to the brain and is 

stored in some memory state. Then, when that speaker uses the same word it must be transformed 

back from the stored brain state into a set of instructions to the facial muscles, lungs and abdomen 

of the speaker to form the pressure wave anew. That this process can be repeated millions or 

perhaps billions of times throughout history with so little change cries out for an understanding of 

how our minds achieve this prodigious feat. 
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Table 1. Average ± standard deviations of lexical replacement rates and half-lives for fundamental 

vocabulary items and for low limit number words in the three language families. 

  

 
Table 2. Rank order of rate of lexical replacement for the eleven meanings with the  

slowest rates of change; rank = 1 is slowest.  Words ‘one’ to ‘five’ in bold.   

 
Note: The probability of all five low limit number words appearing in the slowest eleven for IE 

 is p= 0.0000002; the probability of four of the five low limit number words appearing in the  

slowest eleven for Bantu is 0.00036 and 0.00007 for Austronesian. 

 

  

rank    Indo-European        

(n=200    words)    

Bantu        

(n=102    words)    

Austronesian    

(n=154    words)    

1 two    eat child    

2 three    tooth two    

3 fiv

e

    three    to pound/beat 

4 who eye    three    

5 four    fiv

e

    to die 

6 I hunger eye    

7 one    elephant four  

8 we four    ten    

9 when person five     

10 tongue    child    tongue    

11 name two    eight    
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Figure and Table Captions 

 

Figure 1. Partial phylogenetic tree of the Indo-European languages showing the words that the 

languages use for the meaning ‘bird’, coded to identify cognate classes.  Squares along the branches 

identify regions of the tree where new cognate classes might have arisen, although the analysis 

strategy integrates over all possible ancestral transitions (Pagel, 1994) and so is not conditional upon 

any particular set of them. 

 

Figure 2a-c. Rates of lexical replacement per annum. a) rates of lexical replacement in the Indo-

European languages for 200 Swadesh list meanings; b) rates of lexical replacement in the Bantu 

languages for n=102 meanings; c) rates of lexical replacement in the Austronesian languages for 

n=154 meanings. The darker shaded areas of each histogram correspond to the position of the low 

limit number words (one to five). The rate for one is elevated in the Bantu and Austronesian datasets. 

 

Figure 3a-c. Correlations between number of cognate sets (x-axis, NOS) and rate of lexical 

replacement, in a) the Indo-European languages for 200 Swadesh list meanings; b) the Bantu 

languages for n=102 meanings; c) the Austronesian languages for n=154 meanings.  The darker 

circles correspond to the low limit number words.  The rate and number of states for one are 

relatively high in the Bantu and Austronesian datasets. 

 

Figure 4. Age of acquisition of a word versus frequency of use. The numbers words from ‘one’ to ‘ten’ 

(heavy black dots) all fall below (have earlier ages of acquisition) than expected from their frequency 

of use. Regression fit r= 0.65. Raw data taken from Kuperman et al. [22] 

 

Figure 5. Length of word (in characters) versus frequency of occurrences per million from the ~7700 

most frequently occurring words in the rank-ordered-by-frequency list of the British National Corpus 

(http://ucrel.lancs.ac.uk/bncfreq/lists/1_2_all_freq.txt). Note: x-axis truncated at 5000, frequencies 

extend to >60,000. Shaded area is region of the numbers words from ‘one’ to ‘ten’ (heavy black 

dots). 

 

Figure 6. Frequency histogram of word length from the rank-ordered-by-frequency list of the British 

National Corpus (as in Fig. 4); shaded area is word length of homophones within the BNC sample. 

The BNC list includes all words down to a frequency of 10 per million, yielding n=7726 words. 

Removing abbreviations, proper nouns, names and special characters leaves n=6956 words. Mean 

length BNC = 6.93±0.029 (s.e.m), or 7.08±0.03 excluding homophones; mean length of homophones 

= 4.56±0.041 (s.e.m.), n=441 pairs and triples or 991 words total, p<0.0001. Homophones taken from 

http://www.singularis.ltd.uk/bifroest/misc/homophones-list.html; a comparison sample of 

homophones is made available at http://www.teachingtreasures.com.au/teaching-tools/Basic-

worksheets/worksheets-english/upper/homophones-list.htm: mean homophone length = 4.77± 

0.045, n=427 pairs. 

 

 

Table 1. Average lexical replacement rates and half-lives for Swadesh fundamental vocabulary 

meanings [2] and for low-limit number words in the three language families. 

 

Table 2. Rank order of rate of lexical replacement for the eleven meanings with the slowest rates of 

change; rank = 1 is slowest. Words ‘one’ to ‘five’ in bold.  
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