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Abstract

We present a novel hybrid numerical-asymptotic boundary element method for high fre-
quency acoustic and electromagnetic scattering by penetrable (dielectric) convex polygons.
Our method is based on a standard reformulation of the associated transmission boundary
value problem as a direct boundary integral equation for the unknown Cauchy data, but with
a nonstandard numerical discretization which efficiently captures the high frequency oscilla-
tory behaviour. The Cauchy data is represented as a sum of the classical geometrical optics
approximation, computed by a beam tracing algorithm, plus a contribution due to diffraction,
computed by a Galerkin boundary element method using oscillatory basis functions chosen
according to the principles of the Geometrical Theory of Diffraction. We demonstrate with a
range of numerical experiments that our boundary element method can achieve a fixed accu-
racy of approximation using only a relatively small, frequency-independent number of degrees
of freedom. Moreover, for the scattering scenarios we consider, the inclusion of the diffraction
term provides an order of magnitude improvement in accuracy over the geometrical optics
approximation alone.
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1 Introduction

Scattering of time-harmonic acoustic or electromagnetic waves by penetrable (i.e., dielectric) scat-
terers arises in numerous physical applications, for example the scattering of light by atmospheric
ice crystals, important in determining the earth’s radiation balance in global climate models [3].
When the penetrable scatterer and the exterior domain are both homogeneous, a standard com-
putational approach to solving the associated transmission boundary value problem, at least for
low/moderate frequencies, is the boundary element method (BEM) (often called the Method Of
Moments in the electromagnetic community), which involves the numerical solution of a system of
boundary integral equations (BIEs) on the scatterer boundary [50, 51, 30].

However, conventional BEM implementations based on piecewise polynomial approximation spaces
are computationally infeasible in the high frequency regime where the scatterer is large relative to
the smallest wavelength in the problem, since they suffer from the well-known limitation (suffered
by all conventional numerical approaches including finite element, finite difference and spectral
methods) that a fixed number of degrees of freedom is required per wavelength in order to accurately
represent the oscillatory solution [44]. At high frequencies the wave field is more naturally described
by asymptotic theories such as Geometrical Optics (GO) and the Geometrical Theory of Diffraction
(GTD) [38, 8, 37], which represent it in a completely different way, as a superposition of ray fields.
In principle, these asymptotic approximations have frequency-independent computational cost.
However, they are accurate only at sufficiently high frequencies, and require the solution of certain
canonical problems, which are not always solvable in closed form.

In this paper we present a hybrid numerical-asymptotic (HNA) BEM for two-dimensional scattering
by penetrable convex polygons. In general terms, the HNA approach aims to develop numerical
methods which are computationally feasible over the whole frequency range, by explicitly build-
ing features of the high frequency solution behaviour into the numerical approximation space.
Specifically, rather than using conventional piecewise polynomial BEM basis functions, one instead
uses oscillatory basis functions, whose oscillations match those of the GO and GTD ray fields.
The HNA approach (reviewed in [15]) has proven very effective for a number of problems involv-
ing impenetrable scatterers, including convex [17, 35, 18], nonconvex [16, 33] and curvilinear [42]
polygons, two-dimensional colinear screens [34], smooth convex two-dimensional [22, 13, 25, 24]
and three-dimensional [26] scatterers, and three-dimensional rectangular screens [32]. All of the
HNA methods mentioned above achieve fixed accuracy with a frequency-independent (or only very
modestly growing as the frequency increases) number of degrees of freedom. Moreover, many (in
particular [17, 35, 16, 33, 34, 25, 24]) are fully convergent and supported by rigorous numerical
analysis.

We believe that the method presented in this paper is the first HNA method for any problem
involving a penetrable scatterer. Application of the HNA methodology to penetrable scatterers
is nontrivial, primarily because the high frequency asymptotic behaviour is considerably more
complicated and less well-understood than in the corresponding impenetrable case. In addition
to the phenomena of reflection and diffraction that pertain in the impenetrable case, one also has
to take into account the refraction of waves into the interior of the scatterer. This generates a
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complicated superposition of internally reflected and diffracted wave fields. Furthermore, the exact
nature of these wave fields is not fully understood, because many of the relevant GTD canonical
scattering problems remain unsolved in closed form. In particular, the key open problem of relevance
for scattering by penetrable polygons is diffraction by a penetrable wedge, which has not yet been
solved in full generality, despite numerous attempts (see, e.g., [46, 49, 14, 1]). Nonetheless, in
spite of these difficulties it was demonstrated in our earlier publication [31] that effective HNA
approximation spaces can indeed be developed for penetrable scatterers, by adopting appropriate
generalizations of the methods already developed for the impenetrable case.

The two key general ideas explored in [31] are that:

(i) In order to design HNA approximation spaces one needs only partial information about the
GTD solution (specifically phases, and the location of shadow boundaries), not the full GTD
solution. In particular, the lack of analytical expressions for corner diffraction coefficients for
penetrable scatterers is not a barrier to the development of HNA methods;

(ii) Even if the high frequency oscillatory behaviour is too complicated to be captured completely
by an HNA method (because there are too many phases to consider), incorporating just a
small number of oscillatory basis functions capturing the leading order asymptotic behaviour
might lead to a significant improvement in performance over conventional purely numerical
or purely asymptotic methods.

Specifically, for the case of penetrable convex polygons, the approximation space proposed in [31]
represents the unknown Cauchy data in the BIE formulation as the GO field (which can be com-
puted analytically using a beam-tracing method - cf. §3.1 below) plus an HNA component designed
to capture the primary, secondary, and all higher-order corner-diffracted fields. This HNA com-
ponent takes the form of a sum of terms vj1eik1rj and vj2eik2rj (see equation (23) below), where k1

and k2 are the exterior and interior wavenumbers, rj is Euclidean distance from the jth corner
of the polygon, and vj1 and vj2 are slowly-varying amplitudes, which are represented by piecewise
polynomials on appropriately graded meshes. A BEM implementation was not presented in [31];
instead the performance of the proposed approximation space was investigated by projecting a
highly accurate fully numerical reference solution onto the approximation space and computing the
resulting approximation error.

In the current paper we present a Galerkin BEM implementation of a refined version of the HNA
approximation space developed in [31], demonstrating that it can be used as the basis of an effective
numerical method. Regarding the approximation space itself, compared to [31] we have improved:
(i) the robustness of the beam-tracing algorithm used to compute the classical GO approximation
(see §3.1.1), leading to improved accuracy for certain incident wave directions; and (ii) the effi-
ciency of our meshing strategy for treating beam boundary discontinuities (see §3.1.2 and §3.2),
significantly reducing the number of degrees of freedom required to approximate the diffracted wave
fields.

The state of the art for high frequency electromagnetic transmission problems in atmospheric
physics appears to be the physical-geometric optics hybrid (PGOH) method of Bi et al. [5, 6]. The
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PGOH method is an extension to penetrable scatterers of the classical Kirchhoff approximation,
in which one takes a boundary integral representation of the solution in the propagation domain
(Green’s representation theorem in acoustics; the Stratton-Chu formula in electromagnetics) and
replaces the unknown boundary data by its GO approximation (including contributions not just
from the incident wave, but also from internally reflected and refracted rays). Our method improves
on the PGOH approximation by adding in numerically computed diffracted fields within the integral
representation. We shall demonstrate, by a range of numerical experiments that, for all of the
examples we consider, our method achieves an order of magnitude improvement in accuracy over
the PGOH approach, with only a modest (and frequency-independent) number of degrees of freedom
required to compute the additional diffracted contribution.

The outline of the paper is as follows. We begin in §2 by stating the scattering problem and its
reformulation as a BIE. In §3 we describe the construction of our HNA approximation space. In §4
we describe the implementation of our approximation space as a Galerkin BEM. We present numer-
ical results demonstrating its efficiency and accuracy for a range of examples with different (convex
polygonal) geometries and different physical parameters, including variations in contrast, absorp-
tion, and incident angle. In §5 we offer some conclusions and discuss potential future improvements
and generalizations of the method.

2 Problem statement

We consider the two-dimensional scattering of a time-harmonic incident plane wave by a penetrable
convex polygon. Let Ω2 ⊂ R2 denote the interior of the polygon (a convex bounded open set), and
let Ω1 := R2\Ω2 denote the exterior unbounded domain. Let Γ = Γ1 ∪ Γ2 ∪ . . .Γns denote the
boundary of the polygon, where ns is the number of sides and Γj, j = 1, . . . , ns, are the sides
of the polygon, labelled in an anti-clockwise direction. The corners of the polygon are similarly
labelled P1, . . . ,Pns , with Γj, j = 1, . . . , ns, being the side between the corners Pj and Pj+1 (with
the convention that Pns+1 ≡ P1); for an example see Figure 7(a). Let n denote the outward unit
normal to Γ. Let k1 denote the wavenumber in Ω1 and k2 the wavenumber in Ω2. We shall assume
throughout that

k1 > 0, Re [k2] > 0, and Im [k2] ≥ 0; (1)

when Im [k2] > 0 the scatterer is partially absorbing. For convenience we introduce the notation

µ = k2/k1

for the (possibly complex) refractive index, and λ1 = 2π/k1, λ2 = 2π/Re [k2] = λ1/Re [µ] for the
exterior and interior wavelengths.

The boundary value problem (BVP) we wish to solve is: given α ∈ C \ {0} satisfying

Im [α] ≤ 0, Im
[
αk2

2

]
≥ 0, (2)
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and an incident field
ui(x) := eik1di·x, x ∈ R2, (3)

with di ∈ R2 a unit direction vector, determine the total field u1 in Ω1 and u2 in Ω2 such that

∆u1 + k2
1u1 = 0, in Ω1, (4)

∆u2 + k2
2u2 = 0, in Ω2, (5)

u1 = u2 and
∂u1

∂n
= α

∂u2

∂n
, on Γ, (6)

with the scattered field us := u1 − ui satisfying the Sommerfeld radiation condition

∂us

∂r
(x)− ik1u

s(x) = o(r−1/2), as r := |x| → ∞. (7)

The scalar BVP (3)–(7) is a model for both acoustic and electromagnetic scattering problems. In the
electromagnetic case, scattering by a (possibly partially absorbing) dielectric polygon is modelled
by two BVPs of the form (3)–(7), one for the out-of-plane electric field and one for the out-of-plane
magnetic field. The standard transmission boundary conditions for Maxwell’s equations (see, e.g.,
[7, §1.1]) imply that for the electric field the appropriate choice of α in (6) is α = 1; for the magnetic
field it is α = 1/µ2 = (k1/k2)2. Assuming (1), both of these choices of α satisfy (2).

Under the assumptions (1) and (2) it is well known that the BVP (3)–(7) is uniquely solvable with
u1 ∈ C2(Ω1)∩H1

loc(Ω1) and u2 ∈ C2(Ω2)∩H1(Ω2) (see, e.g., [41, Proposition 2.1 and Corollary 3.4],
which follows from results in [20, 52], and also the related result of [45, Corollary 8.5]). We mention
also [47], where a particularly simple proof of well-posedness is given for the case k1, k2 > 0, along
with wavenumber-explicit stability bounds.

Our BEM for solving (3)–(7) is based on a direct BIE formulation. We first observe that if u1 and
u2 satisfy (3)–(7), then a form of Green’s representation theorem holds; i.e., the fields u1 and u2 in
Ω1 and Ω2 can be represented in terms of their Dirichlet and Neumann traces on Γ. By applying
the transmission conditions (6) we can work with the boundary traces of just one of the fields;
we choose to work with u1, denoting its Dirichlet and Neumann traces on Γ by u1 and ∂u1/∂n
respectively. Then [15, Theorems 2.20 and 2.21]

u1(x) = ui(x)− S1
∂u1

∂n
(x) +D1u1(x), x ∈ Ω1, (8)

u2(x) =
1

α
S2
∂u1

∂n
(x)−D2u1(x) x ∈ Ω2, (9)

where Sj : H−1/2(Γ) → H1
loc(R2 \ Γ) and Dj : H1/2(Γ) → H1

loc(R2 \ Γ), j = 1, 2, are the stan-
dard single- and double-layer potentials, defined for sufficiently smooth arguments (for a detailed
discussion of the properties of Sj and Dj on Lipschitz domains see [15]) by the integral formulas

Sjφ(x) =

∫
Γ

Φj(x,y)φ(y) ds(y), Djφ(x) =

∫
Γ

∂Φj(x,y)

∂n(y)
φ(y) ds(y).
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Here Φj(x,y) := (i/4)H
(1)
0 (kj|x − y|), j = 1, 2, are the fundamental solutions of the Helmholtz

equations (4) and (5), respectively, with H
(1)
0 denoting the Hankel function of the first kind of

order zero. For later reference we note that the far-field behaviour of the scattered field is

us(x) ∼ eiπ/4

2
√

2π

eik1r

√
k1r

F (x̂), as r := |x| → ∞,

where x̂ := x/|x| ∈ S1, the unit circle, and the far-field pattern F : S1 → C is given by

F (x̂) = −
∫

Γ

e−ik1x̂·y
(

ik1(x̂ · n(y))u1(y) +
∂u1

∂n
(y)

)
ds(y), x̂ ∈ S1. (10)

To derive a BIE from (8)–(9) one takes Dirichlet and Neumann traces of both equations and applies
the standard jump relations for traces of Sj and Dj (see, e.g., [15, p. 115]). This produces a set of
four equations satisfied by the unknown boundary data

v :=

(
u1

∂u1/∂n

)∣∣∣∣
Γ

=

(
u2

α ∂u2/∂n

)∣∣∣∣
Γ

,

which can be combined in a number of different ways to produce different BIE formulations. The
particular formulation we consider involves the BIE

Av = f , (11)

where

A =

(
1+α

2
I + (αD2 −D1) S1 − S2

α(H2 −H1) 1+α
2
I + (αD′1 −D′2)

)
, f =

(
ui

α ∂ui/∂n

)
, (12)

I is the identity operator and Sj, Dj, D
′
j, Hj, j = 1, 2, are, respectively, the single-layer, double-

layer, adjoint double-layer, and hypersingular integral operators, defined for sufficiently smooth φ
by

Sjφ(x) :=

∫
Γ

Φj(x,y)φ(y)ds(y), Djφ(x) :=

∫
Γ

∂Φj(x,y)

∂n(y)
φ(y)ds(y),

D′jφ(x) :=

∫
Γ

∂Φj(x,y)

∂n(x)
φ(y)ds(y), Hjφ(x) :=

∂

∂n(x)

∫
Γ

∂Φj(x,y)

∂n(y)
φ(y)ds(y).

The operator A in (12) is bounded and invertible as a mapping from L2(Γ)×L2(Γ)→ L2(Γ)×L2(Γ);
this can be proved by a straightforward modification of the arguments presented in [52, Proof of
Theorem 7.2] (for details see [29, §2.7]). That the solution of the BVP is sufficiently smooth
to work in this setting follows from the boundedness and invertibility of A as a mapping from
H1(Γ) × L2(Γ) → H1(Γ) × L2(Γ) (again, see [52, 29]) and the fact that ui is smooth, so that
f ∈ H1(Γ)× L2(Γ). In fact, by standard elliptic regularity results (see, e.g., [28]) the solution v is
infinitely smooth on each of the sides of the polygon. Singular behaviour of v at the corners of the
polygon will be captured in our BEM using mesh refinement.
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Our choice of the particular formulation (11), which is similar to that used in [19, §3.8] (where only
smooth scatterers are considered) and also to that used in [52] (albeit for an indirect method, in
which the unknowns are non-physical “densities”, rather than the boundary data itself), was made
because the cancellation of the strong singularities between the two hypersingular operators in the
term H2 − H1 makes implementation particularly simple. However, we emphasise that our HNA
approximation space (described in the next section) can be applied in the context of any direct
BIE formulation in which the BIE solution is some combination of the physical unknowns u1 and
∂u1/∂n, see, e.g., [20, 40, 41, 36, 23].

We end this section with a further comment on the choice of BIE formulation for high frequency
transmission problems. When using conventional (i.e., non-HNA) approximation spaces, it is well-
known that conditioning issues can severely limit the performance of iterative methods that are
necessary for solving the large linear systems that arise. Because of this, the development of
new well-conditioned BIE formulations is a highly active area of current research; in particular
we mention the indirect formulations recently proposed and analysed in [10, 11, 12], which offer
favourable spectral properties compared to other existing formulations. (The recent paper [23]
describes a direct counterpart with similar properties.) By contrast, we emphasise that the systems
arising from our HNA approach are small enough that they can be solved directly rather than
iteratively. Indeed, the whole aim of HNA methods is to obtain small linear systems whose size
does not grow with respect to frequency, hence reducing the importance of conditioning.

3 HNA approximation space

Our BEM solves the integral equation (11) by the Galerkin method, using an HNA approximation
space specially designed to capture the high frequency behaviour of the solution v = (u1, ∂u1/∂n)T .
Specifically, our method is based on the ansatz

v(x) ≈ vGO(x) + vd(x), x ∈ Γ, (13)

where vGO = (uGO, ∂uGO/∂n) is the GO approximation (computed using the beam tracing algo-
rithm described in §3.1), and vd = (ud, ∂ud/∂n) is a contribution from diffracted fields (computed
using the HNA approximation strategy described in §3.2). Before spelling out in more detail the
practicalities of how vGO and vd are computed, we pause to briefly explain the origin of (13) and
discuss the accuracy of approximation one might expect it to provide.

As was mentioned in the introduction, the high frequency asymptotic theory for transmission
problems is not fully understood, because the details of the GTD for penetrable scatterers, in
particular the solution of the canonical penetrable wedge problem, are yet to be fully worked out.
However, by analogy with the impenetrable case, one expects the leading order high frequency
behaviour of v to be given by the GO approximation vGO, which consists of the incident wave,
along with reflected and transmitted waves satisfying Snell’s law and the Fresnel formulas. For
penetrable polygons irradiated by a plane wave, neighbouring parallel rays incident on the same
side of the polygon remain parallel under reflection/transmission, and hence vGO can be computed
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efficiently using a beam tracing algorithm, as we describe in §3.1. As mentioned in §1, the field
approximation obtained by substituting this GO approximation into the integral representation
formulas (8) and (9) is referred to as the PGOH method in the atmospheric physics literature, and
can be interpreted as a generalization of the classical Kirchhoff approximation for impenetrable
scatterers.

As the next-order correction to the GO approximation, we expect diffracted wave fields ema-
nating radially outwards from each of the corners of the polygon into the exterior domain Ω1

(with wavenumber k1) and inwards into the interior domain Ω2 (with wavenumber k2). It is these
diffracted fields, denoted vd, that we compute numerically using our BEM, using the HNA approx-
imation strategy described in §3.2; see in particular the ansatz in equation (23).

The contribution made by the diffracted term vd is illustrated in Figures 1 and 2, which relate
to scattering by an equilateral triangle of refractive index µ = 1.5 + 0.003125i (for full details of
the setup see §4). Figure 1(a) shows the real part of the total field computed using our HNA
BEM, i.e., first calculating the approximation v ≈ vGO + vd and then substituting this into the
representation formulas (8) and (9). Figure 1(b) shows the contribution made by the diffracted
term vd alone; here one can clearly see the circular diffracted waves emanating from the vertices,
and the complicated interference pattern they produce inside the scatterer. Figure 2 contains
plots of the solution u1 on Γ, i.e., the first component of the vector v. The upper panels show
the real part of u1 on Γ, computed both using a highly accurate reference solution (described in
§4) and using the GO approximation uGO. The lower panels show the difference u1 − uGO; this
remainder is what we approximate using our diffracted term ud. A comparison of the left-hand
panels (k1 = 10) with the right-hand panels (k1 = 40), suggests that as the wavenumber k1 increases
the error u1− uGO decreases in magnitude, at least away from the corners of the polygon. (Similar
behaviour is observed for the GO approximation to ∂u1/∂n, not shown here.) This is in line with
what one should expect from the high frequency GO approximation, i.e., that it becomes more
accurate with increasing k1, but that it does not capture any effects due to the corner diffraction.

We also expect the high frequency solution behaviour to feature other higher-order effects, such
as so-called lateral waves (sometimes known as head or bow waves in related contexts), and the
internal re-reflections of the diffracted and lateral wave fields. (For a more detailed discussion see
[31, §3.2.1], and for a schematic illustration of some of these phenomena see Figure 3.) However, to
limit the implementational complexity of our method these higher-order effects are not incorporated
into our approximation space. Hence, in contrast to the HNA approximation spaces developed in
[17, 18, 35] for impenetrable convex polygons, our HNA approximation space does not capture all
of the oscillatory solution behaviour. Accordingly, our method remains “asymptotic” in nature,
with an inherent frequency-dependent error which decreases as the frequency tends to infinity. 1

Nonetheless, our numerical results in §4 show that our method achieves a significant improvement

1Many HNA methods share this same “asymptotic” nature. In particular we note that the methods of [22, 13, 26]
for smooth convex impenetrable scatterers all incur an exponentially small frequency-dependent error, since they
approximate by zero in the deep shadow region, neglecting the exponentially small creeping wave fields. In contrast,
the method of [27] and the analysis of [2] do explicitly incorporate creeping wave fields, and the methods of [25, 24],
while not fully capturing creeping wave fields, include enough degrees of freedom in the deep shadow to be fully
convergent, without incurring a systematic frequency-dependent error.
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(a) Total field (real part)

(b) Diffracted field (real part)

Figure 1: Scattering by an equilateral triangle of side length 2π and refractive index µ = 1.5 +
0.003125i, computed using our HNA BEM. Here k1 = 20, α = 1, and the incident wave arrives
from above, corresponding to di = d1 in the geometrical setup described in Figure 7(a).
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Figure 2: Real part of the boundary solution u1 for the configuration in Figure 1, with k1 = 10
(left-hand panels) and k1 = 40 (right-hand panels), plotted against arclength s around Γ (moving
anti-clockwise around Γ starting at the bottom-right vertex). The upper panels show the reference
solution u1 and the GO approximation uGO. The lower panels show the difference u1−uGO which we
identify with the diffracted field. This difference, rather than the total field, is what we approximate
using our HNA BEM. The vertical lines indicate the location of the corners of the polygon.

over using GO alone. As we shall see in §4, our neglect of the higher-order terms (lateral waves, and
the re-reflections of the diffracted and lateral waves) has less impact when the scatterer is partially
absorbing (Im [k2] > 0), since then the neglected terms are attenuated and play less of a role.

We now describe the computation of each of the two terms vGO and vd in more detail.

3.1 Computation of vGO

Our GO approximation vGO in (13) is computed using a beam-tracing algorithm (BTA), similar to
those presented in [9] and [6] for the analogous 3D problem. For full details of our BTA we refer the
reader to [31, §3.1]; here we simply sketch the basic algorithm and point out some modifications in
our current implementation compared to that described in [31].

According to the principles of GO, when the incident plane wave impinges on a side of the polygon
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incident

reflected

diffracted

refracted

lateral

lateral
Pj

Γj−1

Γj

(a) Lateral waves

diffracted

diffracted-
reflected

PjPj+1P′
j Γj

Γj+1

(b) Diffracted-reflected wave

Figure 3: Wavefront propagation in the time domain for a plane pulse incident from a faster
medium onto a rectangle formed of a slower medium (shaded), illustrating two of the high frequency
asymptotic phenomena not captured by our HNA approximation space. Double-headed arrows
indicate wavefront propagation directions. (a) Wavefront diagram near a corner of the rectangle
shortly after the incident pulse (which propagates downwards in the figure) arrives at the corner
Pj, showing the lateral wavefronts, which are associated with the limiting exterior diffracted rays
propagating down the sides Γj−1 and Γj shedding new lateral rays into the interior. Typical lateral
ray paths are shown as dotted red arrows. In this particular “grazing incidence” configuration the
limiting exterior diffracted ray propagating down the side Γj−1 coincides with the limiting incident
ray. As a result we might expect a stronger lateral wave contribution from Γj−1 than in the general
case, which is illustrated, for example in [31, Figure 3]. We note that the two lateral wavefronts
meet the interior (slower) diffracted wavefront tangentially. (b) Diffracted wavefront emanating
from the corner Pj and the diffracted-reflected wavefront generated by its interior re-reflection
from the side Γj+1. A typical diffracted-reflected ray path is shown by the dotted red arrow.

Ω2, it generates a beam of reflected rays propagating back into the exterior domain Ω1, and a
beam of transmitted rays propagating into the interior domain Ω2. The transmitted beam then
generates a sequence of higher-order internally reflected beams and externally transmitted beams,
as illustrated in Figure 4. Each beam is described by

(i) a plane wave aei(Dd+iEe)·x, with amplitude a, unit propagation and decay direction vectors
d and e, and (wavenumber-dependent) propagation/decay constants D > 0 and E ≥ 0, all
determined by the well-known laws of reflection and refraction at an interface between two
homogeneous media (Snell’s law (16) and the Fresnel formulas (17)–(18) below), and

(ii) (up to) two beam boundaries outside of which we cut off the plane wave beam sharply to zero.

In principle there is an infinite sequence of internal reflections to consider, but for a practical
implementation we need to truncate the sequence somehow. Our truncation criterion is as follows.
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Γ1

Γ4

Γ2

Γ3

Γ6

Γ5

P1P2

P3

P4 P5

P6

x4

x5

ui

(a) Primary beams from Γ2

Γ1

Γ4

Γ2

Γ3

Γ6

Γ5

P1P2

P3

P4

P5

P6

x3

x2 x6

(b) Secondary beams arising from
the transmitted beam in (a)

Figure 4: Beam tracing to compute vGO in a hexagon: (a) shows the primary reflected and trans-
mitted beams arising from the incidence of ui onto the side Γ2; (b) shows the secondary beams
arising from the internal reflection and exterior transmission of the primary transmitted beam in
(a). The secondary internally-reflected beams in (b) go on to produce a sequence of higher-order
internally-reflected beams, not pictured here. For the particular incident direction illustrated here,
the sides Γ1 and Γ3 would also produce a similar sequence of beams (not pictured here) contributing
to vGO, but Γ4, Γ5 and Γ6 would not, as they are not illuminated by ui. The beam boundary points
associated with the beams shown here are indicated by the filled circles and labelled xj, j = 2, . . . , 6
to indicate the side of Γ on which they lie; note that the secondary beam leaving Γ4 in (b) has only
one beam boundary inside the polygon, so generates only one beam boundary point, x6.

Suppose that a beam aei(Dd+iEe)·x (with associated beam boundaries) illuminates a portion of a
side Γj. Then we include its contribution to vGO on Γj if and only if

max
x
|a|e−Ee·x > tolb, (14)

where the maximum is taken over all x ∈ Γj which lie between the two beam boundaries of the
beam in question, and tolb is a user-specified tolerance. If a beam fails this test, we exclude it from
the calculation of vGO on Γj and do not track any higher-order beams generated by the reflection
of that beam from the side Γj. The exact number of beams traced depends upon tolb, frequency,
absorption, geometry, and incident angle. Generally speaking, higher absorption typically leads
to fewer beams, whereas a more complex geometry (more sides) leads to more beams. For the
numerical results in §4 we used tolb = 0.005; this was found to guarantee convergence of the BTA
to within a relative accuracy of around 0.1% for all the examples considered, using between 5 and 30
beams, depending on the example. We emphasize that tracing each beam requires us to trace just
two geometric rays - the two rays forming the beam boundaries. As a result, in all of the examples
we consider, the computational cost of the BTA (both in terms of memory and computation time)
is negligible within the overall cost of the HNA BEM, even when a relatively large number of beams
is required (such as for the hexagon in §4.8).
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3.1.1 Sign choice in the Fresnel formulas

Regarding point (i) above, we remark that the laws of reflection and refraction are completely
classical in the case when both media are non-absorbing (see, e.g., [7]). However, when one of the
media is absorbing (here, this corresponds to Im [k2] > 0), there is some debate in the literature
about how to make a particular sign choice in the Fresnel formulas. We reviewed this issue in [31,
Appendix A], providing an analysis of the general interface problem (with up to two absorbing
media) as well as numerous references to relevant literature. But since the publication of [31],
further investigations have led us to refine our sign choice rule, as we now explain.

Let us consider the interface problem between a medium with wavenumber k = η + iξ and a
second medium with wavenumber k̃ = η̃ + iξ̃, where η, η̃ > 0, ξ, ξ̃ ≥ 0. Let t and n be unit
tangent and normal vectors on the interface (assumed to contain the origin), with n pointing into
the second medium. An incident plane wave ui = ai exp[i(Did

i + iEie
i) · x] propagating in the

first medium generates a reflected wave ur = ar exp[i(Did
r + iEie

r) · x] (also propagating in the
first medium), and a transmitted wave ut = at exp[i(Dtd

t + iEte
t) · x] (propagating in the second

medium). According to the law of reflection the vectors dr and er should satisfy

dr = di − 2(di · n)n, er = ei − 2(ei · n)n,

and for ui, ur and ut to be solutions of the relevant Helmholtz equations we require

D2
i − E2

i = η2 − ξ2, D2
t − E2

t = η̃2 − ξ̃2, DiEi(d
i · ei) = ηξ, DtEt(d

t · et) = η̃ξ̃. (15)

Assuming the boundary conditions ui +ur = ut and ∂ui/∂n+ ∂ur/∂n = α∂ut/∂n on the interface,
for some α ∈ C, one can derive Snell’s law

Did
i · t = Dtd

t · t, Eie
i · t = Ete

t · t, (16)

and the Fresnel formulas

ar

ai
=

(Did
i · n + iEie

i · n)− α(Dtd
t · n + iEte

t · n)

(Didi · n + iEiei · n) + α(Dtdt · n + iEtet · n)
, (17)

at

ai
=

2(Did
i · n + iEie

i · n)

(Didi · n + iEiei · n) + α(Dtdt · n + iEtet · n)
, (18)

in which

Dt =

√
1

2

(
η̃2 − ξ̃2 + D̃2

i + Ẽ2
i +

√
(η̃2 − ξ̃2 − D̃2

i + Ẽ2
i )

2 + 4(D̃iẼi − η̃ξ̃)2

)
,

Et =

√
D2
t + ξ̃2 − η̃2,

with D̃i := Did
i · t and Ẽi := Eie

i · t (see the appendix of [31] for more detail). Snell’s law and the
Fresnel formulas respectively specify the tangential components of the transmitted vectors dt and
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et, and the amplitudes ar and at. Since dt and et have unit length, their normal components are
thus specified up to sign. However, to determine these signs and close the problem one must impose
an additional constraint based on some physical argument. Two common constraints require either
that

dt · n ≥ 0, (GO1), (19)

which prohibits energy flow from the second medium to the first, or that

et · n ≥ 0, (GO2), (20)

which prohibits exponential growth in the second medium.

For some configurations these two choices are compatible, and can both be satisfied simultaneously.
As an example we consider the phenomenon of total internal reflection, which occurs when both
media are non-absorbing (ξ = ξ̃ = 0), the second medium has a faster propagation speed than the
first (i.e., 0 < η̃ < η) and the incident direction is close to grazing (i.e., |di · t| is sufficiently small).
In this case dt · n = 0, so GO1 is automatically satisfied. But et can be either n or −n. Enforcing
GO2 selects the first option, and we obtain the configuration shown in Figure 5(a).

However, when one or both of the media are absorbing, there exist configurations for which GO1
and GO2 are incompatible. (Note that dt and et are coupled through the final equation in (15) so
the signs of dt ·n and et ·n cannot in general be chosen independently.) For the case when just one
of the media is absorbing (as in the current paper), the only situation in which this incompatibility
arises is when the first medium is absorbing (ξ > 0) and the second is non-absorbing (ξ̃ = 0), and
the incident vectors di and ei both point in the same direction relative to t (i.e., (di · t)(ei · t) > 0).
In this case Snell’s law implies that (dt · n)(et · n) < 0, so that (19) and (20) cannot both hold
simultaneously. The two possibilities are illustrated in Figure 5(b).

In the context of our problem, this situation can arise when the scatterer is absorbing (Im [k2] > 0)
and a beam propagating in Ω2 is incident on Γ, generating an internally reflected beam and an
externally transmitted beam. We expect that the correct choice of GO1 or GO2 in this context
could in principle be resolved by matching the local asymptotic behaviour near the interface with
the global behaviour of the scattered field. However, due to the lack of a convenient expression
for the field near the corners of the polygon we have been unable to carry out such an analysis.
Instead we have developed a heuristic approach for determining which choice to make, based on
the results of numerical experiments. In these experiments (detailed more fully in [29, §4.3.4]) the
GO approximation vGO, computed using first GO1 and then GO2, was compared to a conventional
BEM reference solution, for a particular geometrical configuration chosen specifically to isolate the
behaviour in question. We found that GO1 gave a more accurate approximation than GO2, except
when dt was almost parallel to the interface. On the basis of these results we adopt the following
strategy: whenever GO1 and GO2 are incompatible (as described above),

use GO1, unless |dt · n| < tolGO, in which case use GO2. (21)

Here tolGO is a user-defined tolerance; for the numerical results in §4 we used the value tolGO = 0.01.
(In our previous paper [31] we used GO1 throughout, which corresponds to setting tolGO = 0. The
significant improvement in accuracy resulting from the apparently minor change to tolGO = 0.01,
enabling GO2 to be used where appropriate, is described in [29, §4.3.4].)
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Figure 5: Examples illustrating the sign choice for the normal components of transmitted direction
vectors in the canonical GO interface problem. In both figures the interface is the horizontal line
and the vectors t and n are unit tangent and normal vectors to the interface. (a) shows total
internal reflection, which occurs when 0 < η̃ < η and the incident angle is sufficiently shallow (i.e.,
|di · t| is sufficiently small); (b) shows the case where the choices GO1 and GO2 are incompatible,
which occurs when η, η̃ > 0, ξ > 0 and (di · t)(ei · t) > 0.

3.1.2 Beam boundary discontinuities

Regarding point (ii) above, we note that cutting off each beam sharply across its two beam bound-
aries introduces artificial discontinuities in our approximation (13) to the function v at the “beam
boundary points” where the beam boundaries intersect Γ (see Figure 4). If these discontinuities
are sufficiently large in magnitude they can cause difficulties for our numerical calculation of the
diffracted component vd. We discuss this issue in more detail in the next section, and for now
we simply introduce some terminology. Suppose that a beam aei(Dd+iEe)·x (with associated beam
boundaries) impinges on a side Γj, with one of its beam boundaries intersecting Γj at the point
x∗ ∈ Γj. Then we designate the resulting beam boundary discontinuity as “strong” if

|a|e−Ee·x∗ > tolbb, (22)

where tolbb is a user-specified tolerance.

3.2 Computation of vd

Our diffraction contribution vd in (13) takes the form

vd(x) =
ns∑
j=1

vj1(x) exp[ik1rj(x)] +
ns∑
j=1

vj2(x) exp[ik2rj(x)], x ∈ Γ, (23)

where, for j = 1, . . . , ns, rj(x) = |x−Pj| is the Euclidean distance between x ∈ Γ and the corner
Pj, and the amplitudes vjl , l = 1, 2, are computed numerically using our Galerkin BEM (see (28)
below), as (vector-valued) piecewise polynomials on appropriate overlapping meshes. (Recall that
since v = (u1, ∂u1/∂n) is vector-valued, so are the amplitudes vjl .)
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A typical term vj1(x) exp[ik1rj(x)] in the first sum in (23) corresponds to a diffracted wave emanating
from the corner Pj and propagating with wavenumber k1 in the exterior domain Ω1. The convexity
of the polygon Ω2 implies that this wave only impinges on the sides adjacent to the corner Pj, namely
Γj and Γj−1 (with the convention that Γ0 ≡ Γns). Hence we force vj1(x) = 0 for x ∈ Γ\ (Γj ∪Γj−1).
On each of Γj and Γj−1, to capture the singular behaviour at the corner Pj we take vj1 to be a
piecewise polynomial on a mesh graded geometrically towards Pj (more details of these meshes are
given below).

A typical term vj2(x) exp[ik2rj(x)] in the second sum in (23) corresponds to a diffracted wave
emanating from the corner Pj and propagating with wavenumber k2 in the interior domain Ω2. By
the convexity of Ω2, this wave impinges on all sides of the polygon. Hence vj2(x) is supported on
the whole of Γ. As for vj1, on each of Γj and Γj−1 we take vj2 to be a piecewise polynomial on a
mesh graded geometrically towards Pj (again, more details of these meshes are given below).

On Γ\ (Γj ∪Γj−1) we take vj2 to be a piecewise polynomial of maximum degree p ∈ N0 on a mesh of
Γ\ (Γj∪Γj−1) constructed in the following way. We start with a mesh of ns−2 elements, consisting
of the ns − 2 sides Γl, l 6∈ {j, j − 1} (with ns − 1 mesh points at the corners Pl, l 6= j). We then
insert mesh points at any beam boundary points x ∈ Γ\ (Γj ∪Γj−1) associated with “strong” beam
boundaries (as defined in (22)) in vGO, provided that the beam boundaries in question emanated
from the corner Pj. (Here we note another difference between the current algorithm and that
described in [31], where mesh points were introduced at all strong beam boundaries, not just
those emanating from corner Pj, leading to redundancy in the approximation space due to the
same mesh points being added to multiple overlapping meshes. The current algorithm avoids this
redundancy, giving a significant reduction in the total number of fewer degrees of freedom, without
compromising on accuracy.)

To clarify the mesh refinement procedure, we consider the contribution of the beams illustrated
in Figure 4. Let us assume that all of the beam boundary discontinuities in Figure 4 are strong
(i.e., satisfy (22)). Then for the primary transmitted beam emanating from side Γ2 in Figure 4(a),
we would insert a mesh point at x5 in the mesh for v2

2 (associated with diffraction from corner
P2), and at x4 in the mesh for v3

2 (associated with diffraction from corner P3). For the internally
reflected beams emanating from side Γ4 and Γ5 in Figure 4(b), we would insert a mesh point at
x3 in the mesh for v5

2 (associated with diffraction from corner P5). But we would not insert mesh
points at x2 and x6 in the mesh for any of the amplitudes vj2, j = 1, . . . , ns, as the points x2 and x6

correspond to beam boundaries that are not directly associated with any corner Pj. (Rather, they
arise by the internal reflection of the two beam boundaries in Figure 4(a), and are associated with
the higher-order diffracted-reflected fields, which are not captured in our approximation space.)

To describe in more detail the geometrically graded meshes we use, we first consider a mesh on the
interval [0, 1], refined towards 0. Given n ≥ 1 (the number of layers in the mesh) we let Gn denote
the set of meshpoints {xi}ni=0 defined by

x0 := 0, xi := σn−i, i = 1, 2, . . . , n, (24)

where 0 < σ < 1 is a grading parameter (we discuss the choice of σ in §4.1). We then define a
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space of piecewise polynomials on the mesh Gn, for a given degree vector p ∈ (N0)n, by{
ρ : [0, 1]→ C : ρ|(xi−1,xi) is a polynomial of degree less than or equal to (p)i, i = 1, . . . , n

}
.

For reasons of efficiency and conditioning it is common to decrease the degree of the approximating
polynomials towards the point of refinement. Specifically, given a maximum polynomial degree
p ∈ N0, we use a “linear slope” degree vector p with

(p)i :=

{
p−

⌊
(n+1−i)

n
p
⌋
, 1 ≤ i ≤ n− 1,

p, i = n.
(25)

We adopt an “hp” approximation strategy, in which the number of layers n in each geometric mesh
grows as the maximum polynomial degree p is increased. Specifically, we take

n = dCnp(p+ 1)e, (26)

where Cnp > 0 is a user-specified constant. The geometric meshes in our approximation space are
constructed from this basic building block by straightforward coordinate transformations. Explic-
itly, for each j = 1, . . . , ns the amplitudes vj1 and vj2 are approximated on the side Γj using the
mesh Pj +Gn ∗ (Pj+1 −Pj), and on the side Γj−1 using the mesh Pj +Gn ∗ (Pj−1 −Pj).

The above construction constrains vd to lie in a particular finite-dimensional approximation space
V ⊂ L2(Γ)× L2(Γ) whose dimension N (the total number of degrees of freedom) is given by

N = 2

(
(p+ 1)(ns − 2 + nbb) + 4ns

n∑
i=1

((p)i + 1)

)
, (27)

where nbb is the total number of strong beam boundary points at which we insert extra mesh points.
Note that, by (26), N grows approximately in proportion to p2 as p increases.

3.3 Numerical best approximation error analysis

The HNA approximation strategy described above has been extensively tested in [29] and [31]
using a numerical best approximation error analysis. For a number of scattering scenarios, highly
accurate reference solutions, denoted here by vref , were computed using a conventional BEM (see
§4 for more details). The corresponding GO approximations vGO were calculated using the BTA,
and numerical best approximations to vref − vGO (which we identify with vd, see (13)) from the
HNA approximation space V were then computed using orthogonal projection in L2(Γ) × L2(Γ)
(via the least squares approach detailed in [31]), and the corresponding errors recorded.

A typical sample of the results obtained is presented in Figure 6, which plots the numerical best
approximation error against increasing polynomial degree. For reference we also show the error for
GO alone, as the left-most data point. All of the curves in Figure 6 exhibit the same qualitative
behaviour. At first the error decays exponentially, in an essentially frequency-independent way; in

17



GO 0 1 2 3 4 5 6 7
10−5

10−4

10−3

10−2

10−1

Polynomial degree p

R
el

a
ti

ve
L
2

er
ro

r
in
u
1

on
Γ

k1 = 40

k1 = 80

k1 = 160

(a) µ = 1.5 + 0.00625i

GO 0 1 2 3 4 5 6 7
10−5

10−4

10−3

10−2

10−1

Polynomial degree p

(b) µ = 1.5 + 0.0125i

Figure 6: Numerical best approximation errors for the configuration in Figure 1 at two different
refractive indices (left panel - lower absorption, right panel - higher absorption), as a function of
polynomial degree p. Other approximation space parameters (Cnp etc.) are as specified in §4. For
reference the GO error is also shown.

this initial phase, increasing p leads to an improvement in the accuracy of our HNA approximation
vd to the diffracted wave fields. Then, when the accuracy of vd reaches the level of the asymptotic
error associated with our neglect of the higher-order asymptotic phenomena (the lateral waves and
the internal re-reflections of the diffracted and lateral waves), the error levels out. Increasing p
no longer leads to a significant improvement in accuracy, because our HNA approximation space
for vd does not contain the correct oscillatory basis functions needed to capture the neglected
waves. (Exponential convergence will in theory resume once the number of degrees of freedom
is sufficiently large to resolve the missing oscillations, but this is not the regime in which HNA
methods are designed to operate.) We note that the magnitude of the neglected waves, and hence
the level at which the error stagnates, decreases as k1 increases, and also as the absorption Im [µ]
increases, in accordance with the asymptotic theory (see the discussion before §3.1).

4 Galerkin BEM and numerical results

In §3 we proposed an ansatz v ≈ vGO + vd (see (13)) for the solution v = (u1, ∂u1/∂n)T ∈
L2(Γ) × L2(Γ) of the integral equation (11), describing a beam tracing algorithm for computing
the GO term vGO and an HNA approximation space V ⊂ L2(Γ) × L2(Γ) for the diffraction term
vd. In this section we describe our BEM implementation and present a range of numerical results
demonstrating its performance. Our BEM selects a particular element vd ∈ V by applying the
Galerkin method to the integral equation (11), rewritten using the decomposition (13), with vd as
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the unknown. That is, we compute vd ∈ V satisfying

〈Avd,w〉 = 〈f − AvGO,w〉, for all w ∈ V, (28)

where 〈·, ·〉 is the usual inner product on L2(Γ)× L2(Γ).

4.1 Implementation details

Choosing a basis for V reduces (28) to the solution of a linear system for the basis coefficients
of vd. In our implementation we represent each of the two components of vd using scalar basis
functions of the form Lmeiklrj (see (23)), where l ∈ {1, 2}, rj is the distance from vertex Pj, for
some j ∈ {1, . . . , ns}, and Lm is a Legendre polynomial of degree m ∈ {0, . . . , p}. (Note that each
basis function is supported on some subinterval of one of the sides of the polygon.) To improve
conditioning of the resulting linear system we found it beneficial to scale each basis function so that
its L2(Γ) norm is equal to one.

By design, the linear systems produced by the HNA BEM are small compared to those arising
from conventional methods and hence can be solved using direct methods, without the need for
iterative solvers. Assembly of the linear system requires the evaluation of integrals which are
potentially both oscillatory and singular. We evaluate these integrals to high precision (better than
10−8 relative accuracy) with composite Gauss quadrature using geometric grading and the classical
Duffy transformation - for details see [29]. For a faster implementation one could employ oscillatory
quadrature techniques, as discussed in [15, 21, 39, 34, 35]. But our focus in the current paper is on
demonstrating the efficiency of the HNA approximation space in terms of the number of degrees
of freedom, rather than on fast implementations, and so we postpone further discussion of this
important issue to future work.

In all of our experiments we use the parameter choices:

tolb = 0.005 (see (14)), (29)

tolGO = 0.01 (see (21)), (30)

tolbb = 0.01 (see (22)), (31)

Cnp = 1.5 (see (26)), (32)

and the fixed maximum polynomial degree

p = 3 (see (25)). (33)

In accordance with the discussion in §3.3, choosing a larger value of p than 3 in general leads to
improved accuracy, up to the point at which the underlying asymptotic error is reached. However,
through extensive numerical testing (detailed in [29]) the choices (29)–(33) were found to give
a reasonable compromise between computational effort and solution accuracy for the range of
problems considered here.

For the construction of our geometric meshes (recall (24)) we use grading parameters σ1 = 0.17
for the vj1 meshes and σ2 = 0.15 for the vj2 meshes. Using the same grading parameter for both
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k1 = 20, α = 1, di = d3 (grazing incidence on Γ1).

Figure 7: Scattering by an equilateral triangle.

the vj1 and vj2 meshes was found to cause ill-conditioning when k1 is small, or when the meshes
are particularly heavily refined, because when the diameter of the smallest elements in the meshes
is comparable to the wavelength(s), the polynomial approximants are capable of resolving the
oscillatory difference between the two phase factors exp[ik1rj] and exp[ik2rj], leading to redundancy
in the approximation space. Of course our method is designed with the high frequency regime in
mind, and this redundancy is a low-frequency issue. But using slightly different grading parameters
for the two meshes was found to be a simple and effective way to maintain stability even for relatively
low frequencies.

4.2 Numerical experiments

In §4.3–§4.8 below, we present numerical results demonstrating the accuracy and efficiency of our
HNA BEM for a range of scattering scenarios. As we shall see, our HNA BEM achieves an order
of magnitude improvement in accuracy over the purely asymptotic PGOH approach, using only a
modest (and frequency-independent) number of degrees of freedom.

To quantify the accuracy of the PGOH and HNA BEM solutions we compare them to reference
solutions obtained by solving (11) using a conventional hp-BEM with a large number of degrees
of freedom. Numerical experiments suggest that this reference solution achieves at least 0.01%
accuracy for all the problems considered here; for more details see [29]. We shall present results
both for the boundary solution v = (u1, ∂u1/∂n)T and the far-field pattern F (see (10)).

Our algorithm can be applied to any convex polygonal scatterer, and to illustrate this we consider
three different examples: an equilateral triangle, a square, and a regular hexagon. In each case, we
take the sides of the polygon to be of length 2π so that the number of exterior (interior) wavelengths
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λ1 (λ2) around Γ is equal to nsk1 (nsRe [k2] = nsk1Re [µ]). We shall report results for k1 ranging
from 5 to 160, the highest value corresponding to 480, 640 and 960 exterior wavelengths around Γ
for the triangle, square, and hexagon, respectively. (The reason we do not present results for even
higher wavenumbers is that computing the reference solution becomes prohibitively expensive.)
For comparison with conventional methods (such as the standard hp-BEM used to compute our
reference solution) we introduce the notation

#DOFperλ1 = N/(2nsk1) and #DOFperλ2 = N/(2nsRe [k2]) = (#DOFperλ1)/Re [µ]

to denote the average number of degrees of freedom (DOF) per wavelength around Γ used in the
approximation of each of the components of the boundary solution v, relative to the exterior and
interior wavelengths respectively. A rule of thumb for scattering problems (see, e.g., [43, 44]) is that
to achieve acceptable “engineering accuracy” using a conventional method, one generally requires
6 to 10 degrees of freedom per wavelength. Precisely what is meant by “engineering accuracy”
depends on the application at hand, but in [43, 44] the target accuracy appears to be roughly 10%.
As we shall see, at high frequencies our HNA BEM can achieve better than 1% accuracy with far
less than one degree of freedom per wavelength.

For the equilateral triangle we shall consider scattering for the five different incident directions d1,
d2, d3, d4 and d5 shown in Figure 7(a), which correspond to taking

di = (cos θi,− sin θi), with θi =
π

2
,
5π

12
,
π

3
,
π

4
,
π

6
, (34)

respectively. We also study the performance of our method under changes in the refractive index
µ, and the constant α in (6). Our work is motivated in part by applications in atmospheric physics,
specifically the scattering of electromagnetic radiation by ice crystals in cirrus clouds [3]. In this
context the relevant choices of α are α = 1 and α = (k1/k2)2, as already discussed after (7). The
refractive index µ of ice has been determined through numerous experiments (see, e.g., [54]) and
is known to be complex-valued and highly frequency-dependent, with Re [µ] (the contrast) ranging
between 1 and 2, and Im [µ] (the absorption) between 0 and 1. For most of our examples we take
Re [µ] = 1.5. But we also present results for Re [µ] = 0.66 (the approximate reciprocal of 1.5), to
demonstrate that our method is also effective for the case 0 < Re [µ] < 1. We consider a range
of Im [µ] from 0 up to 0.0125; results for larger absorptions (when our method achieves accuracies
even better than those reported here) can be found in [29].

4.3 High frequency performance

In this section we investigate how the accuracy of our method depends on the wavenumber k1. We
consider the configuration from Figure 1, namely scattering by an equilateral triangle with di = d1,
α = 1 and µ = 1.5 + 0.003125i, for wavenumbers k1 = 5, 10, 20, 40, 80, 160. The parameter choices
(29)–(33) result in a total number of degrees of freedom N = 416 in this case, independent of k1.

Figure 8 shows the resulting error in our HNA BEM approximation to the boundary solution
v = (u1, ∂u1/∂n)T and the far-field pattern F . For a comparison with a purely asymptotic method
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Figure 8: Scattering by an equilateral triangle with di = d1, α = 1 and µ = 1.5 + 0.003125i. Errors
in boundary solution and far-field pattern for GO (PGOH in the far field), our HNA BEM (with
fixed N = 416) and a conventional hp-BEM (with fixed N = 456).

we also show the corresponding errors for the GO approximation, and the resulting PGOH ap-
proximation to the far-field pattern (obtained by substituting the GO approximation for v into
(10)). For a comparison with a purely numerical method we also show the corresponding errors
for a “conventional” BEM, namely the same hp-BEM used to generate our reference solution, but
with far fewer degrees of freedom; specifically, for the hp-BEM we use approximately the same
(k1-independent) number of degrees of freedom (in this case N = 456) as we use in the HNA BEM
(N = 416). The corresponding values of #DOFperλ2 for the two methods, along with the 2-norm
condition numbers COND of the associated linear systems, are presented in Table 1.

For all values of k1 considered here, the HNA method is accurate to within at least 5% both
for the computation of the boundary solution and the far-field pattern, and provides an order of
magnitude improvement over GO/PGOH. Moreover, as is true for GO/PGOH, the accuracy of
the HNA method increases as k1 increases, despite the fact that N remains fixed. For the largest
wavenumber k1 = 160, the HNA method achieves an accuracy of approximately 0.1% using fewer
than 0.3 degrees of freedom per wavelength. In contrast, the error for the conventional hp-BEM
(again with fixed N), despite starting below that of the HNA method for k1 = 5, rapidly increases
with increasing k1, with the accuracy cross-over between hp-BEM and HNA BEM occurring between
k1 = 10 and k1 = 20. The hp-BEM loses accuracy completely (relative error > 100%) for k1 ≥ 40.
(Of course, accuracy could be regained for the hp-BEM for k1 ≥ 40 by increasing the number of
DOF, but the point of Figure 8 is to compare the performance of the conventional hp-BEM and
our HNA BEM when they are allocated a fixed (and roughly equal) number of DOFs.)

Table 1 reveals that, for the examples considered, the condition number for the HNA BEM broadly
decreases as frequency increases, in contrast to the conventional hp-BEM. This is consistent with
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k1 5 10 20 40 80 160
hp-BEM #DOFperλ2 10.13 5.07 2.53 1.27 0.63 0.32
HNA #DOFperλ2 9.24 4.62 2.31 1.16 0.58 0.29
hp-BEM COND 6.95× 101 2.54× 102 5.51× 102 1.53× 103 4.94× 103 3.20× 104

HNA BEM COND 1.42× 108 1.55× 106 1.93× 106 4.77× 105 1.46× 105 1.08× 105

Table 1: Degrees of freedom per wavelength λ2 for the results in Figure 8. The total number of
DOF is 456 for the hp-BEM and 416 for the HNA BEM, independent of k1.

the fact that as k1 increases our HNA approximation space becomes increasingly well-suited to
approximating the boundary solution. The conditioning presents no issues for the direct linear
solver used in the HNA BEM, as the error plots in Figure 8 demonstrate.

4.4 Varying the incident angle

We now investigate how the accuracy of the method depends on the incident wave direction. As
in the last section we fix α = 1 and µ = 1.5 + 0.003125i, but now consider the five evenly spaced
incident angles d1, . . . ,d5 defined by (34) (see Figure 7(a)). We already presented field plots for
the case di = d1 in Figure 1. Figure 7(b) shows an analogous field plot for the case di = d3,
which corresponds to grazing incidence along Γ1. The number of degrees of freedom N used in
the approximation space for each of these examples ranges from 400 and 424; exact values are
detailed in Table 2. The variation between examples is due to the variation of the strength of beam
boundary discontinuities, and whether or not extra mesh points are introduced to capture them
(recall (27), (22) and the discussion at the end of §3.1).

θi \k1 10 20 40 80 160
π
2

(d1) 416 416 416 416 416
5π
12

(d2) 424 424 424 416 408
π
3

(d3) 408 408 408 400 400
π
4

(d4) 416 408 408 408 400
π
6

(d5) 408 408 408 408 400

Table 2: Number of DOF in the HNA approximation space for the examples considered in Figure 9.

In Figure 9 we report L2 errors in the approximations to u1 on Γ for all five incident directions
and a range of wavenumbers k1. (Errors in ∂u1/∂n and F follow very similar trends but are not
reported here.) In all cases considered, the HNA BEM provides a significant improvement over
GO. It is interesting to note, however, that the errors in both the GO and HNA approximations
are not uniform across incident angle; rather one observes a peak in the error curves at the grazing
incidence case di = d3 (i.e. θi = π/3). We hypothesize that the larger error in the GO at grazing
incidence is due to the fact that the high frequency asymptotic behaviour in this case involves a
particularly prominent diffracted wave along Γ1, which is not captured by the GO approximation.
(By contrast, the HNA approximation does capture this diffracted wave.)
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Figure 9: Accuracy of GO and HNA approximations to u1 on Γ plotted against incident angle θi
for the incident directions d1, . . . ,d5 of Figure 7(a), for α = 1 and µ = 1.5 + 0.003125i.

We hypothesize that the larger error in the HNA approximation at grazing incidence is due to a
particularly prominent lateral wave contribution on Γ3, which isn’t captured by our HNA approx-
imation space. As was suggested in the caption to Figure 3, it is plausible that grazing incidence
might lead to particularly large lateral wave contributions, because of the following argument:
while the lateral wave usually compensates for the phase mismatch between the exterior and inte-
rior diffracted waves, at grazing incidence one of the lateral waves (in this case the one associated
with Γ1, since for di = d3 the direction of the incident wave is parallel to that side) has to match
up to the incident wave; since the incident wave has lower asymptotic order than the diffracted
wave, one might therefore expect the lateral wave to be more prominent in this case.

Lateral waves only propagate inside Ω2 when Re [µ] > 1, which is the case for the examples
considered up to now. When 0 < Re [µ] < 1 the lateral waves propagate away from the scatterer
in Ω1, and therefore should not affect the boundary solution. Hence we can test our hypothesis
about the role that lateral waves play in the deterioration of accuracy at grazing incidence for the
case Re [µ] > 1 by studying the case 0 < Re [µ] < 1 and observing whether the same deterioration
in accuracy occurs. This we do in the next section.

4.5 Varying the contrast (Re [µ])

In this section we study the performance of the HNA method in the case 0 < Re [µ] < 1. Specifically,
fixing α = 1, we compare the results presented in Figure 9 for the case µ = 1.5+0.003125i, with those
presented in Figure 10 for µ = 0.66 + 0.003125i (the real part of the latter being approximately the
reciprocal of the real part of the former). Based on these plots we make a number of observations.
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Figure 10: Accuracy of GO and HNA approximations to u1 on Γ plotted against incident angle θi
for the incident directions d1, . . . ,d5 of Figure 7(a), for α = 1 and µ = 0.66 + 0.003125i.

First, the accuracy of the GO approximation is roughly the same for the two refractive indices.
Second, as was the case for Re [µ] = 1.5, the GO approximation for Re [µ] = 0.66 exhibits its largest
errors at grazing incidence - again we ascribe this to a particularly prominent diffracted field along
the grazing side in this case. Third, the HNA approximation consistently produces smaller errors
for Re [µ] = 0.66 than for Re [µ] = 1.5. Fourth, the HNA error for Re [µ] = 0.66 is not obviously
worse at grazing incidence than for other incident directions, in contrast to the Re [µ] = 1.5 case. To
make a direct comparison easier, in Figure 11(a) we plot the errors for the two cases (Re [µ] = 1.5
and Re [µ] = 0.66) at the grazing incidence angle θi = π/3 (di = d3), for a range of values of k1.
The GO errors are virtually identical for the two cases, but the HNA errors are significantly smaller
for Re [µ] = 0.66 than for Re [µ] = 1.5. These observations all support our hypothesis that the
deterioration in accuracy of our HNA method near grazing incidence for Re [µ] > 1 is due to the
presence of prominent lateral wave contributions, which are not present for Re [µ] < 1.

To test this hypothesis further, we consider the analogous experiment for a square scatterer. Align-
ing the square with the Cartesian axes, the grazing incidence case is now di = d1 (θi = π/2).
Field plots for ud in this configuration for the two cases (Re [µ] = 1.5 and Re [µ] = 0.66) can be
found in Figure 12. The corresponding boundary errors are presented in Figure 11(b). As for the
triangle, the HNA error is significantly smaller for Re [µ] = 0.66 than for Re [µ] = 1.5, and again we
hypothesize that this is due to the fact that for Re [µ] = 1.5 (and not for Re [µ] = 0.66) prominent
lateral waves are generated by the two vertical sides, which impinge on the bottom side and limit
the accuracy of our HNA approximation. We note also that this example allows us to rule out the
possibility that increased error at grazing incidence might be due to the GO1/GO2 choice discussed
in §3.1, because for this square configuration the propagation and decay directions (d and e in the
notation of §3.1) always coincide and point vertically up or down, so that GO1 and GO2 coincide
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Figure 11: Accuracy of GO and HNA approximations to u1 on Γ at grazing incidence, for (a)
the triangle and (b) the square. We fix α = 1 and consider both µ = 1.5 + 0.003125i and µ =
0.66 + 0.003125i.

(a) µ = 1.5 + 0.003125i (b) µ = 0.66 + 0.003125i

Figure 12: Real part of the diffracted field for a square with different real part of the refractive
index. The incident wave is directed from above.

for all GO beams.
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Figure 13: Accuracy of GO and HNA approximations to u1 and ∂u1/∂n on Γ for the triangle with
α = 1 and α = (k1/k2)2, with µ = 1.5 + 0.00625i and di = d1 (θi = π/2).

4.6 Varying α

In principle, our HNA method can be evaluated for any value of the boundary condition jump
parameter α ∈ C \ {0}. In practice, as was discussed after (7), the choices of α relevant to the
dielectric electromagnetic scattering problem are α = 1 and α = (k1/k2)2. We have already pre-
sented results for the former case; in this section we present results for the latter case. Specifically,
we consider scattering by the triangle with µ = 1.5 + 0.00625i and di = d1 (θi = π/2). Figure 13
shows that for this configuration the performance of the method in the approximation of both u1

and ∂u1/∂n is very similar for the two cases α = 1 and α = (k1/k2)2.

4.7 Varying the absorption (Im [µ])

In this section we study the effect of varying the absorption Im [µ]. Specifically, we consider
scattering by the triangle with di = d5 (θi = π/6), α = 1, Re [µ] = 1.5 and

Im [µ] = 0.0125, 0.00625, 0.003125, 0.0015625, 0.

In Figure 14 we present the resulting error plots for the GO and HNA approximations. For all
values of Im [µ] considered (even Im [µ] = 0) the HNA method provides an improvement in accuracy
over the GO method and (once k1 is sufficiently large) the HNA error decreases as k1 increases. For
fixed k1 the HNA error decreases as the absorption Im [µ] increases; for the worst case (Im [µ] = 0)
using the HNA approximation instead of GO alone reduces the error at k1 = 10 from 21.2% to 2.8%
and at k1 = 160 from 9.1% to 4.0%, whereas for the best case (Im [µ] = 0.0125) the error at k1 = 10
is reduced from 19.8% to 2.0% and at k1 = 160 from 6.7% to 0.17%. This dependence of accuracy
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Figure 14: Accuracy of GO and HNA approximations to u1 on Γ for the triangle with α = 1 and
di = d5 (θi = π/6), with Re [µ] = 1.5 and Im [µ] varying between 0 and 0.0125.

on absorption can be explained in terms of the asymptotic theory. Our HNA approximation space
neglects the contribution of the higher-order asymptotic terms such as lateral waves and reflected-
diffrated waves (see Figure 3), and for Im [µ] > 0 these higher-order terms are attenuated as they
propagate across Ω2 at a rate proportional to Im [µ]. Hence the larger Im [µ] is, the smaller the
contribution the neglected terms make to the boundary solution v, and, as a result, the more
accurate our HNA BEM is.

4.8 Scattering by a hexagon

We have already presented results for scattering by an equilateral triangle and a square. In this sec-
tion we consider scattering by a regular hexagon. This can be viewed as a simple two-dimensional
model of the motivating application we mentioned in §1, namely the scattering of light by atmo-
spheric ice crystals, which typically take the form of hexagonal columns or their aggregates (see
[3]). Here we choose a refractive index µ = 1.39 + 0.00667i (which corresponds to the refractive
index of ice for free-space wavelength 3.73µm [53]), jump parameter α = 1 (corresponding to the
out-of-plane electric field polarisation) and incident direction di = (1/

√
13)(3,−2) (incident angle

θi = tan−1(2/3)). The total field and far-field pattern for this configuration are plotted in Figure 15.

The corresponding errors for k1 = 10, 20, 40, 80, 160 are reported in Figure 16. The number of
degrees of freedom N in the HNA method decreases from 1008 at k1 = 10 to 912 at k1 = 160. (As
was remarked in §4.4, our method typically uses fewer degrees of freedom at larger wavenumbers
because beam boundary discontinuities decrease in strength as the wavenumber increases.) For all
wavenumbers considered, the HNA method provides a significant improvement in accuracy over
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(a) Total field (real part) (b) Log of far-field pattern (log10(|F |))

Figure 15: Scattering by a regular hexagon with k1 = 10, µ = 1.39 + 0.00667i, α = 1, and incident
angle θi = tan−1(2/3).
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Figure 16: Accuracy of GO and HNA for scattering by a regular hexagon with µ = 1.39 + 0.00667i,
α = 1, and incident angle θi = tan−1(2/3).

GO (PGOH in the far field), and increases in accuracy as k1 increases, despite the fact that the
number of degrees of freedom N remains fixed or decreases. Specifically, for the approximation
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of the far-field pattern at the highest wavenumber k1 = 160, which corresponds to 960 exterior
wavelengths (approximately 1334 interior wavelengths) around the scatterer boundary, the PGOH
approximation achieves 1.9% error, while the HNA BEM achieves 0.049% error with just N = 912,
which corresponds to #DOFperλ2 ≈ 0.34.

5 Discussion

In this paper we have described an HNA BEM for high frequency scattering by penetrable (di-
electric) convex polygons. We have demonstrated, by a range of numerical experiments, that our
method can provide an order of magnitude improvement in accuracy over the purely asymptotic
GO (PGOH in the far field) approach. Moreover, our method can achieve a fixed accuracy of
approximation using a relatively small, frequency-independent number of degrees of freedom N .
By contrast, conventional BEM approaches require N to grow at least linearly with increasing
frequency in order to maintain accuracy. The extremely efficient deployment of degrees of freedom
in our HNA BEM is due to the fact that it uses an approximation space built from oscillatory basis
functions carefully chosen to capture certain components of the high frequency solution behaviour.

We conclude the paper with a discussion of some possible (but non-trivial) modifications that
might enhance the performance of our method still further. First we recall that (as was explained
in detail in §3) our HNA method, while more accurate than GO alone, is not fully error-controllable
(in the sense of the HNA methods analysed rigorously in [17, 35, 16, 33, 34]), because its accuracy
is limited by our neglect of higher-order asymptotic effects such as lateral waves and diffracted-
reflected waves (see Figure 3). Full HNA error-controllability seems infeasible for this problem
because there are infinitely many different phases to consider, despite the fact that the scatterer
is convex. But, in principle, the accuracy of our method could be improved, at the expense of
additional degrees of freedom, by incorporating new oscillatory basis functions capable of capturing
some of these higher-order effects. Concretely, for the lateral wave contributions one could include
plane-wave basis functions of the form f(x)eik2dl·x, where f is a piecewise polynomial and dl is
the propagation direction of the lateral wave in question (these directions can be determined solely
from the refractive index and the corner angles of the polygon - for further discussion of these
issues see [31, §3.2.1]). For the diffracted-reflected waves one could include basis functions of the
form f(x)eik2r′j(x), where f is a piecewise polynomial and r′j(x) is the distance between x and
an appropriate reflected image P′j of the corner Pj from which the original diffracted ray field
emanated. (Such an image point P′j is shown in Figure 3(b).) We note that similar basis functions
are required to capture multiple scattering effects in HNA BEMs for nonconvex impenetrable
polygons - see, e.g., the discussion in [16, §8].

Second, we suspect that our rather simplistic treatment of GO beam boundaries may not be
optimal. It is well-known that, for scattering by impenetrable wedges, the smooth (but rapidly-
varying) solution behaviour near the “shadow boundaries” across which GO components (incident
or reflected) switch on/off is governed by the Fresnel integral and related functions (see, e.g., [48, 8]).
In the context of HNA methods for sound-soft nonconvex polygons this (frequency-dependent)
shadow boundary behaviour can be captured either by including the appropriate special functions
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in the HNA approximation space (as in [16]) or by cutting off the GO component sharply across
the shadow boundary and refining the mesh for the associated diffracted component towards it, to
capture the rapid variation that compensates for the GO discontinuity (as in [33]). Our approach in
the current paper, in the context of penetrable convex polygons, is a rather crude implementation
of the latter approach. We expect that certain minor (yet technical) modifications to our current
practice might lead to slightly improved accuracy:

• Following [31], we take the beam boundaries of a GO beam aei(Dd+iEe)·x to be parallel to
the associated propagation vector d. When E > 0 (which will be the case generically if
Im [µ] > 0) this choice may not be optimal - in simpler “knife-edge” diffraction problems
involving inhomogeneous incident waves the “correct” location of shadow boundaries (defined
in an appropriate sense) is known to be shifted in a rather non-intuitive way (see [4] and the
discussion in [31, Remark 3.1]). A possible modification to our current algorithm would be
to allow an absorption-dependent shift in the beam boundary locations.

• For each beam boundary discontinuity classified as “strong” (in the sense of (22)), we insert
a single new point in the mesh for the associated diffracted wave (if one exists). The rigorous
analysis in [33] for sound-soft nonconvex polygons suggests that the rapid solution variation
near the beam boundary might be captured more accurately by introducing geometric mesh
grading towards the beam boundary.

To our knowledge, the canonical penetrable wedge scattering problem has not been analysed in
sufficient detail to allow us to make theoretically-justifiable judgements about the optimal strategy
in relation to the points raised above. Hence we leave such considerations to future work.
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